
Exploiting velocity distribution skew to speed up moving object indexing

Thi Nguyena,b,1,2, Zhen Hec, Rui Zhangd, Philip G. D. Warde

aSaw Swee Hock School of Public Health, National University of Singapore, 117549, Singapore
bNational University Health System, Singapore

cDepartment of Computer Science and Information Technology, La Trobe University, VIC 3086, Australia
dDepartment of Computing and Information Systems, The University of Melbourne, VIC 3052, Australia

eClayton School of Information Technology, Faculty of Information Technology, Monash University, VIC 3800, Australia

Abstract

There has been intense research interest in moving object indexing in the past decade. However, existing work did not exploit
the important property of skewed velocity distributions. In many real world scenarios, objects travel predominantly in only a few
directions. Examples include vehicles on road networks, flights, people walking on the street, etc. The search space for a query is
heavily dependent on the velocity distribution of the objects grouped in the nodes of an index tree. Motivated by this observation,
we propose the velocity partitioning (VP) technique, which exploits the skew in velocity distribution to speed up query processing
using moving object indexes. The VP technique first identifies the “dominant velocity axes (DVAs)” using a combination of
principal components analysis (PCA) and k-means clustering. Then, a moving object index (e.g., a TPR-tree) is created based on
each DVA, using the DVA as an axis of the underlying coordinate system. The object is maintained in the index whose DVA is
closest to the object’s current moving direction. Thus, all the objects in an index are moving in a near 1-dimensional space instead
of a 2-dimensional space. As a result, the expansion of the search space with time is greatly reduced, from a quadratic function of
the maximum speed (of the objects in the search range) to a near linear function of the maximum speed. The VP technique can be
applied to a wide range of moving object index structures. Moreover, we make use of new hardware, solid-state drives (SSDs) to
further improve the performance of the VP technique. To this end, we designed a SSD friendly version of the outlier index, called
the RAM-resident compressed grid (RCG). We implemented the VP technique on two representative moving object indexes, the
TPR*-tree and the Bx-tree. Extensive experiments validate that the VP technique consistently improves the performance of these
index structures.

Keywords: Spatial temporal databases, moving objects, indexing, velocity partitioning

1. Introduction

GPS-enabled mobile devices (phones, car navigators, etc) are
ubiquitous these days and it is common for them to report their
locations to a server in order to access location-based services.
Such services involve querying the current or near future loca-
tions of the mobile devices. Many index structures have been
proposed over last decade to facilitate efficient query process-
ing on moving objects (e.g.,[1, 2, 3, 4, 5, 6, 7]). However,
none of these index structures exploits the important property
of skewed velocity distributions. In most real world scenarios,
objects travel predominantly along only a few directions due to
the fixed underlying traveling infrastructure or routes. Exam-
ples include vehicles on road networks, flights, people walking
on the streets, etc. Fig. 1(a) shows a portion of the road network
of San Francisco, where most of the roads are along two direc-
tions. Fig. 1(b) shows a sample of velocity distribution of the

Email addresses: thi.nguyen.cs@gmail.com (Thi Nguyen),
z.he@latrobe.edu.au (Zhen He), rui.zhang@unimelb.edu.au
(Rui Zhang), phillipgdward@gmail.com (Philip G. D. Ward)

1Corresponding author.
2This work was done while the author was with the Department of Computer

Science and Computer Engineering, La Trobe University, Australia.

cars travelling on the San Francisco road network. Every point
(2-dimensional vector) in the figure represents the velocity of
a car. It is clear that most of the cars are traveling along two
dominant directions (axes).

(a) San Francisco road network

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

velocities

(b) Velocity distribution of the
cars

Figure 1: San Francisco road network and the cars’ velocity distribution

The velocity distribution of objects in an index has a great
impact on the rate at which the query search space expands.
The search space expansion is either due to the tree nodes’
minimum bounding rectangle (MBR) expansion (e.g., the TPR-

Preprint submitted to Information Systems March 16, 2015

tree/TPR*-tree [5, 6]) or query expansion (e.g., the Bx-tree [2]).
In either case, the search space for a tree node is enlarged dur-
ing the query time interval using the largest speed of the objects
grouped in that tree node. If the velocities of the objects in a
node are randomly distributed, then the search space is enlarged
along both the x- and y-axes, and therefore there is a quadratic
function of the maximum speed of the objects in the node. If
the movements of all the objects in a node are largely along the
same direction, then the search space is enlarged mainly along
one axis and hence the search space expansion is close to a lin-
ear function of the maximum speed of the objects in the node.

Motivated by this observation, we propose the velocity par-
titioning (VP) technique, which exploits the skew in velocity
distribution to speed up query processing using moving object
indexes. The VP technique first identifies the “dominant veloc-
ity axes (DVAs)” using a combination of principal components
analysis (PCA) and k-means clustering. A DVA is an axis to
which the velocities of most of the objects are (almost) parallel.
Then, a moving object index (e.g., a TPR*-tree) is created based
on each DVA, using the DVA as an axis of the underlying co-
ordinate system. Objects are dynamically moved between DVA
indexes when their movement directions change from one DVA
to another. Objects with current velocities, which are far from
any DVAs, can be put in an outlier index. Thus, except for the
outlier index, the objects in each other index are moving in a
near 1-dimensional space instead of a 2-dimensional space. As
a result, the expansion of the search space with time is greatly
reduced, from a quadratic function of the maximum speed (of
the objects in the search range) to a near linear function of the
maximum speed.

The VP technique is a generic method and can be applied to
a wide range of moving object index structures. In this paper,
we focus our analysis and implementation of the VP technique
on the two most well recognized and representative moving ob-
ject indexes of different styles, the TPR*-tree [6] and the Bx-
tree [2]. These two indexes are the basis for many recent index-
ing techniques [8, 9, 10, 7]. Our method can be applied to these
more recent indexes in similar ways. We perform an extensive
set of experiments using various real and synthetic data sets.
The results show that the VP technique consistently improves
the performance of both index structures.

We further improve the performance of the VP technique by
exploiting the characteristics of the solid-state drive (SSD). We
found that the system was I/O bound when the system used the
hard-disk drive (HDD). However, the system was more CPU
bound when fast modern SSDs are used. This meant that we
need to redesign the system to be more CPU friendly when the
SSD is used. In particular, the small outlier index accounts for
a disproportionately high percentage of the CPU time (up to
60 %) when the SSD is used. To address this issue, we created
an outlier index that uses significantly less CPU time called the
RAM-resident compressed grid (RCG). Our experimental study
shows that when using the SSD, the RCG outlier index can re-
duce the total execution time of the VP technique by up to a
factor of 2 compared to the outlier index designed for minimiz-
ing disk I/O.

A preliminary version of this paper appeared in [11], in

which we focused on improving range query performance by
exploiting skewed velocity distribution using traditional HDDs.
This paper extends the previous paper [11] in three aspects.
First, we present an algorithm for the k-nearest neighbor (k-
NN) query based on the VP technique (Sect. 5.5). Second, we
propose the RCG index which improves the performance of the
outlier index by exploiting the characteristics of SSDs, which
are superior to HDDs (Sect. 6). Third, we extend our experi-
mental evaluation to include k-NN queries (Sect. 7.9) and the
impact of the RCG outlier index on the performance of the VP
technique in a variety of situations (Sect. 7.11).

The contributions of this paper are summarized as follows:

• We analytically show why a moving object index with VP
outperforms a moving object index without VP.

• We propose the VP technique, which identifies the dom-
inant velocity axes (DVAs) and maintains the objects in
separate indexes based on the DVAs.

• We analytically show how to choose the value of an im-
portant parameter that determines which objects belong to
the outlier index.

• We propose the RCG outlier index which is specifically
designed to achieve high performance when solid-state
drives are used.

• We implemented the VP technique on two state-of-the-art
moving object indexes, the TPR*-tree and the Bx-tree and
performed an extensive experimental study. The results
validate the effectiveness of our approach across a large
number of real and synthetic data sets.

The remainder of this paper is organized as follows. Sect. 2
provides some preliminaries; Sect. 3 discusses related work;
Sect. 4 analyzes how velocity partitioning reduces search space
expansion; Sect. 5 details our velocity partitioning technique;
Sect. 6 describes our RCG outlier index. Sect. 7 reports our
experimental study; finally, Sect. 8 concludes this paper.

2. Preliminaries

In this section, we provide some background on moving ob-
jects and briefly review two techniques used in our approach,
principal components analysis (PCA) and k-means clustering.

2.1. Moving object representation and querying

A simple way of tracking the location of moving objects is to
take location samples periodically. However, this approach re-
quires frequent location updates, which imposes a heavy work-
load on the system. A popular method to reduce the report-
ing rate is to use a linear function to describe the near future
trajectory of moving objects. The model consists of the ini-
tial location of the object and a velocity vector. An update
is issued by the object when its velocity changes. An object
velocity update consists of a deletion followed by an inser-
tion. This linear model-based approach is used by many studies

2

[1, 2, 3, 12, 4, 5, 6, 7, 13, 14] on indexing and querying mov-
ing objects. We also follow this model in this paper, and the
moving objects are modeled as moving points.

We support three different types of range queries: the time
slice range query, which reports the objects within the query
range at a particular time unit; the time interval range query,
which reports the objects within the query range within a time
range; and the moving range query, where the query range it-
self is moving and the query reports the objects that intersect
the moving range in a time range. For all three types of range
queries, if the query time (or time range) is in the future, the
query range is projected (expanded) to that future time to check
which objects should be returned.

We also support the k-nearest neighbor (k-NN) query, which
retrieves the k objects with the least distances from a given
query point at a specified time unit.

2.2. Principal components analysis

Principal components analysis (PCA) is a commonly used
method for dimensionality reduction [15, 16] and for finding
correlations among attributes of data [17]. It examines the
variance structure in the data set and determines the directions
along which the data exhibits high variance. In our case, if we
map the velocity of objects into the 2D velocity space as points,
then the axis with high variance is the DVA.

Given a set of k-dimensional data points, PCA finds a ranked
set of orthogonal k-dimensional eigenvectors v1, v2, ..., vk
(which we call principal component vectors) such that:

• Each principal component (PC) vector is a unit vector, i.e.,√
βi

2
1 + βi

2
2 + ...+ βi

2
k = 1, where βij (i, j = 1,2, ...,k) is

the jth component of the PC vector vi.

• The first PC v1 accounts for most of the variability in
the data, and each succeeding component accounts for as
much of the remaining variability as possible.

2.3. K-means clustering

K-means clustering [18] is a commonly used method to au-
tomatically partition a data set into k clusters where each data
point belongs to the cluster with the nearest centroid. It starts
by assigning each object to one of k clusters either randomly
or using some heuristic method. The centroid of each cluster
is computed and each point is re-assigned to its closest clus-
ter centroid. When all points have been assigned, the k cluster
centroids are recomputed. The process is repeated until the cen-
troids no longer move.

3. Related work

In this section, we review existing work on moving object
indexes, specifically R-tree [19] based indexes, the Bx-tree [2],
and dual transform-based indexes. We also discuss indexing
techniques for handling skewed workloads and for handling
moving objects on road networks.

−1

1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

b

c

a d

eN1 N2

−1

21

−1

−1

−1

−1 1

−1

−1

1

y

x

−1

−2

−2 2

(a) MBRs and VBRs at time 0

−1

1 2 3 4 5 6 7 8 9

1

2

3

5

6

7

8

4

1

−1
−1

−2

1−1−1

−1

2

2

1

1

Q

x

a

b

c

e

d

−1

1

N2

N

y

−1

−1−2

(b) MBRs and VBRs at time 1

Figure 2: MBRs of a TPR-tree growing with time

3.1. R-tree based moving object indexes

An established approach to index moving objects is to use
the R-tree [19] or its more optimized variant the R*-tree [20] to
index the extents of objects and their current velocities. These
indexes include the TPR-tree [5] and its variant TPR*-tree [6],
which optimize some operations of the TPR-tree. They work
by grouping object extents at the current time into minimum
bounding rectangles (MBRs). Fig. 2(a) shows the objects a,
b and c grouped into the same MBR in node N1. Accompa-
nying the MBRs are the velocity bounding rectangles (VBRs),
which represent the expansion of the MBRs with time accord-
ing to the velocity vectors of the constituent objects. The rate of
expansion in each direction is equal to the maximum velocity
among the constituent objects in the corresponding direction. A
negative velocity value implies that the velocity is towards the
negative direction of the axis. For example, in Fig. 2(a) we can
see that the solid arrow on the left of node N1 has a value of -2.
This is because the maximum velocity value of the constituent
objects in the left direction is 2. Fig. 2(b) shows the expanded
MBRs at time 1.

The MBR and VBR structure described can be extended by
replacing the constituent object extents with smaller MBRs.
This, when recursively applied, creates a hierarchical tree struc-
ture. The tree structure is identical to the classic R-tree [20], the
only difference being the algorithms used to insert, delete and
query the tree also need to take the velocity information into
consideration. The TPR-tree and the TPR*-tree modify the R*-
tree’s insertion/deletion and query algorithms.

In this paper, we use the cost model proposed by Tao et al. [6]
in the insertion and deletion algorithms of the TPR*-tree but
use a different simpler and more general (applied to different
types of trees) cost model to analyze the benefits of a partitioned
index (see Sect. 4). The cost model of Tao et al. [6] reduces the
expected number of nodes accessed by a range query Q. We
briefly describe this cost model as follows.

Consider a moving tree node N and a moving range query
Q for the time interval [0,1] as shown in Fig. 3(a). The MBR
(VBR) of N is denoted as NR = {NR1−, NR1+,
NR2−, NR2+} (NV = {NV 1−, NV 1+, NV 2−, NV 2+}),
where NRi− (NV i−) is the coordinate (velocity) of the lower
boundary of N on the ith dimension, where i ∈ {1, 2}. Simi-
larly, NRi+ (NV i+) refers to the upper boundary. MBR (VBR)
of Q also can be denoted similar to N .

