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Abstract

An important class of LBSs is supported by the moving k nearest neighbor (MkNN) query, which continuously returns
the k nearest data objects for a moving user. For example, a tourist may want to observe the five nearest restaurants
continuously while exploring a city so that she can drop in to one of them anytime. Using this kind of services requires
the user to disclose her location continuously and therefore may cause privacy leaks derived from the user’s locations.
A common approach to protecting a user’s location privacy is the use of imprecise locations (e.g., regions) instead
of exact positions when requesting LBSs. However, simply updating a user’s imprecise location to a location-based
service provider (LSP) cannot ensure a user’s privacy for an MkNN query: continuous disclosure of regions enable
LSPs to refine more precise location of the user. We formulate this type of attack to a user’s location privacy that arises
from overlapping consecutive regions, and provide the first solution to counter this attack. Specifically, we develop
algorithms which can process an MkNN query while protecting the user’s privacy from the above attack. Extensive

experiments validate the effectiveness of our privacy protection technique and the efficiency of our algorithm.

Keywords: Confidence level, Moving kNN queries, Overlapping rectangle attack, Location privacy.

1. Introduction

Location-based services (LBSs) are developing at an
unprecedented pace: they started as web-based queries
that did not take a user’s actual location into account
(e.g., Google maps), and can nowadays be accessed any-
where via a mobile device using the device’s location
(e.g., displaying nearby restaurants on a cell phone rel-
ative to its current location). While LBSs provide many
conveniences, they also threaten our privacy. The advent
of Apple’s iPhone OS and Google’s Android operat-
ing systems allow third parties to run their applications
and become location-based service providers (LSPs) for
the users of mobile devices. Thus, the LSPs are not
only limited to large corporations such as Google or
Microsoft, but include small developers, companies or
the employers. Since an LSP knows the locations of its
users, a user’s continuous access of LBSs enables the
LSP to produce a comprehensive profile of the user’s
movement with a high degree of spatial and tempo-
ral precision, possibly over an extended period of time.
From this profile, the LSP may infer private information
about users. For example, an organization may provide
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an LBS for its employees, which accidentally reveals
that one employee is at a different company for a job
interview, a fact an employee might wish to hide. The
problem of protecting privacy is exacerbated if the avail-
able information from the access of LBSs is linked with
other data sources; in the example, if the LSP collabo-
rates with the company then more specific information
about the user’s interview could be obtained. The threat
to privacy is becoming more urgent as positioning de-
vices become more precise, and a lack of addressing
privacy issues may significantly impair the proliferation
of LBSs [, 2]

An important class of LBSs is supported by the mov-
ing k nearest neighbor (MkNN) query [3l 4], which con-
tinuously returns the k nearest data objects for a moving
user. For example, a tourist may want to observe the
five nearest restaurants continuously while exploring a
city so that she can drop in to a preferred one of the
nearest five at any time. Alternatively, an MKNN query
may run as a background application in a user’s mobile
device and when the user needs k nearest data objects
for her current location, the user can have the query
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answers instantly. As an example, a woman may re-
quest an MANN query for the nearest public place such
as restaurant or pub while walking through a street at
night so that the woman can quickly bring herself to
safety in case of any suspicious situations. However,
accessing an MkNN query requires continuous updates
of user locations to the LSP, which puts the user’s pri-
vacy at risk. The user’s trajectory (i.e., the sequence of
updated locations) is sensitive data and reveals private
information. For example, if the user’s trajectory inter-
sects the region of a liver clinic, then the LSP might
infer that the user has a liver disease and incorrectly as-
sociate a habit of high consumption of alcohol. Com-
mon approaches to combating privacy threats are either
to prevent an LSP from inferring a user’s identity or
to not reveal any sensitive data such as locations to the
LSP. In this paper, we consider the scenarios when the
user’s identity is revealed, say, to allow for personalized
query answers [3. 6] (e.g., the LSP can return only those
restaurants as MkNN answers which provide a higher
discount for the user’s credit card). In these scenarios,
K-anonymity techniques [7, [8] that hide a user’s iden-
tity do not apply, and we only have the option to protect
the privacy of the user’s locations.

A popular technique to hide a user’s location from the
LSP is to let the user send an imprecise location (typi-
cally a rectangle containing the user’s location) instead
of the exact location [3} 9} [10]. This technique is effec-
tive when the user is not moving. However, when the
user moves and continuously sends rectangles as loca-
tion updates, the LSP can still approximate the user’s
location if it takes into account the overlap of consec-
utive rectangles, which poses a threat to the user’s lo-
cation privacy and we call it the overlapping rectangle
(privacy) attack. Although different privacy preserving
approaches [55, |9, [11} [12} [13] have been developed for
continuous queries, none of them address the overlap-
ping rectangle attack. We define the problem of protect-
ing a user’s location privacy from the overlapping rect-
angle attack in the MkNN query as the private moving
kNN (PMEkNN) query and this paper provides the first
approach to solve this problem. Our key idea to counter
the overlapping rectangle attack is to change the fact
that the user must be located in the overlap of consecu-
tive rectangles. In other words, by our approach the user
may not be located in the overlap of consecutive rectan-
gles when she issues the service request and therefore
LSPs will not be able to refine her location. We achieve
this through two novel strategies: slightly sacrificing the
quality of service (i.e., the accuracy of query answers)
and retrieving a few extra data objects from the LSP.

Our approach allows users to specify the accuracy

for their query answers (possibly done automatically by
mobile devices using a generic privacy setting), which is
motivated by the following observation. In many cases,
users are willing to accept answers with a slightly lower
accuracy if they can gain higher privacy protection in
return. For example, a tourist looking for the closest
restaurant may not mind driving to a restaurant that is
not the actual closest one, if a slightly longer trip con-
siderably enhances the tourist’s privacy. In this context,
“lower accuracy” of the answers means that the returned
data objects are not necessarily the k nearest data ob-
jects but might be a subset of the (k + x) nearest data
objects, where x is a small integer. Our approach guar-
antees that the returned objects’ distances to the query
point are within a certain ratio of the actual k" nearest
neighbor’s distance. We define a parameter, called con-
fidence level, to characterize this ratio.

For every update of a user’s imprecise location (a
rectangle) in a PMANN query, the LSP provides the
user with a candidate answer set that includes the spec-
ified number of nearest data objects (i.e., k nearest data
objects) with the specified confidence level for every
possible point in the rectangle. The crux of this pri-
vacy protection strategy is to specify higher values for
(i) the confidence level, and/or (ii) the number of near-
est data objects, than actually required by the user and
not to reveal the required confidence level and/or re-
quired number of nearest data objects to the LSP. Since
the user’s required confidence level and/or the required
number of nearest data objects are lower than the speci-
fied ones, the candidate answer set must contain the re-
quired query answers for an additional part of the user’s
trajectory, which is unknown to the LSP. The availabil-
ity of the query answers for an additional part of the
user’s trajectory provides the user with an option to send
a rectangle that does not overlap with the previous one.
Even if the user requests a rectangle that overlaps with
the previous one, there is no guarantee that the user is
in the overlap at the time of requesting the rectangle be-
cause the user has additional query answers for the area
outside the previous rectangle. Based on this idea, we
develop an algorithm to compute the user’s consecutive
rectangles that counters the overlapping rectangle attack
and prevents the disclosure of the user’s locations. Al-
though our approach for privacy protection works if ei-
ther the required confidence level or the required num-
ber of nearest data objects is hidden, hiding both pro-
vides higher level of privacy. On the other hand, if a
user does not want sacrifice her accuracy of answers
then the user can opt for only hiding the required num-
ber of nearest data object, which means our approach
can also provide exact query answers while protecting



the user’s location privacy. In summary, we make the
following contributions.

e We identify an attack to a user’s location privacy
that arises from overlapping consecutive regions
in an MANN query. We propose the first solution
for PMANN queries. Specifically, a user (a client)
sends requests for an MkNN query based on con-
secutive rectangles, and the LSP (the server) re-
turns k nearest neighbors (NNs) for any possible
point in the rectangle. We show how to compute
the consecutive rectangles and how to find the &k
NN for these rectangles so that the user’s trajec-
tory remains private.

e We combat privacy threats in MKNN queries by re-
questing a higher confidence level or a higher num-
ber of data objects than required, or by combining
both strategies.

e We improve the efficiency of the algorithm for the
LSP to find k£ NNs for a rectangle with a user-
customizable confidence level by exploiting differ-
ent geometric properties. Our algorithm can com-
pute both exact and approximate kNN answers.

e We present an extensive experimental study to
demonstrate the efficiency and effectiveness of our
approach. Our algorithm for the LSP is at least two
times faster than the state-of-the-art.

The remainder of the paper is organized as follows.
Section [2{discusses the problem setup and Section [3|re-
views existing work. In Section[d] we give a overview of
our system and in Section [5] we introduce the concept
of confidence level. Sections [6] and [7] present our algo-
rithms to request and evaluate a PMANN query, respec-
tively. Section [§] reports our experimental results and
Section 9] concludes the paper.

2. Problem Formulation

A moving kNN (MkNN) query is defined as follows.

Definition 2.1. (MkNN query) Let D denote a set of
data objects in a two dimensional database, q the mov-
ing query point, and k a positive integer. An MkNN
query returns for every position of g, a set A that con-
sists of k data objects whose distances from q are less
or equal to those of the data objects in D — A.

A private static kNN query protects a user’s privacy
while processing a kNN query. Traditionally for private

static kNN queries, the user requests k NNsF_] to the LSP
with a rectangle that includes her current position [5|
9, 110]. Since the LSP does not know the user’s actual
location, it returns the k nearest data objects for every
point of the rectangle. The straightforward application
of private static kNN queries for processing an MANN
query cannot protect a user’s location privacy, which is
explained below.

2.1. Threat model for MkNN queries

Applying private static kNN queries to a PMiANN
query requires that the user (the moving query point)
continuously updates her location as a rectangle to an
LSP so that the kNN answers are ensured for every point
of her trajectory. The LSP simply returns the kK NNs for
every point of her requested rectangle. Thus, the moving
user already has the k¥ NN for every position in the cur-
rent rectangle. Since an MkNN query provides answers
for every point of the user’s trajectory, the next request
for a new rectangle can be issued at any point before the
user leaves the current rectangle. We also know that in a
private static kNN query, a rectangle includes the user’s
current location at the time of requesting the rectangle to
the LSP. Therefore, a straightforward application of pri-
vate static kNN queries for processing an MkNN query
requires the overlap of consecutive rectangles as shown
in Figure[T(a). These overlaps refine the user’s locations
within the disclosed rectangles to the LSP. In the worst
case, a user can issue the next request for a new rectan-
gle when the user moves to the boundary of the current
rectangle to ensure the availability of kNN answers for
every point of the user’s trajectory in real time. Even in
this worst case scenario, the consecutive rectangles need
to overlap at least at a point, which is the user’s current
location. We define the above described privacy threat
as the overlapping rectangle (privacy) attack and omit
the word “privacy” when the context is clear.

Definition 2.2. (Overlapping rectangle (privacy) at-
tack) Let {R{, R, ..., R,} be a set of n consecutive rectan-
gles requested by a user to an LSP in an MkNN query,
where R,, and R, overlap for 1 < w < n. Since a
user’s location lies in the rectangle at the time it is sent
to the LSP and the moving user requires the k NNs for
every position, the user’s location is in R,, N R,,1 at the
time of sending R,,.1, and the user’s trajectory intersects
R, NR,41. As (R, NR,41) C Ry, Ryy11, the overlapping
rectangle attack enables an LSP to render more precise
locations of the user.

