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Abstract— We propose and study a new type of location
optimization problem: given a set of clients and a set of existing
facilities, we select a location from a given set of potential
locations for establishing a new facility so that the average
distance between a client and her nearest facility is minimized.
We call this problem the min-dist location selection problem,
which has a wide range of applications in urban development
simulation, massively multiplayer online games, and decision
support systems. We explore two common approaches to lo-
cation optimization problems and propose methods based on
those approaches for solving this new problem. However, those
methods either need to maintain an extra index or fall short
in efficiency. To address their drawbacks, we propose a novel
method (named MND), which has very close performance to the
fastest method but does not need an extra index. We provide a
detailed comparative cost analysis on the various algorithms. We
also perform extensive experiments to evaluate their empirical
performance and validate the efficiency of the MND method.

I. I NTRODUCTION

Location optimization is an important problem for spatial
decision support systems. A number of studies [1], [2], [3]
proposed solutions to various instances of such problems. In
this paper, we consider a new location optimization problem
that cannot be efficiently solved by existing techniques. The
problem is motivated by the following applications.

In urban development simulation, urban planners need to
consider the influence of public infrastructure or business
centers on the residents. Very often they need to select a
location for establishing a new facility (e.g., fire hydrant,
public phone booth, hospital, bus stop, etc.) and a commonly
used criteria is to select the location that can minimize the
average distance between a resident and her nearest facility so
that people can access the facilities in the shortest time.

In the multi-billion dollar computer game industry, mas-
sively multiplayer online games (MMOGs) likeWorld of
Warcraft have group quests for players to complete in teams,
which mostly involve killing mobs (monsters or other non-
player characters). As the quests often take players days or
even weeks to complete, it is common for players to leave
and rejoin the game during a quest. When a player rejoins the
game, the subquest she was on may have been completed by
her team, which has moved on to another region. It is a waste
of time for this player to rejoin the game from where she left.
A very helpful utility for the game is selecting a starting point
from a set of preset rejoin locations to minimize the average
distance between a mob and its nearest player, so that players
can focus on completing quests rather than walking.
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Fig. 1. An example for the problem

The example in Fig. 1 illustrates the problem:{c1,c2, ...,c8}
is a set of clients (residents or mobs),{ f1, f2} is a set of
existing facilities (public facilities or teammates) and{p1, p2}
is a set of potential locations (candidate locations for new
facility establishment or rejoin). Now we need to select one
from the potential locations to establish a new facility. Before
adding a new facility,f1 is the nearest facility ofc1, c2, c3

andc6; f2 is the nearest facility ofc4, c5, c7 andc8. If a new
facility is established atp1, it will become the nearest facility
for c1, c2 andc3. If a new facility is established atp2, it will
become the nearest facility ofc4 andc5. As we can observe,
p2 results in a smaller average distance between a client and
the nearest facility, so it is selected as the answer.

Besides the above described applications, many organiza-
tions and businesses face similar decision making problems
(e.g., McDonald’s needs to add new restaurants; a wireless
service provider needs to set up new hotspots). This paper
studies how to efficiently select a potential location for a
new facility, so that the average distance between a client
and her nearest facility is minimized. We call it themin-dist
location selection problem. In the aforementioned applications,
the min-dist location selection is usually performed frequently.
Therefore, we formulate the problem as the following query.

A. Problem Formulation

All data objects (clients, facilities and potential locations)
are represented by points in an Euclidean space. We may refer
to the data objects asdata pointsor simply aspoints. Let
dist(o1,o2) denote the distance between two pointso1 and
o2, and nc be the number of clients. The min-dist location
selection query is defined as follows.

Definition 1: Min-dist location selection query.
Given a set of pointsC as clients, a set of pointsF as

existing facilities and a set of pointsP as potential locations,
the min-dist location selection query finds a potential location
pi ∈ P for a new facility to be established at, so that∀p j ∈



P and p j 6= pi :

∑c∈C{min{dist(c,o)|o∈ F ∪ pi}}

nc

≤
∑c∈C{min{dist(c,o)|o∈ F ∪ p j}}

nc
.

Since the denominator is the same on both sides of the
inequality, the problem is equivalent to minimizing the sum
(instead of the average) of the distances between the clients
and their respective nearest facilities.

Although an existing commercial software [4] can solve
several simpler location optimization problems, none can solve
the min-dist location selection problem (see Section II).

B. A Naive Algorithm

A straightforward algorithm to the min-dist location selec-
tion query is to sequentially check all potential locations. For
every new potential locationp, we compute the sum of the
distances of all clients to their respective nearest facilities.
The potential location with the smallest sum is the answer.
We call this algorithm thesequential scan (SS)algorithm.

In SS, repeatedly finding the nearest facility to each client
for every potential location is too expensive. Therefore, we
precompute the distances of all clients to their respective
nearest facilities and store the distances. This precomputation
involves a nested loop iterating through every client and for ev-
ery client iterating through every facility.KNN-join algorithms
(e.g., [5]) can do this more efficiently and maintain the results
dynamically when clients and facilities are updated. The SS
algorithm with precomputation is shown in Algorithm 1, where
c.dnn(c,F) denotesc’s precomputed distance to her closest
existing facility and is stored withc’s record.

Algorithm 1: SS(C, P)
1 optLoc← NULL; // optLoc is the optimal location;
2 for p∈ P do
3 p.distSum← 0;
4 for c∈C do
5 if dist(p,c)< c.dnn(c,F) then
6 p.distSum← p.distSum+dist(p,c);

7 else
8 p.distSum← p.distSum+c.dnn(c,F);

9 if optLoc= NULL or p.distSum< optLoc.distSumthen
10 optLoc← p;

11 returnoptLoc;

We see that even with precomputation SS is still very costly
as it has to access the whole client datasetnp

Cp
times, wherenp

is the cardinality ofP andCp is the capacity of a block forP
(assuming we readP in disk blocks). Therefore, the need for
an efficient algorithm is obvious.

C. Contributions and Organization of the Paper

In this paper, we examine solutions to the min-dist location
selection query and make the following contributions.

• We formulate the min-dist location selection problem and
analyze its basic properties.

• We explore two common approaches to location optimiza-
tion problems and propose methods based on them for
solving this new problem, the quasi-Voronoi cell method
and the nearest facility circle method.

• As methods based on the common approaches either need
to maintain an extra index or fall short in efficiency, we
propose a method called MND, which uses a single value
to describe a region that encloses the nearest existing
facilities of a group of clients, so that the search of
influenced clients for a potential location can be done
groupwise. This results in an algorithm that has very close
performance to the fastest of the previous algorithms
without the need for an extra index.

• We provide a thorough cost analysis of all methods.
• We conduct extensive experiments to evaluate the empir-

ical performance of all methods. The results validate the
efficiency of the MND method.

Section II reviews related work. Section III discusses the
basic properties of the problem and presents a solution frame-
work. Sections IV, V and VI present the quasi-Voronoi cell
method, the nearest facility circle method and the MND
method, respectively. Section VII analyzes the cost of the
methods. Section VIII presents the experimental results and
Section IX concludes the paper.

II. RELATED WORK

Location optimization problems are mostly characterized by
optimization functions, based on which they can be classified
into two categories:max-inf problems andmin-distproblems.
Both categories are closely related tonearest neighbor (NN)
search andreverse nearest neighbor (RNN)search. Therefore,
we first review studies of NN search and RNN search, and then
review studies of max-inf problems and min-dist problems.

