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Abstract— Detecting changes in stock prices is a well known
problem in finance with important implications for monitoring
and business intelligence. Forewarning of changes in stock price,
can be made by the early detection of changes in the distributions
of stock order numbers. In this paper, we address the change
detection problem for streams of stock order numbers and
propose a novel incremental detection algorithm. Our algorithm
gains high accuracy and low delay by employing a natural Poisson
distribution assumption about the nature of stock order streams.
We establish that our algorithm is highly scalable and has linear
complexity. We also experimentally demonstrate its effectiveness
for detecting change points, via experiments using both synthetic
and real-world datasets.

I. INTRODUCTION

In the financial world, there is great interest in prompt
detection of stock price change, which is critical for making
intelligent trading decisions. Directly observing stock price
usually leads to delayed report of changes, since we will not
notice a stock price change until it has already happened. In
this paper, we follow an alternative way of detecting stock
price change through the detection of distribution change in
the number of stock orders, based on the following well-
established findings in financial research. When there is private
information (e.g., a company is going bankrupt) available to
a small group of traders, the private information will cause
abnormal trading behavior that changes the distribution of the
number of stock orders preceding the stock price change [5],
[1]. In their seminal research paper, Easley et al. [5] argue that
“it is private information rather than public information that
leads to abnormal trading activity preceding price changes”.
For example, if some traders know inside news that an oil
company has found a new oil source, they will submit large
numbers of orders to buy the stocks of that company. This
abnormal behavior will cause a change in the distribution of
the number of stock orders, and the distribution change of
the number of stock orders will in turn cause stock price
increase in the near future. If we can monitor the distribution
change of the number of stock orders, then we can make a
better prediction of the stock price change, even if we do not
know the private information (i.e., the inside news in the above
example).

It is also widely accepted and validated in the financial
research community that stock order arrivals are independent

of each other and the number of orders in the cases with private
information (available to a smaller group of traders) and the
number of orders in the cases without private information
follow two different Poisson distributions [5], [1]; this actually
serves as the basis of sequential trading models for high-
frequency stock data in finance.

In this paper, our goal is to detect the distribution change
in the sequence of stock orders. Due to the nature of financial
applications, a change point detection algorithm should satisfy
the following three key requirements: (1) Accuracy: the algo-
rithm should detect as many as possible actual change points
and generate as few as possible false alarms. (2)Promptness:
the algorithm should detect a change point as early as possible.
(3)Online: be efficient enough for a realtime environment.

Most of the existing online detection algorithms use a
sliding window framework. The windows may slide forward in
different ways. Kifer et al. [7] based their detection algorithms
on a two-window paradigm. The reference window for the
current segment is fixed, and the current window moves
forward one step each time if no change point is reported.
Another strategy is to move the reference window and current
window at the same time. It is used in algorithms such as the
kernel change detection method (KCD) in [4]. The difference
between the two windows is compared using the likelihood,
Bayesian inference, mixture models, K-L divergence, etc [2],
[8], [9]. However, these sliding-window-based methods inher-
ently suffer from a high delay.

Existing methods for detecting distribution change such
as the Wilcoxon method (WXN) [6] and the kernel change
detection method (KCD) [4] are non-parametric methods.
We adopt the Poisson assumption for stock orders in this
paper. Although various works in statistics have studied the
detection of change points for Poisson sequences [3], [10],
these methods need to make a hypothesis on the values of pre-
change and post-change density parameters first. A maximum
likelihood (ML) method is used to detect distribution change
in our paper.

The main novelty of our work is: we monitor the stock
price by detecting the change in stock order streams. We
adopt a parametric approach to attack the distribution change
problem. The parametric approach yields a higher accuracy,
while greatly reducing the computation time. A new way of



advancing the reference window leads to a low delay of change
point detection. We also provide a theoretical analysis that
guides the choice of parameters for our algorithm.

