The Min-dist Location Selection Query
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Abstract—We propose and study a new type of location C
optimization problem: given a set of clients and a set of existing Co d Cs e client

facilities, we select a location from a given set of potential o existing facility
. . . o p[] Of
locations for establishing a new facility so that the average e 1 . i
. . e O G 1 o potential location
distance between a client and her nearest facility is minimized. c

We call this problem the min-dist location selection problem, of, Q)

which has a wide range of applications in urban development c® . Ro o,
simulation, massively multiplayer online games, and decision G

support systems. We explore two common approaches to lo- Fig. 1. An example for the problem

cation optimization problems and propose methods based on

those approaches for solving this new problem. However, those L .

methods either need to maintain an extra index or fall short ~ The example in Fig. 1 illustrates the problefuy, cz, ..., Cs}
in efficiency. To address their drawbacks, we propose a novel is a set of clients (residents or mobg){, f} is a set of

method (named MND), which has very close performance to the existing facilities (public facilities or teammates) afiph, 2}
fastest method but does not need an extra index. We provide a5 4 get of potential locations (candidate locations for new
detailed comparative cost ana!y5|s on the various alg(')rlthms'..We facility establishment or rejoin). Now we need to select one
also perform extensive experiments to evaluate their empirical . ) ’ ) S
performance and validate the efficiency of the MND method. ~ from the potential locations to establish a new facilityfde
adding a new facility,f, is the nearest facility ot;, ¢, c3
|. INTRODUCTION andcg; f, is the nearest facility o€4, cs, ¢; andcg. If a new
Location optimization is an important problem for spatialacility is established aps, it will become the nearest facility
decision support systems. A number of studies [1], [2], [3br c1, c2 andcs. If a new facility is established aty, it will
proposed solutions to various instances of such problems.become the nearest facility @f andcs. As we can observe,
this paper, we consider a new location optimization problepy results in a smaller average distance between a client and
that cannot be efficiently solved by existing techniquese Tlithe nearest facility, so it is selected as the answer.
problem is motivated by the following applications. Besides the above described applications, many organiza-
In urban development simulation, urban planners need tions and businesses face similar decision making problems
consider the influence of public infrastructure or businege.g., McDonald’'s needs to add new restaurants; a wireless
centers on the residents. Very often they need to selecsexvice provider needs to set up new hotspots). This paper
location for establishing a new facility (e.g., fire hydrantstudies how to efficiently select a potential location for a
public phone booth, hospital, bus stop, etc.) and a commomlgw facility, so that the average distance between a client
used criteria is to select the location that can minimize ttand her nearest facility is minimized. We call it th&n-dist
average distance between a resident and her nearestfaoilitlocation selection problemn the aforementioned applications,
that people can access the facilities in the shortest time. the min-dist location selection is usually performed frewuly.
In the multi-billion dollar computer game industry, masTherefore, we formulate the problem as the following query.
sively multiplayer online games (MMOGs) lik&Vorld of .
Warcraft have group quests for players to complete in teanfs; Problem Formulation
which mostly involve killing mobs (monsters or other non- All data objects (clients, facilities and potential locsis)
player characters). As the quests often take players daysaoe represented by points in an Euclidean space. We may refer
even weeks to complete, it is common for players to leate the data objects adata pointsor simply aspoints Let
and rejoin the game during a quest. When a player rejoins tthist(01,02) denote the distance between two poiots and
game, the subquest she was on may have been completedhyand n. be the number of clients. The min-dist location
her team, which has moved on to another region. It is a wasilection query is defined as follows.
of time for this player to rejoin the game from where she left. Definition 1: Min-dist location selection query.
A very helpful utility for the game is selecting a startingito =~ Given a set of point<C as clients, a set of pointE as
from a set of preset rejoin locations to minimize the averagsisting facilities and a set of poinf as potential locations,
distance between a mob and its nearest player, so that playbhe min-dist location selection query finds a potential taa
can focus on completing quests rather than walking. pi € P for a new facility to be established at, so th; €



Pandp; #pi: .
Y cec{min{dist(c,0)jloe FUp;}}
Nc
_ Scec{min{dist(c,0)lo € FUp;}}
Ne
Since the denominator is the same on both sides of the
inequality, the problem is equivalent to minimizing the sum
(instead of the average) of the distances between the lient
and their respective nearest facilities.
Although an existing commercial software [4] can solve
several simpler location optimization problems, none @iwves
the min-dist location selection problem (see Section II).