3

The sweeping regions of N and Q are the regions swept
by N and Q during the time interval [0,1] (the grey regions
shown in Fig. 3(a)). To determine whether node N inter-

Mbr(N,1)

region of N
sweeping

2

4 6 82
0

10

8

6

4

2
2

2

2

2

y

x10

Mbr(N,0)

Mbr(Q,0)

Mbr(Q,1)

−1

region of Q

−1

sweeping

(a) Moving node N , Q

Mbr(N’,0)

Mbr(N’,1)

y
region of N’
sweeping

3

3

2

2

4 6 82
0

10

8

6

4

2

x10

(b) Transformed node N ′

Figure 3: Sweeping region of moving node

sects Q, we first define the transformed node N ′ with respect
to Q as follows: the MBR of N ′ in the ith dimension is
〈NRi− − |QRi|/2, NRi+ + |QRi|/2〉; the VBR of N ′ in the
ith dimension is 〈NV i− − QV i+, NV i+ − QV i−〉. To check
whether node N intersects Q during the time interval [0,1] is
equivalent to checking whether the transformed node N ′ inter-
sects the center of Q (which is a point) during the time interval
[0,1]. Therefore, the probability of N intersecting Q (which is
the probability of node N being accessed by the query Q) dur-
ing the time interval [0,1] is the same as the probability of N ′

intersecting the center ofQ during the time interval [0,1], which
is equal to the area of the sweeping region of N ′ in the time in-
terval [0,1] (the grey region shown in Fig. 3(b)). Assume that
the MBR of Q uniformly distributes in the data space and the
data space has a unit extent in each dimension. Adding up this
probability for every node of the tree, we obtain the expected
number of node accesses for the range query Q as:

∑
every node N in the tree

VN′(qT), (1)

where qT is the query time interval; VN ′(qT) is the volume of
the sweeping region of N ′ during qT .

3.2. The Bx-tree

10

Q’(5)

Q(2)

b*

a*

b

a

1

1

1

1

y

4 6 82
0

10

8

6

4

2

x

Figure 4: Query enlargement in the Bx-tree

The Bx-tree [2] indexes moving objects using the B+-tree.
This is a challenge because the B+-tree indexes 1D space but

objects move in a 2D space with associated velocities as well.
The Bx-tree addresses the challenge by first partitioning the 2D
space using a grid, and then using a space-filing curve (Hilbert-
curve or Z-curve) to map the location of each grid cell to a 1D
space where 2D proximity is approximately preserved. The lo-
cations of the moving objects are indexed relative to a common
reference time.

The Bx-tree incorporates the fact that objects are moving by
enlarging the query window according to the maximum velocity
of the objects. If the query time is far in the future, and therefore
very different from the index reference time, then the query may
be enlarged significantly. Fig. 4 shows an example of how the
window enlargement works. Supposing that the current time is
0, we issue a predictive time slice range query Q at time 2 (the
solid rectangle). Given that moving points a and b (the black
dots) stored in the Bx-tree, are indexed relative to time unit 5,
from their velocities as shown in Fig. 4, we can infer their po-
sitions at time unit 2, which are a∗ and b∗ (the circles). The
window enlargement technique enlarges the range query Q us-
ing the reverse velocities of a and b to obtain the query window
at time unit 5 (the dashed rectangle). In practice, histograms on
a grid-based are maintained for the maximum/minimum veloc-
ity of different portions of the data space and the query window
is enlarged according to the maximum/minimum velocity in the
region it covers. Therefore, a drawback of the Bx-tree is that,
if only a few objects have a high speed, they would make the
enlarged query window unnecessarily large for most of the ob-
jects.

To reduce the amount of query window enlargement, the Bx-
tree partitions the index into multiple time buckets, where all
objects indexed within the same time bucket are indexed using
the same reference time. This results in a smaller difference
between the reference time and query time and thus reduces the
query window enlargement. When objects are updated, they are
moved from the time bucket they are currently residing in to the
future time bucket.

3.3. Dual transform-based moving object indexes

The earlier work on dual transform-based moving object in-
dexes [21, 22] was improved upon by more recent indexes such
as STRIPES [4], the Bdual-tree [7] and [3]. They index ob-
jects in the dual space, i.e., a 4-dimensional space consisting of
two dimensions for the location of an object and another two
dimensions for the velocity of the object. A consequence of
indexing the velocity as separate dimensions is that the moving
objects are effectively indexed as stationary objects. All objects
are indexed based on the same reference time 0. A drawback of
indexing all objects at the same reference time is that the query
search space continues to grow with time, which is overcome
by periodically replacing the old index with a new index with
an updated reference time.

Dual transform-based moving object indexes differ from our
work by not exploiting velocity distribution skew to index ob-
jects traveling along different dominant velocity axes (DVAs)
separately.

4

3.4. Indexing techniques that handle skewed workloads

Zhang et al. [23] propose the P+-tree, which efficiently han-
dles both range and k-NN queries for different data distribu-
tions including skewed distributions. Their work differs from
ours in that their index is designed for stationary objects instead
of moving objects. Tzoumas et al. [10] propose the QU-Trade
technique for indexing moving objects that adapts to varying
query versus update distributions by building an adaptive layer
on top of the R-tree or TPR-tree. Our work differs from this by
adapting to velocity distributions instead of query versus up-
date distributions. Chen et al. [8] propose the ST2B-tree, which
improves the Bx-tree by making it adaptive to data and query
distribution. This is done by dynamically adjusting the refer-
ence points and grid sizes. Our work differs from this by creat-
ing separate indexes according to velocity distributions instead
of adjusting the reference points and grid sizes. Our VP tech-
nique can be applied in a straightforward manner to the QU-
trade technique and ST2B-tree because their underlying struc-
tures are the TPR-tree and the Bx-tree, respectively.

Dittrich et al. [1] propose a RAM-resident indexing tech-
nique called MOVIES for moving objects. MOVIES assumes
that the whole data set resides in RAM and the update rate
is very high (greater than 5,000,000 per second), whereas our
technique does not make such assumptions.

3.5. Indexing techniques for moving objects on networks

There are many existing papers [24, 25, 26, 27] which model
the movement of objects along any type of network including
road networks. Our paper does not assume that every object
must move in a road network, in other words, our technique
works for generic scenarios where objects can move freely. Ob-
jects moving in road networks is just one of the motivating ex-
amples in which case our technique brings great performance
gain due to the few dominant directions of object movements.

3.6. Query processing on moving objects

Range and k nearest neighbor (k-NN) queries are two most
common queries on moving object databases which have been
extensively studied in the literature [2, 3, 4, 5, 7, 13, 28, 29,
30, 31]. In the recent years, new types of queries on moving
objects have also been proposed to address many emerging ap-
plications. These include the reverse NN (RNN) and the re-
verse k-NN (Rk-NN) queries [32, 33], the k-NN queries with
two predicates [34], the obstructed NN queries [35], the visible
k-NN (Vk-NN) query [36], the moving k-NN query [37], and
the intersection join query [14, 38]. Our proposed index fully
supports range and k-NN queries and other emerging queries
can be supported in future work.

4. How velocity partitioning reduces search space expan-
sion

In this section, we analytically show how a velocity parti-
tioned index can reduce the rate of search space expansion. We
focus our analysis on the Bx-tree and the TPR-tree variants.
We first give an intuitive description of a partitioned index

versus unpartitioned index. Second, we define search space
expansion. Third, we analytically contrast the rate of search
space expansion between an unpartitioned index versus a
partitioned index. Finally, we present preliminary experimental
verification of our analysis.

Partitioned index. The main idea of the velocity parti-
tioning (VP) technique is to index objects moving along
different DVAs (directions) in separate indexes. It is important
to note that the VP technique is not restricted to pairs of DVAs
that are perpendicular to each other, but rather will work for
any number of DVAs separated by any angle. Here we first use
a simple example to illustrate the concept of the VP technique.
Later in Sect. 5, we provide a detailed description of how the
VP technique is performed. Fig. 5 shows an example of objects
indexed by an unpartitioned index versus the same objects
indexed by a partitioned index. In this example, objects are
moving along two DVAs, the x-axis and the y-axis. In the
unpartitioned index, all objects are indexed by the same index.
In the partitioned index, objects moving along the x-axis are
indexed in a separate index from those moving along the y-axis.

Search space expansion. First, we define what we mean
by search space expansion. The search space for a query
describes the data space that is covered (accessed) when
processing the query. The expansion of the search space is
determined by the relative movement between the query and
the tree nodes. The size of the search space is proportional to
the number of tree nodes accessed by a query Q, which can
be estimated using a cost model proposed by Tao et al. [6]
for the TPR-tree/TPR*-tree. The cost model was described in
Sect. 3.1 and given as Eq. 1.

Although the cost model was designed for the TPR-tree, it
also applies to the Bx-tree as follows. For the Bx-tree, the query
expands but the tree nodes are stationary, which is a special case
of the analysis used for Eq. 1 where both the query and the tree
node are moving and expanding.

The idea behind the cost model of Eq. 1 is that we can al-
ways transform a moving/expanding query into a stationary one
by making relative adjustments to tree nodes. For example,
an expanding query and a stationary tree node can be trans-
formed into a stationary query by expanding the tree node by
the amount the query was supposed to expand. Following this
line of argument, we only consider the expansion of the tree
node in the following analysis without loss of generality.

Fig. 6 shows an example of the search space of the example
shown in Fig. 5. In the example, S is the search space of the
unpartitioned index, S′X and S′Y are the search spaces of a
partitioned index in the x- and y-axes, respectively. We also
assume that all objects are traveling either along the x- or
y-axes, as was the case for Fig. 5. The example shows that
the search space expands by a quadratic factor for the un-
partitioned index versus a linear factor for the partitioned index.

Analysis of search space expansion of unpartitioned
versus partitioned index. We will first analyze a simplified
scenario as shown in Fig. 6, and then discuss more general

5

(b) Tree nodes of partitioned index

v v−v

−v

v
v

−v

−v

(a) Tree node of unpartitioned index

Figure 5: Objects indexed by an unpartitioned index versus the same objects indexed by a partitioned index

N’

in both x and y−axis in x−axis
(b) Search space expansion

v

d

d
d

d vv

v

d

d
−v −v

−v

.

N’
X N’

−v

(a) Search space expansion

search space S’X
search space S’Y

search space S

(c) Search space expansion
in y−axis

N’ Y

Figure 6: Search space of unpartitioned index, S versus search space of partitioned index, S′
X plus S′

Y

situations in Sect. 4.1. In this simplified scenario, we assume
that: (i) the velocities of all the objects are exactly along
the standard x- or y-axes; (ii) the objects travel at the same
speed along all directions; (iii) the extent length of the tree
nodes along the x- and y-axes are the same; and (iv) the
initial locations of objects are uniformly distributed in the 2D
space. The symbols used in Fig. 6 are described as follows.
N ′ is the transformed rectangle of the node N with respect
to the query for the unpartitioned index at the initial time 0;
N ′X and N ′Y are the transformed rectangles of the node N
for the partitioned index for the x- and y-axes, respectively;
v is the maximum speed for the objects in S along both the
x- and y-axes. The extent length of all the nodes is d. This
assumption is reasonable since we are more interested in the
rate of expansion of the search space rather than its initial size.

Let S′ denote the combined search space of the unparti-
tioned index in the x-axis, S′X and the y-axis, S′Y (as shown
in Figs. 6(b) and 6(c), respectively). Our aim is to show that
the rate at which the unpartitioned search space, S expands is
higher than the rate at which the partitioned search space S′ ex-
pands. We quantify the search space as the volume created by
integrating the search area from time 0 to the query predictive
time th, where query predictive time refers to the future time
of the query. The search area expands with time, therefore we
start by expressing the search area of the partitioned index N ′

as a function of time t, AN ′(t) as follows:

AN′(t) = (d+ 2vt)(d+ 2vt)

= d2 + 4vtd+ 4v2t2 (2)

We are interested in the total expansion of the search area of
the partitioned indexed including both the x-axis index and y-
axis index. Therefore, letACN ′(t) be the combined area ofN ′X

and N ′Y as a function of time t. ACN ′(t) can be computed as
follows:

ACN′(t) = AN′
X

(t) +AN′
Y

(t)

= (d+ 2vt)d+ d(d+ 2vt)

= 2d2 + 4dvt (3)

We next compute the search volume of S. It is important to
compute the search volume rather than just the expanded search
area since the volume includes the cumulative expansion of the
area from time 0 to th. We compute the search volume VS of S
by integrating the search areaAN ′ from time 0 to th as follows:

VS(th) =

∫ th

0

AN′(t) dt

=

∫ th

0

(d2 + 4vtd+ 4v2t2) dt

= d2th + 2dvth
2 +

4

3
v2th

3 (4)

Similarly, the search space volume from time 0 to th of S′,
VS′ can be computed as follows:

VS′(th) =

∫ th

0

ACN′(t) dt

=

∫ th

0

(2d2 + 4dvt) dt

= 2d2th + 2dvth
2 (5)

In order to compare the search space of the partitioned index
versus the unpartitioned index, we compute the difference be-
tween the search space volume of the partitioned search space

6

 0

 50

 100

 150

 200

 0 50 100 150 200

Le
af

 M
B

R
 e

xp
an

si
on

 r
at

e
in

 y
-a

xi
s

Leaf MBR expansion rate in x-axis

TPR*

(a) Unpartitioned TPR*-tree

 0

 50

 100

 150

 200

 0 50 100 150 200Le
af

 M
B

R
 e

xp
an

si
on

 r
at

e
in

 o
rt

ho
go

na
l t

o
D

V
A

Leaf MBR expansion rate in DVA

TPR* partition 0
TPR* partition 1

(b) Partitioned TPR*-tree

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
ue

ry
 e

xp
an

si
on

 r
at

e
in

 y
-a

xi
s

Query expansion rate in x-axis

Bx

(c) Unpartitioned Bx-tree

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
ue

ry
 e

xp
an

si
on

 r
at

e
in

 o
rt

ho
go

na
l t

o
D

V
A

Query expansion rate in DVA

Bx partition 0
Bx partition 1

(d) Partitioned Bx-tree

Figure 7: Search space expansion of the unpartitioned versus partitioned Bx-tree and TPR*-tree on the Chicago data set. Note that the units for both the x-axis and
the y-axis are m2/s

S′ versus the unpartitioned search space S as a function of time,
∆V (th) as follows:

∆V (th) = VS′(th)− VS(th)

= 2d2th + 2dvth
2 − (d2th + 2dvth

2 +
4

3
v2th

3)

= d2th −
4

3
v2th

3 (6)

From Eq. 6, we can see that as time increases the search vol-
ume of the unpartitioned space VS becomes increasingly larger
than the search volume of the partitioned space, VS′ . This can
be seen by the fact ∆V (th) is negative when th is greater than
d
√

3
2v . Therefore, when time th passes the d

√
3

2v threshold the
search volume of the unpartitioned search volume VS becomes
larger than the partitioned search volume VS′ .