'In this paper, we use NN and nearest data object interchangeably.
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Figure 1: (a) Overlapping rectangle attack, (b) maximum movement bound attack, and (c) combined attack

Another attack is possible on a user’s location pri-
vacy for MkNN queries if the user’s maximum velocity
is known. Existing research [} 9} [12] has shown that if
an LSP has rectangles from the same user at different
times and the LSP knows the user’s maximum velocity,
then it is possible to refine a user’s approximated loca-
tion from the overlap of the current rectangle and the
maximum movement bound with respect to the previ-
ous rectangle, called maximum movement bound attack.
Figure[T|b) shows an example of this attack in an MANN
query that determines more precise location of a user in
the overlap of R, and the maximum movement bound
M with respect to R; at the time of sending R».

For an MkNN query, the maximum movement bound
attack is weaker than the overlapping rectangle attack as
(RyNR,+1) C (M,,NR,,+1). However, the combination of
these attacks can be stronger than each individual attack
(see Figure[Ifc)). In this example at the time of issuing
R;5, the LSP derives M, from R; N R, rather than from
R, and identifies the user’s more precise location as R, N
R3; N M,, where (R, N Rz N M) C (R, NR3) and (R, N
R3 N M>) C (R3 N M>).

With the above described attacks, the LSP can pro-
gressively refine locations of a user. A private MkKNN
(PMKNN) query does not allow an LSP to infer more
precise information than what the user reveals to the
LSP for an MkNN query answers; thus, a PMANN query
prevents an LSP to identify more precise locations of
the user within the provided rectangles by applying the
overlapping rectangle attack and the maximum move-
ment bound attack. Please note that there is no uni-
versally accepted view on what privacy protection im-
plies for a user; it could either mean hiding a user’s
identity [7} 14} [15] or it could mean protecting privacy
of the user’s location while disclosing the user’s iden-
tity [5 116, [17] to the LSP. Therefore, a PMANN query

can also be defined based on both views. In this pa-
per, we consider the second scenario where the user’s
location is unknown to the LSP since the user consid-
ers her location as private and sensitive information. In
our privacy protection technique, a user can reveal her
identity for personalized service. Moreover, nowadays
there are many real world LBSs provided by Loopt [[18]]
and Google’s Android Market [[19], where users need to
identify themselves to access services.

A privacy protection technique that overcomes the
overlapping rectangle attack and the maximum move-
ment bound attack in an MKNN query needs to satisfy
the following conditions.

Definition 2.3. (Conditions to overcome the overlap-
ping rectangle attack and the maximum movement
bound attack)
1. The user’s location at the time of sending a rectan-
gle cannot be refined to a subset of that rectangle.
2. The user’s trajectory cannot be refined to a subset
of the requested rectangle.

A naive solution to prevent overlapping rectangle at-
tack is to request next rectangle after the user leaves the
current rectangle. However, this solution cannot provide
answers for the part of the trajectory between two rect-
angles and violates the definition of MkNN queries. Our
proposed solution satisfies the two required conditions
(see Definition for every requested rectangle and
provides kNN answers for every point of the user’s tra-
jectory. In our approach, a user does not need to send
non-overlapping rectangles to prevent the overlapping
rectangle attack. We show that our approach does not
allow the LSP to refine the user’s location or trajec-
tory within the rectangle even if the user sends overlap-
ping rectangles. Our approach also prevents the maxi-



mum movement bound attack based on the existing so-
lutions [5}19, [12]] if the LSP knows the user’s maximum
velocity.

2.2. Attacker Model

In our proposed system, we assume that the attacker
(i.e., the LSP) knows the user’s identity, the sequence
of rectangles and the requested query, which includes
the number of data objects (i.e., k), the confidence level
(i.e., the accuracy of answers) and the type of data ob-
jects (e.g., restaurant, gas station). The attacker applies
the overlapping attack or the combined attack (if the
maximum velocity is known) to refine the user’s loca-
tion within the provided rectangle. In our considered
scenario, the user’s location is sensitive and private data.
There is no movement constraint for a user and the user
can be anywhere within the rectangles: on a street, in
a building or a boat. The attacker does not have any
background knowledge about the user’s location from
any source that includes physical observation and mo-
bile phone signal triangulation. We also assume that the
attacker does not know the distribution of any revealed
parameters including the confidence level and k.

2.3. Privacy Model

We will show that our proposed technique does not
allow an LSP to refine a user’s location within the pro-
vided rectangles using the overlapping rectangle attack
and the maximum movement bound attack. We quantify
location privacy based on what location information a
user reveals to an LSP. For a PMANN query, a user pro-
vides a sequence of rectangles, the confidence level and
the number of requested data objects (i.e., k) to the LSP.
Based on this revealed information, we measure loca-
tion privacy as the (smallest) area to which an attacker
can refine the trajectory (i.e., the sequence of user lo-
cations) relative to the data space. We call it trajectory
area and define it in Section [8] as it requires concepts
that are introduced later in the paper. The larger the tra-
jectory area is, the higher is the user’s location privacy
since the lower is the probability that the user’s location
could be linked to a specific location. We also measure
a user’s location privacy by the number of requested
rectangles per trajectory, i.e., the frequency. The smaller
the number of requested rectangles for a fixed rectangle
area, the less spatial constraints are available to the LSP
for predicting the user’s locations. Since there is no ex-
isting privacy model to measure location privacy for an
M#ANN query and such a model would require a rigorous
mathematical treatment that is beyond the scope of this
paper, we provide an approximate privacy model for the

MANN query. In the next step, we discuss the intuition
behind modeling user privacy in terms of the trajectory
area and frequency.
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Figure 2: An example space divided into an 8 x 8 grid, where 7 and
T, are equivalent trajectories and 773 is not equivalent to 7' or T».

For ease of explanation, we make the following as-
sumptions in our privacy model:

1. We initially assume the trajectory area to be a rect-
angle, although later we will show that the trajec-
tory area can have different shapes. Our experi-
ments will validate that our discussion for a rect-
angular trajectory area is also applicable for trajec-
tory areas with different shapes.

2. We divide the total space into a grid, where each
unit cell represents the minimum area that can be
determined with a location device such as GPS.
Figure[2]shows an example space, which is divided
into 8 X 8 grid.

3. We assume that each trajectory intersects a cell
once and trajectories that go through the same set
of grid cells fall in the same equivalent class. For
example, in Figure [2] trajectories 7' and 7, are
considered as equivalent and trajectory 73 is not
equivalent to Ty or T, because the starting grid cell
is different for T'5.

In Section [§] we will show that the trajectory area
depends on the number of requested rectangles (i.e.,
frequency), confidence level and the k nearest data ob-
jects. Although frequency is a parameter that affects the
trajectory area, the aim of this discussion is to moti-
vate that the trajectory area and frequency are two inde-
pendent measures for location privacy. We discuss two
cases separately: the effect of varying the trajectory area
and frequency on a user’s location privacy. For the first
case, we assume that different trajectory areas can be
obtained for a fixed frequency by varying confidence
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Figure 3: Varying trajectory area

level and/or k. Similarly, for the second case, the as-
sumption of a fixed trajectory area for different frequen-
cies can be achieved by varying confidence level and/or
k.

Case (i): Varying the trajectory area for a fixed
frequency. A larger trajectory area comprises more grid
cells, which in turn increases the number of possible
trajectories of the user available to the LSP. With the
increase of the user’s possible trajectories, the LSP be-
comes more uncertain about the user’s locations within
the trajectory area and thereby the user’s location pri-
vacy is increased. Figure[3|shows an example, where the
frequency is 1 and the rectangle area consists of 2 grid
cells, i.e., the user is located at any of these 2 grid cells
at the time of requesting the rectangle. The trajectory
area in Figure [3(a) and Figure [3(b) are composed of 16
and 12 grid cells, respectively. Thus the user’s location
privacy in Figure[3[a) is higher than that of Figure[3(b).
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Figure 4: Varying frequency

Case (ii): Varying the frequency for a fixed trajec-
tory area. The increase of frequency increases the num-
ber of available constraints (i.e., rectangles) for a user’s
trajectory to the LSP and thus lowers the user’s location
privacy. Figure ] shows an example, where the trajec-
tory area is same in both scenarios but the frequencies
are different. Since the trajectory area is same, the set of
possible trajectories of the user determined from the tra-
jectory area are also same. However, the LSP can refine
the set of possible trajectories from the available rectan-
gles of the user. In Figure[d(a), since the user’s trajectory
goes through the rectangle R; and R, the LSP can elim-
inate the trajectories from the set that do not go through
R, or R, and thereby reduce the number of possible tra-
jectories for the user. In Figure[db), since the user’s tra-
jectory goes through rectangles Ry, R,, and R3, the LSP
can further refine the set of trajectories computed for the
scenario in Figure[d|(a); the LSP eliminates the trajecto-
ries from the set that do not go through Rj3 in addition to
Ry and R;.

As an example, if we consider trajectories of length
of 5 units, then the number of possible trajectories are
68 and 32 in Figure [f{a) and Figure @{b), respectively.
Figure [f[a) shows one of the possible 68 trajectories,
which is not included in the set of 32 trajectories for the
scenario in Figure [d(b) because the trajectory does not
go through R, in Figure{b). Thus, the number of possi-
ble trajectories for the user decreases with the increase
of the available constraints to the LSP, i.e., the user’s
location privacy decreases with the increase of the fre-
quency.
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Figure 5: Different rectangle areas

In the above mentioned example scenario, we com-
pare frequencies for a fixed rectangle area. The areas
of the requested rectangles used for a PMkANN query
can also be different. A user’s location privacy increases
with the increase of the rectangle area for a fixed fre-



quency because the larger rectangle represents more re-
laxed constraint to the LSP. For example, in Figure[5[a),
the set of possible trajectories of the user needs to go
through any of 2 grid cells of the rectangle, whereas in
Figure [5(b), the set of possible user trajectories needs
to go through any of 4 grid cells of the rectangle. Thus
the set of possible trajectories of the user is smaller in
the scenario of Figure [5[(a) than that of Figure 5[b). We
know that the smaller set of trajectories represents a
lower location privacy for the user as the probability of
the LSP to identify the user’s locations within the tra-
jectory area increases.

It is important to note that our proposed privacy
model is generic and applicable to any other privacy
preserving approaches that can compute trajectory area
and frequency. Our privacy model is generalized, i.e.,
the privacy model is independent of the algorithm used
to measure trajectory area and frequency.

3. Related Work

Privacy protection techniques. Most research on
user privacy in LBSs has focused on static location-
based queries that include nearest neighbor queries [[7}
14, 1150116} 120, 21]], group nearest neighbor queries [22]
and proximity services [23]. Different strategies such
as K-anonymity, obfuscation, /-diversity, and cryptogra-
phy have been proposed to protect the privacy of users.

K-anonymity techniques (e.g., [8, [14]) make a user’s
identity indistinguishable within a group of K users. Ob-
fuscation techniques (e.g., [16,24]) degrade the quality
of a user’s location by revealing an imprecise or inac-
curate location and /-diversity techniques (e.g., [6, [10]])
ensure that the user’s location is indistinguishable from
| — 1 other locations. Both obfuscation, and /-diversity
techniques focus on hiding the user’s location from the
LSP instead of the identity. Cryptographic techniques
(e.g., [25) 126]) allow users to access LBSs without re-
vealing their locations to the LSP, however, these tech-
niques incur cryptographic overhead.

K-anonymity, obfuscation, or /-diversity based ap-
proaches for private static queries cannot protect pri-
vacy of users for continuous LBSs because they con-
sider each request of a continuous query as an indepen-
dent event, i.e., the correlation among the subsequent
requests is not taken into account. Recently different
approaches [9} 5L 1114 12, [13) 1277} 28, [29] have been pro-
posed to address this issue.