B. A Naive Algorithm .

A straightforward algorithm to the min-dist location selec *
tion query is to sequentially check all potential locatioRer
every new potential locatiop, we compute the sum of the

We explore two common approaches to location optimiza-
tion problems and propose methods based on them for
solving this new problem, the quasi-Voronoi cell method
and the nearest facility circle method.

As methods based on the common approaches either need
to maintain an extra index or fall short in efficiency, we
propose a method called MND, which uses a single value
to describe a region that encloses the nearest existing
facilities of a group of clients, so that the search of
influenced clients for a potential location can be done
groupwise. This results in an algorithm that has very close
performance to the fastest of the previous algorithms
without the need for an extra index.

We provide a thorough cost analysis of all methods.

We conduct extensive experiments to evaluate the empir-
ical performance of all methods. The results validate the
efficiency of the MND method.

distances of all clients to their respective nearest taesli Section Il reviews related work. Section Il discusses the
The potential location with the smallest sum is the answéasic properties of the problem and presents a solutionefram
We call this algorithm thesequential scan (S®gorithm. work. Sections IV, V and VI present the quasi-Voronoi cell
In SS, repeatedly finding the nearest facility to each cliemethod, the nearest facility circle method and the MND
for every potential location is too expensive. Therefore, wnethod, respectively. Section VII analyzes the cost of the
precompute the distances of all clients to their respectiiéethods. Section VIII presents the experimental results an
nearest facilities and store the distances. This precaatipnt Section IX concludes the paper.
involves a nested loop iterating through every client amafo
ery client iterating through every faciliti NN-join algorithms . o ]
(e.g., [5]) can do this more efficiently and maintain the fesu ~ Location optimization problems are mostly characterizgd b
dynamically when clients and facilities are updated. The ¥ptimization functions, based on which they can be claskifie
algorithm with precomputation is shown in Algorithm 1, wher INt0 two categoriesmax-inf problems andnin-distproblems.

c.dnn(c,F) denotesc’s precomputed distance to her closedpOth categories are closely relatedrearest neighbor (NN)
existing facility and is stored witle's record. search andeverse nearest neighbor (RNsgarch. Therefore,

_ we first review studies of NN search and RNN search, and then
Algorithm 1: SSC, P) review studies of max-inf problems and min-dist problems.
1 optLoc« NULL; // optLocis the optimal location; NN search: Given a set of objectS and a query objeat,

Il. RELATED WORK

2 for pePdo . the NN search returng’s nearest objects 5. Two popular
s | pdistSum-0; NN search algorithms are depth-first [6] and best-first [7].
4 for ceC do The b fi lgorith . h iahb
5 if dist(p,c) < c.dnn(c,F) then The est- |rst.agorlt m can rgtrleve the nearest neighbors
6 | p.distSume p.distSumrdist(p,c); incrementally in order of their distances to the query point
; else RNN search: Korn and Muthukrishnan [8] first propose
8 | p.distSum— p.distSumi-c.dnn(c, F); the RNN query and define the RNNs of an objertto

) ) ) be the objects whose respective NNds They propose to
2 'ftog’“t-fg::’mjl“ or pdistSum< optLocdistSumthen use an R-tree variant, named tRNN-tree in addition to

