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a b s t r a c t

A visible k nearest neighbor (Vk NN) query retrieves k objects that are visible and nearest

to the query object, where “visible”means that there is no obstacle between an object and

the query object. Existing studies on the Vk NN query have focused on static data objects.

In this paper we investigate how to process the query on moving objects continuously. We

propose an effective filtering-and-refinement framework for evaluating this type of

queries. We exploit spatial proximity and visibility properties between the query object

and data objects to prune search space under this framework. A detailed cost analysis and

a comprehensive experimental study are conducted on the proposed framework. The

results validate the effectiveness of the pruning techniques and verify the efficiency of the

proposed framework. The proposed framework outperforms a straightforward solution by

an order of magnitude in terms of both communication and computation costs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The visible k nearest neighbor (Vk NN) query has attracted

great research interest [12,13,20,21] recently due to emer-

ging applications such as security camera placement and

sightseeing site recommendation. This query assumes a set P

of data objects, a set O of obstacles (represented by line

segments) and a query object q. Then it retrieves k data

objects from P that are visible and nearest to q. Fig. 1 gives

an example. Suppose k¼2. The data objects are listed

according to their Euclidean distance to q as: p5; p6; p4; p3;

p1; p2. Since p5; p4 and p1 are blocked by the obstacles and

invisible to q, they are not answers to the Vk NN query. The

Vk NN set of q, denoted by Vk NN(q), is fp6; p3g.

In this paper we study a continuous version of the Vk NN

query, namely, the continuous Vk NN query, which computes

the Vk NN from a set of moving objects for a moving query

object continuously (i.e., for every timestamp).

The continuous Vk NN query has various applications.

For example, in a military simulation, there can be more

than 100,000 moving objects [37] such as soldiers and

military vehicles interacting with each other. A soldier

needs to keep track of his/her nearest visible enemies, so

that he/she can attack or avoid them. As the soldier and

the enemies are moving constantly, the simulator needs to

monitor them continuously and report to the soldier his/her

nearest visible enemies. In another example, massively

multiplayer online first-person shooter (MMOFPS) games

like CrossFire1 need to show a player his/her nearby visible

players so that he/she can shoot them. Again, as the

players are moving constantly, the game system needs to

monitor the players continuously and report to the player

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2014.02.003

0306-4379 & 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 2483683113.

E-mail addresses: wangyanqiu@ise.neu.edu.cn (Y. Wang),

rui.zhang@unimelb.edu.au (R. Zhang),

chuanfeixu@research.neu.edu.cn (C. Xu),

jianzhong.qi@unimelb.edu.au (J. Qi), guyu@ise.neu.edu.cn (Y. Gu),

yuge@ise.neu.edu.cn (G. Yu). 1 http://crossfire.z8games.com/

Information Systems 44 (2014) 1–21

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.02.003
http://dx.doi.org/10.1016/j.is.2014.02.003
http://dx.doi.org/10.1016/j.is.2014.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.02.003&domain=pdf
mailto:wangyanqiu@ise.neu.edu.cn
mailto:rui.zhang@unimelb.edu.au
mailto:chuanfeixu@research.neu.edu.cn
mailto:jianzhong.qi@unimelb.edu.au
mailto:guyu@ise.neu.edu.cn
mailto:yuge@ise.neu.edu.cn
http://crossfire.z8games.com/
http://dx.doi.org/10.1016/j.is.2014.02.003


his/her nearest visible players. There may be millions of

players [10] online at the same time. Therefore, a highly

efficient algorithm is required to provide nearest-visible-

player monitoring in real time.

The continuous Vk NN query is interesting not only for

its real applications but also for the technical challenges it

raises. To the best of our knowledge, there is no existing

work considering the query on moving objects. The main

challenge here is that the query result needs to be up-to-

date at every timestamp, which incurs significant commu-

nication and computation costs. To mitigate the costs, we

propose a filtering-and-refinement query processing fra-

mework, and exploit spatial proximity and visibility prop-

erties between the query object and the data objects to

prune search space under the framework. For spatial

proximity based pruning, we use the safe region, which is

a circular region centered at an object and is defined to

bound the movement of the object for a certain period of

time T (cf. Fig. 2). The safe regions that are close and visible

to the query object further define a pruning region, which

can be used to rule out objects that are too far away to be

in the Vk NN set within T timestamps. For objects that

survive the safe region based pruning, their distance to the

query object is not too far, but they may still be invisible to

the query object due to obstacles. This motivates the

visibility based pruning, which utilizes sub-periods within

T that an object is invisible to the query object, so that the

object can be excluded from the Vk NN candidates during

those sub-periods. We call such sub-periods the invisible

time periods. All pruning techniques together keep the

number of objects that pass the filtering stage small, and

hence substantially reduce the costs of the refinement

stage. As a result, we achieve a highly efficient query

processing framework.

We summarize the contributions of this paper as

follows.

� This is the first study that addresses the continuous Vk

NN query on moving objects. We propose a filtering-

and-refinement framework that can process the query

effectively.
� We develop two pruning strategies, namely, safe region

based pruning and invisible time period based pruning,

to reduce the search space for query processing under

the proposed framework.
� We conduct a detailed cost analysis for the proposed

pruning techniques. Extensive experiments using both

real and synthetic data sets demonstrate the high

efficiency of the pruning techniques as well as the

proposed query processing framework.

The rest of this paper is structured as follows. We first

review related work in Section 2. Then we formalize the

continuous Vk NN query on moving objects and present the

filtering-and-refinement framework in Section 3. In Section 4,

we present two pruning strategies under the framework and

in Section 5 we provide a cost analysis for algorithms based

on these pruning strategies. We report the experimental

results in Section 6 and conclude the paper in Section 7.

2. Related work

We review three classes of related studies, namely,

continuous spatial queries in general, continuous k nearest

neighbor queries on moving objects and visible k nearest

neighbor queries on static objects.

2.1. Continuous spatial queries in general

There is a large body of literature on continuous

evaluation of spatial queries. For example, Šaltenis et al.

[29] propose the Time Parameterized R-tree (TPR-tree)

that indexes moving points as linear functions of time,

based on which time-parameterized queries [26] are

proposed to retrieve moving objects that satisfy certain

time-parameterized predicates continuously. Ali et al. [1]

study continuous retrieval of 3D objects using incremental

computation to reduce the computational costs. Hu et al.

[16] propose a safe region based framework for monitoring

continuous spatial queries over moving objects on a client-

sever based system. Each moving object (a client) in the

system is aware of the current query result and only

reports its new location to the server if it is likely to cause

changes to the query result. Mokbel et al. [17,18] propose

two frameworks for processing continuous spatial queries.

They process the queries incrementally by computing

the effect of each individual update on the query answer.

They also propose shared execution techniques to process

multiple queries at the same time. Benetis et al. [7] study

the problem of continuous reverse nearest neighbor (RNN)

monitoring over moving objects. Xia and Zhang [31] also

study the continuous RNN query. They propose a so-called

Fig. 1. Vk NNðqÞ ¼ fp6 ; p3 ; p2g ðk¼ 2Þ.

Fig. 2. Safe regions.
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six-region approach to process the query. Later, Cheema

et al. [9] propose a safe region based approach to process

the continuous reverse k nearest neighbor (Rk NN) query.

More recently, Zhang et al. [37] study the continuous

intersection join query, which reports the set of intersect-

ing objects from two moving object sets continuously. Xue

et al. [33] study continuous user destination predictions

through monitoring a user's moving trajectory and com-

paring it with a partial trajectory set.

2.2. Continuous k nearest neighbor queries on moving

objects

As a major type of continuous spatial queries, the

continuous k nearest neighbor (k NN) query on moving

objects has been studied extensively. For example, Tao et al.