The authors in K-anonymity based approaches [11}
131127, 28] for continuous queries focus on the privacy
threat on a user’s identity that arises from the intersec-
tion of different sets of K users involved in the con-

secutive requests of a continuous query. Since we fo-
cus on how to hide a user’s trajectory while disclosing
the user’s identity to the LSP, these approaches are not
applicable for our purpose. On the other hand, existing
obfuscation and /-diversity based approaches [9} |5, [12]
for continuous queries have only addressed the threat of
the maximum movement bound attack. However, none
of these approaches have identified the threat on loca-
tion privacy that arises from the overlap of consecutive
regions (e.g., rectangles). The trajectory anonymization
technique proposed in [29] assumes that a user knows
her trajectory in advance for which an LBS is required,
whereas other approaches including ours consider an
unknown future trajectory of the user.

Though cryptographic approaches [25, 26] offer
strongest location privacy by not revealing user loca-
tions to the LSP, these approaches incur cryptographic
overheads and cannot use existing spatial indexing tech-
niques to store data on the server. In [26], the data
space is encrypted from two dimension to one dimen-
sion space using Hilbert curves by a trusted third party
and the transformed space can be decrypted using a
key, which is not known to the LSP and the users. This
approach assumes that the user’s tamper-resistant de-
vice stores the key and encrypts the location before
forwarding a query to the LSP. The LSP evaluates the
kNN query in the transformed space and returns the en-
crypted data objects which are again decrypted to the
original space (two dimensional space) in the user’s de-
vice. Since the query for k nearest data objects is evalu-
ated in an encrypted space which might not always pre-
serve the proximity relations of the original space, the
returned data objects may not be the actual answers. In
this approach, the user privacy could be violated if any
of these tamper-resistant devices gets compromised. On
the other hand, private information retrieval (PIR) pro-
tocols have been proposed [25] to retrieve the approxi-
mate and exact nearest data objects without disclosing
a user’s location. In this approach, the space is divided
into grid cells and the data objects associated with each
cell are stored in a format required by PIR protocols.
The user provides her encrypted cell, where she is lo-
cated, using PIR, and determines the nearest data ob-
ject from the retrieved encrypted data objects. Although
this approach ensures privacy for both static and contin-
uous queries, it incurs a high pre-processing overhead
compared to spatial cloaking [30]. Moreover, this ap-
proach only supports queries for the nearest data object;
the extension to k nearest data objects is not straightfor-
ward and requires to maintain a separate data storage for
every k, which in turn leads to high computational and
storage overheads.



In the literature there are other privacy preserving
concepts such as t-closeness [31] and differential pri-
vacy [32] 133 |34] that are used to protect user privacy
while publishing user data. The published data allows
organizations or researchers to perform useful analyses
for many applications that include urban planning, traf-
fic monitoring, and mining human behavior. In this sce-
nario, the user data is stored on a database and is modi-
fied before shared with others so that both user privacy
and data utility are maintained. For example, the con-
cept of differential privacy has been proposed to address
the problem of sharing data for statistical analyses with-
out allowing others to identify the data of an individ-
ual from the revealed information. On the other hand,
in this paper, we have focused on the problem of pro-
tecting a user’s privacy by controlling the release of the
user’s location information to the LSP while accessing
an MkNN query. Therefore our studied problem is or-
thogonal to the problem of privacy preserving data pub-
lishing and concepts like 7-closeness or differential pri-
vacy are not applicable to our problem.

KNN algorithms. To provide the query answers to
the user, the LSP needs an algorithm to evaluate a
kNN query for the user’s location. Depth first search
(DES) [35] and best first search (BES) [36] are two
well known algorithms to find the £ NNs with respect
to a point using an R-tree [37]. If the value of k is un-
known, e.g., for an incremental kNN query, the next set
of NNs can be determined with BFS. We use BFS in
our proposed algorithm to evaluate a kNN query with
respect to a rectangle. The BFS starts the search from
the root of the R-tree and stores the child nodes in a
priority queue. The priority queue is ordered based on
the minimum distance between the query point and the
minimum bounding rectangles (MBRs) of R-tree nodes
or data objects. In the next step, it removes an element
from the queue, where the element is the node repre-
senting the MBR with the minimum distance from the
query point. Then the algorithm again stores the child
nodes or data objects of the removed node on the prior-
ity queue. The process continues until k£ data objects are
removed from the queue. When the objects are moving,
Zhang et. al. show how to evaluate kNN queries [38]
and join queries [39}40] based on the TPR-tree [41]].

Researchers have also focused on developing algo-
rithms [12, [14) 21} 42} 43] 44] for evaluating a kNN
query for a user’s imprecise location such as a rectan-
gle or a circle. In [43]], the authors have proposed an ap-
proximation algorithm that ensures that the answer set
contains one of the k NNs for every point of a rectan-
gle. The limitation of their approximation is that users
do not know how much more they need to travel with

respect to the actual NN, i.e., the accuracy of answers.
Our algorithm allows users to specify the accuracy of
answers using a confidence level.

To prevent the overlapping rectangle attack, our pro-
posed approach requires a kNN algorithm that returns
a candidate answer set including all data objects of a
region in addition to the kK NNs with respect to every
point of a user’s imprecise location. The availability of
all data objects for a known region to the user in com-
bination with the concept of hiding the user’s required
confidence level and the required number of NNs from
the LSP can prevent the overlapping rectangle attack
(see Section[6). Among all existing kNN algorithms for
a user’s imprecise location [12} 114,21} 142, 143| 44], only
Casper [14] supports a known region; the algorithm re-
turns all data objects of a rectangular region (i.e., the
known region) that include the NNs with respect to
a rectangle. However, Casper can only work for NN
queries and it is not straightforward to extend Casper
for k > 1. Thus, even if Casper is modified to incor-
porate the confidence level concept, it can only support
PMANN queries for k = 1.

Moreover, for a single nearest neighbor query, Casper
needs to perform on the database multiple searches,
which incur high computational overhead. Casper ex-
ecutes four individual single nearest neighbor queries
with respect to four corner points of the rectangle. Then
using these neighbors as filters, Casper expands the rect-
angle in all directions to compute a range that contains
the NNs with respect to all points of the rectangle. Fi-
nally, Casper has to again execute a range query to re-
trieve the candidate answer set. We propose an efficient
algorithm that finds the kKNNs with a specified confi-
dence level for a rectangle in a single search.

4. System Overview

Our approach for PMANN queries is based on a
client-server paradigm, which is a common architec-
ture for providing LBSs. A client is a moving user who
sends a PMANN query request via a mobile device and
the server is the LSP that processes the query. We as-
sume that the user’s mobile device is equipped with po-
sitioning technologies (e.g., GPS or assisted GPS) and
can communicate with the LSP through the Internet or
telecommunication networks. The moving user sends
her imprecise location as a rectangle to the LSP, which
we call obfuscation rectangle in the remainder of this
paper.

We introduce the parameter confidence level, which
provides a user with an option to trade the accuracy of
the query answers for location privacy. Intuitively, the



confidence level of the user for a data object guarantees
that the distance of the data object to the user’s location
is within a bound of the actual nearest data object’s dis-
tance. In Section 5] we formally define and show how a
user and an LSP can compute the confidence level for a
data object.

In our system, a user does not reveal the required con-
fidence level and the required number of NNs to the LSP
while requesting a PMANN query; instead the user spec-
ifies higher values than the required ones. This allows
the user to have the required number of NNs with the
required confidence level for an additional part of her
trajectory, which is unknown to the LSP. As the user
has the required answers for an additional part of her
trajectory, the consecutive rectangles do not have to al-
ways overlap. Even if the rectangles overlap, there is
no guarantee that the user is located in the overlap at
the time of requesting the rectangle and the user’s tra-
jectory passes through the overlap. Thus the LSP cannot
apply the overlapping rectangle attack by correlating the
user’s current obfuscation rectangle with the previous
one.

Note that requesting a higher confidence level (c/) and
a higher number of nearest data objects (k) than required
are two different strategies to counter the overlapping
rectangle attack. If a user is willing to travel slightly
more then the user can opt for a higher confidence level.
If a user is willing to pay more for the communication
overhead due to transferring a large number of data ob-
jects then the user may prefer to request a higher number
of nearest data objects. A user can also combine both
strategies to increase the level of user privacy.

In summary, in our approach for a PMANN query, a
moving user needs to continuously send queries to the
LSP, where each query contains the user’s current ob-
fuscation rectangle R,,, a specified confidence level c/
and a specified number of nearest data objects k. For ev-
ery requested query of the user, the LSP returns a set of
candidate data objects P that include k nearest data ob-
jects with the specified confidence level ¢/ for R,,. Note
that, when an LSP finds kNNs with a confidence level
cl for an obfuscation rectangle, the LSP returns a set of
data objects that include k nearest data objects for ev-
ery point of the obfuscation rectangle with a confidence
level of at least cl. Thus, the moving user can delay her
next query to the LSP as long as the user has the re-
quired number of nearest data objects with the required
confidence level. Algorithm I]details the handshake be-
tween a user and an LSP during the access of a PMANN
query. To ensure real time availability of the answer, the
moving user can also send the next query in advance in-
stead of delaying as long as the user has the required

MANN answers. We use a parameter, called safe dis-
tance (defined in Section @), to determine when to com-
pute the next obfuscation rectangle and to send the new
query to the LSP.

Algorithm 1: HANDSHAKING_USER_LSP

1.1 while service required do

1.2 User — LSP: Send(R,,, cl, k)

13 LSP — User: Send(P)

1.4 Delay as long as the user has the required
answers

In Section [6] we present a technique to compute a
user’s consecutive obfuscation rectangles for requesting
a PMANN query. The first obfuscation rectangle can be
computed according to a user’s privacy requirement us-
ing any existing techniques for static queries (e.g., [20]).
For the computation of subsequent obfuscation rectan-
gles of the user, our technique ensures that the LSP can-
not refine the user’s location within the obfuscation rect-
angles by applying the overlapping rectangle attack and
the maximum movement bound attack. Another impor-
tant advantage of our technique is that for the computa-
tion of the consecutive obfuscation rectangles, the user
does not need to trust any other party such as an inter-
mediary trusted server [14].

An essential component of our approach for a
PMENN query is an algorithm for the LSP that finds
the specified number of NNs for the obfuscation rect-
angle with the specified confidence level. In Section
we exploit different properties of the confidence level
with respect to an obfuscation rectangle to develop an
efficient algorithm in a single traversal of the R-tree.

Data object

Figure 6: Known Region
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Figure 7: Confidence Level

5. Confidence Level

The confidence level measures the accuracy for a
nearest data object with respect to a user’s location. If
the confidence level for the k nearest data objects is 1
then they are the actual kK NNs. A confidence level less
than 1 provides a worst case bound on the distance com-
pared to the actual k' nearest data object, e.g., for a
nearest data object with a confidence level of 0.5 the
user has to travel at most twice the distance compared
to the actual NN.

A user’s confidence level for any nearest data object
is determined by other data objects’ locations surround-
ing the user’s location. The region where the location
of all data objects are known is called the known re-
gion. The user measures the confidence level to deter-
mine when to send the next query and the LSP measures
the confidence level to determine the query answer. We
first show how an LSP and a user compute the known
region, and then discuss the confidence level.

5.1. Computing a known region

Suppose a user provides an obfuscation rectangle R,,
for any positive integer w, to the LSP while requesting a
PMKNN query. For the ease of explanation, we assume
initially that the user specifies a confidence level of 1,
1.e., the returned answer set includes the actual kNN an-
swers for R,,. To evaluate kNN answers, the LSP starts
a best first search (BFS) using the center o of R, as the
query point and incrementally finds the next NN from o
until the k£ NN are discovered for all points of R,,.