NN search: Given a set of objectsS and a query objectq,
the NN search returnsq’s nearest objects inS. Two popular
NN search algorithms are depth-first [6] and best-first [7].
The best-first algorithm can retrieve the nearest neighbors
incrementally in order of their distances to the query point.

RNN search: Korn and Muthukrishnan [8] first propose
the RNN query and define the RNNs of an objecto to
be the objects whose respective NN iso. They propose to
use an R-tree variant, named theRNN-tree, in addition to
the original R-tree that maintains the data points to answer
RNN queries. In an RNN-tree, the data entries are stored
in the form of NN circles. An NN circle of a pointo is a
circle centered ato with the distance betweeno and its NN
as the radius. The bounding boxes of these NN circles are
indexed in the RNN-tree. Using this tree, an RNN query is
answered with the data points whose NN circles enclose the
query point. To avoid maintaining the RNN-tree, Yang and
Lin [9] propose theRdNN-tree, which effectively combines
the original R-tree and the RNN-tree. While these methods
require the precomputation of the distance between an object
and its NN, Stanoi et al. [10] propose to process the RNN
queries without precomputation. For a query pointq, their
method dynamically constructs a Voronoi cell that enclosesq
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Fig. 2. Example of a max-inf problem [1]

and contains all its possible RNNs. Only nodes intersecting
the Voronoi cell have to be accessed to check forq’s RNNs.

There are studies on RNN query variants under different
settings. For example, thereverse k nearest neighbor (RkNN)
query finds objects whosek nearest neighbors include the
query object. Wu et al. [11] study the RkNN query on contin-
uously moving objects, which correlates two sets of moving
objects according to their closeness. The continuous join
query on extended moving objects [12], [13] also correlates
multiple sets, but it focuses on intersecting objects with a
time-constraint technique rather than closeness. While these
approached work well for a single R(k)NN query, they are not
tailored for computing RNNs for large amount of objects at
the same time, which is a key difficulty in our study.

Max-inf problems: Max-inf problems maximize the“influ-
ence” of a facility, where influence is typically defined as the
number of clients who are the RNNs of the facility. Cabello
et al. [1] propose theMAXCOV problem that finds a location
for a new facility to maximize its influence. They introduce
the nearest location circle (NLC)to solve the problem, where
the NLC of a clientc is a circle centered atc with its radius
being the distance betweenc andc’s existing nearest facility.
Since only a facility established within the NLC ofc can
be a new nearest facility ofc, to find the solution for the
MAXCOV problem is to find the regions that are enclosed
by the largest number of NLCs. Fig. 2 shows an example,
where the gray regions are the problem solution because each
of them is covered by four NLCs while no region is covered
by more than four NLCs.

Xia et al. [2] propose the top-t most influential sites
problem. They use a branch and bound method to find top-t
facilities in F with the largestinfluencewithin a continuous
spatial regionQ, where the influence of a facility is defined
as the total weight of its RNNs. Du et al. [14] also work on
the max-inf problem with weighted clients and a continuous
regionQ. UsingL1 as the distance metric, this problem finds a
location for a new facility so that its influence is maximized.
Gao et al. [15] define a facility location problem that finds
a location p outside a regionQ (instead of inside a region)
for a new facility so that its“optimality” is maximized. Here,
the optimality of p is defined as a function of the number of
clients inQ whose distance top is within a certain threshold
dc (attracted byp). Intuitively, the more clientsp attracts, the
greater its optimality. A more recent study [16] selects top-
k candidate locations with the largest influence values for a
new facility. These studies differ from ours in optimization

functions and other settings, and do not apply.
Min-dist problems: Zhang et al. [3] propose the min-dist

optimal-location problem. Given a client setC, an existing
facility set F and a regionQ, it finds points withinQ so that
if a new facility is established at any one of these points,
the average distance of the clients to their respective nearest
facilities is minimized. Fig. 3 gives an example, wherept may
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Fig. 3. Example of a min-dist problem [3]

be one of the points in the answer set and it is not the solution
p2 to our problem. To solve the problem, Zhang et al. [3]
propose a method that first identifies a setL of candidate
locations fromQ and then dividesL progressively until the
answer set is found.

Zhang et al.’s problem definition [3] has the same min-dist
optimization function as ours, but our problem definition has
an additional setP, the potential locations given as candidates
for selection. In many real applications, we can only choose
from some candidate locations, e.g., McDonald’s may only
open a new restaurant at a place for rent or sale rather than
anywhere in a region. The main idea of Zhang et al.’s solution
is the fast identification of a small setL of candidate locations
from Q. However, the candidate locations inL could be any
point fromQ, which may not even contain a potential location
from our potential location setP. This means that in the
general case their approach cannot provide a correct answer
to our problem, and thus is not applicable.

Related commercial software:As mentioned in Section I-
A, an existing commercial software [4] can solve several
kinds of simpler location optimization problems. The most
related problem this software can solve is called theminimize
impedance query, which finds locations for a set of new
facilities to minimize the sum of distances between clientsand
their respective nearest facilities. However, this problem does
not consider existing facilities. If we use this software tofind
a set of locationsSl for new facilities, there is no guarantee
that Sl will contain all points in the set of existing facilities
F . Therefore, this software does not solve our problem.

TABLE I

THE LOCATION OPTIMIZATION PROBLEMS

Problem Optim. Solution Distance Datasets
Function Space Function

[1] Max-inf Continuous L2 C, F
[2] Max-inf Discrete L2 C, F
[14] Max-inf Continuous L1 C, F
[15] Max-inf Discrete L2 C, P
[16] Max-inf Discrete L2 C, F , P
[3] Min-dist Continuous L1 C, F
[4] Min-dist Discrete L2 C, P
Proposed Min-dist Discrete L2 C, F , P

Summary: Table I summarizes the differences between



our problem and previously studied location optimization
problems. Most previous problems are max-inf problems and
differ from our problem in optimization functions. For the min-
dist problems, they have the same optimization function as
our problem does, but their problem settings are different.For
example, Zhang et al. [3] consider finding locations for the new
facility from a continuous region. As discussed in the second
paragraph of the related min-dist problems, their problem does
not choose from a set of given candidate locations, which does
not apply to the requirements of our applications.

III. B ASIC PROPERTIES AND ASOLUTION FRAMEWORK

The min-dist location selection query can be redefined in a
form that reduces the search space. This section provides such
a redefinition and a solution framework based on it. Next, we
start with some basic properties of the problem needed for the
redefinition. Table II summarizes frequently used symbols.

TABLE II

FREQUENTLY USED SYMBOLS

Symbols Explanation
o A point in the data space
dist(o1,o2) The distance between two pointso1 ando2
C, F , P The set of clients, existing facilities

and potential locations, respectively
nc, nf , np Cardinality ofC, F , andP, respectively
c, f , p A client in C, an existing facility inF

and a potential location inP, respectively

A. Basic Properties

We call the distance between a clientc and her nearest
facility the nearest facility distance (NFD)of c. Let dnn(o,S)
denote the distance between a pointo and its nearest point in
a setS. Thendnn(c,F) anddnn(c,F ∪ p) denote the NFD of
c before and after a new facility is established on a potential
location p, respectively. The min-dist location selection query
is actually minimizing the sum of all clients’ NFD.