[27] consider a continuous NN search that retrieves the NNs

of every point on a given line segment. Song et al. [25]

propose a sampling-based approach to reduce the cost of

processing continuous NN queries. However, this method

may produce inaccurate query answers. Zhang et al. [35] use

the validity region to enable mobile clients to determine the

validity of previous NN query results based on their current

locations. Nutanong et al. [22,23] use an incremental-safe-

region based technique called the Vn-Diagram that exploits

both the location of the query object and the scope of the

current search space to answer moving k NN queries. Yu

et al. [34] use grid indices for monitoring k NN queries on

moving objects, which can provide exact query answers but

with a delay in the time. Xiong et al. [32] also use grid

indices for monitoring continuous k NN queries. They

compute the query answer incrementally by maintaining

an answer region for each query. The location updates of

objects at each timestamp are used to update the answer

region, which is then used to generate updates to the query

answer. In addition, Mouratidis et al. [19] propose a thresh-

old based algorithm for the continuous NN query, which

aims at minimizing the communication overhead between

the query processor and the moving objects. Furthermore,

Hsueh et al. [15] present a partition based lazy update

algorithm that uses Location Information Tables and safe

regions to process continuous NN queries.

There are also many studies on variants of the contin-

uous k NN query. For example, Zhang et al. [36] study the

predictive moving k NN query. Hashem et al. [14] study

how to protect a user's location privacy in moving k NN

monitoring systems. Shahabi and Sharifzadeh [24] propose

the VoR-Tree, which incorporates Voronoi diagrams into

the R-tree to improve the efficiency of processing various

types of k NN queries. Al-Amri et al. [2,4] study k NN

queries in indoor space. They propose an adjacency index

structure for moving objects in indoor space that takes

into account both spatial and temporal properties. They

use a non-leaf node timestamping method to store moving

data and process k NN queries. In addition, Al-Amri et al.

[3] propose a moving object index and a lookup table that

can be used to process traditional k NN queries as well as

the novel direction and velocity queries. Since these

studies do not consider obstacles in the continuous k NN

query, their methods do not apply to our problem.

2.3. Visible k nearest neighbor queries on static objects

The visible k nearest neighbor (Vk NN) query is first

proposed by Nutanong et al. [20]. This query retrieves the

nearest k static objects that are visible to a static query

object. To process the query, Nutanong et al. [20] propose

an algorithm that starts from retrieving the nearest object

and then incrementally obtains the knowledge of visibility

while finding other nearest neighbors. Nutanong et al. [21]

also study the aggregate Vk NN query and propose an

approach named single retrieval front to process the query.

Besides, Gao et al. [11] study the visible reverse k nearest

neighbor (VRk NN) query, which finds all objects regarding

the query object as a member of their Vk NN sets. In

another paper [13], Gao et al. study the continuous visible

nearest neighbor (CVNN) query. They assume static data

objects and a query object q moving along a given line

segment, and use a branch-and-bound technique to pro-

cess the CVNN query based on 7 pruning heuristics.

Among the 7 pruning heuristics, 4 are based on the

distance between the static data objects and the line

segment where q moves along, while the other 3 are

based on the position relationship between the static data

objects, an obstacle and q. Since we do not assume a line

segment for q or static data objects, these pruning heur-

istics do not apply.

3. Preliminaries

In this section, we formulate the continuous Vk NN

query on moving objects and present an efficient filtering-

and-refinement framework to process the query. We

summarize the symbols frequently used in the following

discussion in Table 1.

Table 1

Frequently used symbols.

Symbol Definition

P A set of moving objects

O A set of obstacles (line segments)

p A moving object

o An obstacle

q A query object

pq A line segment that connects p and q

jpqj The length of pq (the Euclidean distance

between p and q)

VDðp; qÞ The visible distance between p and q

Rp The safe region of p

Rq The safe region of q

VðqÞ The visible region of q

VðRqÞ The visible region of Rq
I ðqÞ The invisible region of q

I ðRqÞ The invisible region of Rq
MinVDðRq;RpÞ The minimum visible distance between Rq and Rp
MaxVDðRq ;RpÞ The maximum visible distance between Rq and Rp
Sc A set of query answer candidate objects

vm The global maximum speed

T The recomputation period of Sc
τp An invisible time period of p

τ
l
p An invisible time period lower bound of p

τ
m
p A moving direction aware invisible time period of p

Y. Wang et al. / Information Systems 44 (2014) 1–21 3



3.1. Problem formulation

We first define the concept of visibility between two

objects. We assume that obstacles are line segments while

data objects including the query object are points in a two-

dimensional Euclidean space.

Definition 1 (Visibility). Given a set O of obstacles, we say

that two objects p and q are visible to each other iff there is

no obstacle o in O such that the line segment connecting p

and q, denoted by pq, intersects o, i.e., 8oAO; o \ pq ¼∅.

Similarly, we say that p and q are invisible to each other

iff there is an obstacle o such that pq intersects o, i.e.,

(oAO; o \ pqa∅.

We use VðqÞ to denote the visible region of q, i.e., the

region inside which all points are visible to q (cf. the white

region in Fig. 2). By checking whether p resides in VðqÞ, we

know whether p is visible to q. Similarly, we use I ðqÞ to

denote the invisible region of q inside which all points are

invisible to q (cf. the grey region in Fig. 2). We follow the

classical technique to compute VðqÞ [5,28]. The technique

uses the obstacles and the lines that pass through q and

the endpoints of the obstacles to clip the invisible region of

q from the whole data space. The remaining part of the

data space is the visible region of q.

We define the visible distance (VD) to represent the

distance between two objects when their visibility is taken

into consideration

VDðp; qÞ ¼
distðp; qÞ; p is visible to q

1 otherwise:

(

Here, distðp; qÞ denotes the Euclidean distance between

two points p and q.

Given the definition of visible distance, we define the

continuous visible k nearest neighbor query on moving

objects as follows.

Definition 2 (Continuous Visible k Nearest Neighbor (CVk NN)

query on moving objects). Given a set P of moving objects, a

set O of obstacles and a moving query object q, at every

timestamp, the continuous visible k nearest neighbor query

retrieves a subset of P, denoted by Vk NN(q), such that:

(1) jVkNNðqÞj ¼ k;

(2) 8pAVkNNðqÞ, p is visible to q;

(3) 8pAVkNNðqÞ and 8p0AP\VkNNðqÞ, VDðp; qÞrVDðp0; qÞ.

System architecture: We consider processing the CVk

NN query for two types of systems, centralized systems

and client–server based systems. Centralized systems are

commonly used in applications such as military simula-

tions, where the simulation system usually controls the

moving objects directly and has all up-to-date object

location information it needs to process the CVk NN query.

Client–server based systems are commonly used in appli-

cations such as multiplayer online games, where most of

the moving objects are avatars controlled by human

players through game clients (local computers or play

stations), while the CVk NN query is processed in the

game server. In this case, communication cost is incurred

when the server and the clients exchange location updates

and query results.

For the algorithm design and cost analysis in the rest of

this paper, we assume a client–server based system for

ease of presentation, i.e., we will consider computation

cost as well as communication cost. However, the algo-

rithm design principles and cost analysis also apply to

centralized systems, in which case communication cost is

replaced by the cost of accessing the object location data

within the centralized systems.

We also assume that the CVk NN query is processed in

main memory. This is reasonable because storing a data set

of 100,000 objects only takes several MB while currently a

commodity computer usually has several GB of main

memory.

3.2. Query processing framework

A straightforward solution to the CVk NN query is to

perform a snapshot VkNN query at every timestamp as

follows. At every timestamp, we solicit location updates

for all moving objects, sort the objects based on their

visible distance to the query object, and then report the

first k objects as the query answer. This will serve as our

baseline algorithm since there is no existing work on the

CVk NN query. We might use the solution proposed by

Nutanong et al. [20] to process a snapshot Vk NN query,

but this solution is not efficient under our problem

settings for the following reason. Nutanong et al. assume

an R-tree on the data objects and the obstacles, and then

use a best-first traversal to identify the invisible regions

and the query object's nearest visible objects gradually.

Applying their method means building an R-tree on the

objects and the obstacles at every timestamp, which has a

time complexity of OððjPjþjOjÞlogðjPjþjOjÞÞ. In our pro-

blem settings, the obstacles are static. We just need to

build an R-tree to index them once. Then computing the

visible distance and sorting the moving objects based on

visible distance at every timestamp require only

OðjPjlogjPjÞ time, which is smaller than that of Nutanong

et al.'s algorithm. Therefore, we use the sorting based

snapshot Vk NN query algorithm instead of Nutanong

et al.'s algorithm as the baseline. However, this baseline

solution still requires too much communication and com-

putation costs incurred by soliciting location updates and

sorting for all objects at every timestamp. The need for a

more efficient solution is evident.