Next, we analyze the rate of change in the search space, by
taking the derivative of Eq. 6. This is stated as follows:

d∆V (th)

dth
= d2 − 4v2th

2 (7)

Eq. 7 shows that the search volume of the unpartitioned index
expands at a much faster rate than the partitioned index. This
can be seen by the fact the rate at which the search volume of
the unpartitioned index increases above the partitioned index is
a squared factor of both v and th because d∆V (th)

dth
is a squared

factor of both v and th.
The above analysis is with respect to a single node. It ob-

viously applies to any node in the tree and when summing up
the search space for all the tree nodes, we reach the conclu-
sion that the query search space on a partitioned index grows
much slower with time than the query search space on an un-
partitioned index. The following experiment on a real data set
validates this result.
Experimental verification of the analysis. Fig. 7 shows the
results of an experiment, which illustrates the 2D search space
expansion for an unpartitioned TPR*-tree and an unpartitioned
Bx-tree versus a near 1D search space expansion for their par-
titioned counterparts. The indexes are partitioned using our VP
technique (detailed in Sect. 5). The experiment uses data gen-
erated from a portion of the road network of Chicago shown in

Figure 8: Chicago road network

Fig. 8.The experiment involved 100,000 moving objects, with
maximum speed of 100 meters per second, with a query pre-
dictive time of 60 seconds. Details of other parameters of the
experiment are the default parameters described in the experi-
mental study (Sect. 7).

Figs. 7(a) and 7(b) show the velocity expansion rate of the
leaf MBRs for the unpartitioned TPR*-tree and partitioned
TPR*-tree, respectively. The results show that the leaf nodes of
the unpartitioned TPR*-tree expand in a 2D space, whereas the
partitioned TPR*-tree expands in a near 1D space. Similarly,
Figs. 7(c) and 7(d) show the query expansion rate of the unpar-
titioned Bx-tree and partitioned Bx-tree, respectively. Again,
the query of the unpartitioned Bx-tree expands in a 2D space,
whereas the partitioned Bx-tree expands in a near 1D space.

4.1. Discussion of general cases

In the analysis of the simplified scenario, we have made sev-
eral assumptions. To lift the first assumption, when the veloc-
ities of objects are not exactly along the standard x- or y-axes,
as long as their directions are close to the standard x- or y-axes,
the previous analysis still holds since a small deviation from
the dominant velocity axis (DVA) incurs a small search space
expansion. However, if some objects’ directions are not close
to any of the DVAs, we will put these objects into an outlier
partition. Details of the outlier partition will be discussed in
Sect. 5.2.

An implicit assumption we also made in the previous analysis
is that there are two DVAs, one is vertical and the other is hor-
izontal. This assumption may not hold in practice. Therefore,

7

in our VP technique, we first find out the actual DVAs (through
a combination of PCA and k-means clustering). Then, the pre-
vious analysis still holds when we replace the x- and y-axes
with the actual DVAs. Details of how to find the DVAs will be
discussed in Sect. 5.1.

5. The velocity partitioning technique

Query/Insertion/Deletion

DVADVA Outlier

DVAs +

Outlier
Threshold

Index Manager

Transformed Query/Insertion/Deletion

Index 1 Index 2 Index m Index
......

Velocity
Analyzer

Sample Velocity Points

DVA

Figure 9: The system architecture of the VP technique

We present our velocity partitioning (VP) technique. Fig. 9
shows the system architecture for the VP technique. The sys-
tem has two main components, a velocity analyzer and an index
manager. The velocity analyzer partitions a sample of the ve-
locity of objects from the current workload in order to find the
DVAs and an outlier threshold (used to determine which objects
belong to the outlier partition). Velocity is a 2D point in the ve-
locity space, so we refer to the velocity of an object as a velocity
point. The index manager takes the output of the velocity ana-
lyzer to transform the query, insertion and deletion operations
to operate on the DVA indexes and outlier index. A DVA in-
dex is the same as a traditional moving object index such as
the TPR-tree or the Bx-tree except objects are indexed using a
transformed coordinate space according to the DVA. The index
manager inserts an object into the closest DVA index unless it is
far from all DVAs, in which case, the object is inserted into the
outlier index. If an object update causes its direction of travel to
change sufficiently, it may be moved from one index to another.
Processing a query involves transforming the query into the co-
ordinate space of each index, and then querying all the indexes
and combining the results.

We provide a more detailed description of the velocity ana-
lyzer in this section since it is the key component of the system.
The velocity analyzer analyzes the sample of velocity points to
determine the partition boundaries for future object insertions
and querying. The partition boundaries are determined by the
DVAs in the data set and an outlier threshold τ . We observe that
when there are multiple DVAs in the data set, using only PCA
may not be sufficient to identify the DVAs correctly. Therefore,
we propose to use a combination of PCA and k-means cluster-
ing on the sample velocity points to determine the DVAs. Here
m is an input value given by the user based on observation of the
data set or experience. For example, most road networks have
two dominant traffic directions and we can setm to 2. Once the
DVAs are determined, the objects can be partitioned based on
the closeness of their velocity directions to the directions of the

DVAs. However, some velocity points may not be close to any
DVA. These objects are placed in an outlier partition. We de-
termine the boundary of the outlier partition using a threshold
τ , which defines an upper bound on what a DVA partition will
accept. We choose the τ value for every partition by analyzing
the sample data set using a search space-based cost function.

Algorithm 1 summarizes the VP algorithm used by the veloc-
ity analyzer. It starts by finding the DVAs using a combination
of PCA and k-means clustering on the representative sample
data (Line 2). Specifically, we integrate PCA into the cluster-
ing process itself by using PCA to guide the formation and re-
finement of clusters. At the end of the clustering process, each
cluster contains the velocity points that form one DVA parti-
tion. The 1st PC of each partition is the DVA for the parti-
tion. The partitioning algorithm minimizes the perpendicular
distance from each velocity point to the DVAs. The reason we
minimize the perpendicular distance is that if all velocity points
within one partition have a small perpendicular distance to the
DVA, then those velocity points occupy a near 1D space.

We define a threshold τ for every DVA to determine whether
an object can be accepted to its partition (Line 4). We deter-
mine the optimal τ by minimizing the combined rate of search
area expansion of the DVA partition and the outlier partition.
Objects whose perpendicular velocity is not within the thresh-
old, τ , of any DVA, are placed in the outlier partition (Line 5).
Once all the outlier velocity points have been removed from the
DVA partition we recompute the DVA using the remaining ve-
locity points (Line 6). This updated DVA will be a more precise
representation of the velocity points now remaining in the DVA
partition. The final DVAs and their associated τ thresholds are
used by the index manager for future insertions and query pro-
cessing.

Algorithm 1: VelocityPartitioning(A,m)
Input: A: sample set of velocity points, m: number of

DVA partitions
Output: D: set of DVAs with associated outlier

thresholds τ
1 let P be the set of m DVA partitions with their associated

DVAs
2 P = Find DVAs(A, m) // See Algorithm 2
3 for each p ∈ P do
4 compute the maximum perpendicular distance

threshold τ for p according to Sect. 5.2
5 move the velocity points from p whose perpendicular

distance is greater than τ from the DVA of p into the
outlier partition

6 recompute the DVA for the remaining velocity points
in p

7 let D be the set of DVAs and associated τ thresholds of P
8 return D

In Sect. 5.1, we describe how our velocity analyzer finds
DVAs. In Sect. 5.2, we describe how our velocity analyzer
determines the threshold τ to decide which objects should be
placed in the outlier partition. In Sect. 5.3, we show how our

8

index manager handles insertion, deletion and update opera-
tions. In Sect. 5.4, we show how our index manager performs
the range query. Sect 5.5 describes how the index manager han-
dles k-NN queries. Finally, in Sect. 5.6, we discuss the issue of
changing velocity distributions.

5.1. Velocity analyzer: finding dominant velocity axes (DVAs)

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

velocities 1st PC

(a) Apply PCA to all data

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(b) Apply k-means (based on dis-
tance to centroid) to find clusters

Figure 10: Result of applying the two naı̈ve approaches to finding the DVAs for
the San Francisco data set

In this subsection, we will first examine two naı̈ve ap-
proaches to finding DVAs, and then present our approach for
finding DVAs.

Naı̈ve approach I: PCA. The first naı̈ve approach is to
apply PCA on a sample set of velocity points to find the
DVAs. Using PCA to find DVAs is intuitive, since the 1st PC
(as described in Sect. 2.2) represents the principal axis along
which the data points lay. In our case, the data points are
velocity points, therefore, the 1st PC represents the principal
axis along which objects travel. However, this approach
effectively combines the multiple DVAs in the data set into
one average velocity axis, which does not represent any of
the individual DVAs. PCA is only useful for finding the DVA
when there is only one DVA in the data set. Fig. 10(a) shows
the results of applying PCA on a sample of 10,000 velocity
points of cars traveling on San Francisco road network (shown
in Fig. 1). In this case, the data set has two DVAs but the 1st
PC is the average of the two, instead of the two individual
DVAs. The 1st PC is far from either of the DVAs. The 2nd PC
is orthogonal to the 1st PC and also does not correspond to any
of the DVAs.

Naı̈ve approach II: k-means clustering based on dis-
tance to centroid followed by PCA on each cluster. The
second naı̈ve approach applies k-means clustering to the veloc-
ity points based on distance to a cluster centroid and then uses
PCA on each resultant cluster to create one DVA per cluster.
This does not work well since it groups objects based on their
closeness to a point (cluster centroid) rather than closeness
to an axis (dominant axis). Fig. 12(a) shows an example of
clustering based on distance to centroid. In the example, there

Speed on x−axis

B

C
C1

2

A

S
pe

ed
 o

n
y−

ax
is

(a) Clustering using naı̈ve ap-
proach II

S
pe

ed
 o

n
y−

ax
is

B

PC

PC

1

2

A

Speed on x−axis

(b) Clustering using our approach

Figure 12: Naı̈ve approach II versus our approach

are two cluster centroids C1 and C2 and two objects A and
B. The direction of travel of object B is more aligned to C1

than C2, however the clustering algorithm groups object B
with C2 since B is closer to C2. Similar observations can be
made for object A. Fig. 10(b) shows the resultant clusters and
corresponding DVAs found on the San Francisco dataset when
using k-means clustering, where distance to centroid is used
as the distance measure. Note that the two DVAs found (two
parallel lines in Fig. 10(b) labeled as 1st PC of partition 0 and
1) by this technique do not resemble the two dominant axes
(two axes with the highest concentration of data points) of the
data set. The reason is the clusters created center around the
cluster centroids shown in Fig. 10(b) instead of the dominant
axes.

Our approach: k-means clustering based on distance
to the 1st PC of each cluster. In our approach, we use k-
means clustering on the velocity points, like the naı̈ve approach
II, but we use the perpendicular distance to the 1st PC of each
cluster (partition) as the distance measure, instead of distance
to a centroid. This allows objects to be clustered based on their
direction of travel. Fig. 12(b) shows an example of using our
clustering approach, where there are two clusters with their 1st
PCs being PC1 and PC2, respectively. Our algorithm allocates
object A to the cluster corresponding to PC2 because A has a
shorter perpendicular distance to PC2. Similarly, object B is
placed in the cluster corresponding to PC1. This assignment
of objects to clusters makes sense since the direction of travel
for object A is more aligned to PC2 than PC1, similarly for
object B.

Algorithm 2 shows precisely how our k-means clustering al-
gorithm based on distance to the 1st PC is used to find DVAs.

Fig. 11 shows an example of applying the FindDVAs al-
gorithm with m = 2 to the San Francisco data set of Fig. 1.
Fig. 11(a) shows the initial random partitions and their corre-
sponding 1st PCs (Lines 3-4 and 6). Note that although the
two initial partitions are randomly created, their two 1st PCs
are slightly apart. Next, Fig. 11(b) shows the partitions cre-
ated after reassigning velocity points to their closest 1st PCs.
Note that after this 1st reassignment iteration, the partitions al-
ready closely resemble the final partitions shown in Fig. 11(d).
The reason for this is the reassignment of points amplifies the

9

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

partition 1
partition 0

partition 0 1st PC
partition 1 1st PC

(a) Partitions after initial random clus-
ter assignment of points, and the 1st PC
of each cluster.

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(b) Partitions after the first iteration of
clustering based on the distance to the
1st PC a cluster.

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(c) Partitions and their 1st PCs after re-
computing 1st PCs using PCA

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(d) Final partitions and DVAs

Figure 11: Our partitioning algorithm being applied to the San Francisco data set shown in Fig. 1

Algorithm 2: FindDVAs(A, m)
Input: A: set of velocity points, m: number of partitions
Output: P : set of partitions with associated 1st PC

1 let P be the set of m partitions
2 initialize each partition p ∈ P to be empty
3 for each velocity point a ∈ A do
4 randomly assign a into a partition p ∈ P
5 while at least one velocity point has moved into a different

partition do
6 compute the 1st PC for each partition in P using PCA
7 for each velocity point a ∈ A do
8 if a is not currently in the partition whose 1st PC

has the shortest distance from a then
9 move a into partition whose 1st PC has the

shortest distance from a

10 return P and associated 1st PC as the DVA partitions and
their associated DVAs

difference between the two 1st PCs by putting points that are
slightly closer to one of the 1st PCs in the partition of that 1st
PC. Fig. 11(c) shows the updated 1st PC of the partitions after
reassigning velocity points (Line 6). The algorithm continues
refining velocity points until they converge to the final partitions
with their corresponding 1st PC (DVAs) as shown in Fig. 11(d).