The search region covered by BFS is at any execution
stage a circular region C(o, r), where the center o is the
center of R,, and the radius r is the distance between o
and the last discovered data object (see Figure[6). Since
the locations of all data objects in C(o,r) are already
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discovered, C(o, r) is the known region for the LSP. The
LSP returns all data objects in C(o, r) to the user, al-
though some of them might not be the k NNs for any
point of R,,. This enables the user to have C(o, r) as the
known region.

5.2. Measuring the confidence level

Since the confidence level can have any value in the
range (0,1], we remove our assumption of a fixed con-
fidence level of 1. In our approach, the known region
C(o,r) is used to measure the confidence level. With-
out loss of generality, let p, be the nearest data object
among all data objects in C(o, r) from a given location
q, where h is an index to name the data objects and let
dist(q, pp) represent the Euclidean distance between g
and pj. There are two possible scenarios based on dif-
ferent positions of pj, and g in C(o, r). Figure[7a) shows
a case where the circular region C’(q, dist(q, p,)) cen-
tered at g with radius dist(q, py) is within C(o, r). Since
pn is the nearest data object from g within C(o, r), no
other data object can be located within C’(g, dist(q, py)).
This case provides the user at ¢ with a confidence level 1
for p,. However, C’(q, dist(q, ps)) might not be always
completely within the known region. Figure [7(b)(left)
shows such a case, where a part of C’(q, dist(q, p)) falls
outside C(o, r) and as the locations of data objects out-
side C(o, r) are not known, there might be some data
objects located in the part of C’(q, dist(q, py)) outside
C(o,r) that have a smaller distance than p; from gq.
Since pj, is the nearest data object from g within C(o, r),
there is no data object within distance r’ from ¢ (Fig-
ure [7(b)(right)), where 7’ is the radius of the maximum
circular region within C(o, r) centered at g. But there
might be other data objects within a fixed distance dy
from g, where ' < dy < dist(q, py). In this case the



(2)

(b

(©

Figure 8: (a) CL(q, p2), (b) GR(cl, p2) and (c) GCR(cl, k)

confidence level of the user at g for pj, is less than 1. On
the other hand, if ¢ is outside of C(o, r) then the confi-
dence level of the user at g for pj, is 0 because #’ is 0. We
define the confidence level of a user located at g for p,
in the more general case, where p), is redefined as any of
the nearest data object in C(o, ) instead of the nearest
data object among all data objects in C(o, r).

Definition 5.1. (Confidence level) Let C(o,r) be the
known region, P the set of data objects in C(o,r), q the
point location of a user, py, the j nearest data object
in P from q for 1 < j < |P|. The distance r’ represents
the radius of the maximum circular region within C(o, r)
centered at q. The confidence level of the user located at
q for pn, CL(q, pn), can be expressed as:

0 ifq & Clo,r)
CL(g,pp) =% 1 , if g € C(o,r) Adist(q,pp) <71’
# otherwise.
ist(q.pn)

Since we focus on NN queries, we use distance in-
stead of area as the metric for the confidence level. A
distance-based metric ensures that there is no other data
object within a fixed distance from the position of a
user. Thus, the distance-based metric is a measure of
accuracy for a data object to be the nearest one. An
area-based metric, however, that is based on the area
of C’(q,dist(q, p)) intersecting with C(o, r) could only
express the likelihood of an data object to be the near-
est one. Thus, an area-based metric cannot measure the
accuracy of the data object to be the nearest one.

6. Client-side Processing

We present a technique for computing consecutive
obfuscation rectangles to request a PMANN query,
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where the LSP cannot apply the overlapping rectan-
gle attack to approximate the user’s location. Suppose
a user requests an obfuscation rectangle R,, and a con-
fidence level ¢l at any stage of accessing the PMANN
query. Since a user can be anywhere in R, the LSP
returns P, the set of data objects in the known region
C(o, r), that includes the k NNs with a confidence level
of at least ¢l for every point of R,,. Having C(o,r), a
user can compute the confidence level for the kK NNs
even from outside of R,,.

Although some data objects in P might not be the k
NNs for any point of R,,, they might be £ NNs for a
point outside R,, with a confidence level of at least cl.
In addition, some data objects, which are the k£ NNs for
some portions of R,,, can be also the kK NNs from loca-
tions outside of R,, with a confidence level of at least
cl. For example for ¢/ = 0.5 and k = 1, Figure Eka)
shows that a point g, located outside R,,, has a confi-
dence leveﬂ greater than 0.5 for its nearest data object
p>. On the other hand, from a data object’s viewpoint,
Figure [§(b) shows two regions surrounding a data ob-
ject p,, where for any point inside these regions a user
has a confidence level of at least 0.90, and 0.50, respec-
tively for pﬂ We call such a region guaranteed region,
GR(cl, py) with respect to a data object p;, for a specific
confidence level cl. We define GR(cl, py,) as follows.

Definition 6.1. (Guaranteed region) Let C(o,r) be the
known region, P the set of data objects in C(o,1), py a
data object in P, and cl the confidence level. The guar-
anteed region with respect to py, GR(cl, py), is the set

The confidence level of any point represents the confidence level
of a user located at that point.

3Note that, whenever we mention the confidence level of a point
for a data object then the data object can be any of the j# NN from
that point, where 1 < j < |P|.



of all points such that {CL(q, py) > cl} for any point
q € GR(cl, pp).

From the guaranteed region of every data object
in P we compute the guaranteed combined region,
GCR(cl, k), where a user has at least k data objects
with a confidence level of at least cl. Figure[8|c) shows
an example, where P = {pi,p>2,p3} and ¢/ = 0.5.
Then for £ = 1, the black bold line shows the bound-
ary of GCR(0.5, 1), which is the union of GR(0.5, p;),
GR(0.5, p2) and GR(0.5, p3). For k = 2, the ash bold line
shows the boundary of GCR(0.5, 2), which is the union
of GR(0.5, p1) N GR(0.5, p2), GR(0.5, p2) N GR(0.5, p3)
and GR(0.5, p3) N GR(0.5, p;). We define GCR(cl, k) as
follows.

Definition 6.2. (Guaranteed combined region) Let
C(o,r) be the known region, P the set of data objects
in C(o,r), pn a data object in P, cl the confidence
level, k the number of data objects, and GR(cl, py,) the
guaranteed region. The guaranteed combined region,
GCR(cl, k), is the union of the regions where at least
k GR(pp, cl) overlap, i.e., Upcpaip=kiNnep GR(pp, cl)}.

According to Definition the user has higher a
confidence level for closer data objects, which implies
Lemmal6.1

Lemma 6.1. If the confidence level of a user located at
q is at least cl for any k data objects, then the confidence
level of the user is also at least cl for the k NNs from q.

Since for any point in GCR(cl, k), a user has at least
k data objects with a confidence level of at least cl,
Lemma shows that for any point in GCR(cl, k) the
user also has the kK NNs with a confidence level of at
least cl. Thus, in our technique, the moving user can
use the retrieved data objects from the outside of R,
and delay the next obfuscation rectangle R,,;; until the
user leaves GCR(cl, k). Although delaying R, in this
way may allow a user to avoid an overlap of R,, and
R, 1, the threat to location privacy is still in place. Since
the LSP can also compute GCR(cl, k), similar to the
overlapping rectangle attack, the user’s location can be
computed more precisely by the LSP from the over-
lap of R, and current GCR(cl, k) (see Figure Eka) for
GCR(0.5,k) N Ryy11).

To overcome the above mentioned attack and the
overlapping rectangle attack, the key idea of our tech-
nique is fo increase the size of GCR without informing
the LSP about this extended region. To achieve this the
user has three options during a PMANN query: the user
specifies a higher value than (i) the required confidence
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level or (ii) the required number of NNs or (iii) both.
Let cl, and k, represent the required confidence level
and the required number of NN for a user (both are not
revealed to the LSP), respectively, and ¢/ and k represent
the specified confidence level and the specified number
of NN to the LSP by the user, respectively.

Case (i): a user specifies a higher value than the
required confidence level, i.e., ¢/ > cl,. We know
that the GCR is constructed from GRs of data objects
in P and the GR of a data object becomes smaller with
the increase of the confidence level for a fixed C(o,r)
as shown in Figure [§[b), which justifies the following
lemma.

Lemma 6.2. Let ¢l > ¢l and k =
GCR(cl,, k) D GCR(cl, k) for a fixed C(o, r).

k.. Then

Since GCR(cl,,k,) D GCR(cl, k), now the user can
delay the next obfuscation rectangle R,.; until the
user leaves GCR(cl,, k). Since the LSP does not know
GCR(cl,, k), it is not possible for the LSP to find more
precise location from the overlap of GCR(cl,, k,) and
R,+1. Figure Ekb) shows an example for k = 1, where
a user’s required confidence level is ¢/, = 0.5 and the
specified confidence level is ¢/ = 0.9. The LSP does not
know about the boundary of GCR(0.5, 1) and thus can-
not find the user’s precise location from the overlap of
GCR(0.5,1) and R4 .

However, R,,,; has to be in C(o, r) of R,,. Otherwise,
the LSP is able to determine more precise location of the
user as R,,.1 NC(o, r) at the time of requesting R,, . For
any location outside C(o, r), the user has a confidence
level 0 which in turn means that the user’s location can-
not be within the region of R,,,; that falls outside C(o, r)
at the time of requesting R,,.;. As a result whenever
C(o, r) is small, then the restriction might cause a large
part of R, to overlap with GCR(cl, k) and R,,.

The advantage of our technique is that this overlap
does not cause any privacy threat for the user’s trajec-
tory due to the availability of GCR(cl,, k,) to the user.
Since there is no guarantee that the user’s trajectory
passes through the overlap or not, the LSP is not able
to determine the user’s precise trajectory path from the
overlap of R, with GCR(cl, k) and R,,. Without loss
of generality, Figures[9fc) and[9(d) show two examples,
where R,,.; overlaps with GCR(0.9, 1) for cl, = 0.5,
cl = 0.9, and k = 1. In Figure[9c) we see that the trajec-
tory does not pass through GCR(0.9, 1) N R,,.1, whereas
Figure [0(d) shows a case, where the trajectory passes
through the overlap.

Note that the distribution of data objects does not re-
sult in any attack that refines a user’s more precise loca-
tion within the obfuscation rectangle. If the distribution



(a) (b)
Figure 9: (a) An attack from R,,+; N GCR(0.5, 1), (b)-(d) Removal of attacks with ¢/, = 0.5 and ¢/ = 0.9

of data objects is dense around a user’s location then the
known region becomes smaller. Although the smaller
known region may cause the current obfuscation rect-
angle to be closer to the previous obfuscation rectangle
or even to overlap with the previous one, the LSP can
only approximate the user’s location as the obfuscation
rectangle. Our technique does not allow the LSP to fur-
ther refine the user’s location in the obfuscation rectan-
gle from the overlap. However, the dense distribution of
data objects may lower the level of a user’s location pri-
vacy, which we measure in terms of trajectory area and
frequency, due to the smaller known region.

Case (ii): a user specifies a higher value than the
required number of NNs, i.e., k > k,. From the con-
struction of a GCR, we know that GCR(cl,k + 1) C
GCR(cl, k) for a fixed C(o,r), which leads to the fol-
lowing lemma.

Lemma 6.3. Let ¢l = ¢l and k > k.. Then
GCR(cl,, k) D GCR(clL, k) for a fixed C(o,r).

Since we also have GCR(cl,,k,) D GCR(cl, k) for
the second option, similar to the first option, a user can
protect her location privacy using the extended region,
which is used when the user cannot sacrifice the accu-
racy of answers.