We propose a filtering-and-refinement framework to

process the CVk NN query on moving objects. The frame-

work first performs a two-stage filtering to reduce the

search space. Then refinement is performed to examine

the exact positions of the unfiltered objects and find the

query result.

As Fig. 3 shows, we divide the time axis into periods of

T timestamps each, where T is a system parameter. At the

beginning of each period, we solicit location updates

for all objects, which means that we only need to solicit

location updates for all objects once every T timestamps.

We will analyze the effect of T on system performance in

Section 4.1 and perform an empirical study in Section 6.2.

After the location updates are solicited, we build an R-tree

Y. Wang et al. / Information Systems 44 (2014) 1–214



on the moving objects (safe regions of the objects, actu-

ally). At every T timestamps, we update the R-tree nodes

according to the new locations of the objects. We use the

R-tree to perform the first stage filtering, which results in a

subset of P that is guaranteed to contain all possible VkNNs

of the query object for the next T timestamps. We call this

subset the candidate answer set and denote it by Sc.

During the next T timestamps, we perform the second

stage filtering on Sc to determine the objects that require

to be examined by refinement. This filtering stage is based

on the visibility relationship between the objects and no

false dismissal will be introduced. We then sort the unfil-

tered objects based on their visible distance to the query

object to generate the exact query result at each time-

stamp. This process repeats and answers are reported

continuously for the CVk NN query.

Discussion: The advantage of our framework is that it

only needs to solicit location updates for all objects every T

timestamps, while the snapshot Vk NN based solution

requires doing that at every timestamp. A possible concern

is that our framework might have a high processing cost at

the beginning of every period incurred by the three

operations, i.e., (i) soliciting location updates, (ii) building

an R-tree, and (iii) filtering the search space. We argue that

these operations are only performed once every T time-

stamps and hence the cost is amortized. Further, opera-

tions (i) and (iii), soliciting location updates and filtering

the search space, are required for any algorithm that may

efficiently process the CVk NN query anyway. As for

operation (ii), building an in-memory R-tree is efficient

[8,30]. Our experimental study shows that building an in-

memory R-tree of size 10,000 takes only about 0.33 s. This

small overhead enables effective R-tree based pruning that

significantly reduces the number of data objects to be

checked in the refinement stage. Therefore, the cost of

building an R-tree once every T timestamps is justified. We

also consider maintaining the R-tree incrementally, i.e., we

build an R-tree at start and update it as the objects move.

The problem of the incremental maintenance is that it has

to process every object update, which is too expensive

when the objects update frequently. As our experiments

show, rebuilding the R-tree is much more efficient than

maintaining it incrementally under our settings.

Processing multiple queries concurrently: When there are

multiple concurrent CVk NN queries, we can process them

together and reduce the processing costs by shared execu-

tion. In particular, in the first stage filtering, the R-tree on

the moving objects is shared by multiple CVk NN queries

to compute a candidate answer set for each query,

which can be done by a grouped branch-and-bound search

on the R-tree. This way we constrain the communication

and computation costs. In the second stage filtering, we

examine each candidate answer set based on the visibility

relationship to obtain the Vk NNs at each timestamp. This

filtering stage requires soliciting the locations of some

objects in the candidate answer sets. Since an object may

belong to multiple candidate answer sets, its solicited

location can be shared by the filtering of multiple candi-

date answer sets. This way we reduce the communication

cost.

4. Pruning techniques

Our query processing framework has two filtering

stages. In the first filtering stage, the aim is to generate a

set of query answer candidates Sc that can stay valid for

the next T timestamps while the size of the set is as small

as possible. In the second filtering stage, the aim is to

further limit the number of objects in Sc that need to be

examined at each timestamp by the refinement stage.

Towards these aims, we propose a safe region based

pruning method and an invisible time period based prun-

ing method summarized as follows:

� Safe region based pruning: We use the safe region to

define a region where a moving object must be in

during a period of T timestamps (cf. Section 4.1). Then

for the query object's safe region, we find its kth

nearest data object's safe region that is entirely visible

to it. The distance between these two safe regions

defines a region where an object's safe region must

intersect or be enclosed in so that this object can be in

the query answer candidate set Sc. All other objects are

pruned from further processing.
� Invisible time period based pruning: The objects in Sc are

close to the query object q but may not be visible to q

throughout a period of T timestamps. We call the sub-

period when an object p ðpAScÞ is invisible to q the

invisible time period of p. Since an object's exact move-

ment is not predictable, there is no way to compute an

exact invisible time period. Instead, we compute a

lower bound of the invisible time period of p based on

the current positions of p, q and the obstacles between

the two objects. Then during the bounded period, p can

be excluded from Sc and need not to be examined in the

refinement stage. When the bounded period expires,

we solicit a location update of p and compute the next

invisible time period lower bound for p. This process

repeats for the objects in Sc. Since this makes some

objects not be examined at every timestamp, the cost of

the refinement stage is reduced.

To further improve the pruning capability of the invi-

sible time period based method, we utilize the query

object's moving direction for the computation of the

invisible time period lower bound, which results in the

moving direction aware invisible time period that is

generally longer and always not shorter than the basic

invisible time period lower bound.

Next we elaborate the pruning techniques.

Fig. 3. The query processing framework.
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4.1. Safe region based pruning

We assume a global maximum speed of all objects,

denoted by vm, which may be the greatest speed limit or

the speed of the fastest object in a gaming/simulator

system. Then during T timestamps, the movement of an

object p must be within a circular region centered at p

with vm � T being the radius. We call this circular region the

safe region of p (cf. Fig. 4).

4.1.1. The pruning distances

As objects' safe regions bound their movement, objects

whose safe regions are not close enough to the query

object's safe region can be discarded from the query

answer candidate set Sc. We define three distances

on the safe regions, which will then be used for the safe

region based pruning.

We first extend the visible region of an object to the

visible region of a region: the visible region of a region R,

denoted by VðRÞ, is defined as the intersection of the

visible regions of all points in R, i.e., a point in VðRÞ is

visible to every point in R. Similarly, the invisible region of

R, denoted by I ðRÞ, is defined as the union of the invisible

regions of all points in R. For example, in Fig. 4, the white

region is the visible region of Rq, VðRqÞ, while the gray

region is the invisible region of Rq, I ðRqÞ. By definition, if

an object is in VðRqÞ, it is guaranteed that the object will be

visible to q for the following T timestamps. To compute

VðRqÞ, we draw tangent lines to Rq from the endpoints of

the obstacles in O. The tangent lines and the obstacles clip

the invisible region from the data space. The remaining

region forms VðRqÞ (cf. Fig. 4). Once we have VðRqÞ,

checking whether a region is (entirely) visible to Rq is

done by checking whether the region is (fully) overlapped

by VðRqÞ.

Now we can define the minimum visible distance,

the maximum visible distance, and the pruning distance.

The minimum visible distance (MinVD) between Rq and a

region R, denoted by MinVDðRq;RÞ, is defined as the

smallest distance between a point in Rq and a point from

R that is visible to Rq (i.e., in the visible region of Rq).

Formally,

MinVDðRq;RÞ ¼
MinDistðRq;R \ VðRqÞÞ; R is visible to Rq

1 otherwise:

(

Here, MinDistð�Þ is a function that returns the smallest

distance between any two points from two regions.

Similarly, we define themaximum visible distance (MaxVD)

between Rq and a region R, denoted by MaxVDðRq;RÞ, to be

the largest distance between a point in Rq and a point from R

that is visible to Rq. Formally,

MaxVDðRq;RÞ ¼
MaxDistðRq;R \ VðRqÞÞ; R is visible to Rq

1 otherwise:

(

Here,MaxDistð�Þ is a function that returns the largest distance

between any two points from two regions.

The pruning distance (PD) is then defined as the largest

MaxVD of the k nearest safe regions who are entirely

visible to Rq. Formally,

PD¼maxfMaxVDðRq;RÞjRASRg; SR satisfies

(i) jSRj ¼ k,

(ii) 8RASR 8R0 =2SR, R \ VðRqÞ ¼ R and

R0 \ VðRqÞ ¼ R0MinVDðRq;RÞoMinVDðRq;R
0Þ.