II. PROBLEM DESCRIPTION

Motivated by the sequential trading model [5] in finance,
our research problem is formulated in Eq.(1): the number of
sell orders or buy orders in a period, X , is a random variable
governed by the Poisson distribution. x1, x2, . . . , xi, . . . , are
a sequence of sample values of X . It independently follows
the Poisson distribution λx

1e−λ1/x! in the normal status, that
is no news occurs. When a news event occurs and takes effect,
more orders are submitted. At this time, the order number is
in the abnormal status and change to follow the distribution
λx

2e−λ2/x!. After the market digests all the information, the
order number will recover to the normal status in which the
order number follows the distribution λx

1e−λ1/x!, where λ1

and λ2 are unknown. We aim to find the change points,
τ1,τ2,τ3,. . . , between the two alternate distributions in an
online manner.

xi ∈





Poisson(λ1) i = 1, . . . , τ1 − 1
Poisson(λ2) i = τ1, . . . , τ2 − 1
Poisson(λ1) i = τ2, . . . , τ3 − 1
· · ·

(1)

III. ONLINE CHANGE POINT DETECTION

In this section, we will present our online algorithms for
change point detection, and provide an analysis of parameters.

A. Online Change Point Detection Algorithm

Different from methods based on sliding windows, our
method judges whether each incoming data point is a change
point, one by one, meaning a lower delay. The main idea
of our method is that given the current segment, if the new
incoming point is from the same distribution, the likelihood
function ideally should be maximized under the new estimated
distribution parameter. To identify the changes in time, we
emphasize the influence of the newly arrived data point. But
we don’t need any a priori assumptions on the distribution
parameter. It is learnt automatically during the change point
detection process from the data stream. The length of our
window increases until a change point is detected.

Suppose the sequence x1,. . . ,xi,. . . (i=1, 2,. . . ) is sample
values of independent random variables that follow the Poisson
distribution. Let Xi:j denote the subsequence xi, . . . , xj (i <
j). If the latest change point is xi, and xj is the current point,
then the subsequence Xi:j is called the current segment, which
means xi,. . . , xj are from the same distribution. Since xi,. . . ,
xj follow the distribution λxe−λ/x!, we can estimate λ by the
maximum log likelihood function:

L̃(λ|Xi:j) ==
j∑

t=i

[xt ln(λ)− λ− ln(xt!)], (2)

and then get the estimation λ̂ =
∑j

t=i xt/(i− j + 1) = x̄.

It is known that x̄ is an unbiased estimator of λ. When the
new data point xj+1 become available, we update the estimator
with λ̂′ = (1 − α)λ̂ + αxj+1 (α ∈ [0, 1]). If the new point
xj+1 belongs to the same distribution as the current segment,
then

E[λ̂′] = (1− α)E[λ̂] + αE[xj+1]
= (1− α)λ + αλ = λ,

where E[·] denotes the expectation. λ̂′ is still the unbiased es-
timator of λ. λ̂′ should maximize the probability p(Xi:j+1|λ̂′).
So we can get p(Xi:j+1|λ̂′) ≥ p(Xi:j+1|λ̂). Due to the
estimate error, λ̂′ may not maximize p(Xi:j+1|λ̂′), that means
p(Xi:j+1|λ̂′) may be less than p(Xi:j+1|λ̂). But since they are
both the unbiased estimators of λ, p(Xi:j+1|λ̂′) should not
be significantly less than p(Xi:j+1|λ̂). That is, p(Xi:j+1|λ̂)−
p(Xi:j+1|λ̂′) < δ, where δ is the user-specified threshold.

Otherwise, the point xj+1 is a change point and from the
Poisson distribution with λ1 = λ + ε. Let ε > 0. Then

E[λ̂′] = (1− α)E[λ̂] + αE[xj+1] = λ + αε.

If we set the value of α close to 1, E[λ̂′] is close to λ2. At
this time, p(Xi:j+1|λ̂′) must be much less than p(Xi:j+1|λ̂)
according to the interpretation of maximum likelihood. There-
fore, if p(Xi:j+1|λ̂)−p(Xi:j+1|λ̂′) > δ, we say the point xj+1

is a change point. Since α can control the closeness of E[λ̂′] to
λ2, it has an effect on the early detection of the change point.
The structure of the algorithm MDD is given in Algorithm
1. In the algorithm, at each step we add one more point in
and update the distance measure incrementally. Therefore, the
computational complexity of our method for a time series with
n points is O(n).