5.2. Velocity analyzer: the outlier partition

Our aim is to have all objects within each partition travel-
ling in a near 1D space. However, from Fig. 13(a) we can see
that the data points, when transformed into the coordinate space
formed by DVA 0 of Fig. 11, do not travel in a near 1D space
due to the presence of outlier objects. To moderate the influ-
ence of these objects, we place these data points with a perpen-
dicular distance above a threshold τ from their DVAs into the
outlier partition. A cost analysis is performed upon each DVA
partition separately to assign individual τ values to each DVA
partition. The outlier partition is indexed in the standard coor-

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

transformed DVA partition 0

(a) Transformed DVA partition 0

-100

-50

-15
 0

 15

 50

 100

-100 -50 0 50 100

S
pe

ed
 o

n
y-

ax
is

(m
/ts

)

Speed on x-axis(m/ts)

Final DVA partition 0

(b) Final DVA partition 0 after re-
moving the outliers

Figure 13: The transformed DVA partition 0 and its final DVA partition after
removing outliers

dinate system since the objects in it have little correlation with
any DVAs.

We determine the optimal τ value using a slightly simplified
version of the search space metric defined at the beginning of
Sect. 4. More specifically, we use the minimum total rate of
expansion of the area of the transformed leaf nodes AN ′

d
and

AN ′
o

of the DVA and outlier partitions, respectively. We use
the same process as that shown at the beginning of Sect. 4 to
transform the velocities of the queries into the tree nodes. This
minimization metric captures the change in the search area as a
function of time. We focus our analysis on leaf nodes since non-
leaf nodes are typically cached in the RAM buffer, the majority
of RAM buffer misses being due to leaf node accesses.

In this section, we use an approximate cost model for deriv-
ing the optimal value of τ . Specifically, we assume the dimen-
sions d of the leaf nodes of the DVA indexes are independent of
the number of objects nd in the DVA partition. In addition, we
also assume that the maximum velocity vxmax of the objects
in the outlier partition is independent of nd. These assump-
tions do not hold in general for the TPR-tree. However, the
assumption that vxmax is independent of nd is a good approxi-
mation because our algorithm only takes objects that have high
vyd

(velocity of object in y-axis), not high vxd
(velocity of ob-

10

ject in x-axis), from the DVA index into the outlier index. This
has a negligible impact upon the vxmax of the remaining ob-
jects since we are effectively taking a uniform random sample
in terms of vxd

. The assumption that d is independent of nd
is a coarser approximation. As we keep the average number of
objects in each leaf node (nl) constant, whilst removing objects
(nd), in general the MBRs will be larger as the remaining ob-
jects will be less dense. In general, we made these assumptions
to keep our model simple and easy to be used for both TPR*-
trees and Bx-trees. We found that in practice our simplified cost
model performed well for both the TPR-tree and Bx-tree DVA
indexes. Finally, we model vyd

as a function of nd because our
algorithm is designed to move objects with the highest vyd

into
the outlier index.

For a given DVA partition and an outlier partition, we define
the total rate of expansion of the area of the transformed leaf
nodes of the two partitions as follows:

TA(t, nd) = LdAN′
d
(t) + LoAN′

o
(t)

=
nd

nl
(d+ 2vxmaxt)(d+ 2vyd(nd)t)

+
(n− nd)

nl
(d+ 2vxmaxt)(d+ 2vymaxt) (8)

where Ld and Lo are the number of leaf nodes in the DVA
and outlier partitions, respectively, n is the total number of ob-
jects in both partitions, nd is the number of objects in the DVA
partition and nl is the average number of objects per leaf node.
Fig. 14 illustrates the other terms used on the equation diagram-
matically. The most important term is vyd

(nd), since this is
the term that corresponds to the threshold value τ . vyd

(nd)
is the maximum speed along the y-axis in the DVA partition.
vyd

(nd) is a function of nd as we adjust vyd
(nd) by removing

from the DVA partition the objects whose y component speed
is the highest. The remaining terms are described as follows. d
is the length along both the x- and y-axes of both N ′d and N ′o.
We use the same d for all side lengths because we assume uni-
form distribution of object locations. vxmax and vymax are the
maximum speed of N ′o along the x- and y-axes, respectively.
For simplicity, we also suppose that the maximum speed of N ′d
along the x-axis is also vxmax. This approximation is reason-
able since we partition solely based on the y-axis maximum
speed and therefore we assume that the maximum speed of ob-
ject movements along the x-axis is approximately the same for
all partitions.

V
N’d N’o

V

xmax

−Vymax

xmaxxmax

−Vyd

d

d

d

d
−V

d

−V

(n)

xmaxV

Vyd d(n) ymax

Figure 14: Diagram used to illustrate the terms used in Eq. 8

Next, we take the derivative of TA(t, nd) with respect to t to
quantify the rate of expansion of TA(t, nd):

d TA(t, nd)

dt
=

2nd

nl
((vyd(nd)− vymax)(d+ 4vxmaxt))

+
2n

nl
(dvymax + vxmax(d+ 4vymaxt)) (9)

We need to minimize Eq. 9 in order to minimize the rate of
TA(t, nd) expansion. The only components of the equation
that are not constant are nd and vyd

(nd). Therefore, minimizing
Eq. 9 is same as minimizing the following expression:

nd(vyd(nd)− vymax) (10)

Algorithm for determining optimal τ value. To find the nd
value that minimizes Eq. 10 analytically, we would need to have
an equation describing vyd

(nd). However, it is hard to find a
general form for the vyd

(nd) equation because it is data distri-
bution dependent. Therefore, we use an equal width cumula-
tive frequency histogram, per DVA partition, to capture the data
distribution of vyd

(nd). Each bucket of the histogram stores the
number of velocity points in the DVA whose maximum y speed
is the corresponding y speed of the bucket.

Our algorithm finds the τ threshold for each DVA partition
by taking an uniform sample of vyd

(nd) values and computing
the corresponding Eq. 10 value. The vyd

(nd) value giving the
minimum value for Eq. 10 is used as τ . This approach incurs
a small computational cost since Eq. 10 is simple and can be
computed cheaply. Fig. 13(b) shows the final DVA partition 0
after removing outliers from the transformed partition shown in
Fig. 13(a).

Our experimental study (Sect. 7.1) shows that the algorithm
proposed above is able to find a close to optimal perpendicular
distance τ value for both the Bx-tree and the TPR*-tree.

5.3. Index manager: insertion, deletion and update

The insertion algorithm is relatively straightforward. First,
the algorithm finds the DVA index imin whose perpendicular
distance from the object o is the smallest. Then, if the perpen-
dicular distance of o to imin is larger than τ , then o is inserted
into the outlier index otherwise o is inserted into imin. Before
an object is inserted into imin, o is first transformed into the
coordinate space of imin using imin’s 1st PC. The transforma-
tion process involves a simple matrix multiplication between
the coordinates of o and the 1st PC of imin.

When performing deletion, the algorithm first finds the parti-
tion object o resides in via a simple lookup table, and then uses
the base index structure’s deletion algorithm to delete the ob-
ject from its partition. When an object changes its velocity, an
update is performed on the index.

An update consists of a deletion followed by an insertion.
The updated object will be inserted into the closest DVA in-
dex which may be different from its original DVA index. If an
update involves moving an object from one DVA index to an-
other, then both indexes need to be locked at the beginning of

11

the update to ensure a concurrent query on the destination index
does not miss the inserted object. This may slightly increase the
locking overhead.

5.4. Index manager: range queries

Algorithm 3: RangeQuery(I , q)
Input: I: set of all indexes including both DVA indexes

and the outlier index, q: range query
Output: RS: result set

1 for each index i ∈ I do
2 if i is a DVA index then
3 transform the range of q to the coordinate space of

index i using the 1st PC of i
4 create transformed query q′ consisting of a

rectangular axis-aligned MBR of the transformed
range of q

5 else
6 q′ = q // index i is the outlier index

7 execute range query q′ on index i and store results in
URS

8 filter out the objects in URS, which are not contained
in q and add the remaining objects into RS

9 return RS

We present the range query algorithm, which can be used
for both circular and rectangular range queries. Algorithm 3
details the steps the index manager uses to execute the range
query. The index manager needs to query each of the indexes
separately and merge the results as the query region may en-
compass objects from different indexes. Before querying each
DVA index, we need to first transform the query range to the co-
ordinate space of the DVA index using the 1st PCs of the DVA
index (Line 3). The transformation process involves simple ma-
trix multiplication between the coordinates of the query range
and that of the 1st PCs. The transformed ranges are bounded by
a rectangular minimum bounding region (MBR), which is axis-
aligned with the coordinate space of the DVA indexes (Line 4).
The transformed query is then executed on the indexes using
the query algorithm of the underlying index, such as the Bx-
tree and the TPR*-tree (Line 7). Finally, the objects in the re-
sult are filtered to remove any objects, which are in the MBR of
the transformed query but not in the original query region (Line
8). Note that when querying the outlier index, there is no query
transformation needed since the outlier index uses the standard
coordinate system (Line 6).

Fig. 15(a) shows an example of a circular range query q with
radius r before transforming into the coordinate space of a DVA
index. It also represents the 1st and the 2nd PCs of the DVA
index. Fig. 15(b) shows the transformed query q′, which is
bounded by an axis aligned MBR in the coordinate space of
the DVA index formed by the 1st PCs.

Our system supports all three query types described in
Sect. 2.1, namely, the time slice range query, time interval range
query, and moving range query. We discuss the moving range

r

1st PC vector

2nd PC vector

.

y

x

q

(a) Before transformation

x

r
q’

.

y

(b) After transformation

Figure 15: Circular range query before and after transforming into a DVA in-
dex’s coordinate space

query since it is the most general form of the three query types.
After transforming the range query into the transformed coordi-
nate system and applying the filtering step (Line 9 of Algorithm
3), the same object containment relationship with the original
query is retained. The query velocity can also be transformed
into the new coordinate system and the query can be executed
in the standard way. Thus, our system supports the same query
types as the underlying indexes (the Bx-tree/the TPR*-tree), in-
cluding the three query types discussed in Sect. 2.1.

5.5. Index manager: k-NN queries

We describe how the index manager handles k-NN queries
on DVA and outlier indexes. Assuming a set of objects N > k,
given a moving point qp, and a query time tq , a k-NN query
retrieves a set of k-nearest objects (RS) from qp at time tq .
Algorithm 4 presents the details of the algorithm. The index
manager retrieves RS by iteratively performing range queries
with an incrementally increasing search region on each of the
indexes separately until the exact k-nearest objects in RS are
found. Similar to the RangeQuery algorithm (Algorithm 3),
before querying each DVA index, we first need to transform
the query point qp to the coordinate system of the DVA index
(Lines 8 - 9). Then, an initial range query is conducted which is
a region centered at qp with radius r = Dk/k (Line 12), where
Dk is the estimated distance between the query object and its
kth-nearest neighbor. Dk is estimated using the equation below
(the same as that used by the Bx-tree [2]):

Dk =
2√
π

[1−
√

1−
√
k/N] (11)

After querying each index, if the index manager has found
the exact k objects in RS, then the index manager reduces the
search region to the maximum distance of current k objects in
RS (Line 15) which helps to reduce the query cost significantly.
After querying all indexes, if the number of objects inRS is less
than k, the index manager increases the search region by the
initial search radius Dk/k (Line 19), then repeats the process
of querying all indexes. Otherwise, the index manager returns
RS as the results of the query.

12

Algorithm 4: k-NNQuery(I , qp, k, tq)
Input: I: set of all indexes including both DVA indexes

and the outlier index, qp: query point, k: number of
neighbors, tq: query time

Output: RS: result set of k-nearest neighbors with respect
of 〈qp,k, tq〉

1 Let q′p be query point qp in the transformed coordinate
space of the DVA index

2 Let r be the estimated search radius
3 Let dist(RS) be maximum distance of all objects in RS
4 r = Dk/k
5 kNNFound = false
6 while kNNFound == false do
7 for each index i ∈ I do
8 if i is a DVA index then
9 transform qp to the coordinate space of index i

using the 1st PC of i denoted as q′p
10 else
11 q′p = qp
12 construct a range query q centered at q′p with

radius r and query time tq
13 execute range query q on index i and update

results in RS
14 if |RS| == k then
15 r = dist(RS) /* reduce search space by

maximum distance of RS */

16 if |RS| == k then
17 kNNFound = true

18 else
19 increase r by Dk/k

20 return RS

5.6. Handling changing velocity distributions

In theory, if the dominant direction of object travel changes
significantly, we would need to rerun the velocity analyzer to
determine new DVAs, and then readjust the indexes to align
with the new DVAs. However, in real life, we find that the
direction component of the velocity distribution changes little
since the routes of the moving objects are usually fixed. This is
intuitive as velocity distributions are usually dictated by rarely
changing environmental factors, such as road networks, flight
paths and shipping lanes, etc. Therefore, the dominant direc-
tion of object travel is likely to be stable. However, the speed
component of the velocity distribution is likely to change with
time. For example, during the morning rush hour there will be
many cars traveling into the city, resulting in reduced speed. In
contrast, during this time, there will be few cars moving out of
the city and they will be moving fast. The opposite is true dur-
ing afternoon rush hour. The speed distribution has no effect
on the coordinate system of the DVA indexes since the cars still
travel along the same DVA. However, it does affect the value of
the threshold τ , since τ is determined by the y-axis speed distri-

bution of objects moving in the transformed coordinate system
of the DVA indexes. We handle this situation by continuous
updating the histogram used to determine τ , and then periodi-
cally computing an updated τ . Computing τ incurs only a small
computational overhead because the equation used to derive it
is simple.