The definition of PD guarantees that, during the following

T timestamps, we have k objects that are always visible to q,

while their distance to q is at most PD. Any object whose safe

region has a MinVD to Rq that is larger than PD cannot

contribute to the query answer candidate set Sc (e.g., p2 in

Fig. 4). Therefore, using PD for pruning guarantees no false

dismissal.

4.1.2. The pruning algorithm

Safe region based pruning works as follows. We solicit

object location updates at the beginning of every period

(i.e., every T timestamps) and update the R-tree TP . Then,

we traverse TP in a best-first order to determine Sc for the

next T timestamps. We start the traversal with inserting all

entries of the root node of TP into a priority queue QP . The

entries in QP are prioritized based on their minimum

visible distance to the safe region of the query object q,

denoted by Rq. They are popped out one after another until

QP is empty. When an entry ep pops out, if it is invisible to

Rq, which means any point bounded by ep is invisible to

every point in Rq, then we simply discard the entry.

Otherwise, (i) if ep has a child node, then all entries in the

child node are inserted into QP; (ii) if it is a data entry,

which represents the safe region of a data object p, denoted

by Rp, then we add p to Sc. We further check whether Rp is

entirely visible to Rq, which means any point in Rp is visible

to every point in Rq. If it is, then p must be visible to q and

be a Vk NN candidate throughout the next T timestamps.

We repeat the above process until we have found k data

objects whose safe regions are entirely visible to Rq. These k

objects guarantee that we have a candidate Vk NN set for q

for the next T timestamp period. We compute the pruning

distance PD to define a circular region and bound all these k

objects' safe regions. If there is an object p whose safe

region's minimum visible distance is larger than this prun-

ing distance, then p cannot be closer to q than any of these k

objects. Therefore, any entry popped out from QP whose

minimum visible distance to Rq is larger than PD can be

discarded from Sc and hence we reduce the search space.

We summarize the pruning algorithm in Algorithm 1,

where TO denotes an R-tree that indexes the set of obstacles

O to facilitate the computation of visibility relationships.

Fig. 4. Safe region based pruning (k¼2).
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Algorithm 1. Safe region based pruning.

Input: Rq, TP , TO , k

Output: Candidate set Sc
1 Initialize QP with the entries in the root node of TP ;

2 PD’1, Sc’∅;

3 while NOT QP :emptyðÞ do

4

5

6

7

8

9

10

11

12

13

ep’QP :popðÞ;

if MinVDðRq; epÞ4PD then

⌊break;

if ep is visible to Rq then

if ep has a child node then

Insert all entries in the child node of ep into

QP ;

$

else
Sc’Sc [ p;

if there are k objects in Sc that are entirely

visible to Rq then

⌊Update PD;

6

6

6

6

6

6

6
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6

6
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6

6
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6
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6

6

6

6

6

6

6

6

6

6

6

6

4

14 Return Sc .

Fig. 4 gives an example to the above algorithm where

we compute the CV2NN. We find 2 objects p5 and p6
whose safe regions are entirely visible to the safe region of

q. They must be in Sc for the next T timestamps. Between

these two objects, p5 has a larger MaxVD value. Therefore,

PD¼MaxVDðRq;Rp5Þ. Further, since the entries are prior-

itized in QP based on MinVD, we can early terminate the

algorithm once such an entry is popped out from QP and

thus reduce the computation cost.

4.1.3. Choosing the value of T

The value of T significantly affects the system perfor-

mance. A larger T may reduce the cost of query processing

by reducing the number of times that the R-tree is rebuilt.

However, it will also increase the size of the safe regions

and hence the number of candidate answers to be checked

during the second filtering stage. Determining the best

value of T theoretically is too difficult if possible at all. It

requires an accurate model to predict the cost of a moving

k NN query with the presence of obstacles and for real data

distribution and movement patterns. A full study on such a

detailed cost model is beyond the scope of this study.

Therefore, in our experimental study, we choose the best

value of T empirically in Section 6.2.

In a moving object management system, the parameter

T may be self-adjusted based on the statistics of the costs

of rebuilding the R-tree and maintaining the candidate

query answer set. When the cost of rebuilding the R-tree

dominates, the parameter T should be adjusted to a larger

value to reduce the cost. Otherwise, the parameter T

should be adjusted to a smaller value.

4.2. Invisible time period based pruning

After the safe region based pruning, we have a set Sc
that contains the possible Vk NNs of the query object q for

a period of T timestamps. The set Sc consists of two types

of objects. Type I includes objects whose safe regions are

entirely visible to Rq – these objects determine the pruning

distance PD (cf. Fig. 4, p5 and p6). Type II includes objects

whose safe regions are only partially visible to Rq but their

minimum visible distance is smaller than PD (cf. Fig. 4, p3).

The latter type has the potential of further reducing the

search space for Vk NN computation. Specifically, a Type II

object p needs time to move to be visible to q. We call this

time the invisible time period of p, denoted by τp. If we

could compute the value of τp, we could exclude p from Sc
until τp expires. Unfortunately, we cannot predict the exact

movement of p and thus, we cannot compute the exact

value of τp. Instead, we compute a lower bound of τp that is

guaranteed to expire before τp. Thenwe can exclude p from

Sc until this lower bound expires, at which point we solicit

a location update of p and check if p has actually became

visible to q. (i) If yes then we add it back to Sc and continue

with the regular refinement process. When p becomes

invisible to q again, we recompute a lower bound of τp. (ii)

Otherwise we directly recompute a lower bound of τp

based on the updated location of p. By this means, we

further reduce the size of Sc and hence reduce the query

processing costs.

Next we explore how to derive a lower bound of τp. We

first derive a basic lower bound, denoted by τp
l
, and then

refine it by taking the query object's moving direction into

consideration, which results in an improve lower bound

denoted by τp
m
.

4.2.1. A lower bound of the invisible time period

A lower bound estimation of τp, denoted by τp
l
, must

guarantee that p is invisible to q within τp
l
, i.e., pq \ oa∅,

where o denotes an obstacle between p and q. A critical

point is when pq reaches an endpoint of o, and the

shortest time required for this to happen defines τp
l
.

Fig. 5(a) gives an example, where pq needs to reach e1 so

that p and q can be visible to each other.

Assume that p and q can both move at the global

maximum speed vm towards arbitrary directions. We

observe that, for pq to reach an endpoint of o with the

shortest time, p and q should both move towards either a

same endpoint of o or a same direction that is perpendi-

cular to the line segment that connects the original

locations of p and q, depending on which way results

in the shortest moving time. For example, in Fig. 5(a), there

are four choices of movement, i.e., fp-e1; q-e1g,

fp-e2; q-e2g, fp-p1; q-q1g, and fp-p2; q-q2g, where

“-” denotes “moves towards” and pp1 , pp2 , qq1 and qq2
are all perpendicular to pq. Then τ

l
p is computed as the

smallest time that any of these choices requires for pq to

reach either e1 or e2. Formally,

τ
l
p ¼min min

jpe1 j

vm
;
jqe1 j

vm

� �

;min
jpe2 j

vm
;
jqe2 j

vm

� �

;

�

max
jpp1 j

vm
;
jqq1 j

vm

� �

;max
jpp2 j

vm
;
jqq2 j

vm

� ��

: ð1Þ

Note that p may have to cross o to get to p1 (p2)

(cf. Fig. 5(b)). In this case, p needs to first get to an

endpoint e1 (e2). Therefore, we define jpp1 j (jpp2 j) as the

sum of jpe1 j (jpe2 j) and je1p1 j (je2p2 j). Similar definition

applies to jqq1 j (jqq2 j) if qq1 (qq2 ) intersects o.

The following theorem guarantees the correctness of

Eq. (1) and hence no false dismissal will be introduced by

this invisible time period lower bound based pruning.
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Theorem 1. Given two points p and q and a line segment

e1e2 such that pq intersects e1e2 at r (rae1; e2), for p and q

to move to two points p1 and q1 so that p1q1 intersects e1e2
at e1 while maxfjpp1 j; jqq1 jg is minimized, pp1 and qq1
should both be perpendicular to pq if neither pp1 nor qq1
intersects e1e2 ,otherwise p1 and q1 should be two points such

that pp1 and qq1 are overlapped by pe1 and qe1 , respectively.