If o is a point not in the setF and dist(c,o) < dnn(c,F),
then establishing a new facility ato will reduce the NFD of
c. In this case, we say thatc can get anNFD reductionfrom
o. We define theinfluence setof o, denoted byIS(o), as the
set of clients that can get NFD reduction fromo. Formally,
IS(o) = {c|c∈C,dist(c,o)< dnn(c,F)}. The influence set of
a potential locationp includes all clients that will reduce their
NFD if a new facility is established atp. For example, in
Fig. 1, IS(p1) = {c1,c2,c3}, and IS(p2) = {c4,c5}.

If IS(p) 6= /0 for a potential locationp, then establishing a
new facility at p will reduce the sum of the clients’ NFD.
We call the sum of the clients’ NFD reduced byp the
distance reductionof p, denoted bydr(p). Formally,dr(p) =
∑c∈IS(p)(dnn(c,F)− dnn(c,F ∪ p)). Minimizing the sum of
the clients’ NFD when adding a facility onp is equivalent to
maximizing dr(p). Therefore, the min-dist location selection
query can be redefined as follows.

Definition 2: Given a set of pointsC as clients, a set of
pointsF as existing facilities and a set of pointsP as potential
locations, the min-dist location selection query finds a potential
location pi ∈ P, so that∀p j ∈ P and p j 6= pi : dr(p j)≤ dr(pi).

B. A Solution Framework

Definition 2 provides a framework for solving the min-dist
location selection problem with the following two steps:

1) Identify IS(p);
2) Computedr(p) and find the potential location with the

largestdr(p).

Since the cardinality ofIS(p) is usually much smaller than that
of C, we do not have to access the whole client dataset for
every potential locationp. Thus, the above framework has a
great potential to improve performance. All methods presented
in this paper will follow this framework. The key issues are:
(i) how to efficiently identify IS(p) and (ii) how to prune
more potential locations from consideration. We will see that
in all methodsdnn(c,F) of every client is used many times
in both steps of the framework. Computingdnn(c,F) on-the-
fly will repeatedly access the datasets of the clients and the
existing facilities, which will incur significant costs. Therefore,
we precomputednn(c,F) for every client and store it with the
client’s record for all methods (including the SS method).

In the next two sections, we explore two common ap-
proaches to location optimization problems and propose meth-
ods based on those approaches for solving the min-dist lo-
cation selection query under the above framework. When a
spatial index is used for a method, we assume an R-tree [17],
although any hierarchical spatial index could be used.

IV. QUASI-VORONOI CELL METHOD

In this section, we propose a so-called “quasi-Voronoi cell”
(QVC) method. For any potential locationp, the Voronoi
cell of p on the setF ∪ p is a regionV that satisfies that
for any point p′ ∈ F ∪ p, p′ 6= p, and for any pointo ∈ V,
dist(p,o) ≤ dist(p′,o) [18]. It is guaranteed that the Voronoi
cell of p encloses all and only the clients inIS(p). We
can use the Voronoi cell to quickly identifyIS(p). However,
computing the Voronoi cell ofp is an expensive operation
itself. Interestingly, this algorithm only needs to identify a
superset ofIS(p) instead of the exactIS(p). Stanoi et al. [10]
show a relatively straightforward way to compute a region
that encloses the Voronoi cell and this region is a good
approximation of the Voronoi cell. We call this region the
quasi-Voronoi cell(QVC). First, we find a superset ofIS(p)
through the QVC ofp. Then, we can use the precomputed
NFD to quickly identify the exactIS(p). Finally, we compute
dr(p) and compare it for all potential locations. Next, we give
details of constructing QVC and the algorithms.

The QVC of a potential locationp is formed as follows. In
the coordinate system with the origin atp and the two axes
parallel with the original axes, find the nearest facility top
in each of the four quadrants and let these nearest facilities
be f1, f2, f3 and f4 as shown in Fig. 4(a). Draw the bisector
between eachfi (i = 1,2,3,4) and p, and the four bisectors
form a polygon. This polygon is the QVC ofp, denoted as
QVC(p). Stanoi et al. [10] prove thatQVC(p) encloses the
Voronoi cell of p. To find the NN in each quadrant, we use the
best-first algorithm [7] to retrieve the NNs until each quadrant



has one. Since this algorithm is based on a spatial index, we
use an R-tree to index the facilities, denoted asRF .
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Fig. 4. Examples of the QVC method

To facilitate finding clients inQVC(p), we indexC using
an R-tree and denote this R-tree byRC. We perform a window
query onRC with the query range being theminimum bounding
rectangle (MBR)of QVC(p). We call the MBR ofQVC(p)
theapproximate influence regionof p and denote it byAIR(p)
(Fig. 4(b)). The window query finds all clients inAIR(p). For
each clientc in AIR(p), we comparedist(p,c) with dnn(c,F),
which has been precomputed.

If dist(p,c)≥ dnn(c,F), then we know thatc is not inIS(p).
Otherwise,c is in IS(p). Since we can identify all the clients
in IS(p), we can then computedr(p). We computedr(p) for
every potential location and the one with the largest distance
reduction is the answer. The QVC method is summarized in
Algorithms 2 and 3.

Algorithm 2: QVC(RC, RF , FP)
1 optLoc← NULL;
2 while not EndOfFile( FP ) do
3 BP← ReadBlock(FP );
4 Sp← /0;
5 for p∈ BP do
6 ContructQVC(p) from RF ;
7 ContructAIR(p), stores it asp.mbr;
8 if p.mbr intersects RC.rootnode.mbr then
9 Sp← Sp∪ p;

10 WQ( RC.rootnode, Sp, optLoc );

11 outputoptLoc;

Algorithm 3: WQ(NC, Sp, optLoc)

1 if NC is a leaf nodethen
2 for p∈ Sp do
3 for ec ∈ NC, dist(p,ec)< ec.dnn(c,F) do
4 p.dr← p.dr+ec.dnn(c,F)−dist(p,ec);

5 if optLoc= NULL or p.dr > optLoc.dr then
6 optLoc← p;

7 else
8 for ec ∈ NC do
9 S′p← /0;

10 for p∈ Sp, p.mbr intersects ec.mbr do
11 S′p← S′p∪ p;

12 WQ(ec.childnode, S′p, optLoc);

V. NEARESTFACILITY CIRCLE METHOD

In this section, we propose a method that exploits the
nearest facility circle (NFC), and we call it the NFC method.
The nearest facility circle of a clientc, denoted byNFC(c), is
a circle centered atc with the radius beingdnn(c,F). It can be
observed that for a potential locationp, c∈ IS(p) if and only
if p is insideNFC(c). An example is shown in Fig. 5, where
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p1 is in the NFCs ofc1, c2 andc3, and p2 is in the NFCs of
c4 and c5. Thus, IS(p1) = {c1,c2,c3} and IS(p2) = {c4,c5}.
Therefore, we only need to check which NFCs enclosep to
identify the clients inIS(p). Motivated by this observation, we
build an RNN-tree [8], denoted asRn

C, to index the NFCs of
all clients. As discussed in the related work,Rn

C is basically
an R-tree that indexes the MBRs of the NFCs of the clients.
It can be built based onRC and maintained in accordance to
the updates ofRC. Note that there is no extra computation to
get the clients’ NFCs, sincednn(c,F) has been precomputed
for all clients and stored inRC. Besides having an RNN-