Algorithm 1. ML based Distribution Change Point
Detection Algorithm (MDD)
Input: data stream X = (x1, x2, . . . , xi, . . . ), the
initial window length w, threshold δ, and α
Output:change points c1, c2, . . . , cn, . . .
Initial: id = 1; c1 = id, i=1;
Read w points to Q = {x1, . . . , xw} from xid

λ̂ =
∑w

t=1 xt/w
While not the end of the sequence

Read the point xid+w−1+i,
λ′ = (1− α)λ̂ + αxid+w−1+i

L1 = L(Q ∪ xid+w−1+i, λ̂)
L2 = L(Q ∪ xid+w−1+i, λ

′)
If L2 < L1 − δ

Report xid+w−1+i as a change point
id = id + w − 1 + i
i = 1
Read w points to Q from xid

Else
Q = Q ∪ xid+w−1+i

i = i + 1
EndIf
λ̂ =

∑
xi∈Q xi/|Q|

EndWhile

B. Analysis of Parameter Behavior

In our algorithm, w,α, δ are the parameters that need to
be specified by the user. Suppose x1, . . . , xn are known to



independently and identically follow the Poisson distribution
with parameter λ, and xn+1 is the newly arrived data point.
According to our algorithm,

L1 = L(λ̂|X1:n+1) = ln(λ̂)
n+1∑

i=1

xi − (n + 1)λ̂, (3)

L2 = L(λ′|X1:n+1) = ln(λ′)
n+1∑

i=1

xi − (n + 1)λ′, (4)

where λ̂ =
∑n

i=1 xi/n is the maximum likelihood estimator
of λ, and λ′ = (1− α)λ̂ + αxn+1. Then, we have

Theorem 1: If xn+1 is from the same distribution as
x1, . . . , xn, then E[p(X1:n+1|λ̂)− p(X1:n+1|λ′))] = 0.

In practical computation, we use the difference in log
likelihoods. Let’s consider L2 − L1,

L2 − L1 = (nλ̂ + xn+1) ln[1 + α(
xn+1

λ̂
− 1)] (5)

−(n + 1)α(xn+1 − λ̂),

By means of the second order Maclaurin polynomial series of
ln(1 + x),

ln[1 + α(
xn+1

λ̂
− 1)] = α(

xn+1

λ̂
− 1)− ξ2

2
, (6)

where

ξ =
α(xn+1

λ̂
− 1)

1 + θα(xn+1

λ̂
− 1)

(0 < θ < 1).

Substituting Eq.(6) into Eq.(5), and we get

L2 − L1 = α(
xn+1 − λ̂√

λ̂
)2 − (nλ̂ + xn+1)

ξ2

2
, (7)

Then

L2 − L1 < α(
xn+1 − λ̂√

λ̂
)2. (8)

In Eq.(8), if xn+1 is not a change point, the expression on the
right side follows the distribution χ2(1). Since the expectation
of χ2(1) equals 1, it follows that E[L2 − L1] < α.

In Eq.(6), the expansion of the Maclaurin polynomial series
requires |α(xn+1/λ̂−1)| < 1, then α < |λ̂/(xn+1−λ̂)|. From
Chebishev’s inequality, we know

p(|xn+1 − λ| > kλ) ≤ 1/k2.

If we set k = 5, then p(|xn+1 − λ| > 5λ) ≤ 0.04. So if
we set α ≤ 0.2, then |α(xn+1/λ − 1)| < 1 is satisfied at the
probability 96%. In a practical setting, we usually set α ≤ 0.5.

Considering the parameter δ, if x1, . . . , xn and xn+1 are
from the same distribution Poisson(λ1), then the maximum
log likelihood is

L1 = ln(λ1)
n+1∑

i=1

xi − (n + 1)λ1. (9)

If x1, . . . , xn are from the distribution Poisson(λ1), and xn+1

is from the distribution Poisson(λ2), then the corresponding
true maximum log likelihood is

L3 = ln(λ1)
n∑

i=1

xi − nλ1 + xn+1 ln(λ2)− λ2. (10)

L1 and L3 both approximate the true probability, but L2

departs significantly from the true probability. Therefore, if
xn+1 is a change point, |L2−L1| ≥ |L3−L1|. The ideal δ is

δ ≥ |L3 − L1| = |xn+1 ln(λ2/λ1)− (λ2 − λ1)|. (11)

IV. EXPERIMENTS

Our experiments are conducted on synthetic Poisson se-
quences and real stock data. The hardware used is an Intel
2.1GHz CPU with 2G memory. Programs were written in C++
and run using Windows Vista.