P P the original R-tree that maintains the data points to answer

1 returnoptLog

[

RNN queries. In an RNN-tree, the data entries are stored
in the form of NN circles. An NN circle of a poinb is a
We see that even with precomputation SS is still very costércle centered ab with the distance betweea and its NN
as it has to access the whole client datz{;a‘.;eljmes, where,  as the radius. The bounding boxes of these NN circles are
is the cardinality of andC, is the capacity of a block foP  indexed in the RNN-tree. Using this tree, an RNN query is
(assuming we rea® in disk blocks). Therefore, the need foranswered with the data points whose NN circles enclose the
an efficient algorithm is obvious. query point. To avoid maintaining the RNN-tree, Yang and
Lin [9] propose theRdNN-tree which effectively combines
the original R-tree and the RNN-tree. While these methods
In this paper, we examine solutions to the min-dist locatiogquire the precomputation of the distance between an bjec
selection query and make the f0||0Wing contributions. and its NN, Stanoi et al. [10] propose to process the RNN
« We formulate the min-dist location selection problem andueries without precomputation. For a query paipttheir
analyze its basic properties. method dynamically constructs a Voronoi cell that enclages

C. Contributions and Organization of the Paper



NI e functions and other settings, and do not apply.

'LC?& ,‘r’,é’ Min-dist problems: Zhang et al. [3] propose the min-dist
e e ‘&(,‘//’" 6 ) optimal-location problem. Given a client s€ an existing
cs \j//’,f\fl ‘\\ facility setF g_nd a regiorQ_, it finds points withinQ so thaF
c; fif"’ S n if a new facility is established at any one of these points,
NS & cg\\ oC, Py the average distance of the clients to their respectiveesear
‘*3\\:\/’ g facilities is minimized. Fig. 3 gives an example, wh@temay
\\\\\ // /, .Cl
. . . &
Fig. 2. Example of a max-inf problem [1]
o/ ~ -~~~ °-°°° |
and contains all its possible RNNs. Only nodes intersecting G* ql of 0 !
the Voronoi cell have to be accessed to checkg'srRNNs. \ of, Py S
There are studies on RNN query variants under different Cv,,.cs, ffffff pﬂ‘ o,
2

settings. For example, threverse k nearest neighbor (RKNN)

query object. Wu et al. [11] study thekRN query on contin-
uously moving objects, which correlates two sets of movi opose a method that first identifies a $ebf candidate

objects according to their closeness. The continuous j : - . .
. . cations fromQ and then divided progressively until the
guery on extended moving objects [12], [13] also correlates .
answer set is found.

multiple sets, but it focuses on intersecting objects with a , _— L
time-constraint technique rather than closeness. Whilsethe Zhang et al.s problem definition [3] has the same min-dist

; optimization function as ours, but our problem definitiors ha
approached work well for a single BNN query, they are not " : . : .
. : . n additional seP, the potential locations given as candidates
tailored for computing RNNs for large amount of objects

the same time, which is a key difficulty in our study. For selection. In many real gppllcatlons, we can ,only choose
. . o . from some candidate locations, e.g., McDonald’s may only
Max-inf problems: Max-inf problems maximize th&nflu-

., - . . . . open a new restaurant at a place for rent or sale rather than
ence” of a facility, where influence is typically defined as th

number of clients who are the RNNs of the facility. Cabe"%mywhere in a region. The main idea of Zhang et al’s solution

. _Is the fast identification of a small sktof candidate locations
etal. [1] propose thMAX.C OV problem that finds a location from Q. However, the candidate locations lincould be any

. X epoint from Q, which may not even contain a potential location
the nearest location circle (NLCjo solve the problem, where from our potential location seP. This means that in the

the_ NLC of a clientc is a circle C?ntereq at with its rad!gs general case their approach cannot provide a correct answer
bgmg the dlstancg_ betwece:rgnd c's e?<|s_t|ng nearest facility. to our problem, and thus is not applicable.