Proof. First we prove that pp1 and qq1 should both be

perpendicular to pq if doing so does not result in either

pp1 or qq1 intersecting e1e2 . Fig. 5(a) illustrates how p1
and q1 are located in this case. Now assume that there are

two points p0 and q0 that p and q may move to so that p0q0

intersects e1. We prove maxfjpp1 j; jqq1 jgrmaxfjpp0 j; jqq0 jg.

We denote the line that overlaps p0q0 as le1. If le1 also

overlaps p1q1 , then maxfjpp1 j; jqq1 jgrmaxfjpp0 j; jqq0 jg is

guaranteed by the fact that pp1 ? p1q1 and qq1 ? p1q1 ,

which means jpp1 j (jqq1 j) must be the shortest distance

between p (q) and a point on le1. Otherwise (le1 does not

overlap p1q1 Þ, as shown in Fig. 5(a), we let p3 and q3 be two

points on le1 such that pp3 ? le1 and qq3 ? le1. Then by

definition we have maxfjpp3 j; jqq3 jgrmaxfjpp0 j; jqq0 jg. We

prove maxfjpp1 j; jqq1 jgomaxfjpp0 j; jqq0 jg through proving

maxfjpp1 j; jqq1 jgomaxfjpp3 j; jqq3 jg. The latter inequality

is guaranteed by that p3 and q3 must be at different sides

of p1q1 because otherwise either pp3 or qq3 must cross

e1e2 . Meanwhile, p and q are both at the same side of p1q1 .

Therefore, either pp3 or qq3 must intersect p1q1 . Without

lost of generality we assume that pp3 intersects p1q1 .

Then in triangle ▵p3p1p, we have ∠p3p1p4901 because

∠q1p1p¼ 901. Thus, jpp3 j is the longest side in the triangle

and jpp3 j4 jpp1 j ¼ jqq1 j. Therefore, maxfjpp1 j; jqq1 jgo

maxfjpp3 j; jqq3 jg.

Next we prove that if p and qmoving along the lines that

are perpendicular to the original pq will result in pp1 or

qq1 intersecting e1e2 before p and q are visible to each

other, then p1 and q1 should change to two points such

that pp1 and qq1 are overlapped by pe1 and qe1 , respec-

tively. This effectively means that p and q should move to

e1 directly. Once either p or q reaches e1, the line that

connects them will intersect e1e2 at e1. Therefore, we need

to prove minfjpe1 j; jqe1 jgomaxfjpp0 j; jqq0 jg.Without lost of

generality we assume that pp1 intersects e1e2 (note that

pp1 and qq1 cannot both intersect e1e2 ). Fig. 5(b) illustrates

the case, where le1 is a line that overlaps p0q0 and pp3 ?

le1; qq3 ? le1 at p3 and q3, respectively. We prove minfjpe1 j;

jqe1 jgomaxfjpp0 j; jqq0 jg through proving jpe1 jomax

fjpp3 j; jqq3 jg. If jpe1 jo jpp3 j, then jpe1 jomaxfjpp3 j; jqq3 jg

holds. Otherwise, we prove jpe1 jo jqq3 j. We draw a line

segment se1 such that se1 ? le1 at e1 and se1 interests pq

at s. Then jpe1 jo jse1 j holds because in ▵spe1, ∠spe14∠

spp1 ¼ 901. Meanwhile, in trapezoid e1sqq3, jse1 jo jqq3 j

because ∠qse14901 (derived from ∠spe14901 and

∠pse1o901Þ. Thus, we have jpe1 jo jqq3 j and therefore,

minfjpe1 j; jqe1 jgomax; fjpp0 j; jqq0 jg. □

Until now we have considered only one obstacle

between p and q. When there are multiple obstacles, we

just need to compute a lower bound of τp for each of the

obstacles using Eq. (1), and then choose the smallest one

as the overall lower bound τp
l
. For example, in Fig. 6, we

first compute two invisible time period lower bounds for p

based on e1e2 and e3e4 . Then we can use the smaller one

between the two lower bounds as the overall lower bound.

The correctness of doing so is straightforward and hence

the proof is omitted.

4.2.2. Moving direction aware invisible time period

In this subsection we improve the lower bound of the

invisible time period by taking the query object's move-

ment into consideration. The intuition of this lower bound

is that usually a moving object will not change its moving

Fig. 6. Computation of τp
l
under multiple obstacles.

Fig. 5. Computation of τp
l
.
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direction dramatically and hence it will stay in the range of

its current moving direction for a while. Within this range,

we can compute a shortest path that p can reach the

visible region and hence an invisible time period lower

bound. This shortest path may not be the same as the

overall shortest path as computed based on Theorem 1 in

the last subsection, since the range p moving into may not

enclose the overall shortest path. Thus, we can usually

obtain a better lower bound of τp in this way. We call the

resultant lower bound the moving direction aware invi-

sible time period and denote it by τp
m
.

Fig. 7 shows an example. When a lower bound of τp is

to be computed, we draw two lines lqe1 and lqe2 passing

through the two endpoints e1 and e2 of an obstacle o, and

intersecting each other at q. These two lines divide the

movement of q into four ranges D1;D2;D3 and D4. Each of

these ranges is like a safe region for the moving direction

of q. As long as q remains in the range where it is moving

into at this instant (D1 as in Fig. 7), we can compute a

larger lower bound of τp based on the position relationship

between this range, the obstacle o and the moving object

p. This larger lower bound is the moving direction aware

invisible time period τp
m
. If q moves out of the range that it

is currently moving into before τp
m

expires, then we can

simply fall back to the lower bound τp
l
computed by the

method discussed in Section 4.2.1.

Next we illustrate how to compute τp
m
. Again we

consider how p and q should move so that pq can meet

one of the endpoints e1 and e2 of the obstacle o as early as

possible, but now the movement of q is constrained by the

range it is moving into. Suppose q is moving into range D1,

as shown in Fig. 7. We first consider how pq can meet e1
early. Effectively this means how p can reach the left

boundary of the invisible region of q, line lqe1 . An observa-

tion is that, for any point in D1, say q0, q moving to q0 will

make lqe1 rotate towards p. We need to find the optimal

path for q that makes lqe1 rotate the fastest to meet p, and

the optimal path for p to reach lqe1 accordingly. Meanwhile,

q moving to q0 will make the right boundary of the

invisible region of q, line lqe2 , rotate away from p. To let

pq meet e2 early, we need to find the optimal path for q

that makes lqe2 rotate the least and the optimal path for p

to reach lqe2 as early as possible. Next we describe how

these optimal paths are computed. Since lqe1 and lqe2 have

different rotation directions for different moving ranges,

we analyze the different cases of the four moving ranges

separately and use Fig. 8 for the illustration.

As shown in Fig. 8(a), if q is moving towards D1, then

lqe1 will rotate towards p while lqe2 will rotate away from p.

We describe how p can reach lqe1 and lqe2 early as follows.

(i) For p to reach lqe1 early, p and q should both follow the

movement as described in the last subsection, i.e., both p

and q move in the direction that is perpendicular to the

current pq, and if in this way p or q reaches o before pq

reaches e1, then both p and q should move directly to e1.

(ii) For p to reach lqe2 early, since q moving into D1 will

result in lqe2 rotating away from p, the best q can do is to

move along the current lqe2 (or do not move at all) so that

lqe2 does not rotate away any farther. Meanwhile, p should

move perpendicularly towards lqe2 since this is the shortest

path that a point can reach a line. If in this way p reaches o

before pq reaches e2, then p should move directly to e2.

The shortest time that p and q needs to move as described

above before pq reaches either e1 or e2 (i.e., p reaches

either lqe1 or lqe2 ) defines τp
m
.

If q is moving towards D2, as shown in Fig. 8(b), both

lqe1 and lqe2 are rotating away from p. Therefore, for p

to reach either line early, q should move along lqe1 (lqe2 )

towards e1 (e2) to keep lqe1 (lqe2 ) from rotating away, while

p should move perpendicularly towards lqe1 (lqe2 ). If in this

way p reaches o before pq reaches e1 (e2), then p should

move directly to e1 (e2).