5.7. Complexity Analysis

In this section, we present the complexity analysis of the Ve-
locityPartitioning algorithm (Algorithm 1). The VelocityPar-
titioning algorithm first calls the FindDVAs algorithm (Algo-
rithm 2) in Line 2. The complexity of the FindDVAs algorithm
is O(n + i(m(d2n + d3) + nm)), where n is the number of
data points, d is the number of dimensions of the data, m is
the number DVA indexes, and i is the number of iterations of
the while loop (Lines 5-9) in Algorithm 2. The first n term is
for Line 3 and 4 of the algorithm. The complexity of the PCA
(Line 6) is d2n + d3, where the first d2n term is the complex-
ity of computing the co-variance matrix and second d3 term is
the complexity of the eigenvalues decomposition. Finally, the
nm term is for Lines 7-9 of the algorithm. We can simplify the
complexity of the FindDVAs algorithm to O(i m n). This is
because the PCA computation is the dominant cost in the while
loop and d equals to 2 since we are working in 2-dimensional
data, so d can be considered as a constant.

The complexity of the remainder of the VelocityPartitioning
algorithm (Lines 3-6) is O(m(n+ n+ (d2n+ d3)) The first n
term is the complexity of Line 4, the second n is the complex-
ity of Line 5 and finally the final (d2n+ d3) term is the cost of
recomputing the DVA, which involves computing the PCA. So
again the complexity of Lines 3-4 can be reduced to the follow-
ing O(m n) because d is just a constant 2 for our problem.

So the final overall complexity of the VelocityPartitioning al-
gorithm is O(i m n). The m term (number of DVA partitions)
in usually quite small, in our experiments it is just 2. Hence,
the cost is mainly dominated by the number of iterations i and
the number of data points n.

6. Improving the performance of the outlier index for SSDs

SSDs have become prevalent in recent years due to their su-
perior performance, reliability and rapidly reducing prices. Our
experimental study in Fig. 16(a) shows that, when a SSD is
used and the VP technique is applied to the Bx-tree, the CPU
time dominates the total execution time (between 61 and 80 %).
Furthermore, the outlier index (described in Sect. 5.2) occupies
a disproportionately high percentage of that CPU time (up to
60 %) (See Fig. 16(b)). In this section, we improve the per-
formance of the outlier index by making use of SSDs. We have
designed an index structure for the outliers which is more suited
to the characteristics of SSDs.

The idea is to reduce CPU time by completely caching out-
liers in a RAM-resident grid structure. The grid structure has
been found to yield better query performance for moving ob-
ject indexes that reside completely in RAM compared to tree-
based index structures [28, 39, 40, 29]. Further, we compress

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

5 10 20 30 50 70 90

T
im

e
(m

s)

Buffer size (pages)

CPU I/O

(a) Range query time using the SSD
for CH data set

 0

 2

 4

 6

 8

 10

 12

 14

 16

CH SA MEL NY

T
im

e(
m

s)

Data set

Outlier index
DVA indexes

(b) Range query CPU time

Figure 16: (a) Shows the results of breaking down the total time into CPU time
and IO time when the SSD is used. (b) Shows CPU time being broken further
down between DVA index and outlier index for various real data sets. The
above results are for the VP technique applied to the Bx-tree and the default
settings in Table 2 were used for these experiments.

the indexed objects to make more efficient use of RAM. To en-
sure the RCG outlier index does not occupy the entire RAM
buffer, we allocate only a portion of the RAM buffer for the
RCG outlier index and then adjust the velocity threshold τ to
ensure the RCG outlier index stays within the allocated portion
of the RAM buffer.

6.1. Index structure

We use a simple grid data structure to store outliers. Each cell
of the grid stores compressed object information indexed based
on object location. In order to handle the time dimension, we
take the same approach as the Bx-tree [2], namely, expanding
the query by the maximum velocity of the objects within the
grid. In order to minimize the query expansion, we create mul-
tiple time buckets in the same way as in the Bx-tree, where each
time bucket corresponds to a time interval (TM). One grid in-
dex is created per time bucket. The idea is by keeping the time
interval TM small, the queries will expand less.

6.2. Update, insertion, and deletion

We use the same approach as for the Bx-tree for determining
which time bucket an object should be deleted from and inserted
into during an update. We give an example to illustrate this as
follows.

Fig. 17 shows two time buckets (TB1 and TB2) being used
to store the outlier objects. All outlier objects whose latest up-
date time falls within the same time bucket are inserted into the
same time bucket. An update involves deleting an object from
the time bucket into which the object was inserted and then in-
serting the updated object to the current time bucket. Initially,
during the time bucket [0, TM), all the insertions and deletions
are performed only on TB1, and TB2 remains empty. After
time TM and until time 2TM , all insertions are performed in
TB2 and deletions remove objects either in TB1 or TB2, de-
pending on whether these deleted objects were inserted to TB1
or TB2. After time unit 2TM , TB1 is empty and all outliers are
stored in TB2. During the time bucket [2TM , 3TM), TB1 and

The RCG outlier index

0 time3TM M4T2TMTM

update insert
update insert

TB1 TB2 TB1 TB2

Figure 17: The RCG outlier index

TB2 swap states, i.e., all insertions are performed in TB1 and
deletions remove objects either in TB1 or TB2 and so on.

Once we have selected a time bucket for insertion, we find
the location of the object at the reference time for the selected
time bucket and then store the object in the corresponding cell
of the grid, where the reference time for a time bucket is the end
of the time interval for the time bucket. For example, in Fig. 17
the reference time for TB1 is TM .

Fig. 18 shows an example of inserting an object a at update
time 2 into a time bucket with reference time 5. First, a is
converted to the reference time 5 shown as a∗. Then, a∗ is
inserted into the grid cell which contains the location of the
object at time unit 5 ([2,2] of the 2D grid).

4

a*(5)

a(2)
−1

−1

0 1 2 3 4

0

1

2

3

Figure 18: An example of inserting an outlier into a time bucket of a RCG
outlier index

6.3. Query

Given a query, all time buckets are searched, and the results
are combined to produce the final answer. Before querying each
time bucket, we need to expand the query region using the max-
imum velocity of all objects within the time bucket. Several
techniques [2, 41] have been proposed to reduce query expan-
sion by maintaining a velocity histogram for each time bucket.
However, for simplicity, we do not adopt these methods in this
paper.

This general approach for querying the RCG outlier index
can be used for both range and k-NN queries.

14

ID x-location y-location x-velocity y-velocity
8243 48078.6323 31057.8730 18.2624 -43.2345
13 48053.4567 31011.2460 7.5542 5.8162
432 48032.5434 31094.8437 -35.5001 -5.9782

Table 1: Example of object information stored in each grid cell

6.4. Index compression

We describe a simple approach to compress the information
of outlier objects within each grid cell. The basic idea is to store
the outlier objects’ information column-by-column. Therefore,
information on all objects of the same attribute are stored to-
gether. Data stored column-by-column is more compressible
than data stored row-by-row due to the lower entropy of objects
within the same column [42, 43, 44].

Table 1 shows an example of the object information stored in
a grid cell before compression. In this example, the minimum
and maximum coordinates of the grid cell are [48000, 31000]
and [49000, 32000] respectively. The information stored per
object includes an ID, a location in x-axis, a location in y-
axis, a velocity in x-axis, a velocity in y-axis denoted as ID,
x-location, y-location, x-velocity, y-velocity, respectively.
We assume that IDs are 32-bit integer numbers and locations
and velocities are 32-bit floating point numbers. However, our
compression technique can be easily extended to work with 64-
bit values.

6.4.1. ID compression
We describe our simple compression algorithm for the ID

column. Fig. 19 shows the 32-bit binary representation of the
ID’s column shown in Table 1. We group bits into blocks of
four to reduce computation costs. We then look at the num-
ber of leading zero blocks of each ID. We remove zb leading
zero blocks from all IDs, where zb is the number of leading
zero blocks in the ID that has the least number of leading zero
blocks.

10

2

2

2

0000 0000 0000 0000 0010 0000 0011 0011 (8243)

0000 0000 0000 0000 0000 0000 0000 1101 (13)

0000 0000 0000 0000 0000 0001 1011 0000 (432)

10

10

Figure 19: Example of applying ID compression on the ID column

6.4.2. Location compression
We store the relative locations of outlier objects in terms of

minimum x- and y-coordinates of the containing cell. The rel-
ative locations are smaller in magnitude compared to the abso-
lute locations and therefore can be compressed more. Fig. 20
shows the relative values of x-location column after subtract-
ing the grid cell’s lower bound and their 32-bit binary repre-
sentation. Next, we find the longest sequence of leading 4-bit
blocks which is the same for all location values and store these
values once for all the objects within the same cell.

2

0100 0010 0101 0101 1101 0011 1010 1001 (53.4567)
10

10

0100 0010 0000 0010 0010 1100 0111 0001 (32.5434)10

2

0100 0010 1001 1101 0100 0011 1011 1101 (78.6323)2

Figure 20: Example of applying location compression on the x-location col-
umn

6.4.3. Velocity compression
We avoid a mixture of negative and positive velocities be-

cause we want the first bit of the velocity value to be the same
for ease of compression. We achieve this by adding the maxi-
mum speed to all velocity values. For example, if the maximum
speed of all objects in a data set is 100.0, then velocity values
in any dimension range from 0.0 to 200.0. We compress the
common leading 4-bit blocks using the same method as loca-
tion compression.

6.4.4. Lossy compression
In order to further reduce the size of the index, we apply lossy

compression on location and velocity values. We use the same
method to perform lossy compression on both location and ve-
locity attributes. The user specifies the maximum allowed error
in location and velocity attributes using the parameter σ. σ is
defined as the maximum allowed percentage loss in value as the
result of the lossy compression.

Algorithm 5: LossyCompress(V , σ, blockSize)
Input: V : value of location/velocity, σ: compression error,

blockSize: number of bits each block
Output: tb: the number of trailing blocks can be removed

from V with σ
1 let CV be changed value
2 let MIL be maximum value loss of V with σ
3 let BV and BCV be bits string of V and CV , respectively
4 MIL = V *σ / 100
5 convert V into BV

6 initialize tb = 1, CV = V
7 while V − CV < MIL do
8 BCV = BV >> tb ∗ blockSize
9 BCV = BCV << tb ∗ blockSize

10 convert BCV into CV
11 increase tb by 1;

12 return tb

Algorithm 5 works as follows. First, the algorithm computes
the maximum amount (MIL) by which the compressed value

15

can differ from the original value. The algorithm iteratively re-
places a growing number of the least significant bits with zeros
and testes if the resulting number differs from the original value
by less than MIL. The algorithm stops when the changed value
differs from the original value by more than MIL.

The overall lossy compression algorithm works as follows.
First, the algorithm runs the lossless compression algorithms
described in Sects. 6.4.2 and 6.4.3 to compress the leading bits.
Next, we apply Algorithm 5 to count the number of trailing
blocks that can be removed for each value. Next, we remove
tb trailing blocks from every value, where tb is the minimum
value returned by Algorithm 5 for all values.

Fig. 21 gives an example illustrating how Algorithm 5 works.
In this example V = 78.6323 and σ = 0.01%, therefore MIL =
0.0079. The example shows the change in value (represented
in both binary and decimal format) through each iteration of
the algorithm. The number following the + sign represents the
difference between the current changed value and the original
value.

10

Iter1:

Iter2:

Iter3:

Iter4:

0100 0010 1001 1101 0100 0011 1011 0000 (78.6322)+0.0001

0100 0010 1001 1101 0100 0011 0000 0000 (78.6308)+0.0015

0100 0010 1001 1101 0100 0000 0000 0000 (78.6250)+0.0073

0100 0010 1001 1101 0000 0000 0000 0000 (78.5000)+0.1323

0100 0010 1001 1101 0100 0011 1011 1101 (78.6323)2

2

2

2

2

10

10

10

10

Figure 21: Example of compressing value V = 78.6323 with σ = 0.01%

Fig. 22 illustrates an example for the entire compression pro-
cess for lossy compression of the x-location column. First, we
assume the values in the example have already been adjusted to
be relative to each cell’s minimum x- and y-coordinates. The
example shows that after applying Algorithm 5, there is a num-
ber of common trailing zeros. We then remove the longest
number of common trailing zero blocks, as illustrated by the
box containing the zeros. The example also shows the lossless
compression algorithm being applied to the common leading
blocks.

0100 0010 0000 0010 0010 1100 0000 0000 (32.5430)

10

10

10

2

2

2

0100 0010 1001 1101 0100 0000 0000 0000 (78.6250)

0100 0010 0101 0101 1101 0000 0000 0000 (53.4531)

Figure 22: Example of applying lossy compressing technique on the x-
location column with σ = 0.01%

Setting the σ value involves a trade-off between compres-
sion ratio and precision and recall. A larger σ value results in
a better compression ratio but lower precision and recall. Our
experiments showed when σ was set to a small value 0.01, we
achieved a good compression ratio while still achieving high
precision and recall blackredscores (between 0.88 and 1.0).
This led us to set the value of σ to 0.01% for our experiments.

6.5. Determining threshold τ for RCG outlier index
Due to the fact that the RCG outlier index is RAM resident,

we can no longer use the algorithm described in Sect. 5.2 to

compute the velocity threshold τ . We instead set the value of
τ based the desired size for the RCG outlier index (sG) which
is taken from the user. The value sG is set as a percentage of
the buffer size. Given sG, we determine τ as follows. We start
with the largest possible τ and decrease it until the size of the
RCG outlier index is just below sG. For a given τ , we deter-
mine the resultant RCG outlier index size by first determining
the number of outlier objects which have velocity in the y-axis
which is greater than τ by looking up the velocity histogram
(described in Sect. 5.2). The size of the RCG outlier index, cs
is estimated as a function of the number of objects n as fol-
lows: cs = os ∗ n ∗ c, where os is the normal size of an object
which is typically 20 bytes for 32-bit values, and c is the current
compression ratio of the current RCG outlier index. The com-
pression ratio is defined as the size of the compressed outlier
index divided by the size of the uncompressed outlier index. c
is initialized to be 1 and is frequently updated with the current
measured compression ratio.