Algorithm 4: NFC(NP, Nn
C, optLoc)

1 if NP and Nn
C are non-leaf nodesthen

2 for (ep,en
c) ∈ NP×Nn

C, ep.mbr intersects enc.mbr do
3 NFC(ep.childnode, en

c.childnode, optLoc);

4 else if NP is a leaf node and NnC is a non-leaf nodethen
5 for en

c ∈ Nn
C, en

c.mbr intersects NP.mbr do
6 NFC(NP, en

c.childnode, optLoc);

7 else if NP is a non-leaf node and NnC is a leaf nodethen
8 for ep ∈ NP, ep.mbr intersects NnC.mbr do
9 NFC(ep.childnode, Nn

C, optLoc);

10 else
11 for ep ∈ NP, ep intersects NnC.mbr do
12 for en

c ∈ Nn
C,

dist(centerO f(en
c.mbr),ep)<

1
2(edgeLength(en

c.mbr))
do

13 ep.dr← ep.dr+ 1
2(edgeLength(en

c.mbr))−
dist(centerO f(en

c.mbr),ep) ;

14 if ep.dr > optLoc.dr or optLoc= NULL then
15 optLoc← ep;

tree to index the NFCs, this method also uses an R-tree to
index the potential location setP, denoted asRP. Then for
every potential locationp, we can useRn

C to quickly identify
all NFCs that enclosep, which is essentially a point query on
an R-tree. We need to do this for all the potential locations
indexed inRP, which makes the process a spatial join between



P and the set of all NFCs ofC. The spatial join operation finds
out all intersected pairs between two sets of objects. In our
case, whenP is a set of points, the spatial join returns for every
p, the set of NFCs that enclosep. Then we can identifyIS(p)
using the clients corresponding to the NFCs that enclosep and
computedr(p) for every p. We use a standard R-tree based
join algorithm [19] to join RP and Rn

C, which results in the
NFC algorithm, as summarized in Algorithm 4. Note that in
this algorithm, since the MBR of an entryen

c boundsNFC(c)
of en

c’s corresponding clientc, we can computednn(c,F) as
1
2edgeLength(en

c.mbr), whereedgeLength() returns the length
of an edge of a square MBR (lines 12, 13).

VI. M AXIMUM NFC DISTANCE METHOD

We have proposed two methods based on common ap-
proaches to location optimization problems. However, those
methods both have some drawbacks. The QVC method needs
to perform a kNN search to find a nearest facility in each
quadrant for every potential location, which is expensive.The
NFC method is simple and efficient, but needs to maintain
an extra index,Rn

C. In dynamic environments, insertions and
deletions on data occur frequently. Maintaining two indexes on
the datasetC makes database management such as concurrency
control more complicated and brings significant overheads.
Therefore, having the extra index has been considered as a
serious drawback in the solutions to other types of location
optimization problems [10], [9], [20], [21]. We also view the
extra index for the NFC method as a serious drawback.

In this section, we propose a novel method that is simple
and efficient, but requires no extra index, so it overcomes the
drawbacks of the QVC and NFC methods. This method still
exploits the idea of NFCs. However, unlike the NFC method,
which uses an MBR to bound the NFCs of all clients in a node
of RC and physically stores all these MBRs in a separate tree
(Rn

C), this method uses just one value to describe a region that
encloses the NFCs of all clients in a node and stores that value
in the parent entry of the node ofRC. Therefore, this method
avoids using another tree but achieves the same purpose. A
challenge in this method is to define a value for delimiting a
region that can enclose the NFCs of all clients in a nodeNC

of RC as tight as possible.
We propose to use a value with respect to a node called the

maximum NFC distance (MND), denoted asMND(NC) for a
nodeNC. The intuition is that given the NFCs of the clients
indexed by a nodeNC, we find a point from these NFCs whose
distance to the MBR ofNC is the largest. This largest distance
definesMND(NC). If the distance betweenNC and a nodeNP

in RP (the R-tree on the set of potential locations) is larger
than or equal toMND(NC), then for any potential locationp
in NP, no client in IS(p) is from sub(NC) since no point in
the MBR of NP will be enclosed by the NFC of any client in
sub(NC), wheresub(NC) denotes the set of clients contained
in the subtree rooted atNC. In what follows, we first formally
define MND and then explain it in detail.

Given a leaf nodeNC in RC and the clients indexed in
NC, we find a clientci indexed in NC and a pointoi on

MND region of
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Fig. 6. Examples of MND regions

the boundary ofNFC(ci), so that for any other pointo j

on the NFC of any client indexed inNC, minDist(oi ,NC) ≥
minDist(o j ,NC), where minDist(o,N) denotes the minimum
distance between two objects (either points or MBRs).
Then we defineMND(NC) as minDist(oi ,NC). The metric
MND(NC) delimits a rounded rectangular region such that for
any pointo on its boundary,minDist(o,NC) = MND(NC) (cf.
Fig. 6(a)). We call this region theMND regionof NC.

For non-leaf nodes, MND is defined recursively in a bottom-
up manner. Given a non-leaf nodeNC in RC and the child
nodes of NC, we find a pointoi on the boundary of the
MND region of a child nodeNi , so that for any other point
o j on the boundary of the MND region of a child nodeNj ,
minDist(oi ,NC)≥minDist(o j ,NC). Then we defineMND(NC)
asminDist(oi ,NC), and it delimits the MND region ofNC, the
rounded rectangular region in Fig. 6(b).

The definition of the MND region ofNC guarantees that this
region must be intersected by a nodeNP in RP if sub(NC)∩
IS(p) 6= /0, wherep is a potential location in the subtree rooted
at NP. If this region is not intersected byNP, thensub(NC)∩
IS(p) = /0 and we can discard the whole subtree ofNC when
identifying IS(p). This observation, formalized in Theorem 1,
is the pruning strategy of the MND method.

Theorem 1:Let p be a potential location indexed in the
subtree rooted atNP, and minDist(NC,NP) be the minimum
distance between the MBRs of two nodesNC and NP. Then,
sub(NC)∩ IS(p) = /0 if minDist(NC,NP)≥MND(NC).

Proof: By definition, minDist(NC,NP) is the minimum
distance between a point in the MBR ofNC and a point
in the MBR of NP. For any pointp indexed in the subtree
rooted at NP, p is enclosed by the MBR ofNP. Thus,
minDist(p,NC) ≥ minDist(NC,NP). If minDist(NC,NP) ≥
MND(NC), then minDist(p,NC) ≥ MND(NC). According to
the definition ofMND(NC), p is not inside the NFC of any
client indexed byNC. Thus,sub(NC)∩ IS(p) = /0.

Theorem 1 suggests that we only need to check whether a
nodeNC’s distance toNP is less thanMND(NC) to determine
whether any clientc∈ sub(NC) is in IS(p) for any potential
location p enclosed byNP. Like the other methods, we uses
an R-tree to index the clients, but in addition, we store the
MND value of a nodeNm

C in its parent entryem
c , denoted as



em
c .mnd. To distinguish this R-tree from the normal R-tree on

C, we denote it asRm
C . The algorithm for processing the query

mimics a spatial join on the two R-trees,Rm
C and RP. We

traverse the two trees simultaneously and compare every node
from Rm

C with every node fromRP, starting from the roots. As
we traverse down the tree, we compare a node pair(NP,Nm

C )
only if minDist(NP,Nm

C ) < MND(Nm
C ); this condition can be

checked before retrievingNm
C since MND(Nm

C ) is stored in
the parent entry ofNm

C . When the traversal of the two trees
finishes, all nodes that may contain points inIS(p) are checked
and hence we obtainIS(p). Algorithm 5 details the steps.