If q is moving towards D3, as shown in Fig. 8(c),

the situation is very similar to that of q moving towards

D1. Therefore, the analysis of that previous case (i.e., q

moving towards D1) applies. The only difference is that

now lqe1 is rotating away from p while lqe2 is rotating

towards p.

If q is moving towards D4, as shown in Fig. 8(d), both

lqe1 and lqe2 are rotating towards p. In this case, q needs to

move along the current lqe2 (lqe1 ) so that lqe1 (lqe2 ) can rotate

the fastest towards p. To determine the shortest distance p

and q need to move until pq intersects e1, we let q1 be a

point on lqe2 and q1p1 be a line segment that intersects e1
and is perpendicular to pp1 . When jqq1 j ¼ jpp1 j, the two

line segments qq1 and pp1 are the shortest paths for pq to

reach e1. The correctness of this claim can be proved in a

way that is similar to the proof of Theorem 1 and thus the

proof is omitted. Intuitively, among all line segments in D4

that have the same length as qq1 , qq1 has the longest

projection on the overall best path of q to make pq reach e1
(i.e., qq1 in Fig. 8(a)). Meanwhile, we have established in

Theorem 1 that pp1 and qq1 should be of the same length

so that maxfjpp1 j; jqq1 jg is minimized. Therefore, the paths

pp1 and qq1 described above are the optimal paths. By

basic geometry we compute the locations of p1 and q1 and

get pp1 and qq1 . Again if p cannot reach p1 without

crossing o then p should move directly to e1. Similarly

we get the optimal paths pp2 and qq2 for pq to reach

e2 early.

The correctness of the above analysis is supported by

Theorem 1. We still use Eq. (1) to compute τp
m
, but the points

represented by p1 and p2 in the equation are changed to the

points described above for the four cases accordingly.

Discussion: Using lqe1 and lqe2 is not the only way to

divide the space. We have chosen these two lines because

Fig. 7. An example of the moving ranges.
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every resultant range has one unchanged rotation direction

for each of the invisible region sides. This leads to a simple

and efficient way to compute a lower bound of τp. We

might use other lines to partition the space and compute

lower bounds of τp based on those lines, but then some of

the resultant ranges may overlap more than one of the

ranges as divided by lqe1 and lqe2 , and the computation of a

lower bound of τp will become complicated and less

efficient. For example, as shown in Fig. 9, we use two lines

l1 and l2 to divide the space and denote the resultant

ranges by D0
1, D

0
2, D

0
3 and D0

4. We can see that D0
4 overlaps

D1, D3 and D4. The overlapping ranges are D0
41, D

0
43 and D4.

Then, we have to compute lower bounds of τp for each of

these ranges and then find the smallest as the lower bound

of τp for range D0
4, which is more complex than using lqe1

and lqe2 directly.

5. Cost analysis

In this section we analyze the performance of the

proposed pruning methods and compare the proposed

framework with the snapshot Vk NN based method in

communication and computation costs. For simplicity, we

denote the snapshot Vk NN based method, the safe region

based pruning method, the basic lower bound invisible

time period based pruning method and the moving direc-

tion aware invisible time period based pruning method as

SV, SR, LITP and MITP, respectively.

5.1. Communication cost

In a client–server based query processing system, the

communication cost is caused by two operations, i.e.,

soliciting location updates from the moving objects

(clients) and reporting the query result to the query object.

In a centralized system, the communication cost is

replaced by the cost of accessing the object location data

within the centralized system and reporting the query

result to itself for later use. Since the cost of reporting the

query result is the same for all CVk NN query processing

methods, and it is much smaller than the cost of getting

the location updates, we focus on the cost of getting the

location updates. We compare for the various methods the

Fig. 9. Another choice of data space partitioning.

Fig. 8. Computation of τp
m
.
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number of location updates solicited during a period of T

timestamps starting from the beginning of the period.

(A) SV needs the exact location for each moving object

(including the query object) at each timestamp. Therefore,

its communication cost for T timestamps, denoted as CMSV,

is computed as

CMSV ¼ ðjPjþ1ÞT ¼ ðjPjþ1ÞþðjPjþ1ÞðT�1Þ: ð2Þ

(B) Our proposed framework first performs safe region

based pruning using the locations of all objects, which

results in a subset Sc of P as the query answer candidate

set for the next T timestamps (including the current

timestamp). Then invisible time period based pruning is

performed to further reduce the number of objects in Sc to

be checked by the refinement step to generate the exact

query answer set at each timestamp.

(B.i) If only SR is applied, then the communication

cost of the proposed framework, denoted by CMSR, is

computed as

CMSR ¼ ðjPjþ1ÞþðjScjþ1ÞðT�1Þ ð3Þ

By comparing Eqs. (2) and (3), we can see that

CMSRrCMSV is guaranteed since ScDP. The superiority

of the proposed framework over SV depends on jScj=jPj,

which in turn depends on T because T determines the sizes

of the safe regions and the pruning distance. To learn the

effect of T, we look at the average per timestamp commu-

nication cost of SR, denoted as CMSR and derived from

Eq. (3) as follows:

CMSR ¼
ðjPjþ1ÞþðjScjþ1ÞðT�1Þ

T

¼
jP\ScjþðjScjþ1ÞþðjScjþ1ÞðT�1Þ

T

¼
jP\Scj

T
þ Sc þ1jj ð4Þ

When T increases, the denominator in the equation

increases. However, jScj also becomes larger because the

size of the safe regions increases and so as the pruning

distance. There is no obvious theoretical trend on the

combined effect and we will use experiments to find a

suitable value of T to optimize the performance of the

proposed framework.

We let ωSR be jScj=jPj and use it to denote the pruning

power of SR. Then CMSR becomes ðjPjþ1ÞþðωSRjPjþ1Þ

ðT�1Þ. When the invisible time period based pruning is

also applied, the size of jScj is further reduced.

(B.ii) The communication costs of the proposed frame-

work when applying SR þ LITP and SR þ MITP, denoted

as CMSL and CMSM respectively, are computed as follows:

CMSL ¼ ðjPjþ1ÞþðωSLjPjþ1ÞðT�1Þ ð5Þ

CMSM ¼ ðjPjþ1ÞþðωSMjPjþ1ÞðT�1Þ ð6Þ

Here, ωSL and ωSM denote the pruning power of SR in

combined with LITP and MITP, respectively. The pruning

power depends on whether LITP or MITP can keep more

objects from Sc. By definition, MITP computes invisible

time period lower bounds that are at least as long as what

LITP computes. Thus, its pruning power is at least as

good as that of LITP, i.e., ωSMrωSL. Therefore, SRþMITP

performs no worse than SRþLITP in terms of communica-

tion cost.

5.2. Computation cost

For computation cost analysis we also consider the cost

of a period of T timestamps.

(A) SV computes the visible distance and performs a

sorting for all objects at each timestamp. The computation

cost, denoted as CPSV, is computed as

CPSV ¼ φSV jPjT ¼ φSV jPjþφSV jPjðT�1Þ; ð7Þ

where φSV denotes the scaling of the cost of visible

distance computation and sorting on jPj.

(B) Our proposed framework's computation cost consists

of three types of costs: (i) the cost of safe region based

pruning, denoted as CPSR, which involves building an in-

memory R-tree and a best-first traversal on the tree,

(ii) the cost of invisible time based pruning, denoted as

CPLP and CPMP for LITP and MITP, respectively, which

involves invisible time period computation and checking

whether the objects in Sc are in their invisible time

periods, and (iii) the cost of refinement, denoted as CPRF,

which involves computing the exact distance between the

query object and the objects in Sc and sorting to determine

the query answer set. While CPSR is required only at the

first timestamp, CPLP (CPMP) and CPRF are both required at

every timestamp. We denote the computation cost for SR

þ LITP and SR þ MITP as CPSL and CPSM, respectively. Then

we have

CPSL ¼ CPSRþðCPLPþCPRF ÞT

¼ CPSRþCPLPþCPRFþðCPLPþCPRF ÞðT�1Þ ð8Þ

CPSM ¼ CPSRþðCPMPþCPRF ÞT

¼ CPSRþCPMPþCPRF þðCPMPþCPRF ÞðT�1Þ ð9Þ

We first compare SR þ LITP and SR þ MITP based

on the two equations and then compare them with SV.