Case (iii): a user requests higher values for both
confidence level and the number of NNs than re-
quired. The user can obtain a larger extension for the
GCR(cl,, k) as both ¢l and k contribute to extend the re-
gion. The extension reduces the number of obfuscation
rectangles sent to the LSP, which increases a user’s lo-
cation privacy since the LSP has less information about
the user locations. The location privacy also increases
with the increase of the difference between ¢/ and ¢/, or
k and k, because with the decrease of cl, or k,, the size
of GCR(cl,, k,) increases for a fixed C(o, r) and with the
increase of ¢l or k, C(o, r) becomes larger, which results
in a larger GCR(cl,, k).
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In our technique, a user has different choices: a user
can delay R,.; until her trajectory intersects with the
boundary of GCR(cl,, k,); or the user sends R, in ad-
vance to ensure the local availability (to the user) of k,
NNs with a confidence level of at least ¢/, for a part
of her future trajectory and thereby avoiding any delay
from the LSP. Since the future trajectory is unknown,
our algorithm always ensures the local availability of
query answers at least for a user specified distance in
all directions from the user’s current position. To ensure
the local availability of query answers in real time, we
use two variables:

e Boundary distance Jp: the minimum distance of
user’s current position g from the boundary of
C(o,r).

e Safe distance ¢: the user specified distance, which
is used to determine when the next request needs
to be sent.

Thus, the next request is sent to the LSP when 6, < 6.

The parameters cl, cl,, k, k,, §, and obfuscation rect-
angle area can be changed according to the user’s pri-
vacy profile and quality of service requirements. Differ-
ent cl, cl,, k, k., and § in consecutive requests prevent an
LSP from gradually learning or guessing any bound of
cl, and k, to predict a more precise user location.

Based on the above discussion of our technique, we
present the algorithm that protects the user’s location
privacy while processing an MkNN query. algorithm,
we summarize commonly used symbols in Table[I}

6.1. Algorithm

Algorithm[2] REQUEST_PMANN, shows the steps for
requesting a PMANN query. A user initiates the query
with an obfuscation rectangle R,, that includes her cur-
rent location g. The parameters cl, cl,, k, k,, and § are
set according to the user’s requirement. Then a request
is sent with R,, to the LSP for kK NNs with a confidence



Symbol Meaning
R, Obfuscation Rectangle
cl, Required confidence level
cl Specified confidence level
k, Required number of NNs
k Specified number of NNs
C(o,1) Known region
GCR(.,.) | Guaranteed combined region
0 Safe distance
Op Boundary distance

Table 1: Symbols

level cl. The LSP returns the set of data objects P that
includes the kK NNs for every point of R,, with a confi-
dence level of at least cl. According to Lemmal6.1] the
user has the k. NNs with a confidence level of at least
cl, as long as the user resides within GCR(cl,, k,). Main-
taining the rank of k. NNs from P for every position of
the user’s trajectory is an orthogonal problem for which
we can use any existing approaches (e.g., [43l).

Algorithm 2: REQUEST_PMiNN

21 we 1

22 cl, cl, « user specified and required confidence
level

23 k, k, « user specified and required number of
NNs

24 0 « user specified safe distance

25 R,, < GenerateRectangle(q)

2.6 P «— RequestkNN(R,,, cl, k)

2.7 while service required do

2.8 q < NextLocationU pdate()

29 | pu < k" NN from ¢

2.10 cl, cl, < user specified and required
confidence level

2.11 k, k, < user specified and required number
of NNs

2.12 0 « user specified safe distance

213 op < r—dist(o,q)

2.14 if (r < cl, X dist(pny, q) + dist(o, q)) or
(6 < 0) then

2.15 R,+1 < GenerateRectangle(q, C(o,r))

2.16 P «— RequestkNN(R,+1,cl, k)

217 wew+ 1

For every location update, the algorithm checks two
conditions: whether the user’s current position ¢ is out-
side her current GCR(cl,, k,) or the minimum boundary
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distance from C(o, r), dp, has become less or equal to the
user specified distance, ¢. To check whether the user is
outside her GCR(cl,, k,), the algorithm checks the con-
straint r < cl, X dist(ppy, q) + dist(o, q), where r is the
radius of current known region and cl, X dist(pp, q) +
dist(o, q) represents the required radius of the known re-
gion to have k. NNs with a confidence level of at least
cl, from the current position g. Note that the required
radius cl, X dist(pp, q) + dist(o,q) is computed using
Deﬁnition@ For the second condition, ¢, is computed
by subtracting dist(o, ¢) from r (Line[2}13). If any of the
two conditions in Line 2} 14 becomes true, then the new
obfuscation rectangle R, is computed with the restric-
tion that it must be included within the current C(o, r).
The function GenerateRectangle is used to compute an
obfuscation rectangle within C(o, r) according to the
user’s specified area. After computing R, |, the next re-
quest is sent and k NNs are retrieved for R,+; with a
confidence level of at least cl. The process continues as
long as the service is required.

The function GenerateRectangle is used to com-
pute an obfuscation rectangle for a user according to
her privacy requirement. The obfuscation rectangle can
be computed using the obfuscation technique proposed
in [20].

Note that, Algorithm[2]to protect a user’s location pri-
vacy for an MkNN query with obfuscation rectangles
can be also generalized for the case where a user uses
other geometric shapes (e.g., a circle) to represent the
imprecise locations if the known region for other ge-
ometric shapes is also a circle. For example, if a user
uses obfuscation circles instead of obfuscation rectan-
gles then the overlapping rectangle attack turns into
overlapping circle attack. From Algorithm [2] we ob-
serve that our technique to protect overlapping rectangle
attack is independent of any parameter of obfuscation
rectangle; it only depends on the center and radius of
the known region. Thus, as long as the representation of
the known region is a circle, our technique can be also
applied for an overlapping circle attack.

The following theorem shows the correctness of the
algorithm REQUEST_PMANN.

Theorem 6.1. The algorithm REQUEST_PMANN pro-
tects a user’s location privacy for MkNN queries.

PROOF. The obfuscation rectangles R,,; for a
user requesting a PMANN query always overlaps
with GCR(cl,,k,) and sometimes also overlaps with
GCR(cl, k) and R,,. We will show that these overlaps do
not reveal a more precise user location to the LSP, i.e.,
the user’s location privacy is protected.



The LSP does not know about the boundary of
GCR(cl,, k), which means that the LSP cannot com-
pute GCR(cl,, k) N R,,+1. Thus, the LSP cannot refine
a user’s location at the time of requesting R,,;; or the
user’s trajectory path from GCR(cl,, k) N Ryp41.

Since the LSP knows GCR(cl, k) and R,,, it can com-
pute the overlaps, GCR(cl,k) N R,+; and R,, N R,41,
when it receives R,.;. However, the availability of
GCR(cl,, k;) to the user and the option of having differ-
ent values for § prevent the LSP to determine whether
the user is located within GCR(cl,k) N R,,;1 and R,, N
R,,+1 at the time of requesting R,,..; or whether the user’s
trajectory passes through these overlaps.

In summary there is no additional information to ren-
der a more precise user position or user trajectory within
the rectangle. Thus, every obfuscation rectangle com-
puted using the algorithm REQUEST_PMkNN satisfies
the two required conditions (see Definition for pro-
tecting a user’s location privacy. U

6.1.1. The maximum movement bound attack

If a user’s maximum velocity is known, then the max-
imum movement bound attack can render a more pre-
cise user position from the overlap of the current ob-
fuscation rectangle and the maximum movement bound
of the previous obfuscation rectangle. To prevent this at-
tack, the most recent solution [5] has proposed that R,,+;
needs to be completely included within the maximum
movement bound of R,,, denoted as M,,. As a result, at
the time of requesting R, |, although the user is located
in R+, the LSP cannot refine the user’s more precise
position within R,,,; as there is no overlap between R,,+;
and M,,. Our proposed algorithm to generate R,,,; can
also consider this constraint of M,, whenever the LSP
knows the user’s maximum velocity. Incorporating the
constraint of M,, in our algorithm does not cause any
new privacy violation for users.

7. Server-side Processing

For a PMiNN query with a customizable confidence
level, an LSP provides the k NNs with the specified con-
fidence level for all points of every requested obfusca-
tion rectangle. Evaluating the K NNs with a specified
confidence level for every point of an obfuscation rect-
angle separately is an expensive operation and doing it
continuously for a PMiNN query incurs large overhead.
We develop an efficient algorithm that finds the k£ NNs
for every point of an obfuscation rectangle with a spec-
ified confidence level in a single search using an R-tree.
If the specified confidence level is 1, our algorithm re-
turns exact kNN answers and if the specified confidence
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level is lower than 1 then the algorithm returns approx-
imate kNN answers. Our proposed algorithm allows an
LSP to provide the user with a known region, which
helps protecting the user’s location privacy from over-
lapping rectangle attack and further to reduce the overall
PMANN query processing overhead.

We show different properties of a confidence level
for an obfuscation rectangle, which we use to improve
the efficiency of our algorithms. Let R, be a user’s
obfuscation rectangle with center o and corner points
{c1, 2, c3, ¢4}, and m;; be the middle point of ¢;c;, where
@, j) € {(1,2),(2,3),(3,4), (4, 1)}. To avoid the compu-
tation of the confidence level for a data object with re-
spect to every point of R,, while searching for the query
answers, we exploit the following properties of the con-
fidence level. We show that if two endpoints, i.e., a cor-
ner point and its adjacent middle point or the center and
a point in the border of R,,, of a line have a confidence
level of at least ¢/ for a data object then every point of
the line has a confidence level of at least ¢! for that data
object. Formally, we have the following theorems.

Theorem 7.1. Let c;,c; be any two adjacent corner
points of an obfuscation rectangle R,, and m;; be the
middle point of ¢;c;. For t € {i, j}, if ¢, and m;; have a
confidence level of at least cl for a data object py, then
all points in m;;c; have a confidence level of at least cl

for py.

Theorem 7.2. Let o be the center of an obfuscation
rectangle R, c;,c; be any two adjacent corner points
of Ry, and ¢ be a point in ¢;c;. If o and ¢ have a con-
fidence level of at least cl for a data object py, then all
points in oc have a confidence level of at least cl for py,.

Next we discuss the proof of Theorem We omit
the proof of Theorem since a similar proof tech-
nique used for Theorem can be applied for Theo-
remby considering o as m;; and ¢ as ¢;.

As mentioned in Section [ our algorithm to evalu-
ate kNN answers expands the known region C(o, r) until
the k NN with the specified confidence level for every
point of R,, are found. Since any point outside C(o, r)
has a confidence level 0 (see Definition [5.1), C(o,r)
needs to be at least expanded until R is within C(o, r) to
ensure kNN answers with a specified confidence level
greater than 0. Hence, we assume that R ¢ C(o,r) at
the current state of the search. Let the extended lines
o_m,-;ﬂ and o_c; intersect the border of C(o,r) at m] : and
c;, respectively, where ¢ € {i, j}. Figure a) shows an

4We use the symbol — for directional line segments.
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Figure 10: Impact of different positions of a data object

example fori = 1, j = 2, and + = j. For a data ob-
ject py in C(o, r), the confidence levels of ¢; and m;;,
CL(c;, pp) and CL(m;;, py,), can be expressed as %
d dift(m,-,-,m,-,-')
dist(mij.py) °

Let x be a point in m;;c,, and ox intersect the border
of C(o, r) at x". For a data object pj, in C(o, r), the con-
fidence level of x, CL(x, p;,), is measured as jlljtt((;;/,))
As x moves from ¢; towards m;;, although dist(x, x")
always increases, dist(x, p,) can increase or decrease
(does not maintain a single trend) since it depends on
the position of p, within C(o, r). Without loss of gen-
erality we consider an example in Figure [I0] where p;
is a data object within C(o, r). Based on the position
of p; with respect to mj, and c,, we have three cases:
the perpendicular from p; intersects the extended line
camy (see Figure a)) or the extended line m2¢5 (see
Figure [I0[b)) or the segment mi>c; (see Figure [10c))
at [,. In the first case, dist(x, p1) decreases as x moves
from ¢, towards m;, as shown in Figure [I0fa). In the
second case, dist(x, p;) decreases as x moves from m;
towards ¢, as shown in Figure b). In the third case,
dist(x, pp) is the minimum at x = [, i.e., dist(x, p;) de-
creases as x moves from ¢, or my, towards l, as shown
in Figure [I0[c). From these three cases we observe that
for different positions of py,, dist(x, p,) can decrease for
moving x in both directions, i.e., from ¢, towards m;; or
from m;; towards c;.