Since only a facility ggtabhshed ywthm the NI.‘C af can Related commercial software:As mentioned in Section I-

be a new nearest facmty_ of, o flnd_the solution for the A, an existing commercial software [4] can solve several
MAXCOV problem is to find the regions that are enClose‘%inds of simpler location optimization problems. The most

by the largest ”””.‘ber of NLCs. Fig. 2 shoyvs an examplgel ted problem this software can solve is calledrfirimize
where the gray regions are the problem solution because e ﬁedance querywhich finds locations for a set of new

of them is covered by four NLCs while no region is covere cilities to minimize the sum of distances between cliemtd

by more than four NLCs. . . ) their respective nearest facilities. However, this probloes
Xia et al. [2] propose the top-most influential sites ot consider existing facilities. If we use this softwarefita
problem. They use a branch and bound method to find (OR; gt of locationsS for new facilities, there is no guarantee

facilities in F with the largestinfluencewithin & continuous h4t 5 will contain all points in the set of existing facilities
spatial regionQ, where the influence of a facility is definedg Therefore, this software does not solve our problem.
as the total weight of its RNNs. Du et al. [14] also work on

the max-inf problem with weighted clients and a continuous
regionQ. UsingL; as the distance metric, this problem finds a

o to our problem. To solve the problem, Zhang et al. [3]
¥
Q

TABLE |
THE LOCATION OPTIMIZATION PROBLEMS

location for a new facility so that its influence is maximized | Problem | Optim. | Solution Distance | Datasets
Gao et al. [15] define a facility location problem that finds Function | Space Function

a location p outside a regiorQ (instead of inside a region) [%] max-!ni g_ontmtuous t2 g E

for a new facility so that itSoptimality” is maximized. Here, {1]4] Mzﬂzf Closr?triiueous Li C: =

the optimality ofp is defined as a function of the number of |75 NMaxanf | Discrete L, C. P
clients inQ whose distance t@ is within a certain threshold [16] Max-inf | Discrete L, C,F,P
dc (attracted byp). Intuitively, the more clientg attracts, the [3] Min-dist | Continuous| L3 C, F
greater its optimality. A more recent study [16] selects-top | [4] Min-dist | Discrete Lo C P

k candidate locations with the largest influence values for a_Proposed| Min-dist | Discrete L2 CF.P

new facility. These studies differ from ours in optimizatio Summary: Table | summarizes the differences between



our problem and previously studied location optimizatioB. A Solution Framework

problems. Most previous problems are max-inf problems andpefinition 2 provides a framework for solving the min-dist

differ from our problem in optimization functions. For them ,.4ti0n selection problem with the following two steps:

dist problems, they have the same optimization function asl) Identify 1S(p):

our problem does, but their problem settings are differéat. % ¢ ed P); 4 find th ial | . ith th

example, Zhang et al. [3] consider finding locations for the/n ) Computedr(p) and find the potential location with the

facility from a continuous region. As discussed in the secon largestdr(p).

paragraph of the related min-dist problems, their problesd Since the cardinality ofS(p) is usually much smaller than that

not choose from a set of given candidate locations, whicls do@f C, we do not have to access the whole client dataset for

not apply to the requirements of our applications. every potential locatiomp. Thus, the above framework has a

great potential to improve performance. All methods preesn

1. BASIC PROPERTIES AND ASOLUTION FRAMEWORK iy this paper will follow this framework. The key issues are:
The min-dist location selection query can be redefined in(® how to efficiently identify IS(p) and (ii) how to prune

form that reduces the search space. This section providés smore potential locations from consideration. We will seatth

a redefinition and a solution framework based on it. Next, we all methodsdnn(c,F) of every client is used many times

start with some basic properties of the problem needed or tin both steps of the framework. Computidgn(c, F) on-the-

redefinition. Table Il summarizes frequently used symbols. fly will repeatedly access the datasets of the clients and the

TABLE Il existing facilities, which will incur significant costs. €hefore,
FREQUENTLY USED SYMBOLS we precomputelnn(c,F) for every client and store it with the
Symbols | Explanation client’s record for all methods (including the SS method).
) A point in the data space In the next two sections, we explore two common ap-
dist(o;,02) | The distance between two poirdg and o, proaches to location optimization problems and proposé&-met
CFP The set of clients, existing facilities ods based on those approaches for solving the min-dist lo-

and potential locations, respectively

fe T Ty | Cardinality ofC, F, andP, respeciively cation selection query under the above framework. When a

spatial index is used for a method, we assume an R-tree [17],

cf,p A client in C, an existing facility inF . . L
and a potential location iR, respectively although any hierarchical spatial index could be used.
A. Basic Properties IV. QUASI-VORONOICELL METHOD