For SR þ LITP and SR þ MITP, the main difference is the

strategy used for invisible time period lower bound

computation. Specifically, MITP has a higher cost to com-

pute an invisible time period lower bound because it has

to considered a more complex case as shown in Fig. 8(d).

However, as discussed in the last subsection, MITP computes

longer invisible time period lower bounds and hence needs

to be invoked for a smaller number of times. Meanwhile,

longer invisible time period lower bounds means smaller

query answer candidate sets to be checked by the refinement

step. Therefore, CPRF is smaller for SR þ MITP. All factors

combined, SR þ MITP is expected to outperform SR þ LITP

in most cases, as verified by the experiments.

We now compare our framework with SV. The compu-

tation cost of our framework at the first timestamp during

T, CPSRþCPLPðCPMPÞþCPRF , is comparable to the average

per timestamp cost of SV in the sense that both methods

require some computation on the whole data set P, and

the time complexities are both at OðjPjlogjPjÞ (R-tree

building vs. sorting). The speedup in pruning achieved

from the R-tree built by our framework compensates the

cost of building the tree. Meanwhile, in the following (T-1)

timestamps, our filtering and refinement are based on a

Y. Wang et al. / Information Systems 44 (2014) 1–21 11



much smaller data set Sc compared with P for SV. There-

fore, the advantage of our framework is explicit. As shown

in the experimental study, our framework constantly out-

performs SV by an order of magnitude.

6. Experiments

In this section we study the empirical performance

of the proposed framework. We first describe the experi-

mental settings in Section 6.1. Then we evaluate the

impact of T and choose a suitable value of T for the frame-

work in Section 6.2. We investigate the performance of

the framework under various settings in Sections 6.3.

In Section 6.4, we evaluate the cost of maintaining the

in-memory R-tree required by the framework.

6.1. Experimental settings

All algorithms were implemented in Cþþ , and the

experiments were conducted on a desktop computer with

an Intel 2.4 GHz CPU and 2 GB memory.

We use two real data sets from the R-tree Portal2 that

contains bounding rectangles of 24,650 rivers and 77 lakes

in Greece as our obstacle sets (cf. Fig. 10). We call them the

Rivers and the Lakes, respectively. We take the diagonals of

the rectangles as the obstacles and map them into a

domain of size [0, 20,000]� [0, 20,000].

We generate objects that move around the obstacles.

Two types of moving object sets are generated, the uni-

form data sets and the Zipfian data sets, where the objects

initially follow uniform and Zipfian distributions, respec-

tively. We use “RU” to denote experiments where Rivers is

used as the set of obstacles and a uniform data set is used

as the set of moving objects. Similarly, we use “RZ”, “LU”

and “LZ” to denote experiments done on Rivers and a

Zipfian data set, Lakes and a uniform data set, and Lakes

and a Zipfian data set, respectively. The data objects move

randomly in the data domain with a global maximum

speed that ranges from 2.5 to 50. To evaluate the effect of

data set size, we vary the moving object set size from 100

to 10,000 and vary the obstacle set size from 10 to 24,650

(by sampling from the real data sets). We vary the value of

k from 1 to 100 and the value of T from 1 to 64 to evaluate

the impact of these two parameters. Table 2 summarizes

the parameters used, where values in bold denote the

default values.

We evaluate the performance of four different methods:

� SV, the straightforward snapshot Vk NN based method.
� SR, the query processing framework with only the safe

region based pruning enabled.
� SRþLITP, the query processing framework with the safe

region based pruning and the basic lower bound

invisible time period based pruning enabled.
� SRþMITP, the query processing framework with the

safe region based pruning and the moving direction

aware invisible time period based pruning enabled.

In these methods, when an R-tree is required, we use

the Rn-tree [6] implementation.

In all experiments, we run the different algorithms

for a CVk NN query over a period of 300 timestamps.

Table 2

Parameters and their values.

Parameter Values

Data domain [0, 20,000]� [0, 20,000]

T 1, 2, 4, 8, 16, 32, 64

k 1, 5, 10, 50, 100

vm 2.5, 5, 10, 25, 50

jPj 100, 500, 1000, 5000, 10,000

jOj Rivers: 1000, 5000, 10,000, 24,650;

Lakes: 10, 30, 50, 77

Fig. 10. Obstacle sets: (a) Rivers, (b) Lakes.

2 http://www.chorochronos.org/
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We measure the communication cost by counting the

number of object location updates solicited by the query

processor and the computation cost by recording the

query processing time.

6.2. Choosing the value of T

We first study the effect of T. We omit SV in this

subsection as its performance is not related to T. As shown

in Fig. 11, while the communication and computation

costs of SR first increase and then become stable with the

increase in the value of T, those of SR þ LITP and SR þ MITP

first drop until T reaches 4 and then start to increase. This

phenomenon confirms the cost analysis in that the effect of

T is twofold and there is no unified trend of the query

performance when the value of T is varied. Since at T¼4 the

three methods show better performance in general, we use

it in the experiments in the following subsections.

We also notice that in the figure, compared with the

performance difference in query processing time, the

performance difference in the number of communications

is relatively smaller for the three methods. This is because

the number of communications scales linearly with the

size of the query answer candidates jScj while the query

processing time scales in OðjScj log jScjÞ for the visible

distance based sorting of the objects in Sc. Besides, when

T is small, the operation of soliciting location updates for

all objects is performed more frequently for each method

and it dominates the communication cost. The difference

in the communication cost of different methods becomes

smaller. In the extreme case where T¼1, all methods have

the same communication cost since they all solicit location

updates from all objects at every timestamp.

6.3. Comparing different methods

In this subsection we compare the performance of

the studied methods in different settings by varying the

experiment parameters. When a parameter is varied, the

other parameters stay with their default values.

6.3.1. Varying the number of moving objects

We first evaluate the query processing performance

when the number of moving objects (jPj) is varied.

As shown in Figs. 12 and 13, the number of commu-

nications and the query processing time increase with

the increase of jPj for all methods. We observe that

the proposed framework outperforms SV constantly, and

when SR and MITP are applied, the advantage is the most

significant, i.e., by an order of magnitude. An important

observation is that when the invisible time period

based pruning techniques are used (i.e., SRþLITP and

SRþMITP), the increase in the query processing costs is

very slow when jPj increases. When jPj reaches 10,000,

the query processing time of SRþLITP and SRþMITP stays

within tens of seconds (i.e., below 0.1 s for processing

the query at each timestamp on average) while that

of SV is at hundreds or even thousands of seconds (i.e.,

over 1 s for processing the query at each timestamp

on average). We also observe that SRþMITP outperforms

SRþLITP in terms of both communication and computa-

tion costs for most of the experiments, which validates

the proposal of MITP and confirms the cost analysis in

Section 5.

6.3.2. Varying the number of obstacles

Next we vary the number of obstacles (jOj) by ran-

domly sampling obstacles from the Rivers and Lakes.

Since Lakes contains a much smaller number of obstacles

than Rivers does, we use smaller sets of moving objects

(i.e., jPj ¼ 1000) in the “LU” and “LZ” experiments. Again,

as shown in Figs. 14 and 15, the proposed framework

outperforms SV for all cases and SRþMITP shows the

best performance for most cases. An observation is that

when jOj increases the query costs of different methods

vary in different patterns. Specifically, the communication

cost of SV stays the same when jOj is varied because

SV always solicit location updates from all objects.

Meanwhile, the communication costs of the other three

methods first increase and then decrease. This is because

when jOj increases, it may bring a larger jScj because a

larger jOj means more difficult to find k safe regions that

are entirely visible to the query object, which may result in

a larger PD and hence a larger jScj. It may also bring a

smaller jScj because most of the safe regions of the objects

may simply be blocked from the query object by the

obstacles. The latter effect is more explicit when jOj is

large enough for the obstacles in O to cover a large portion

of the space. As for the query processing time, the increase

Fig. 11. Effect of T: (a) communication cost, (b) computation time.
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in jOj results in the increase of the query processing time

for all methods because the cost of checking object

visibility increases.

6.3.3. Varying the global maximum speed

We show the effect of the global maximum speed of

the moving objects (vm) on the query processing costs in

Fig. 13. Query processing time vs. jPj. (a) RU, (b) RZ, (c) LU and (d) LZ.