For the scenario, where dist(x, p;) decreases as x
moves from ¢, towards m;; (first case) or from ¢, towards
[, (third case), i.e., dist(x, p,) < dist(c;, p,), we have the
following lemma.

respectively.

Lemma 7.1. If dist(x, pj) < dist(c;, pr) and
CL(ct, pr) = cl then CL(x,py) = cl, for any point
X € m;;c,.
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The proof of this lemma directly follows from
dist(x,x") > dist(c;, c/’).

In the other scenario, dist(x, p;) decreases as x moves
from m;; towards ¢, (second case) or from m;; towards
l; (third case). In the general case, let u, be a point that
represents ¢, for the second case and /; for the third case.
To prove that CL(x, p,) > cl, in contrast to Lemma|7/.1
where we only need to have CL(c;, py) > cl, for the
current scenario we need to have the confidence level at
least equal to c! for p;, at both end points, i.e., m;; and ;.
According to the given conditions of Theorem [7.1] we
already have CL(m;;, pp) > cl and CL(c;, pj) > cl. Since
u, 18 ¢, in the second case and /, in the third case, we need
to compute the confidence level of /; for p; in the third
case and using Lemma [7.1| we find that CL(l;, p) > cl.
Thus, we have the confidence level of both m;; and u,
for p, at least equal to cl.

However, showing CL(x, p;) > cl if both m;; and
u, have a confidence level of at least ¢/ for p; is not
straightforward, because in the current scenario both
dist(x, p,) and dist(x, x") decrease with the increase of
dist(m;j, x). Thus, we need to compare the rate of de-
crease for dist(x,x’) and dist(x, p;) as x moves from
mjj to u;. Assume that Zxom;; = 6, and Zpxl; = ;.
The range of ¢, can vary from O to 6, where 6,,, = 0,
04, = 0,and 0 < %. For a fixed range of 6, the range of
@y, [@m,;, @], can have any range from [0, %] depend-
ing upon the position of p;,. We express dist(x, x") and
dist(x, py) as follows:

dist(x, x') = r — dist(o, m;;) X sec 0y

dist(pn, ;) X csc ay ifa, #0

dist(x, pn) = { dist(m;;, py) — dist(m;}, x) otherwise.

The rate of decrease for dist(x, x") and dist(x, p) are
not comparable by computing their first order deriva-
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Figure 11: Curve sketching

tive as they are expressed with different variables and
there is no fixed relation between the range of 8, and
a,. Therefore, we perform a curve sketching and con-
sider the second order derivative in Figure [T} From
the second order derivative, we observe in Figure ﬂ;fka)
that the rate of decreasing rate of dist(x, x") increases
with the increase of 6,, whereas in Figure Ekb) the rate
of decreasing rate of dist(x, p,) decreases with the in-
crease of @, for a, # 0 and in Figure ﬂ;fkc) the rate
of decreasing rate remains constant with the increase
of dist(m;j, x) for @y = 0. The different trends of the
decreasing rate and the constraint of confidence lev-
els at two end points m;; and u, allow us to make a
qualitative comparison between the rate of decrease for
dist(x,x") and dist(x, p,) with respect to the common
metric dist(m;j, x), as dist(m;;, x) increases with the in-
crease of both 6, and «, for a fixed p,. We have the
following lemma.

Lemma 7.2. Let dist(x, p,) decrease as x moves from
mjj to uy for any point x € mjuy. If CL(m;j, py) > cl and
CL(u;, pp) = cl, then CL(x, py) = cl.

PROOF. (By contradiction) Assume to the contrary that

there is a point x € m;;u; such that CL(x, p) < cl, i.e.,
dist(x,x)
dist(x,pp)

dist(mj, ml’j) —dist(x,x")

< cl. Then we have the following relations.

dist(m;j, py) — dist(x, pp,)
dist(m;j, x)

dist(m;j, X)

6]

dist(x, x") — dist(u;, uy)
dist(x, u;)

dist(x, pp) — dist(uy, pp)
dist(x, u;)

(2)
Since we know that for dist(x, x’), the rate of decreas-
ing rate increases with the increase of dist(m;;, x) and
for dist(x, py), the rate of decreasing rate decreases or
remains constant with the increase of dist(m;}, x), we

have the following relations.
dist(mij,m;;) — dist(x, X)  dist(x, x') — dist(u, u})

dist(x, u;)

dist(m;j, x)

3)
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dist(x, py) — dist(u, pr)
dist(x, u;)

dist(m;j, py) — dist(x, pp) S
dist(mj, X) -
4)

From Equations|T] 2] and[3| we have,

diSt(mij, p/’l) - disl‘(x, ph)
dist(myj, x)

< dist(x, pp) — dist(u;, pp)
dist(x, u;)

which contradicts EquationEL i.e., our assumption. [

Finally, from Lemmas [7.1] and [7.2] we can conclude
that if CL(c;,pp) 2 cl and CL(m;j, pp) > cl, then

CL(x, py) = cl for any point x € m;;c,, which proves
Theorem [Z.1}

7.1. Algorithms

We develop an efficient algorithm, CLAPPINQ (Con-
fidence Level Aware Privacy Protection In Nearest
Neighbor Queries), that finds the £ NNs for an obfus-
cation rectangle with a specified confidence level using
an R-tree (see Algorithm [3).

As mentioned in Section [} the basic idea of our al-
gorithm is to start a best first search (BFS) considering
the center o of the given obfuscation rectangle R,, as the
query point and continue the search until the k NNs with
a confidence level of at least ¢/ are found for all points
of R,,. The known region C(o,r) is the search region
covered by BFS and P is the set of data objects located
within C(o,7). Q) is a priority queue used to maintain
the ordered data objects and R-tree nodes based on the
minimum distance between the query point o and the
data objects/MBRs of R-tree nodes (by using the func-
tion MinDist). Since the size of the candidate answer
set is unknown, we use status to control the execution
of the BFS. Based on the values of status, the BFS can
have three states: (i) when status = 0, each time the BFS
discovers the next nearest data object, it checks whether
status needs to be updated, (ii) when status > 0, the
BFS executes until the radius of the known region be-
comes greater than the value of status, and (iii) when
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Figure 12: (a) dipax = dnax(m23) and (b) dsafe = dsafe(ma3)

Algorithm 3: CLAPPINQ(R,, cl, k)
31 P90
32 status < 0

33 Enqueue(Q,, root,0)
34 while Q,, is not empty and status > 0 do

35 p < Dequeue(Q))

3.6 r < MinDist(o, p)

37 if status > 0 and status < r then

3.8 L status «— —1

39 if p is a data object then

3.10 P—PuUp

3.11 if status = 0 then

3.12 status «—

| UpdateStatus(R,,cl,k, P,r)

3.13 else

3.14 for each child node p. of p do
3.15 din(pc) < MinDist(o, p.)
3.16 L Enqueue(Qp» Pes dmin(pc))
317 return P;
status = —1, the BFS terminates. Initially, status is set

to 0. Each time a data object/R-tree node p is dequeued
from Q, the current radius r is updated. When p repre-
sents a data object, then p is added to the current candi-
date set P and the procedure U pdateS tatus is called if
status equals 0.

The pseudo code for U pdateS tatus is shown in Algo-
rithm 4] The notations used for this algorithm are sum-
marized below.

o count(cy, cl, P): the number of data objects in P for
which a corner point ¢; of R,, has a confidence level
of at least cl.

° dl’F (d’;): the k” minimum distance from a middle
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(b)

point m;; of R,, to the data objects in P; (P;), where
P; (P;) C P and P; (P;) is the set of data objects
with respect to ¢; (c;) with a confidence level of at
least cl.

® dyg,: the maximum of all d,..(m;;), where each
dax(m;;) is the maximum of d¥ and d’; (see Fig-
ure[12]a)).

o dyyf.: the minimum distance of all dyuz.(m;;),
where d,r.(m;;) represents the radius of the maxi-
mum circular region within C(o, r) centered at m;;

(see Figure[12(b)).

UpdateS tatus first updates count(c,, cl, P) using the
function U pdateCount. For each p € P, UpdateCount
increments count(c,, cl, P) by one if CL(c;,p) >= cl.
Note that corner points of R, can have more than k
data objects with a confidence level of at least ¢l be-
cause the increase of r for a corner point of R,, can
make other corner points to have more than k data ob-
jects with a confidence level of at least cl. In the next
step if count(c,, cl, P) is less than k for any corner point
¢; of R,,, UpdateStatus returns the control to Algo-
rithm [3| without changing status. Otherwise, it com-
putes the radius of the required known region for en-
suring the k NNs with respect to R,, and ¢/ (Lines [3|5-
16). For each m;j, UpdateStatus first computes dl’,‘
and d¥ with the function K, and takes the maximum
of df and d* as dya(m;j). Then UpdateS tatus finds
diax (Lines [3]10P}11) and dyz. (Line [3}12). Finally,
U pdateS tatus checks if the size of the current C(o, r)
is already equal or greater than the required size. If
this is the case then the algorithm returns status as -
1, otherwise the value of the radius for the required
known region. After the call of UpdateS tatus, CLAP-
PINQ continues the BF'S if status > 0 and terminates if
status = —1. For status greater than 0, each time a next
nearest data object/MBR is found, CLAPPINQ updates



status to —1 if r becomes greater than status (Lines[3]7-

B318).

Algorithm 4: UpdateStatus(R,,, cL,k, P, r)

41 UpdateCount(R, cl, k, P, r, count)
4.2 if count(c,, cl, P) # k, for any corner point

¢; € R then
43 | return0
44 else
45 dpax < 0
46 for each middle point m; ; do
4.7 df{ — Km,-,,(m,-j, C,‘,Cl, k, P)
48 d];- — Kpin(mij, cj, cl, k, P)
49 dmax(mij) « max{d{‘, df}
4.10 if dypax(mij) > dyax then
4.11 L Amax — dmax(m;;)
412 | dyge — r— 5 x max{llercall, llezesll)
4.13 if ¢l X dypax > dgag. then
4.14 ‘ return (7 + ¢l X dypax — dgage)
4.15 else
4.16 | return -1

In summary, CLAPPINQ works in three steps. In step
1, it runs the BFS from o until it finds the kK NNs with
a confidence level of at least ¢/ for all corner points of
R,,. In step 2, from the current set of data objects it com-
putes the radius of the required known region to confirm
that the answer set includes the k NN with a confidence
level of at least ¢/ with respect to all points of R,,. Fi-
nally, in step 3, it continues to run the BES until the ra-
dius of the current known region is equal to the required
size.

Figure [I3] shows an example of the execution of
CLAPPINQ for k = 1 and ¢/ = 1. Data objects are
labeled in order of the increasing distance from o.
CLAPPINQ starts its search from o and continues until
the NNs with respect to four corner points are found
as shown in Figure [[3[a). The circles with ash border
show the continuous expanding of the known region
and the circle with black border represents the current
known region. The data objects ps4, p7, ps, and p3 are
the NNs with ¢/ = 1 from ¢y, ¢3, 3, and c4, respectively
because the four circles with a dashed border are com-
pletely within the known region. In the next step, the
algorithm finds the maximum of df and & for each m;;.
The distances d, (=dist(mi2, p7)), dy (=dist(mi2, p7))
(or dy (=dist(mas,ps))), d, (=dist(mzs, p3)), d;
(=dist(my4,, p4)) are the maximum with respect to m;,
my3, m34, and myp, respectively. Finally, CLAPPINQ
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expands the search so that the four circles with dashed
border centered at mjp, mp3, maq, and my; and having
radius dj, dj (or dj), dj, and d}, respectively, are
included in the known region (see Figure @b)).
Therefore, the search stops when py is discovered and
P includes p; to p.