In order to handle the changing velocity distribution as dis-
cussed in Sect. 5.6, we also continuously update the velocity
histogram and periodically compute an updated τ .

6.6. Main Memory Indexing

Until now we have assumed that the index does not fit in
memory. This is because often the server that is holding the in-
dex may also be running many different applications with com-
peting memory requirements. In addition, some applications
may need to query very large data sets which cannot fully fit
in memory. However, in the situation that the entire data set
does fit in memory, the restricted memory index proposed in
Section 6 can be extended to handle this situation. In this case,
we recommend using the grid-based index RCG for both the
DVA indexes and the outlier index. This is because grid-based
indexes have been found to outperform tree-based indexes for
main memory moving object indexing [28, 39, 40, 29]. The
compression algorithms developed for the RCG outlier index
can be used for the in-memory DVA indexes as well. If main
memory is abundant we will not need to use the lossy com-
pression algorithm proposed in Sect. 6.4.4. If memory is unre-
stricted we can again use the method explained in Sect. 5.2 to
set the outlier threshold because we do not need to artificially
limit the number of objects that can be placed into the outlier
index. A full investigation of an indexing technique under the
main memory setting is beyond the scope of this paper and we
will leave it for future work.

7. Experimental study

In this section, we report the results of experiments illustrat-
ing the performance of our VP technique applied to the Bx-
tree [2] and the TPR*-tree [6] against their unpartitioned coun-
terparts. We firstly evaluate the ability of our algorithm to find
the optimal τ threshold value. Second, we measure the over-
head incurred by the velocity analyzer. Third, we compare both
the query and update performance of the algorithms across vari-
ous data sets. Fourth, we compare the range query performance

16

of the algorithms for various parameter settings including vary-
ing data size, maximum speed of objects’ movement and query
predictive time. Fifth, we show representative results for the
rectangular range query. Sixth, we measure the k-NN query
performance of the algorithms for varying the number of neigh-
bors k. Finally, we evaluate the effectiveness of our RCG out-
lier index.

The experiments were conducted based on the benchmark
defined in Chen et al. [45] for evaluating moving object in-
dexes. The road network and synthetic (uniform) data sets used
in the experiments were generated using the benchmark’s data
generator provided by Chen et al. [45]. To generate the road
network data sets, we fed the road network nodes and edges
into the benchmark generator. The road network nodes and
edges were all generated using the XML map data from the
OpenStreetMap [46]. We generated four road network data sets.
Their characteristics can be summarized as follows:

• The Melbourne CBD (MEL) and New York (NY) road
networks (Fig. 23) contain the largest number of nodes
and edges, and they have average the length of each edge.
Therefore, both road networks have the highest update fre-
quency.

• Both the Chicago (CH) (Fig. 8) and the San Francisco
(SA) (Fig. 1(a)) road networks contain a smaller number
of nodes and edges and hence both have a smaller number
of updates compared to the MEL and the NY networks.

• The CH road network’s velocity distribution is the most
skewed, followed by the SA, the MEL and the NY road
networks.

(a) Melbourne CBD (b) New York CBD

Figure 23: Other tested road networks

We focus our experimental study on the circular time slice
range query, with a future predictive time ranging from 20 to
120 seconds (s), as described in Table 2. We focus on the cir-
cular query because it resembles many real world occurrences
and is also used in the filter step of the k-NN query. The cir-
cular range query specifies a range which is a certain distance
from a point. For example, a taxi driver is interested in potential
passengers within 200 meters (m) of itself, or a tank wants to
know if there are any other tanks within one kilometer of itself.
We use the circular range query as the default query. We per-
formed the same set of experiments for the rectangular range

Parameter Setting
Space domain (m2) 100,000x100,000
Cardinality of objects 100K, ..., 500K
Max. object speed (m/s) 20, ..., 100, ..., 200
Max update interval (s) 120
Range query radius (m) 100,..., 500,...,1000
Number of neighbors 10, ...,50, ... , 100
Query predictive time (s) 20, ..., 60, ..., 120
Time duration (s) 240
RAM buffer size (pages) 5, 10, ..., 50, ..., 90
Outlier index size (%) 10, 15, ..., 35, ..., 50
Disk page size 4KB
Secondary storage type HDD, SSD
Data set CH, MEL, SA, NY, uniform

Table 2: Parameters and their settings

query and the results are similar to those for the circular range
query. We show representative results for the rectangular range
query in Sect. 7.8.

The parameters used in the experiments are summarized in
Table 2, where values in bold denote the default values used.

We compare our VP technique applied on top of two state-
of-the-art moving object indexes of contrasting styles: the Bx-
tree [2] and the TPR*-tree [6] with their unpartitioned counter-
parts (indexes that have not been velocity partitioned). We used
the source code for the TPR*-tree and the Bx-tree provided by
Chen et al. [45]. All code was implemented in C++ under Mi-
crosoft Visual C++ 2008 running on Microsoft Windows 7 Pro-
fessional SP1. The algorithms compared are described as fol-
lows:

• Bx-tree. The Bx-tree [2] has two time buckets and uses the
Hilbert curve for space partitioning. We use the improved
iterative expanding query algorithm [41] to reduce query
enlargement. The histogram used contains 1000x1000
cells.

• TPR*-tree. The TPR*-tree [6] is optimized for query size
of 1000x1000m2.

• Bx(VP)-tree and TPR*(VP)-tree. The VP technique ap-
plied to the Bx-tree and the TPR*-tree is denoted as the
Bx(VP)-tree and the TPR*(VP)-tree, respectively. We use
the disk-based outlier index, where the velocity threshold
τ is set using the algorithm described in Sect. 5.1. Both
trees use a velocity histogram containing 100 buckets for
determining τ value. We set the number of DVA indexes
to 2 because we found that in almost all road network data
sets, the roads were aligned to two main axes. The settings
for the underlying Bx-tree and TPR*-tree are the same as
above. The velocity analyzer used for both indexes used
10,000 sample velocity points.

• Bx(VP:G)-tree and TPR*(VP:G)-tree. The same as the
Bx(VP)-tree and the TPR*(VP)-tree except with the RCG
outlier index replacing the disk-based outlier index. The

17

RCG outlier index uses two time buckets. The grid con-
tains 100x100 cells.

Our experiments measure the following metrics: average I/O
per query; average I/O per update; average execution time per
query; and average execution time per update. The execution
time (referred to as time) results include both CPU and I/O
time. We use both a magnetic hard disk drive (HDD) and a
state-of-the-art solid-state drive (SSD) to measure the I/O time.
We use the HDD as the default secondary storage. The SSD is
used in Sect. 7.11 because in this section, we test the perfor-
mance of the RCG outlier index which is designed for the SSD.
The update metric results are only reported for one experiment
(see Sect. 7.3) because this paper is focused on improving query
performance.

All experiments were conducted on a PC powered by In-
tel Core i7 CPU 2.8GHz with 8GB DDR3 RAM using a 1TB
7200RMS Seagate Barracuda HDD and a 256GB OCZ Vertex
4 SSD.

7.1. Finding optimal τ threshold

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 5 10 15 20 40 60

Q
ue

ry
 I/

O

τ threshold

Bx(VP)
TPR*(VP)

Bx(VP) w fixed τ
TPR*(VP) w fixed τ

(a) CH road network

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 1 2 5 10 15 20 40 60

Q
ue

ry
 I/

O

τ threshold

Bx(VP)
TPR*(VP)

Bx(VP) w fixed τ
TPR*(VP) w fixed τ

(b) SA road network

Figure 24: τ algorithm versus varying fixed τ threshold

In this experiment, we examine the effectiveness of our al-
gorithm (see Sect. 5.2) at finding the optimal τ threshold for
each index. As mentioned before, τ is used to determine which
objects should be placed in the outlier index. We compared
the Bx(VP)-tree and the TPR*(VP)-tree using different fixed τ
thresholds against the Bx(VP)-tree and the TPR*(VP)-tree au-
tomatically finding the optimal threshold value according to the
algorithm in Sect. 5.2. We used both the CH and SA road net-
work data sets for this experiment. The results are shown in
Fig. 24. In Fig. 24, the straight lines represent the Bx(VP)-
tree and the TPR*(VP)-tree using the automatic algorithm for
determining τ and the curves represent the Bx(VP)-tree and the
TPR*(VP)-tree using different fixed τ thresholds. The results
show that the VP technique is able to automatically compute
a near optimal τ threshold for both real data sets and moving
object indexes.

7.2. Velocity analyzer overhead
In this experiment, we measure the overhead of running our

velocity analyzer as described in Sects. 5.1 and 5.2. The veloc-
ity analyzer partitions the sample velocity points using a combi-
nation of PCA and k-means clustering to arrive at the DVA in-
dex boundaries. We performed this experiment across the four

 0

 20

 40

 60

 80

 100

CH SA MEL NY uniform

V
el

oc
ity

 a
na

ly
ze

r
ru

n
tim

e(
m

s)

Data set

VP

Figure 25: Overhead of velocity analyzer

road networks, CH, SA, MEL, NY and the uniform synthetic
data sets. We ran each data set five times and reported the av-
erage execution time. The results are shown in Fig. 25. The
results show that the overhead of the velocity analyzer over all
tested data sets is low, taking between 50 milliseconds and 97
milliseconds.

7.3. Effect of varying data sets

In this experiment, we compare the algorithms across the
four road networks CH, SA, MEL, NY and the uniform syn-
thetic data sets. The range query I/O and time results are shown
in Figs. 26(a) and 26(b), respectively. The k-NN query I/O and
time results are shown in Figs 26(c) and 26(d), respectively.
The results show that the Bx(VP)-tree and the TPR*(VP)-
tree consistently outperform their unpartitioned counterparts for
road network data sets by up to a factor of 2.8 for range query
I/O, by up to a factor of 2.2 for range query time, by up to a
factor of 2.6 for k-NN query I/O and by up to a factor of 1.8 for
k-NN query time. Performance improvement is due to the fact
that the VP technique is able to exploit the presence of DVAs in
these data sets.

In general, the VP technique is able to improve both range
and k-NN query performance of the Bx-tree by more than the
TPR*-tree because the Bx-tree does not attempt to group ob-
jects travelling in similar directions at all. In contrast, the inser-
tion algorithm of the TPR*-tree attempts to group objects trav-
elling in the same direction into the same tree node, albeit in
a locally optimized way instead of the globally optimized way
of the VP technique. Therefore, for the TPR*-tree, the perfor-
mance advantage of using the VP technique is diminished.

The results for the uniform data set show that the perfor-
mance advantage of the Bx(VP)-tree and the TPR*(VP)-tree
over their unpartitioned counterparts is removed. This is be-
cause in the uniform data set there are no DVAs, and therefore
nothing can be gained from partitioning the index by velocity
distributions. In some cases, the Bx(VP)-tree performs slightly
worse than the unpartitioned counterparts because of the over-
head of maintaining multiple indexes and frequently computing
an updated τ threshold.

The update I/O and execution time results for this experi-
ment are shown in Figs. 26(e) and 26(f), respectively. The
TPR*(VP)-tree outperforms the TPR*-tree by up to a factor of
1.7 for average update I/O cost and by up to a factor of 1.9
for average execution time. This is because both the deletion

18

 0

 20

 40

 60

 80

 100

CH SA MEL NY uniform

I/O

Data set

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Range query I/O

 0

 50

 100

 150

 200

 250

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(b) Range query time

 0

 20

 40

 60

 80

 100

 120

CH SA MEL NY uniform

I/O

Data set

(c) k-NN query I/O

 0

 50

 100

 150

 200

 250

 300

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(d) k-NN query time

 0

 2

 4

 6

 8

 10

CH SA MEL NY uniform

I/O

Data set

(e) Update I/O

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(f) Update time

Figure 26: Effect of varying data sets

and insertion algorithms of the TPR*-tree involve traversing the
tree in a similar fashion to the query. Our algorithm is better at
querying than the unpartitioned TPR*-tree. This fact combined
with the fact that each of the partitioned indexes is smaller than
the single unpartitioned TPR*-tree, explains the reason for the
faster update performance of the TPR*(VP)-tree compared to
the unpartitioned TPR*-tree. However, the update performance
of the Bx(VP)-tree and the unpartitioned Bx-tree are similar.
This is because for the Bx-tree, the update performance is di-
rectly proportional to the height of the tree. The height of the
Bx(VP)-tree and the unpartitioned Bx-tree are the same in our
experiments. In fact, the Bx(VP)-tree is slightly worse than the
Bx-tree for update performance due to the fact buffering is more
effective when there are less trees and the Bx(VP)-tree needs to
frequently compute an updated τ threshold.

For the remaining experiments, we only report query cost
results and omit the update results because the technique pro-
posed in this paper is mainly aimed at improving query perfor-
mance rather than update performance.

7.4. Effect of data size on range query

 10 20

 50

 100

 150

 200

 250

 300

 100 200 300 400 500

Q
ue

ry
 I/

O

Number of objects(K)

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Query I/O

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500

T
im

e
(m

s)

Number of objects(K)

(b) Query time

Figure 27: Effect of data size on range query

In this experiment, we examine the query performance of
each index while varying the number of objects. As the data
size grows, Fig. 27 shows that the query performance increases
approximately linearly across all indexes. We observed that
the Bx-tree has the worst query performance and scales poorly
with increasing number of objects. The results show that the
Bx(VP)-tree is effective at improving the performance of the
unpartitioned Bx-tree by up to as much as a factor of 3.4 for
I/O and a factor of 2.8 for execution time. The performance im-
provement of the TPR*(VP)-tree over the unpartitioned TPR*-
tree is more modest at up to a factor of 1.8 for I/O and 1.9 for
execution time. The reason for this is the same as explained in
the previous section, namely, the TPR*-tree already attempts to
group objects moving in the same direction into the same tree
node, whereas the Bx-tree does not.