Algorithm 5: MND(NP, Nm
C , optLoc)

1 if NP and Nm
C are non-leaf nodesthen

2 for (ep,em
c ) ∈ NP×Nm

C , minDist(em
c ,ep)< em

c .mnd do
3 MND(ep.childnode, em

c .childnode, optLoc);

4 else if NP is a leaf node and NmC is a non-leaf nodethen
5 for em

c ∈ Nm
C , minDist(em

c ,NP)< em
c .mnd do

6 MND(NP, em
c .childnode, optLoc);

7 else if NP is a non-leaf node and NmC is a leaf nodethen
8 for ep ∈ NP, minDist(Nm

C ,ep)< Nm
C .mnd do

9 MND(ep.childnode, Nm
C , optLoc);

10 else
11 for (ep,em

c ) ∈ NP×Nm
C , minDist(em

c ,ep)< em
c .mnd do

12 ep.dr← ep.dr+em
c .dnn(c,F)−dist(em

c ,ep);

13 if ep.dr > optLoc.dr or optLoc= NULL then
14 optLoc← ep;

A. Efficient computation of the Maximum NFC Distance

The definition of MND does not give an efficient way for
its computation. According to the definition, MND can be
computed straightforwardly as follows. SupposeNm

C is a leaf
(or non-leaf) node. We compute for every clientc (or child
nodeN) indexed byNm

C the largestminDist(o,Nm
C ) value for

a point o on the boundary ofNFC(c) (or MND region of
N), denoted asmaxMinDist(c,Nm

C ) (or maxMinDist(N,Nm
C )).

Since the MND region ofNm
C should enclose the NFCs (or

MND regions) of allNm
C ’s children, MND(Nm

C ) must be the
largest among all these children’smaxMinDistvalues, that is:

MND(Nm
C ) =























max{maxMinDist(c,Nm
C )|c∈ Nm

C },
if Nm

C is a leaf node
max{maxMinDist(N,Nm

C )|
N is a child node ofNm

C },
if Nm

C is a non-leaf node.

However, minDist(o,Nm
C ) is a piecewise function based on

the relative position of a pointo and the MBR ofNm
C . The

computation of themaxMinDist values requires computing
the maxima of a piecewise function with two variables. This
is typically obtained by numerical methods, specifically, by
finding the stationary points of a Lagrange function. However,
numerical methods are iterative methods and there is no
guarantee on the number of iterations needed to find the
solution. Therefore, the computation cost is very high and
unpredictable for the straightforward way of computing MND.

Next, we propose a much more efficient method to compute
the MND. The key observation is that the MND can be derived
from those points on the boundary ofNFC(c) (MND region
of a child nodeN) that are the “furthest” toNm

C , and we can
limit our search for the “furthest” point within a set of four
candidate furthest points (CFPs)described as follows.

Fig. 7(a) illustrates the CFPs for a clientc indexed in a leaf
nodeNm

C . In the figure,M denotes the MBR ofNm
C , R denotes

NFC(c), R’s center pointO is located atc and its radiusr
denotesr ’s NFD value. A horizontal lineLh and a vertical
line Lv intersect each other atO, and they intersectR at Ih1,
Ih2, Iv1 and Iv2, respectively. The four pointsIh1, Ih2, Iv1 and
Iv2 are the CFPs ofc. Similarly, Fig. 7(b) illustrates the CFPs
for a child nodeN of a non-leaf nodeNm

C . In the figure,M1

denotes the MBR ofN, R denotes the MND region ofN, r
denotesMND(N) and O is R’s center point. The four points
Ih1, Ih2, Iv1 and Iv2 are the CFPs ofN.

We denote the largestminDist(Ii ,Nm
C ) value for the CFPs

asmaxMinDist(I ,M), whereIi denotes a CFP. We will prove
below (Theorems 2 and 3) that one of the CFPs must be the
“furthest” point from the boundary ofNFC(c) (or the MND
region of a child nodeN) to Nm

C , i.e., maxMinDist(I ,M) =
maxMinDist(c,Nm

C ) (or maxMinDist(N,Nm
C )) if Nm

C is a leaf
node (or a non-leaf node). The intuition here is that we can
divide the boundary ofNFC(c) (or the MND region of a child
nodeN) into a set of arc segments, and for each segment, there
must be a CFPIi such that for any pointo on the segment,
minDist(Ii ,Nm

C ) ≥minDist(o,Nm
C ). We find the CFP with the

largestminDist(Ii ,Nm
C ) value and it is the “furthest” point from

NFC(c) (or the MND region ofN) to Nm
C .

O

Q

r

minDist(   ,    )I

minDist(   ,    )Q

h1

L h

vL

R
M

I v1

M

h2I

v2I

I

M

(a) CFPs for a client

M

IminDist(  ,    )

Q

r

Lh

vL

Oh1I h2I

I v1

I v2

R

M1

M

(b) CFP for a node

Fig. 7. Candidate furthest points

Theorem 2:Given an MBRM, a circleR= (O, r) and a set
I of four candidate furthest points, the largestminDist value
from a pointQ on the boundary ofR to M, maxMinDist(R,M),
equals tomaxMinDist(I ,M).

Proof: If R is enclosed byM, then for every point
Q on R, minDist(Q,M) = 0. Thus, maxMinDist(R,M) =
maxMinDist(I ,M) = 0.

Otherwise, there are the following two cases.
(1) The center pointO is on the boundary ofM (cf.

Fig. 8(a)). Without loss of generality, we assumeO is on
the top edge ofM. Then minDist(Iv1,M) = r. For any other
point Q on R, minDist(Q,M)< r. Thus,maxMinDist(R,M) =
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maxMinDist(I ,M) = r.
(2) The center pointO is insideM (cf. Fig. 8(b)). In this

case, we divide the boundary ofR into eight arc segments
using four lines overlapping the four edges ofM. A resultant
arc segment is categorized into group 1 if it passes through

one of the CFPs (e.g.,
⌢

GH passing throughIh1), and into group

2 if it does not (e.g.,
⌢

HA).
For the arc segments in group 1, the theorem holds because

for a pointQ on any of these arc segments,minDist(Q,M)≤
minDist(Ii ,M), where Ii denotes the CFP passed through by

this arc segment. For example, for a pointQGH on
⌢

GH,
minDist(QGH,M)≤minDist(Ih1,M).

For group 2, without loss of generality, we prove that

for a point Q on
⌢

HA, minDist(Q,M) ≤ minDist(Ih1,M) or
minDist(Q,M)≤minDist(Iv1,M), whereIh1 andIv1 are passed

through by the two arc segments
⌢

GH and
⌢
AB that are adjacent

to
⌢

HA, respectively.
Let the top left corner ofM be K. As Fig. 8(b) shows,

radius OJ passes throughK and intersectsR at J. Then
minDist(J,M) = |JK|. RadiusOIh1 is perpendicular to the left
edge ofM and they intersect atS. Then minDist(Ih1,M) =
|Ih1S|. We proveminDist(J,M)< minDist(Ih1,M) as follows.

minDist(Ih1,M) = |Ih1O|− |SO|= r−|SO|
minDist(J,M) = |JO|− |KO|= r−|KO|
OIh1⊥ SK⇒ |KO|> |SO|







⇒

minDist(J,M)< minDist(Ih1,M).