The following theorem shows the correctness for
CLAPPINQ.

Theorem 7.3. CLAPPINQ returns P, a candidate set of
data objects that includes the k NNs with a confidence
level of at least cl for every point of the obfuscation rect-
angle R,,.

PROOF. CLAPPINQ expands the known region C(o,r)
from the center o of the obfuscation rectangle R,, until
it finds the kK NNs with a confidence level of at least c/
for all corner points of R,,. Then it extends C(o, r) to en-
sure that the confidence level of each middle point m;;
is at least c/ for both sets of k nearest data objects for
which ¢; and ¢; have a confidence level of at least cl.
According to Theorem this ensures that any point
in m;jc; or my;c; has a confidence level of at least ¢/ for
k data objects. Again from Lemma we know that if
a point has k data objects with a confidence level of at
least ¢/ then it also has a confidence level of at least ¢l
for its kK NNs. Thus, P contains the kK NNs with a confi-
dence level of at least ¢l for all points of the border of
R,

To complete the proof, next we need to show that P
also contains the k nearest data objects with a confi-
dence level of at least ¢l for all points inside R,,. The
confidence level of the center o of R, for a data object
pn, within the known region C(o, r) is always 1 because
C(o, r) is expanded from o and we have dist(o, pp) < r.
Since we have already shown that P includes the k NNs
with a confidence level of at least ¢/ for all points of the
border of R,,, according to Theoremand Lemma
P also includes the k NNs with a confidence level of at
least ¢! for all points inside R,,. g

We have proposed the fundamental algorithm and
there are many possible optimizations of it. For exam-
ple, one optimization could merge overlapping obfusca-
tion rectangles requested by different users at the same
time, which will also avoid redundant computation. An-
other optimization could exploit that R,, and R,,,; may
have many overlapping NNs. However, the focus of this
paper is protecting location privacy of users while an-
swering MkNN queries, and exploring all possible op-
timizations of the algorithm is beyond the scope of this

paper.



Figure 13: Steps of CLAPPINQ: an example fork = 1 and ¢/ = 1

8. Experiments

In this section, we present an extensive experimen-
tal evaluation of our proposed approach. In our experi-
ments, we use both synthetic and real data sets. Our two
synthetic data sets are generated from uniform (U) and
Zipfian (Z) distribution, respectively. The synthetic data
sets contain locations of 20,000 data objects and the real
data set contains 62,556 postal addresses from Califor-
nia. These data objects are indexed using an R*-tree [46]
on a server (the LSP). We run all of our experiments on
a desktop with a Pentium 2.40 GHz CPU and 2 GByte
RAM.

In Section we evaluate the efficiency of our pro-
posed algorithm, CLAPPINQ, to find kK NNs with a spec-
ified confidence level for an obfuscation rectangle. We
measure the query evaluation time, I/Os, and the candi-
date answer set size as the performance metric. In Sec-
tion [8.2] we evaluate the effectiveness of our technique
for preserving location privacy for MANN queries.

8.1. Efficiency of CLAPPINQ

There is no existing algorithm to process a PMANN
query. An essential component of our approach for a
PMENN query is an algorithm for the LSP to evalu-
ate a kNN query with respect to an obfuscation rect-
angle. In this set of experiments we compare our pro-
posed kNN algorithm, CLAPPINQ, with Casper [14]],
because Casper is the only existing related algorithm
that can be adapted to process a PMANN query; fur-
ther, even if we adapt it can only support k = 1. To be
more specific, our privacy aware approach for MANN
queries needs an algorithm that returns the known re-
gion in addition to the set of kK NNs with respect to an
obfuscation rectangle. Among all existing kNN algo-
rithms [[12} [14, 21} 421 43| 144] only Casper supports the
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known region and if Casper were as efficient as CLAP-
PINQ, then in theory we could extend Casper using our
privacy protection approach to process PMANN queries
for the restricted case k = 1.

We set the data space as 10,000 x 10,000 square
units. For each set of experiments in this section, we
generate 1000 random obfuscation rectangles of a spec-
ified area, which are uniformly distributed in the total
data space. We evaluate a kNN query with respect to
1000 obfuscation rectangles and measure the average
performance with respect to a single obfuscation rect-
angle for Casper and CLAPPINQ in terms of the query
evaluation time, the number of page accesses, i.e., [/Os,
and the candidate answer set size. The page size is set
to 1 KB which corresponds to a node capacity of 50 en-
tries.

Note that, in our experiments, the communication
amount (i.e., the answer set size) represents the commu-
nication cost independent of communication link (e.g.,
wireless LANS, cellular link) used. The communication
delay can be approximated from the known latency of
the communication link. In our technique, sometimes
the answer set size may become large to satisfy the
user’s privacy requirement. Though the large answer
set size may result in a communication delay, nowa-
days this should not be a problem. The latency of wire-
less links has been significantly reduced, for example
HSPA+ offers a latency as low as 10ms. Furthermore,
our analysis represents the communication delay sce-
nario in the worst case. In practice, the latency of first
packet is higher than the subsequent packets and thus,
the communication delay does not increase linearly with
the increase of the answer set size.

In different sets of experiments, we vary the follow-
ing parameters: the area of the obfuscation rectangle,



Parameter Range Default
Obfuscation rectangle area 0.001% t0 0.01% | 0.005%
Obfuscation rectangle ratio 1,2,4,8 1

Specified confidence level c/ 05t01 1
Specified number of NNs &k 1to 20 1
Synthetic data set size 5K, 10K, 15K, 20K 20K

Table 2: Experimental Setup

the ratio of the length and width of the obfuscation rect-
angle, the specified confidence level, the specified num-
ber of NNs and the synthetic data set size. Table[2]shows
the range and default value for each of these parame-
ters. We set 0.005% of the total data space as the de-
fault area for the obfuscation rectangle, since it reflects
a small suburb in California (about 20 km? with respect
to the total area of California) and is sufficient to protect
privacy of a user’s location. The thinner an obfuscation
rectangle, the higher the probability to identify a user’s
trajectory [47]. Hence, we set 1 as a default value for the
ratio of the obfuscation rectangle to ensure the privacy
of the user. The original approach of Casper does not
have the concept of confidence level and only addresses
INN queries. To compare our approach with Casper, we
set the default value in CLAPPINQ for k and the confi-
dence level as 1.

In Sections [8.1.T]and [8.1.2] we evaluate and compare
CLAPPINQ with Casper. In Section [8.1.3] we study the
impact of k and the confidence level only for CLAPPINQ
as Casper cannot be directly applied for £ > 1 and has
no concept of a confidence level.

8.1.1. The effect of obfuscation rectangle area

In this set of experiments, we vary the area of obfus-
cation rectangle from 0.001% to 0.01% of the total data
space. A larger obfuscation rectangle represents a more
imprecise location of the user and thus ensures a higher
level of privacy. We also vary the obfuscation rectan-
gle ratio as 1,2,4, and 8. A smaller ratio of the width
and length of the obfuscation rectangle provides the user
with a higher level of privacy.

Figures [I4[a) and [I4(b) show that CLAPPINQ is on
an average 3times faster than Casper for all data sets.
The 1/Os are also at least 3 times less than Casper (Fig-
ures [14]c) and [T4(d)). The difference between the an-
swer set size for CLAPPINQ and Casper is not promi-
nent. However, in most of the cases CLAPPINQ results
in a smaller answer set compared with that of Casper
(Figures [T4[e) and [T4(f)). We also observe that the per-
formance is better when the obfuscation rectangle is
a square and it continues to degrade for a larger ratio
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in both CLAPPINQ and Casper (Figures [T4(b), [T4(d),
and [T4(D)).
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Figure 14: The effect of obfuscation rectangle area and ratio

8.1.2. The effect of the data set size

We vary the size of the synthetic data set as 5K, 10K,
15K and 20K, and observe that CLAPPINQ is signifi-
cantly faster than that of Casper for any size of data
set. Figure[I3]shows the results for the query evaluation
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Figure 16: The effect of the parameter k and confidence level

time, I/Os and the answer set size. We find that CLAP-
PINQ is at least 3 times faster and the I/Os of CLAPPINQ
is at least 4 times less than that of Casper. The time, the
I/Os and the answer set size slowly increases with the
increase of data set size.

8.1.3. The effect of k and the confidence level

In this set of experiments, we observe that the query
evaluation time, I/Os, and the answer set size for CLAP-
PINQ increase with the increase of k for all data sets.
However, these increasing rates decrease as k increases
(Figure for the California data set). We also vary
the confidence level ¢/ and expect that a lower cl in-
curs less query processing and communication over-
head. Figure [I6] also shows that the average perfor-
mance improves as ¢/ decreases and the improvement
is more pronounced for higher values of cl. For exam-
ple, the answer set size reduces by an average factor of
2.35 and 1.37 when cl decreases from 1.00 to 0.75 and
from 0.75 to 0.50, respectively.

8.1.4. CLAPPINQ vs. Casper for PMkNN queries

The paper that proposed Casper [14] did not address
location privacy for MKNN queries. Even if we extend it
for PMANN queries using our technique, Casper would
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only work for k = 1. More importantly, since we have
found that CLAPPINQ is at least 2 times faster and re-
quires at least 3 times less I/Os than Casper for finding
the NNs for an obfuscation rectangle, and an MANN
query requires the evaluation of a large number of
consecutive obfuscation rectangles, CLAPPINQ would
outperform Casper by a greater margin for PMANN
queries. Therefore, we do not perform such experiments
and conclude that CLAPPINQ is efficient than Casper for
PMANN queries.

8.2. Effectiveness of our privacy protection technique

We develop the first approach to protect a user’s loca-
tion privacy from the overlapping rectangle attack and
the combined attack that also integrates the maximum
movement bound attack if the user’s maximum velocity
is known to the LSP. Thus, our technique does not allow
the LSP to refine the user locations within the obfusca-
tion rectangles by applying these attacks. Since there is
no other approach that addresses the overlapping rectan-
gle attack, we cannot compare our technique with oth-
ers in the experiments. Even the naive technique that
we discussed in Section[2]does not satisfy the definition
of an MkNN query. To avoid the overlapping rectangle
attack, the naive technique sends disjoint rectangles to
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the LSP and thus cannot ensure kNN answers for every
point of a user’s trajectory, which is a necessary condi-
tion for an MkNN query. In our experiments, we evalu-
ate the effectiveness of our privacy protection technique
by varying different parameters.

The user reveals a sequence of obfuscation rectangles
to the LSP while accessing a PMANN query. The LSP
cannot refine a user location within an individual obfus-
cation rectangle by applying the overlapping rectangle
attack. In addition, we have assumed that the LSP does
not have background knowledge about the user’s loca-
tion (see Section for details) as the user’s location
is considered private and sensitive data. Note that since
the LSP does not know distribution of any parameters
such as confidence level or k, any probabilistic attack is
also not applicable to our case. In our experiments, we
define two measures for location privacy based on what
information a user reveals about location: (i) the trajec-
tory area, i.e., the approximated location of the user’s
trajectory by the LSP, and (ii) the frequency, i.e., the
number of requested obfuscation rectangles per a user’s
trajectory. The larger the trajectory area, the higher the
privacy for the user. This is because the probability is
high for a large trajectory area to contain different sen-
sitive locations and the probability is low that an LSP
can link the user’s trajectory with a specific location.
On the other hand, a lower frequency for a fixed rectan-
gle area represents high level of location privacy since
the LSP has less information about the user’s locations.