7.5. Effect of maximum object speed on range query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120 140 160 180 200

Q
ue

ry
 I/

O

Maximum speed(m/s)

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120 140 160 180 200

T
im

e
(m

s)

Maximum speed(m/s)

(b) Query time

Figure 28: Effect of maximum object speed on range query

In this experiment, we study the effect of varying the maxi-
mum object speed on the query performance among all the in-
dexes. Fig. 28 shows that the Bx-tree suffers the most from
increasing the maximum object speed and exhibits the steep-
est increase in both query I/O and query execution time. The
reason is that it uses the maximum velocity when expanding
queries.

19

The results show that the VP technique is able to improve
the performance of the unpartitioned indexes by an increasing
margin as the maximum object speeds increase. This matches
the analysis of Sect. 4.

The Bx(VP)-tree outperforms the Bx-tree by up to a factor of
3.4 for average query I/O and by up to a factor of 2.8 for query
execution time. The TPR*(VP)-tree outperforms the TPR*-tree
by up to a factor of 2 for average query I/O and by up to a factor
of 2.1 for query execution time.

7.6. Effect of range query size on range query

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 I/

O

Query radius(m)

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700 800 900 1000

T
im

e(
m

s)

Query radius(m)

(b) Query time

Figure 29: Effect of range query size on range query

In this experiment, we vary the radius of the range query.
Results in Fig. 29 again show that the VP technique is more ef-
fective at improving the performance of the Bx-tree compared
to the TPR*-tree. However, the relative performance difference
between the Bx(VP)-tree and the TPR*(VP)-tree and their un-
partitioned counterparts become relatively smaller in percent-
age terms. The reason for this is that as the query window be-
comes larger, the extent size of the query dominates the query
expansion due to the object velocities. The VP technique only
reduces query expansion by partitioning the index according to
object velocities and does not reduce the query extent size.

More specifically, the results show that for a small query size
(radius = 100m) the Bx(VP)-tree outperforms the Bx-tree by up
to a factor of 3.5 for query I/O and 2.8 for query execution time
and the TPR*(VP)-tree outperforms the TPR*-tree by up to a
factor of 3.6 for query I/O and 3.8 for query execution time.

7.7. Effect of query predictive time on range query

In this experiment, we vary the query predictive time from
20 to 120 s. This experiment is important since it demonstrates
how well we can restrict the expansion of the search space as
we query further into the future. The results in Fig. 30 again
show that the query performance of the Bx-tree degrades much
faster with increasing query predictive time than the other algo-
rithms. Again, the VP technique is able to make a large impact
on improving the performance of the Bx-tree compared to the
TPR*-tree. The reasons are similar to the previous experiment,
namely, the Bx-tree expands the query too much but this time
due to a larger time value rather than velocity value.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120

A
ve

ra
ge

 q
ue

ry
 I/

O

Query predictive time(s)

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120

T
im

e(
m

s)

Query predictive time(s)

(b) Query time

Figure 30: Effect of query predictive time on range query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120

Q
ue

ry
 I/

O

Query predictive time(s)

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120

T
im

e(
m

s)

Query predictive time(s)

(b) Query time

Figure 31: Effect of query predictive time on the rectangular range query

7.8. Effect of query predictive time on rectangular range query

As mentioned earlier, we conducted the same set of exper-
iments for the rectangular range query as the circular range
query and the results were similar. However, due to space limi-
tations, we only show representative results for the rectangular
range query. We chose the vary query predictive time exper-
iment because it tests the ability of the algorithms to handle
varying rates of query search space expansion.

In this experiment, the rectangular range queries have side
lengths of 1000x1000m2. The results shown in Fig. 31 are al-
most the same as the results for the circular range query.

7.9. Effect of number of neighbors k on k-NN query

In this experiment, we examine the k-NN query performance
of the algorithms by varying k from 10 to 100. Results in
Fig. 32 show that our VP technique applied to the Bx-tree and
the TPR*-tree consistently outperform their counterparts. The
results indicate that our VP technique can improve the perfor-
mance of the k-NN query by similar margins compared to the
range query results which clearly validates the effectiveness of
the VP technique for improving both range and k-NN queries.

7.10. Effect of k-NN algorithms when applying VP technique
to the TPR*-tree for different data sets

In this experiment, we compare the performance of our pro-
posed k-NN algorithm with the ”native” R-tree best-first traver-
sal when applying the VP technique to the TPR*-tree (denoted

20

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

I/O

k

Bx

Bx(VP)
TPR*

TPR*(VP)

(a) k-NN query I/O

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

k

(b) k-NN query time

Figure 32: Effect of number of neighbors on k-NN query

as TPR*(VP:Native)-tree). Specifically, the k-NN query algo-
rithm for TPR*(VP:Native)-tree works as follows. First, we
use the native TPR*-tree k-NN query algorithm to query each
DVA index. Next, we execute a range query on the oulier index
centered at the query point and using rmax radius, where rmax

is the distance to the kth nearest neighbor found in the DVA
indexes. The k-NN objects of the whole data set must within
rmax since within the DVA indexes alone there already exists k
objects within rmax. We then combine the results from query-
ing the DVA indexes and the outlier index to find the k-NN
objects of the entire data set. We just use a simple range query
on the outlier index since rmax has narrowed the search space
a lot and the number of objects in the outlier index is usually
quite small.

The result in Fig. 33 shows that actually our original k-
NN query algorithm (denoted as TPR*(VP)-tree) slightly out-
performs the TPR*(VP:Native)-tree. This is because when
the TPR*(VP:Native)-tree searches the multiple DVA indexes
it will end up search a larger area than necessary. For ex-
ample, suppose k is 10 and we have 2 DVA indexes then
TPR*(VP:Native)-tree will need to find 10 objects from each
DVA index. Whereas, the range based k-NN search of the
TPR*(VP)-tree can stop when it finds the range that contains
10 objects within the two DVA indexes altogether. Also as the
TPR*(VP)-tree expands the search, the previously visited ob-
jects from the previous smaller ranges are normally cached in
the RAM buffer and and therefore do not incur any additional
I/O. So the TPR*(VP)-tree ends up searching a smaller total
search area without incurring repeated I/O.

The proposed native best-first k-NN algorithm of this section
uses a straightforward approach of querying each DVA index
and the outlier index separately. This leads to larger than nec-
essary search regions. A more sophisticated approach to native
k-NN search would use one global queue of nodes for search-
ing across all DVA and outlier indexes simultaneously. This
approach is more efficient than our proposed straightforward
approach by needing to search over a smaller search area. This
sophisticated approach would require the MBRs to be trans-
formed back to the common coordinate system. Implementing
and benchmarking this more sophisticated approach is an im-
portant area of future work.

 0

 5

 10

 15

 20

 25

 30

CH SA MEL NY uniform

Q
ue

ry
 I/

O

Data set

TPR*
TPR*(VP)

TPR*(VP:Native)

(a) k-NN query I/O

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(b) k-NN query time

Figure 33: Effect of k-NN algorithms when applying VP technique to the
TPR*-tree for different data sets

7.11. Evaluation of the RCG outlier index
For the remaining experiments, we measure the performance

of our VP technique using the RCG RAM resident outlier in-
dex (the Bx(VP:G)-tree and the TPR*(VP:G)-tree) compared
to using the disk-based outlier index (the Bx(VP)-tree and the
TPR*(VP)-tree).

7.11.1. Effect of data sets
In this experiment, we compare the performance of the VP

technique using the RCG outlier index versus the disk-based
outlier index for different road network data sets. We report
the results of using the HDD and the SSD for both the range
and k-NN queries. To gain a better understanding of the timing
results, we break down the time taken between CPU time and
I/O time. The results in Fig. 34 show that using the RCG outlier
index consistently outperforms the disk-based index. We notice
that the Bx(VP:G)-tree is by up to a factor of 2.4 faster for range
query and by up to a factor of 2.0 faster for k-NN query than the
Bx(VP)-tree in terms of CPU time. The reason is that the RCG
outlier index employed by the Bx(VP:G)-tree uses less CPU
time compared to the disk-based outlier index as discussed in
Sect. 6. When using the HDD as the secondary storage, the
positive effects of using less CPU time is smaller due to the
slowness of disk I/O. In contrast, the CPU time spent is more
important when using the SSD as secondary storage due to the
faster I/O performance of the SSD. The results show that when
using the SSD, the Bx(VP:G)-tree outperforms the Bx(VP)-tree
by up to a factor of 2.0 for the range query time and by up to a
factor of 1.8 for the k-NN query time.

We observe that the performance improvement of the TPR*-
tree using the RCG outlier index is much less than the improve-
ment for the Bx-tree. The reason is that the TPR*-tree is already
very CPU efficient by grouping objects to reduce the search
space. We recommend the use of the disk-based outlier index
for the TPR*-tree because the RCG outlier index does not offer
significant improvements in performance and can also generate
possible errors due to the use of lossy compression.

7.11.2. Effect of RAM buffer size
In this experiment, we study the effect of RAM buffer size

on the range query performance by varying the RAM buffer

21

 0

 10

 20

 30

 40

 50

CH SA MEL NY uniform

I/O

Data set

Bx(VP)
Bx(VP:G)

TPR*(VP)
TPR*(VP:G)

(a) Range query I/O

 0

 50

 100

 150

 200

CH SA MEL NY uniform

T
im

e
(m

s)
Data set

Bx(VP) I/O
Bx(VP) CPU

Bx(VP:G) I/O
Bx(VP:G) CPU

(b) Range query time using HDD

 0

 5

 10

 15

 20

 25

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

TPR*(VP) I/O
TPR*(VP) CPU

TPR*(VP:G) I/O
TPR*(VP:G) CPU

(c) Range query time using SSD

 0

 10

 20

 30

 40

 50

 60

CH SA MEL NY uniform

I/O

Data set

(d) k-NN query I/O

 0

 50

 100

 150

 200

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(e) k-NN query time using HDD

 0

 10

 20

 30

 40

 50

 60

CH SA MEL NY uniform

T
im

e
(m

s)

Data set

(f) k-NN query time using SSD

Figure 34: Effect of data sets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 20 30 50 70 90

I/O

Buffer sizes (pages)

Bx(VP)
Bx(VP:G)

TPR*(VP)
TPR*(VP:G)

(a) Range query I/O

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 20 30 50 70 90

T
im

e
(m

s)

Buffer sizes (pages)

(b) Range query time using HDD

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 20 30 50 70 90

T
im

e
(m

s)

Buffer sizes (pages)

(c) Range query time using SSD

Figure 35: Effect of RAM buffer size for CH data set

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5 10 20 30 50 70 90

I/O

Buffer sizes (pages)

Bx(VP)
Bx(VP:G)

TPR*(VP)
TPR*(VP:G)

(a) Range query I/O

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 20 30 50 70 90

T
im

e
(m

s)

Buffer sizes (pages)

(b) Range query time using HDD

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 20 30 50 70 90

T
im

e
(m

s)

Buffer sizes (pages)

(c) Range query time using SSD

Figure 36: Effect of RAM buffer size for SA data set

22

size from 5 to 90 pages. Figs. 35 and 36 show the range query
performance in terms of I/O, time using HDD and time using
SSD for the CH and SA road network data sets, respectively.

For the CH road network data set, where the velocity distri-
bution is most skewed i.e, there is very limited number of outlier
objects in the data set, the results in Fig. 35 show that the in-
dexes which employ the RCG outlier index consistently outper-
form other indexes which employ the disk-based outlier index
except when the buffer size is 5 pages. When the buffer size
is 5 pages, the range query I/O of the Bx(VP:G)-tree is worse
than the query I/O of the Bx(VP)-tree. The reason is that at
very small buffer size, the RCG outlier index could not accom-
modate many outlier objects, therefore some outlier objects are
inserted into the DVA indexes, affecting the query performance
of the DVA indexes. When using the SSD as the secondary
storage, the CPU time saving of the Bx(VP:G)-tree made from
using the grid-based RCG outlier index outweighs the extra I/O
time spent on the DVA indexes for the entire range of RAM
sizes tested.

For the SA road network data set where the velocity distribu-
tion is less skewed, i.e, there are more outlier objects in the data
sets, the results in Fig. 36 show that it takes a larger buffer size
(30 pages for the HDD and 10 pages for the SSD) before the
Bx(VP:G)-tree outperforms the Bx(VP)-tree. This is because
for the less skewed data set, the number of outlier objects is
greater. However, even for this less skewed data set, it still only
takes a small buffer size of 10 pages before the RCG outlier
index outperforms the disk-based outlier index on the SSD.

Similar to the observations given in Sect. 7.11.1, the query
performance of the TPR*(VP:G)-tree only sightly outperforms
the TPR*(VP)-tree when using the HDD and is almost the same
when using the SSD. The reasons for this are the same as for
Sect. 7.11.1.

7.11.3. Effect of compression error σ
In this experiment, we examine the effect of choosing the

maximum compression error σ on the compression ratio of the
RCG outlier index and the performance of the range query. We
define the compression ratio as the size of the compressed out-
lier index divided by the size of the uncompressed outlier index.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.01 0.03 0.05 0.1 0.2

C
om

pr
es

si
on

 r
at

io

σ

bucket size 100
bucket size 200
bucket size 500

bucket size 1000

Figure 37: Effect of compression error σ on compression ratio

Fig. 37 shows an experiment which applies the compression
technique on a sample of the CH road network data set where
we vary the number of objects in one bucket and also vary the

maximum allowed error σ. The experiment shows that even at a
very small σ of 0.01%, we can still achieve a good compression
ratio of 0.5 compared to 0.7 for lossless compression. This is
because setting σ to 0.01% already allows us to remove many
insignificant bits. The compression ratio between σ = 0.05%
and 0.2% is constant because further reducing the compression
ratio after σ = 0.05% would require removing very significant
bits which would mean a very large σ is required.