Point J further divides
⌢

HA into two arc segments
⌢
HJ and

⌢
JA. For a pointQHJ on

⌢
HJ, we proveminDist(QHJ,M) <

minDist(Ih1,M). Similarly, we can proveminDist(QJA,M) <

minDist(Iv1,M) for a pointQJA on
⌢
JA and the proof is omitted

due to space limit.
ProvingminDist(QHJ,M)<minDist(Ih1,M) equals to prov-

ing |QHJK| < |Ih1S|. First, we draw radiusOQHJ, which
intersectsM at N. Then we prove|QHJK| < |QHJN| and
|QHJN| < |Ih1S| so as to prove|QHJK| < |Ih1S|. The proof
of |QHJK| < |QHJN| is straightforward based on the law of
sines, since6 QHJKN> 6 QHJNK. Meanwhile,|QHJN|< |Ih1S|
holds because|QHJN|= r−|NO|, |Ih1S|= r−|SO| and|NO|>
|SO|. Thus,|QHJK|< |QHJN|< |Ih1S| andminDist(QHJ,M)<
minDist(Ih1,M).

Now we have proved that for a pointQ on an arc segment in
either group 1 or group 2,minDist(Q,M)≤maxMinDist(I ,M).
Therefore, the theorem is proved.

Theorem 3:Given two MBRs M and M1, the MND re-
gion R of M1 centered atO and a setI of four candidate
furthest points, the largestminDist value from a pointQ
on the boundary ofR to M, maxMinDist(R,M), equals to
maxMinDist(I ,M).

Proof: The proof of this theorem is very similar to that
of Theorem 2. Thus, we only provide a sketch of the proof.

If R is enclosed by M, the theorem holds because
minDist(Q,M) = 0 for every pointQ on R’s boundary.

Otherwise, there are the following two cases.
(1) The center pointO is on the boundary ofM.

Like case (1) in Theorem 2, the theorem holds because
maxMinDist(R,M) = maxMinDist(I ,M) = r.
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(2) The center pointO is insideM. As shown in Fig. 9, we
draw four circlesR1 = (O1, r), R2 = (O2, r), R3 = (O3, r) and
R4 = (O4, r) centering at the four cornersO1, O2, O3 andO4

of M1, respectively. For each circle, a horizontal line and a
vertical line intersecting at its center point also intersect the
boundaryR. This results in eight candidate furthest points of
the four circles, denoted byA, B, ..., H. The CFPs divideR
into eight segments. The resultant segments are categorized
into two groups. Every segment in group 1 passes through
one of the CFPs, while no segment in group 2 does.

For a pointQ on a segment in group 1, the theorem holds
because there is a CFP ofM1 in the segment.

For group 2, by definition, each segment in it must
be overlapped by one of the circles in{R1,R2,R3,R4}.
Then Theorem 2 guarantees the theorem’s correctness.

For example,
⌢

HA belongs to this group and it is over-
lapped byR1. Theorem 2 guarantees that, for any pointo

on
⌢

HA, minDist(o,M) ≤ minDist(A,M) or minDist(H,M).
At the same time,minDist(A,M) ≤ minDist(Iv1,M) and
minDist(H,M)≤minDist(Ih1,M). Therefore,minDist(o,M)≤
minDist(I ,M), whereI is one of the CFPs ofM1.

Theorems 2 and 3 provide an efficient way to compute the
MND, which requires the computation of theminDist values
for the four CFPs. The specific steps are as follow.

We denote the coordinates ofO as (Ox,Oy), and the
coordinates ofIh1, Ih2, Iv1 and Iv2 as(Ox− r,Oy), (Ox+ r,Oy),



(Ox,Oy + r) and (Ox,Oy− r), respectively. LetM be (Mx−,
Mx+, My−, My+) (“−” and “+” stand for lower bound and
upper bound, respectively). Then,minDist(Ih1,M) = Mx− −
(Ox− r), minDist(Ih2,M) = (Ox+ r)−Mx+, minDist(Iv1,M) =
(Oy + r)−My+ and minDist(Ih2,M) = My−− (Oy− r). As a
result, according to Theorem 2, we have:

maxMinDist(R,M) = max{Mx−− (Ox− r),
(Ox+ r)−Mx+, My−− (Oy− r), (Oy+ r)−My+}

(1)

Now we can computemaxMinDist(c,Nm
C ) using Equation (1)

for a client c indexed in a leaf nodeNm
C . Further, we

can computeMND(Nm
C ) as follows since it is defined as

max{maxMinDist(c,Nm
C )|c is a client indexed byNm

C }.

MND(Nm
C ) = max{d1,d2,d3,d4}, where

d1 = max{cy+dnn(c,F)|c∈ Nm
C }−max{cy|c∈ Nm

C },
d2 = max{cx+dnn(c,F)|c∈ Nm

C }−max{cx|c∈ Nm
C },

d3 = min{cy|c∈ Nm
C }−min{cy−dnn(c,F)|c∈ Nm

C },
d4 = min{cx|c∈ Nm

C }−min{cx−dnn(c,F)|c∈ Nm
C }.

According to Theorem 3, we can replacec by N and replace
dnn by MND in the above equation to obtain an equation for
computing the MND value of a non-leaf nodeNm

C , whereN
denotes a child node ofNm

C andMND denotes its MND.
Compared with the straightforward MND computation ap-

proach, which requires an expensive iterative method for
computing maxima, the above proposed method requires only
several arithmetic operations, which has a constant low cost.
As the MND computation is performed recursively in a bottom
up manner, it resembles the procedure of MBR computation
for R-tree construction and maintenance. Therefore, the MND
computation can be integrated straightforwardly into the stan-
dard R-tree procedures with negligible overhead.

VII. C OST ANALYSIS

In this section, we analytically compare for all described
methods (SS, QVC, NFC and MND) the precomputation cost,
I/O cost, and CPU cost. Table III summarizes the analytical
results, but omits CPU cost as it is just the product of I/O cost
and processing cost per node (block).

We first introduce the notation and equations used in the
analysis. LetCm be the maximum number of entries in a disk
block (i.e.,Cm = block size / size of a data entry). Let Ce be
the effective capacity of an R-tree, i.e., the average number
of entries in an R-tree node. The average height of an R-
tree ish=

⌈

logCe
n
⌉

wheren is the cardinality of the dataset;
the cardinalities ofC, F andP are denoted bync,nf andnp,
respectively. The expected number of nodes in an R-tree is
the total number of nodes in all tree levels (leaf nodes being
level 1 and the root node being levelh), which is ∑h

i=1
n

Ci
e
=

n
(

1
Ce

+ 1
C2

e
+ · · ·+ 1

Ch
e

)

= n
Ce−1(1−

1
Ch

e
)≈ n

Ce−1. We assume an
R-tree node has the size of a disk block.