The trajectory area is computed from the available
knowledge of the LSP. The LSP knows the obfus-
cated rectangles provided by a user and the known re-
gion for each obfuscated rectangle. The LSP does not
know the user’s required confidence level c/, and the
required number of NNs k, and thus, cannot compute

23

(b)

Figure 17: The bold line shows the trajectory area if the maximum velocity is (a) unknown to the LSP, (b) known to the LSP

GCR(cl,, k;). Although the LSP can compute GCR(cl, k)
from the user’s specified confidence level ¢/ and the
specified number of NNs k, GCR(cl, k) does not guar-
antee that the user’s location resides in GCR(cl, k) for
the current obfuscation rectangle. We know that the user
needs to reside within GCR(cl,, k,) of the current ob-
fuscation rectangle to ensure the required confidence
level for the required number of NNs. However, the LSP
knows the known region C(o,r) and that GCR(cl,, k,)
must be inside the known region of the current obfusca-
tion rectangle because the confidence level of the user
for any data object outside the known region is 0. Thus,
the trajectory area for a user’s trajectory is defined as
the union of the known regions with respect to the set
of obfuscation rectangles provided by the user for that
trajectory. On the other hand, when the LSP knows the
maximum velocity, then the LSP can use the maximum
movement bound in addition to the known region to de-
termine the trajectory area.

Definition 8.1. (Trajectory Area) Let {R{,R>,...,R,} be
a set of n consecutive rectangles requested by a user to
an LSP in an MkNN query, Ci(o, 1) be the known region
corresponding to R;, and M; be the maximum movement
bound corresponding to R;. The trajectory area is com-
puted as Uy<ij<,—1(Ci(0,r) N M;) U Cy(0, r). If the maxi-
mum bound is unknown to the LSP then the trajectory
area is expressed as U, <;<,Ci(0, ).

Figures [[7(a) and [I7(b) show trajectory areas when
the maximum velocity is either unknown or known to
the LSP, respectively. In our experiments, we compute
the trajectory area through Monte Carlo Simulation. We
randomly generate 1 million points in the total space.
For the overlapping rectangle attack, we determine the
trajectory area as the percentage of points that fall inside



Ui<i<nCi(0, r). On the other hand, for the combined at-
tack (i.e., the maximum velocity is known to the LSP),
we determine the trajectory area as the percentage of
points that fall inside U;<j<,—1(Ci(0,r) N M;) U C,(0, ).

Thus, the trajectory area is measured as percentage of
the total data space. On the other hand, the frequency is
measured as the number of requested obfuscation rect-
angles per trajectory of length 5000 units in the data
space of 10,000 x 10,000 square units. Note that for the
sake of simplicity, in our experiments, we use fixed area
for every obfuscation rectangle requested for a trajec-
tory.

To simulate moving users, we first randomly gener-
ate starting points of 20 moving users that are uniformly
distributed in the data space and then generate the com-
plete movement path (trajectory) for each of these start-
ing points. Each trajectory has a length of 5000 units
and consists of a series of random points; consecutive
points are connected with segments of a random length
between 1 to 10 units. We generate an obfuscation rect-
angle of a specified area for user requests. Its default
area is 0.005% of the total data space, which reflects a
small suburb in California (about 20 km? with respect to
the total area of California) that is sufficient to protect a
user’s location. Since the obfuscation rectangle genera-
tion is random, we repeat every experiment 25 times for
each trajectory and present the average performance re-
sults. Although Algorithm [2]supports different c/, cl,, k,
k, and ¢ in consecutive obfuscation rectangle requests,
we use fixed values for the sake of simplicity. The safe
distance ¢ has a default value of 10. In the combined at-
tack, we set the user’s maximum velocity as 60 km/h.
For simplicity, we assume that the user also moves at
constant velocity of 60 km/h.

The trajectory area is computed based on known re-
gions, where the size of the known region is affected by
the distribution of data objects, the obfuscation rectan-
gle area, confidence level and the number of nearest data
objects. We use both real and synthetic data sets in our
experiment, where two synthetic data sets are generated
using uniform and Zipfian distributions of data objects.
In the next sections, we present our experimental results
showing the effect of obfuscation rectangle area, cl,, cl,
k., k and ¢ on the level of a user’s location privacy.

8.2.1. The effect of obfuscation rectangle area

In this set of experiments, we evaluate the effect of
obfuscation rectangle area on the three privacy pro-
tection options for our algorithm REQUEST_PMANN.
In the first option, the user sacrifices the accu-
racy of answers to achieve location privacy. Using
this option, the user’s required confidence level is
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lower than 1 and the user specifies higher confi-
dence level to the LSP than her required one. In this
set of experiments, we represent the first option for
our algorithm REQUEST_PMkNN(c/, cl,, k, k) as RE-
QUEST_PMANN(1,0.75,10,10), where the user hides
the required confidence level 0.75 from the LSP, in-
stead specifies 1 for the confidence level. In the sec-
ond option, the user does not sacrifice the accuracy of
the answers for her location privacy; instead the user
specifies a higher number of data objects to the LSP
than her required one. For the second option, we set the
parameters of REQUEST_PMkNN(c/, cl,, k, k,) as RE-
QUEST_PMKNN(1,1,20,10). In the third option, the
user hides both of the required confidence level and the
required number of data objects. Thus, the third option
is represented as REQUEST_PMANN(1,0.75,20,10).

We vary the obfuscation rectangle area from 0.001%
to 0.01% of the total data space. For all the three op-
tions, we observe in Figures [I8(a) and [I§[b) that the
frequency decreases with the increase of the obfusca-
tion rectangle area for both overlapping rectangle attack
and combined attack, respectively. On the other hand,
Figures|[I8]c) and[I8]d) show that the trajectory area in-
creases with the increase of the obfuscation rectangle
area for overlapping rectangle attack and combined at-
tack, respectively. Thus, the larger the obfuscation rect-
angle area, the higher the location privacy in terms of
both frequency and trajectory area. This is because the
larger the obfuscation rectangle the higher the probabil-
ity that the obfuscation rectangle covers a longer part of
a user’s trajectory.

Figures [[§](a) and [I§][b) also show that the frequency
for hiding both confidence level and the number of NN's
is smaller than those for hiding them independently for
any obfuscation rectangle area, since each of them con-
tributes to extend the GCR(cl,, k,). In addition, we ob-
serve that the rate of decrease of frequency with the in-
crease of the obfuscation rectangle area is more signif-
icant for the option of hiding the confidence level than
the option of hiding the number of NNs.

We observe from Figures([I8]a) and[T8|b) that the fre-
quency in the combined attack is higher than that of
the overlapping rectangle attack. The underlying cause
is as follows. In our algorithm to protect the overlap-
ping rectangle attack the obfuscation rectangle needs to
be generated inside the current known region. On the
other hand, in case of the combined attack the obfus-
cation rectangle needs to be inside the intersection of
maximum movement bound and the known region. Due
to the stricter constraints while generating the obfus-
cation rectangle to overcome the combined attack, the
frequency becomes higher for the combined attack than
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processing performance for the California data set

that of the overlapping rectangle attack. For the same
reason, the trajectory area is smaller for the combined
attack than that of the overlapping rectangle attack as
shown in Figures[I8]c) and [T8(d).

In Figures [I9a)-(d), we observe that both I/Os and
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with the increase of the specified confidence level ¢/ for
a fixed required confidence level cl, = 0.5. With the in-
crease of ¢/, for a fixed cl,, the extension of GCR(cl,, k,)
becomes larger and the level of location privacy in
terms of frequency increases. On the other hand, Fig-
ures [2Tfc)-(d) show that the trajectory area increases
with the increase of cl, as expected.

We observe from Figures 20| and [21] that the fre-
quency is higher and the trajectory area is smaller in
case of the combined attack than those for the case of
the overlapping rectangle attack, which is expected due

0.01
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Figure 24: The effect of ¢ on the level of location privacy

to stricter constraints in the generation of obfuscation
rectangle in the combined attack than that of the over-
lapping rectangle attack.

We also see that a user can achieve a high level of
location privacy in terms of frequency by reducing the
value of cl, slightly. For example, in case of the over-
lapping rectangle attack, the average rate of decrease of
frequency are 19% and 10% for reducing the ¢/, from
0.9 to 0.8 and from 0.6 to 0.5, respectively, for a fixed
cl = 1. In case of the combined attack, the average rate
of decrease of frequency are 23% and 11% for reducing
the ¢/, from 0.9 to 0.8 and from 0.6 to 0.5, respectively,
for a fixed ¢/ = 1. Since the trajectory area almost re-
mains constant for different ¢/, and we can conclude
that a user can achieve a high level of location privacy
by sacrificing the accuracy of query answers slightly.
On the other hand, from Figures @ we can see that the
level of location privacy in terms of both frequency and
trajectory area achieves maximum when the specified
confidence level is set to 1.

Note that the query processing overhead for a
PMKNN query can be approximated by multiplying the
frequency for that query with the query processing over-
head of single obfuscation rectangle (Section [8.T).

8.2.3. The effect of k, and k

In these experiments, we observe the effect of the re-
quired and the specified number of nearest data objects
on the level of location privacy. We vary the value of
the required and the specified number of nearest data
objects from 1 to 20 and 5 to 25, respectively.

Figures 22[a)-(b) show that the frequency increases
with the increase of the required number of nearest data
objects k, for a fixed specified number of nearest data
objects k = 25. Similar to the case of confidence level,
we find that the larger the difference between required
and specified number of nearest data objects, the higher
the level of location privacy in terms of frequency. On
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the other hand, Figures c)—(d) show that the trajec-
tory area almost remains constant for different k,.

Figures|23[show that the frequency decreases and the
trajectory area increases with the increase of k for a
fixed k, = 1, which is expected as seen in case of confi-
dence level.

Similar to confidence level, we also observe from
Figures 22| and 23| that the frequency is higher and the
trajectory area is smaller in case of the combined attack
than those for the case of the overlapping rectangle at-
tack.

In Figures[23] we also see that the rate of increase of
the level of location privacy in terms of both frequency
and trajectory area decreases with the increase of k. For
example, the highest gain in the level of location privacy
for both frequency and trajectory area is achieved when
the value of k is increased from 5 to 10. Thus, we con-
clude that the value of k can be set to 10 to achieve a
good level of location privacy for a fixed k, = 1.

8.2.4. The effect of 6

We vary ¢ from 0 to 20 and find the effect of § on the
level of location privacy in terms of frequency and tra-
jectory area. Figures 24[(a)-(b) show that the frequency
increases with the increase of ¢ for both the overlapping
rectangle attack and the combined attack. On the other
hand, Figures [24{c)-(d) show that the trajectory area al-
most remains constant for different J.

9. Conclusions

We have identified the overlapping rectangle attack
in an MkNN query and developed a technique that over-
comes this attack. Our technique provides a user with
three options: if a user does not want to sacrifice the ac-
curacy of answers then the user can protect her privacy
by specifying a higher number of NNs than required,
which usually comes at a higher cost; alternatively, the



user can specify a higher confidence level than required,
which incurs a slightly lower accuracy in the query an-
swers; or a user can combine both techniques. We have
validated our privacy protection technique with exper-
iments and have found that the larger the difference is
between the specified confidence level (or the specified
number of NNs) and the required confidence level (or
the required number of NNs), the higher is the level
of location privacy for MKNN queries. We have also
proposed an efficient algorithm, CLAPPINQ, which is at
least two times faster than Casper and requires at least
three times less 1I/Os.
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