Next, we report the results of the range query I/O of the
Bx(VP:G)-tree and the TPR*(VP:G)-tree while varying σ from
0 to 2.0. The value of σ = 0 means that the compression is
lossless. We found the k-NN query and range query results are
very similar and therefore only report the results for the range
query. The results in Fig. 38 show that the lossy compression
using even a small σ = 0.01% is able to significantly improve
query performance compared to the lossless compression. The
reason the performance does not change between σ of 0.05%
and 0.2% is for similar reasons as the compression ratio results.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.01 0.05 0.1 0.2

R
an

ge
 q

ue
ry

 I/
O

σ

CH SA

(a) Bx(VP:G)-tree

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 0.01 0.05 0.1 0.2

R
an

ge
 q

ue
ry

 I/
O

σ

MEL NY

(b) TPR*(VP:G)-tree

Figure 38: Effect of compression error σ on range query

7.11.4. Determining the size of RCG outlier index
In order to determine a good size for the RCG outlier index

for a given workload, we run some sample tests with different
sized RCG outlier indexes in terms of percentage of the total
RAM buffer size. Fig. 39 shows the range query performance
of the Bx(VP:G)-tree for the SA road network data set, when
the RAM buffer size is varied from 30 to 90 pages (4KB per
page). For the default buffer size of 50 pages, we found a RCG
outlier index size of 35% of the RAM buffer size gives us the
best overall performance. For the CH, MEL, and NY data sets,
the good size ranges from 30% to 35%, respectively. Therefore,
we have chosen 35% as the default parameter for all data sets.

7.11.5. Effect of data sets on precision and recall
Finally, we use precision and recall [47] to measure the cor-

rectness of the query result when lossy compression with σ =
0.01% is used for the RCG outlier index. In our context, preci-
sion is the fraction of returned objects in the result that actually
satisfy the query predicate, whereas recall is the fraction of the
returned objects that satisfy the query predicate that are in the
query result. Ideally, precision = recall = 1, meaning that the
query result returns exactly the objects that satisfy the query.

23

 10

 15

 20

 25

 30

 35

 40

 45

 10 15 20 25 30 35 40 45 50

I/O

RCG outlier index size(%)

buffer size 30
buffer size 50
buffer size 90

(a) Query I/O

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 10 15 20 25 30 35 40 45 50

T
im

e
(m

s)

RCG outlier index size(%)

(b) Range query time

Figure 39: Effect of RCG outlier index size on range query of the Bx(VP:G)-
tree for the SA road network data set

 0

 0.2

 0.4

 0.6

 0.8

 1

CH SA MEL NY

S
co

re

Data set

Precision Recall

(a) Range query

 0

 0.2

 0.4

 0.6

 0.8

 1

CH SA MEL NY

S
co

re

Data set

(b) k-NN query

Figure 40: Effect of data sets on precision and recall for range and k-NN queries

We only report the results of the Bx(VP:G)-tree, because the
results for the TPR*(VP:G)-tree are exactly the same. Fig. 40
validates that the lossy compression technique achieves high
scores between 0.88 and 1.0 for precision and recall of range
queries and perfect precision and recall for k-NN queries over
various road network data sets.

8. Conclusion

In this paper, we proposed the VP technique, a novel method
that improves the moving object index performance by exploit-
ing velocity distribution skew. The main idea is to partition
objects based on their moving directions, and then use sepa-
rate DVA indexes to index the objects moving along different
dominant velocity axes separately. We first provided analysis
to show why this idea should work. Then, we proposed several
algorithms to achieve effective velocity partitioning. The VP
technique can be applied to most moving object index struc-
tures. Finally, we implemented it on two representative index
structures, the TPR*-tree and the Bx-tree and performed ex-
tensive experiments on both real and synthetic data sets. The
results showed that these index structures, equipped with the
VP technique, outperform their original versions consistently.

We found that, when the SSD was used, the outlier index
accounted for a disproportionately high percentage of the total
time. We addressed this by replacing the disk-based outlier in-
dex with the novel RCG outlier index. For the Bx-tree on the

SSD, the results showed that the RCG outlier index produces
significantly higher overall performance compared to the out-
lier index designed for the HDD. However, for the TPR*-tree,
we recommend the use of the original disk-based outlier index
due to the fact that the RCG outlier index only gives small per-
formance improvements for the TPR*-tree but may introduce
small errors due to the use of lossy compression.

For future work, we plan to investigate boosting the perfor-
mance of other moving object indexes using the VP technique.

Acknowledgments This work is supported under the Aus-
tralian Research Council’s Discovery funding scheme (project
numbers DP0985451 and DP0880250).

References

[1] J. Dittrich, L. Blunschi, M. Antonio, V. Salles, Indexing moving objects
using short-lived throwaway indexes, in: SSTD, 2009, pp. 189–207.

[2] C. S. Jensen, D. Lin, B. C. Ooi, Query and update efficient B+-tree based
indexing of moving objects, in: VLDB, 2004, pp. 768–779.

[3] G. Kollios, D. Papadopoulos, D. Gunopulos, J. Tsotras, Indexing mobile
objects using dual transformations, VLDB J. 14 (2) (2005) 238–256.

[4] J. M. Patel, Y. Chen, V. P. Chakka, STRIPES: an efficient index for pre-
dicted trajectories, in: ACM SIGMOD, 2004, pp. 635–646.

[5] S. Saltenis, C. Jensen, S. Leutenegger, M. Lopez, Indexing the positions
of continuously moving objects, in: ACM SIGMOD, 2000, pp. 331–342.

[6] Y. Tao, D. Papadias, J. Sun, The TPR*-tree: an optimized spatio-temporal
access method for predictive queries, in: VLDB, 2003, pp. 790–801.

[7] M. Yiu, Y. Tao, N. Mamoulis, The Bdual-tree: Indexing moving objects
by space filling curves in the dual space, VLDB J. 17 (3) (2008) 379–400.

[8] S. Chen, B. C. Ooi, K.-L. Tan, M. A. Nascimento, ST2B-tree: A self-
tunable spatio-temporal B+-tree index for moving objects, in: ACM SIG-
MOD, 2008, pp. 29–42.

[9] Y. Tao, C. Faloutsos, D. Papadias, B. Liu, Prediction and indexing of
moving objects with unknown motion patterns, in: ACM SIGMOD, 2004,
pp. 611–622.

[10] K. Tzoumas, M. L. Yiu, C. S. Jensen, Workload-aware indexing of con-
tinuously moving objects, PVLDB 2 (1) (2009) 1186–1197.

[11] T. Nguyen, Z. He, R. Zhang, P. Ward, Boosting moving object indexing
through velocity partitioning, PVLDB 5 (9) (2012) 860–871.

[12] S. Nutanong, R. Zhang, E. Tanin, L. Kulik, The V*-diagram: A query
dependent approach to moving kNN queries, PVLDB 1 (1) (2008) 1095–
1106.

[13] R. Zhang, H. V. Jagadish, B. T. Dai, K. Ramamohanarao, Optimized al-
gorithms for predictive range and kNN queries on moving objects, Inf.
Syst. 35 (8) (2010) 911–932.

[14] R. Zhang, J. Qi, D. Lin, W. Wang, R. C.-W. Wong, A highly optimized
algorithm for continuous intersection join queries over moving objects,
VLDB J. 21 (4) (2012) 561–586.

[15] K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new ap-
proach to indexing high dimensional spaces, in: VLDB, 2000, pp. 89–
100.

[16] J. Hui, B. Ooi, H. Shen, C. Yu, An adaptive and efficient dimensionality
reduction algorithm for high-dimensional indexing, in: ICDE, 2003, pp.
87–98.

[17] I. Jolliffe, Principal Component Analysis, Springer-Verlag, New York,
1986.

[18] J. B. MacQueen, Some methods for classification and analysis of mul-
tivariate observations, in: Berkeley Symp. on Math. Statist. and Prob.,
1967, pp. 281–297.

[19] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an
efficient and robust access method for points and rectangles, in: ACM
SIGMOD, 1990, pp. 322–331.

[20] A. Guttman, R-trees: a dynamic index structure for spatial searching, in:
ACM SIGMOD, 1984, pp. 57–47.

[21] P. Agarwal, L. Arge, J. Erickson, Indexing moving points, in: PODS,
2000, pp. 175–186.

24

[22] D. Kollios, G.and Gunopulos, V. Tsotras, On indexing mobile objects, in:
PODS, 1999, pp. 261–272.

[23] R. Zhang, B. C. Ooi, K.-L. Tan, Making the pyramid technique robust to
query types and workloads, in: ICDE, 2004, pp. 313–324.

[24] V. Almeida, Indexing the trajectories of moving objects in networks,
Geoinformatica 9 (1) (2005) 33–60.

[25] J. Chen, X. Meng, Update-efficient indexing of moving objects in road
networks, Geoinformatica 13 (4) (2009) 397–424.

[26] E. Frentzos, Indexing objects moving on fixed networks, in: SSTD, 2003,
pp. 289–305.

[27] R. H. Güting, V. T. de Almeida, Z. Ding, Modeling and querying moving
objects in networks, VLDB J. 15 (2) (2006) 165–190.

[28] H. D. Chon, D. Agrawal, A. El Abbadi, Range and kNN query processing
for moving objects in grid model, Mob. Netw. Appl. 8 (4) (2003) 401–
412.

[29] X. Yu, K. Q. Pu, N. Koudas, Monitoring k-nearest neighbor queries over
moving objects, in: ICDE, 2005, pp. 631–642.

[30] M. E. Ali, E. Tanin, R. Zhang, L. Kulik, A motion-aware approach for
efficient evaluation of continuous queries on 3d object databases, VLDB
J. 19 (5) (2010) 603–632.

[31] M. E. Ali, R. Zhang, E. Tanin, L. Kulik, A motion-aware approach to
continuous retrieval of 3d objects, in: ICDE, 2008, pp. 843–852.

[32] R. Benetis, S. Jensen, G. Karciauskas, S. Saltenis, Nearest and reverse
nearest neighbor queries for moving objects, VLDB J 15 (3) (2006) 229–
249.

[33] T. Xia, D. Zhang, Continuous reverse nearest neighbor monitoring, in:
ICDE, 2006, pp. 77–88.

[34] A. M. Aly, W. G. Aref, M. Ouzzani, Spatial queries with two knn predi-
cates, PVLDB 5 (11) (2012) 1100–1111.

[35] Y. Gao, B. Zheng, Continuous obstructed nearest neighbor queries in spa-
tial databases, in: ACM SIGMOD, 2009, pp. 577–590.

[36] Y. Wang, R. Zhang, C. Xu, J. Qi, Y. Gu, G. Yu, Continuous visible k near-

est neighbor query on moving objects, Information Systems 44 (2014)
1–21.

[37] C. Li, Y. Gu, J. Qi, G. Yu, R. Zhang, Y. Wang, Processing moving kNN
queries using influential neighbor sets, PVLDB 8 (2) 113–124.

[38] P. G. D. Ward, Z. He, R. Zhang, J. Qi, Continuous intersection joins over
large sets of moving objects using graphic processing units, VLDB J.
23 (6) (2014) 965–985.

[39] K. Mouratidis, D. Papadias, M. Hadjieleftheriou, Conceptual partitioning:
an efficient method for continuous nearest neighbor monitoring, in: ACM
SIGMOD, 2005, pp. 634–645.

[40] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen, D. Šaulys,
Trees or grids?: indexing moving objects in main memory, in: ACM
SIGSPATIAL GIS, 2009, pp. 236–245.

[41] C. S. Jensen, D. Tiesyte, N. Tradisauskas, Robust B+-tree-based indexing
of moving objects, in: MDM, 2006, pp. 12–20.

[42] D. Abadi, S. Madden, M. Ferreira, Integrating compression and execution
in column-oriented database systems, in: ACM SIGMOD, 2006, pp. 671–
682.

[43] D. J. Abadi, S. R. Madden, N. Hachem, Column-stores vs. row-stores:
how different are they really?, in: ACM SIGMOD, 2008, pp. 967–980.

[44] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
S. Zdonik, C-store: a column-oriented DBMS, in: VLDB, 2005, pp. 553–
564.

[45] S. Chen, C. S. Jensen, D. Lin, A benchmark for evaluating moving object
indexes, PVLDB 1 (2) (2008) 1574–1585.

[46] OpenStreetMap [cited 2011]. [link].
URL openstreetmap.org

[47] C. D. Manning, P. Raghavan, H. Schtze, Introduction to Information Re-
trieval, Cambridge University Press, New York, NY, USA, 2008.

25

openstreetmap.org
openstreetmap.org

	Introduction
	Preliminaries
	Moving object representation and querying
	Principal components analysis
	K-means clustering

	Related work
	R-tree based moving object indexes
	The Bx-tree
	Dual transform-based moving object indexes
	Indexing techniques that handle skewed workloads
	Indexing techniques for moving objects on networks
	Query processing on moving objects

	How velocity partitioning reduces search space expansion
	Discussion of general cases

	The velocity partitioning technique
	Velocity analyzer: finding dominant velocity axes (DVAs)
	Velocity analyzer: the outlier partition
	Index manager: insertion, deletion and update
	Index manager: range queries
	Index manager: k-NN queries
	Handling changing velocity distributions
	Complexity Analysis

	Improving the performance of the outlier index for SSDs
	Index structure
	Update, insertion, and deletion
	Query
	Index compression
	ID compression
	Location compression
	Velocity compression
	Lossy compression

	Determining threshold for RCG outlier index
	Main Memory Indexing

	Experimental study
	Finding optimal threshold
	Velocity analyzer overhead
	Effect of varying data sets
	Effect of data size on range query
	Effect of maximum object speed on range query
	Effect of range query size on range query
	Effect of query predictive time on range query
	Effect of query predictive time on rectangular range query
	Effect of number of neighbors k on k-NN query
	Effect of k-NN algorithms when applying VP technique to the TPR*-tree for different data sets
	Evaluation of the RCG outlier index
	Effect of data sets
	Effect of RAM buffer size
	Effect of compression error
	Determining the size of RCG outlier index
	Effect of data sets on precision and recall

	Conclusion