Fig. 12. Number of communications vs. jPj. (a) RU, (b) RZ, (c) LU and (d) LZ.
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Figs. 16 and 17. We observe that the increase in vm results

in the increase in the query processing costs for the pro-

posed framework. This is expected because the increase in

vm results in the increase in the sizes of the safe regions as

well as decrease in the lengths of the invisible time

periods. The pruning power of SR, LITP and MITP suffers

Fig. 14. Number of communications vs. jOj. (a) RU, (b) RZ, (c) LU and (d) LZ.

Fig. 15. Query processing time vs. jOj. (a) RU, (b) RZ, (c) LU and (d) LZ.
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and the query processing efficiency is lowered. However,

even when vm¼50, which is quite large considering the

size of the data domain, the proposed framework still

outperforms SV significantly, which again confirms the

superiority of the framework.

6.3.4. Varying query parameter k

Figs. 18 and 19 show the query processing costs for the

four methods when the query parameter k is varied. As can be

seen from the figures, the proposed framework outperforms

SV in terms of both communication and computation costs

Fig. 16. Number of communications vs. vm. (a) RU, (b) RZ, (c) LU and (d) LZ.

Fig. 17. Query processing time vs. vm. (a) RU, (b) RZ, (c) LU and (d) LZ.
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when k varies from 1 to 100. An important advantage of the

proposed framework is that when both safe region based

pruning and invisible time period based pruning are applied

(i.e., SRþLITP and SRþMITP), the query processing costs stay

relatively stable when k increases. This demonstrates the

scalability of the proposed framework.

Fig. 18. Number of communications vs. k. (a) RU, (b) RZ, (c) LU and (d) LZ.

Fig. 19. Query processing time vs. k. (a) RU, (b) RZ, (c) LU and (d) LZ.
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6.3.5. Varying the object moving pattern

In this subsection we vary the object moving pattern by

(i) using a real trajectory data set to model the object

movements and (ii) changing the data space size.

Experiments on a real data set: The real trajectory data

set used is the Trucks data set from the R-tree Portal.

It contains 1100 trajectories of trucks delivering concrete

to several construction sites around Athens metropolitan

area in Greece. We map the trajectories to a ½0;20;000� �

½0;20;000� domain, and use each trajectory to model the

movement of a data object. We randomly pick a trajectory

for the query object. We use the Spatial Data Generator3

from the R-tree Portal to generate 500 obstacles randomly

placed in the data space where there is no trajectory

passing. The size of each obstacle is randomly chosen from

the range of [500, 1,000]. Fig. 20 shows the experimental

result where we vary the number of moving objects from

100 to 1100. We can see that our proposed algorithms

(SR, SRþLITP, and SRþMITP) outperform the baseline

algorithm SV constantly, and the advantage is more

significant as more pruning techniques are applied.

Experiments in a small data space: We perform experi-

ments in a small geographical area where the moving

object density is high. This is to evaluate our algorithm

performance under our motivating application scenario,

the MMOFPS game scenario. Due to the limited availability

of real MMOFPS game trajectory data, we use the Spatial

Data Generator to generate objects and obstacles in a

½0;500� � ½0;500� domain. We generate 10,000 obstacles

randomly placed in the data space. The size of each

obstacle is randomly chosen in the range of [5, 10].

We vary the number of data objects from 100 to 10,000.

The objects (including the query object) are randomly

placed in the data space initially, and then move towards

a random direction with a speed randomly chosen in the

range of [0, 5]. The velocity of an object is reinitialized

when the object hits an obstacle. Fig. 21 shows the

experimental result. We can see that our proposed algo-

rithms again outperform the baseline algorithm. This

result confirms the robustness of our algorithms in small

geographical areas with high object density.

We also varied other experimental settings (e.g., the

number of obstacles) on the real data set and in the small

data space. The results show similar patterns and hence

are omitted.

6.4. The cost of maintaining an in-memory R-tree

In this subsection we evaluate the cost of maintaining

an in-memory R-tree by the proposed framework on data

sets of different sizes.

Rebuilding the R-tree: We first report the time used for

building an R-tree compared with the overall query

processing time. As shown in Fig. 22, the time required

for building an R-tree is very small in general. Even for a

data set size as large as 10,000, building an in-memory

R-tree only takes 0.33 s (during the 300 timestamps that

we ran the CVk NN query with a period length T of 4

timestamps, the R-tree is built 75 times and it takes 25 s in

Fig. 20. Algorithm performance on a real data set: (a) communication cost, (b) computation time.

Fig. 21. Algorithm performance in a small data space: (a) communication cost, (b) computation time.

3 http://www.chorochronos.org/?q=node/49
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total as shown in the figure). Considering that even with

this overhead, SRþLITP and SRþMITP still have much

smaller query processing time than that of SV, building an

R-tree once every T timestamps is justified.

Maintaining the R-tree incrementally: We then compare

the query processing performance of rebuilding the R-tree,

denoted by “SRþMITP-R”, with that of maintaining the R-

tree incrementally, denoted by “SRþMITP-I”. We add

another baseline algorithm using the incremental compu-

tation technique proposed by Xiong et al. [32], denoted by

SEA-CNN. SEA-CNN processes the CVk NN query as follows.

It computes an initial query answer at the start of the

query. Then it processes the location updates of the objects

one at a time and computes the effect of each individual

update on the query answer. For example, if an object that

is close to the query point but invisible moves and

becomes visible, this object is added to the query answer

to replace the existing farthest Vk NN. If a current Vk NN

becomes invisible, a snapshot Vk NN query is performed to

update the query answer.

As shown in Figs. 23 and 24, SRþMITP-R outperforms

the two incremental update processing methods con-

stantly in terms of both communication cost and query

processing time. The advantage grows as the number of

data objects increases. We observe that the performance

of SEA-CNN is quite close to that of SV. This is because

SEA-CNN requires a snapshot Vk NN query to process an

update that causes an existing Vk NN to be removed from

the current Vk NN set. At each timestamp, there are many

object updates. Thus, almost every timestamp requires a

snapshot Vk NN query and hence, SEA-CNN cannot per-

form much better than SV. SRþMITP-I also processes

every update, but it simply reinserts the updated object

into the R-tree, which is much faster than a snapshot

Vk NN query. Therefore, SRþMITP-I is much faster than

SEA-CNN. However, SRþMITP-I is still slower than

SRþMITP-R because SRþMITP-R batch processes all

updates on the R-tree during a T-timestamp period at

once, while SRþMITP-I processes the updates one after

another. When an object updates multiple times in a

period, SRþMITP-I has to process each update to maintain

the R-tree, while SRþMITP-R just needs one rebuild of the

R-tree to reflect the impact of the multiple updates.

Experiments where we vary other experimental settings

(e.g., the maximum speed vm) show similar results and

hence are omitted.

7. Conclusions and future work

In this paper, we proposed a filtering-and-refinement

framework to process the continuous visible k nearest

neighbor query on moving objects. This framework utilizes

spatial proximity and visibility properties between the

moving objects to prune the query search space. Spatial

proximity based pruning uses the safe region to compute a

set of query answer candidates Sc that will be valid for

a period of T timestamps. During this period, the query

processor will only require location updates from the

objects in Sc to compute the exact query answer. As a

result, the communication cost for soliciting object loca-

tion updates and the computation cost for examining the

distance between the objects are reduced. Visibility based

pruning then uses the invisible time period to reduce the

number of objects in Sc that need to be examined at each

timestamp so as to further reduce the query processing

Fig. 22. Cost of building an R-tree: (a) RU, (b) RZ, (c) LU, (d) LZ.
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Fig. 23. Number of communications vs. update processing schemes (varying jPj): (a) RU, (b) RZ, (c) LU, (d) LZ.

Fig. 24. Query processing time vs. update processing schemes (varying jPj): (a) RU, (b) RZ, (c) LU, (d) LZ.
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costs. As our cost analysis and experimental study show,

the proposed query processing framework constantly out-

performs a snapshot Vk NN based query processing algo-

rithm by an order of magnitude.

For future work we will consider extending our tech-

niques to other types of obstacles (e.g., polygons) and

distance metrics (e.g., Network distance).
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