A. Synthetic dataset

Since the numbers of orders are assumed to follow the
Poisson distribution empirically in finance research [5], we
first conduct experiment with the synthetic Poisson sequences.

Our algorithm is compared with the WXN method in [7]
and the KCD method in [4]. The evaluation criteria are

Precision =
Number of correct detections

Number of detections
,

Recall =
Number of correct detections

Number of real changes
,

F1 =
2× Recall× Precision

Recall+Precision
,

Larger precision and recall mean better results for the algo-
rithm. But it is difficult to simultaneously maximize these two
indicators. So the F-measure (F1) is used to take Precision and
Recall into account together. To determine whether a detected
change point is a real change point, we relax the condition for
correct detection as follows: if

Dist(di, RCP) = min
rj∈RCP

{|di − rj | ≤ ε}. (12)

then di ∈ DCP is viewed as a real change point, where RCP
and DCP respectively denote the position set of real change
points and that of detected change points.

Table I gives the average results on 100 Poisson sequences
under the best set of parameters. DlyT denotes the average
delayed time points of the correct detections. The listed result
of WXN is obtained under the confidence level 0.001 when
both windows contain 10 points. The parameter of the KCD
method is determined by following the method in [4]. The
result of our algorithm MDD is obtained at α = 0.2, δ =
1.2(λ2−λ1), and the initial window lengths w = 1, 10. From
Table I, we can see WXN gets the best result for precision and
our method achieves a similar recall as WXN. The F1 results
of our method is satisfactory. However, the average delayed
detection time of our algorithm is the smallest. It is crucial for
online decision making. Figure 1 shows the computing time of



TABLE I
RESULTS ON POISSON SEQUENCES

Method Pre Rec F1 DlyT
WXN 0.90 0.83 0.86 9.68
KCD 0.52 0.53 0.52 9.49
MDD(w = 1) 0.76 0.80 0.78 2.17
MDD(w = 10) 0.79 0.82 0.80 1.63
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Fig. 1. Computing Time by CPU clock

each method under the numbers of change points. Our method
is the fastest one.

B. Stocks dataset

We also test the proposed algorithm on 30 stocks from
the Shanghai Stock Exchange. There are about 12000 points
prepared for each stock’s buy/sell sequence. In practice, we
do not know the real change points in the order flow. Since
the changes in the order number flow will precede the change
in stock price mentioned in Section 1. we use ”lift” as our
criterion to test the effectiveness of our method. Let P(J)

i and
Pc(J)

i denote the price change between the J time intervals
before and after point i and change point i, respectively. The
definition of ”lift” is given as follows:

lift =
∑m

i=1 Pc(J)
i /m

∑n
i=1 P

(J)
i /n

, (13)

where n is the number of total points in the stock sequence
and m is the number of detected change points. That is the
ratio of average price change on the detected points to the
average price change on the whole sequence.
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Fig. 2. Lifts under J=2, 6, 12, and 18

We calculate the average lift under J = 2, 6, 12, and 18.
That means the lift is measured at 10 minutes, 30 minutes,
1 hour, and 90 minutes before and after the points. Figure 2
shows the average lifts of the three methods on 30 stocks.
The lift of the WXN method is not as significant in short time
intervals (J=2,6) as in long time intervals (J=12,18) compared
with other methods. the KCD method is a little better than
ours. The average computing time for WXN, KCD, and ICD
is 190.9, 3057.47, 185.83 by CPU clock respectively. But
KCD takes more time to find change points when these points
are being identified. If taking into account both detection delay
and real-time decision, our algorithm is the better choice for
the online detection of changes in stock data than the other
two methods.

V. CONCLUSIONS

In this paper, we have proposed an online algorithm, named
MDD, for detecting distribution change in stock order streams,
through a parametric approach. The MDD algorithm is char-
acterized by low computational time and low delay in detec-
tion, and simplicity in choosing parameters with satisfactory
accuracy. We have verified the efficiency and effectiveness
of our algorithm through experiments on both synthetic and
real datasets. Our idea of incrementally monitoring certain
parameters can also be potentially extended to time series
following other distributions.
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