A. Precomputation and Index Cost

We precomputednn(c,F) for all methods. Computing
dnn(c,F) for all clients has the cost ofO(nc · nf ) since
dist(c, f ) for each pair of clientc and existing facilityf needs

TABLE III

SUMMARY OF COSTS

Method Precomp Indexes I/O Cost
SS dnn N/A npnc

C2
m

QVC dnn RC, RF
np

Cm
+k npnf

Ce−1+

np(1−wq)
logCe nc

Cm

NFC dnn RC, Rn
C, RP (1−wn)

ncnp

(Ce−1)2

MND dnn Rm
C , RP (1−wm)

ncnp

(Ce−1)2

to be computed. The result ofdnn(c,F) may be incrementally
maintained and therefore the cost is amortized.

QVC usesRC and RF . NFC and MND all useRP. In
addition, NFC usesRC and the RNN-treeRn

C, while MND
uses the R-tree variantRm

C . The cost of maintaining any of
the R-tree variants is very similar to the cost of maintaining
a traditional R-tree. For example,Rn

C has the sameCm andCe

asRC, so it has almost the same maintenance cost asRC. Rm
C

has an additional attribute in each entry, which reduceCe a
little bit. However, the effect on the height of the tree is very
small. For example, in our experiments, where every entry of
RC stores only its MBR and a child node pointer, the height
of Rm

C is less than 10% larger than that ofRC. The difference
in height will be even smaller in practical databases where an
entry is much larger than just an MBR. Therefore, we do not
distinguishCm (Ce) of different R-tree variants.

In summary, except for the costs of building indexes, all
methods have the same precomputation cost. QVC and MND
have similar R-tree maintenance costs and the NFC method
maintains one more R-tree.

B. I/O Cost

For SS, the data points are retrieved in blocks from the disk;
the I/O cost isIOs =

np
Cm

nc
Cm

=
npnc

C2
m

.
For the other three methods, the I/O costs depend on the

number of R-tree nodes accessed. In NFC and MND,RP is
traversed in a depth-first order and for every nodeNP of RP,
we need to retrieve the nodes in the client R-tree (Rn

C or
Rm

C) that satisfy certain conditions withNP. In the worst case,
every node ofRP is traversed, and for every node ofRP, the
whole client R-tree is traversed. Therefore, the worst-case I/O
costs for these two methods are the same:nc

Ce−1
np

Ce−1 =
ncnp

(Ce−1)2
.

While this worst-case I/O cost is worse than the I/O cost of
SS, in practice, many nodes of the R-trees are pruned during
traversals. We quantify the percentage of pruned nodes in
the simultaneous traversal of the two R-trees as the pruning
power, denoted byw; the number of nodes accessed is then
(1−w) ncnp

(Ce−1)2
, wherew should be replaced bywn andwm for

NFC and MND, respectively. The cost difference among the
two methods lies in the different pruning powers of the two
algorithms. Next, we focus on their pruning power differences.

The pruning power is associated with the metrics used in
the determination of whether the subtree rooted at a client
R-tree node indexes the clients inIS(p) of some potential
location p, which are dnn(c,F) and MND for NFC and
MND, respectively. The affected regions corresponding to



these metrics are the MBR of the NFCs and the MND region.
According to the definitions of these metrics, the area covered
by the MND region is very similar to that covered by the MBR
of the NFCs. This means thatwm≈wn and henceIOm≈ IOn.
This relationship is also observed in our experiments.

QVC involves the following I/O costs. (i) FetchP from the
disk in blocks,IOq1 =

np
Cm

. (ii) For each potential locationp,
perform a best-first NN query to constructAIR(p): the I/O cost
is IOq2 = np ·k

nf
Ce−1 wherek indicates the average percentage

of RF nodes accessed in the NN query. (iii) For everyAIR(p),
perform a window query onRC: the I/O cost isIOq3 =

np
Cm
·

(1−wq) logCe
nc. Therefore, the I/O cost of QVC isIOq =

IOq1+ IOq2+ IOq3 =
np
Cm

+k
npnf
Ce−1 +

np
Cm

(1−wq) logCe
nc.

The I/O cost of SS is much larger than that of NFC or
MND due to its lack of pruning capability. The I/O cost of
QVC depends onCm and can be larger than SS under certain
circumstances as follows. LetIOnn = k

nf
Ce−1 (i.e., the I/O cost

of the NN query discussed above). Based on the I/O costs of
SS and QVC, ifC2

mIOnn> nc, we obtainCmIOnn>
nc
Cm

. Hence,
np
Cm

(

1+Cmk
nf

Ce−1 +(1−wq) logCe
nc

)

>
npnc

C2
m

and thus,IOq >

IOs. For example, in our experiments, whennc = 10K and
Cm= 204, IOq > IOs wheneverIOnn> 2.4. This is a situation
where NN query only accesses 2.4 nodes inRF . In general,
IOs > IOq whennc is huge ornf is small.

C. CPU Cost

The CPU cost can be considered as the product of the CPU
cost per block (node) multiplied by the number of blocks
(nodes) accessed. The I/O cost analysis provides the number
of nodes accessed. The CPU cost per block, denoted byt,
involves MBR intersection check and/or metric computation.

The NFC method requires the intersection examination of
the MBRs, and MND requires only the computation ofminDist
and the comparison ofminDist and MND. Thereforetm ≈
tn. For QVC, recall thatIOq = IOq1+ IOq2+ IOq3. Since the
first part only involves disk block retrieval, there is very little
CPU cost; the CPU cost of QVC is mainlytq2IOq2+ tq3IOq3

where tq2 corresponds to the CPU cost per pair ofRC and
RF nodes during the construction ofAIR(p) and tq3 indicates
the CPU cost per pair ofAIR(p) block and RC node. The
third part,tq3IOq3, is comparable with the CPU costs of NFC
and MND. In fact tq3 ≈ tn because both methods perform a
window query with the query window being eitherAIR(p)
or NP.mbr, respectively. Due to the additional quasi-Voronoi
cell construction stage, QVC has higher CPU cost in general
compared with NFC and MND.

While the other methods only compute the values of several
metrics for each pair of accessed nodes, SS computesdist(c, p)
for every pair of clientc and potential locationp for each pair
of blocks of the client set and the potential location set. Hence,
the CPU cost per pair of blocks of SS,ts, is much higher than
that of any other method. Also,IOs is not smaller than other
I/O costs. Thus, SS has the highest CPU cost.

In summary, we haveCPUs >CPUq >CPUm≈CPUn. Our
experimental study will also validate this inequality.

TABLE IV

PARAMETERS AND THEIR SETTINGS

Parameter Setting
Data distribution Uniform , Gaussian, Zipfian
Client set size 10K, 50K, 100K, 500K, 1000K
Existing facility set size 0.1K, 0.5K, 1K,5K, 10K
Potential location set size 1K, 5K, 10K, 50K, 100K
µ (Gaussian distribution ) 0
σ2 (Gaussian distribution ) 0.125, 0.25, 0,5,1, 2
N (Zipfian distribution) 1000
α (Zipfian distribution) 0.1, 0.3, 0.6,0.9, 1.2

VIII. E XPERIMENTAL STUDY

In this section, we report the results of our experiments.
Section VIII-B studies the behavior of the different methods
using uniform datasets, varying the sizes of the different
datasets used in the query. Section VIII-C studies the per-
formance of the methods using datasets of Gaussian and
Zipfian distributions, varying the skewness of the data dis-
tribution. Section VIII-D presents the experimental results on
real datasets.

A. Experimental Setup

All experiments were conducted on a desktop PC with 3GB
RAM and 2.66GHz Intel(R) Core(TM)2 Quad CPU. The disk
page size is 4K bytes. We measure the running time, the
number of I/Os and the index size.

We conduct experiments on synthetic and real datasets. Syn-
thetic datasets are generated with a space domain of 1000×
1000. The dataset cardinalities range from 100 to 1000000.
Three types of datasets are used: (i)Uniform datasets, where
data points are distributed randomly; (ii)Gaussian datasets,
where data points follow the Gaussian distribution; (iii)Zipfian
datasets, where data points follow the Zipfian distribution. The
parameters of the synthetic data experiments are summarized
in Table IV, where values in bold denote default values.

We use two groups of real datasets provided by Digital Chart
of the World [22], which contain the points of populated places
and cultural landmarks in the US and in North America. We
name them as the US group and the NA group, respectively.
For each group of datasets, the populated places are used as the
client setC. The cultural landmark dataset is divided into two
datasets. Half of the cultural landmarks are chosen randomly to
form the existing facility setF , and the remaining are used as
the potential location setP. For the US group, the cardinalities
of C, F , P are 15206, 3008 and 3009, respectively, while those
for the NA group are 24493, 4601 and 4602.

We use the R-tree [17] (or its variants as proposed in this
paper) as the underlying access methods.

B. Experiments on Uniform Datasets

The following experiments focus on the effect of dataset
cardinalities. We vary the sizes ofC, F andP independently.

1) Varying the Number of Clients:In our experiments, we
show that MND is the only method whose performance is as
good as NFC in terms of the running time and the number of
I/Os, while MND has a much smaller index size.



The results for the experiments that vary the number of
clients are shown in Fig. 10. From this figure, we can see that
the NFC method and the MND method perform best in terms
of the running time and the number of I/Os (cf. Fig. 10(a)
and (b)). Meanwhile, the MND method has a much smaller
index size compared to the NFC method (cf. Fig. 10(c)).
Fig. 10(d) gives a different representation of the index size
requirements using the measure relative to the index size of
the NFC method. For example, for the 10K datasets the index
size of the MND method is about 70% of that of the NFC
method, and for the 100K datasets, the index size of the MND
method drops to about 60% of that of the NFC method.
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Fig. 10. The effect of client set size

From Fig. 10, we also observe that, compared with other
methods, the SS and QVC methods have significantly higher
running time and larger numbers of I/Os, although the QVC
method requires slightly less index size than the MND method
does and the SS method does not require any index. When the
cardinality of the client set is large enough (e.g. 500K), the
number of I/Os of SS exceeds that of QVC. The observations
above are in accordance with the cost analysis. QVC traverses
RF for each potential location, while either NFC or MND only
traverses the R-trees once on average for the entire potential
location set. Thus, QVC has larger number of I/Os and higher
running time. For SS,IOs > IOq whenevernc is large. It is
slow because it does not have any pruning strategy.

2) Varying the Number of Existing Facilities:The running
time, the number of I/Os and the index size of the methods,
with respect to the number of existing facilities, are shownin
Fig. 11. Again, MND and NFC are the most efficient methods
in terms of the running time and the number of I/Os, while
MND outperforms NFC in terms of index size due to NFC’s
extra index tree for client indexing.

Other observations can be made from the figure are as
follows. First, in terms of the running time and the number of
I/Os, the comparative performance of the methods is similarto
that of the experiments varying the number of clients. Second,
an increase in the number of facilities yields a drop in both
the running time and the number of I/Os. The effect is more
explicit for the NFC and MND methods. The reason is that on
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Fig. 11. The effect of existing facility set size

average the more the facilities, the shorter the nearest facility
distance. In other words,dnn(c,F) decreases with the increase
of the number of existing facilities. As a result, the areas of
NFCs and MND regions decrease and the pruning power is
enhanced. Therefore, the number of I/Os and running time are
reduced. SS is not affected due to its lack of pruning capability
and it does not access the set ofF (it accessesF for dnn(c,F)
computation, which is assumed to be precomputed). Third,
when the number of facilities is small enough, the number of
I/Os of QVC is less than that of SS, which is in accordance
with our cost analysis. Fourth, varying the number of existing
facilities only affects the index size of the QVC method, since
only this method requires an index onF .

3) Varying the Number of Potential Locations:Experiments
that vary the number of potential locations also give results
that are very similar to those of the experiments varying the
number of clients, as shown in Fig. 12. MND still shows high
efficiency in terms of the pruning time, the number of I/Os
and the index size.
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Fig. 12. The effect of potential location set size
From Fig. 12(c) and (d), we notice that the index sizes of

the SS and QVC methods are not affected by the increase in
the number of potential locations. This is because these two



methods do not index the potential locations, and as a result,
they are both slow and have large numbers of I/Os. We also
observe that the growth in the number of potential locations
has the same effect on the running time and the number of
I/Os as increasing the number of clients. When the number of
potential locationsnp becomes very large (i.e.np≥ 10K), the
advantages of NFC and MND in terms of the number of I/Os
become much significant (cf. Fig. 12(b)).

C. Experiments on Gaussian and Zipfian Datasets

In the following experiments, we vary the distribution of the
datasets. We focus on performance of the algorithms in terms
of the running time and the I/O cost rather than the index size
because the influence of detail data distribution on the index
size requirement is not the major concern of this paper.
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Fig. 13. The effect ofσ2 in Gaussian distribution

Fig. 13 shows the results of experiments on Gaussian
datasets varying the value ofσ2. For the Gaussian datasets,
varying σ2 means varying the degree of the inclination for
the data points to cluster at the central area of the distribution.
Increasingσ2 leads to less dense data points at the center.
We see that, compared with varying the dataset cardinalities,
varyingσ2 does not affect much of the algorithm performance.
NFC and MND are still the two most efficient methods. These
results follow our cost analysis.

Experimental results on datasets of Zipfian distribution have
similar behavior to the above results and are omitted.

D. Experiments on Real Datasets

The experimental results on real datasets are shown in
Fig. 14. The comparative performance of the methods is
similar to that of experiments conducted for the synthetic
datasets. QVC shows the worst performance in terms of the
number of I/Os. While the number of I/Os of SS is close to
that of QVC, it has the largest running time due to the lack of
pruning capability. NFC and MND outperform other methods
in terms of both the number of I/Os and the running time.

Overall, the MND method outperforms the other methods.

10-3

10-2

10-1

100

101

US NA

R
un

ni
ng

 T
im

e 
(s

)

Dataset Group

SS
QVC
NFC
MND

(a) Running time

102

103

104

105

US NA

N
um

be
r 

of
 I/

O
s

Dataset Group
(b) Number of I/Os

Fig. 14. Performance comparison on real datasets

IX. CONCLUSIONS

We formulated the min-dist location selection problem and
conducted a comprehensive study. We proposed two methods,
QVC and NFC, based on common approaches to location
optimization problems. Our experiments show that they sig-
nificantly outperform the sequential scan algorithm. However,
they both have some drawbacks. NFC performs the best but
requires maintaining an additional index. QVC requires fewer
indexes, but is not as efficient as NFC. We further proposed
the MND method, which has very close efficiency to NFC
without the need of maintaining an additional index. We
provided a detailed comparative cost analysis for all methods
and performed extensive experiments to evaluate the empirical
performance of them. The results agree with our analysis and
validate the advantages of the MND method.
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