We call the distance between a cliemtand her nearest In this section, we propose a so-called “quasi-Voronoi’cell
facility the nearest facility distance (NFD)f c. Letdnn(o,S) (QVC) method. For any potential locatiop, the Voronoi
denote the distance between a pairand its nearest point in cell of p on the setF U p is a regionV that satisfies that
a setS. Thendnn(c,F) anddnn(c,F U p) denote the NFD of for any pointp’ € FuUp, p’ # p, and for any pointo € V,
¢ before and after a new facility is established on a potentidist(p,0) < dist(p’,0) [18]. It is guaranteed that the Voronoi
location p, respectively. The min-dist location selection quergell of p encloses all and only the clients itS(p). We
is actually minimizing the sum of all clients’ NFD. can use the Voronoi cell to quickly identify\S(p). However,

If ois a point not in the sefF anddist(c,0) < dnn(c,F), computing the Voronoi cell ofp is an expensive operation
then establishing a new facility at will reduce the NFD of itself. Interestingly, this algorithm only needs to idéyta
c. In this case, we say thatcan get arNFD reductionfrom superset ofS(p) instead of the exadS(p). Stanoi et al. [10]

0. We define thenfluence sebf o, denoted byiS(0), as the show a relatively straightforward way to compute a region
set of clients that can get NFD reduction framm Formally, that encloses the Voronoi cell and this region is a good
1S(0) = {c|c € C,dist(c,0) < dnn(c,F)}. The influence set of approximation of the Voronoi cell. We call this region the
a potential locatiorp includes all clients that will reduce their quasi-Voronoi cell(QVC). First, we find a superset o§(p)
NFD if a new facility is established ap. For example, in through the QVC ofp. Then, we can use the precomputed
Fig. 1,1S(p1) = {c1,C2,C3}, and1S(pz) = {C4,C5}. NFD to quickly identify the exactS(p). Finally, we compute

If 1S(p) +# 0 for a potential locatiorp, then establishing a dr(p) and compare it for all potential locations. Next, we give
new facility at p will reduce the sum of the clients’ NFD. details of constructing QVC and the algorithms.

We call the sum of the clients’ NFD reduced hy the The QVC of a potential locatiop is formed as follows. In
distance reductiorf p, denoted bydr(p). Formally,dr(p) = the coordinate system with the origin ptand the two axes
Yceis(p)(dnn(c,F) —dnn(c,F U p)). Minimizing the sum of parallel with the original axes, find the nearest facility go
the clients’ NFD when adding a facility op is equivalent to in each of the four quadrants and let these nearest fasilitie
maximizing dr(p). Therefore, the min-dist location selectiorbe f1, fa, f3 and f4 as shown in Fig. 4(a). Draw the bisector
query can be redefined as follows. between eacHf; (i =1,2,3,4) and p, and the four bisectors

Definition 2: Given a set of pointsC as clients, a set of form a polygon. This polygon is the QVC qf, denoted as
pointsF as existing facilities and a set of poirf®sas potential QVC(p). Stanoi et al. [10] prove tha®VC(p) encloses the
locations, the min-dist location selection query finds @ptial Voronoi cell of p. To find the NN in each quadrant, we use the
location p; € P, so thatvp; € P and p; # pi: dr(pj) <dr(p;). best-first algorithm [7] to retrieve the NNs until each queaudr



has one. Since this algorithm is based on a spatial index, we

use an R-tree to index the facilities, denotedRas

A
of, .
LR I Voronoi .
’ 0 Ja cell of p “
/7\\\\\\‘(/
VC \ \
QVC(p) . : f,o AIRQ) ‘
02 ‘ '
(a) Quasi-Voronoi cell (b) Approximate influence region

Fig. 4. Examples of the QVC method

To facilitate finding clients inQVC(p), we indexC using
an R-tree and denote this R-tree Ry. We perform a window
guery onRc with the query range being thrinimum bounding
rectangle (MBR)of QVC(p). We call the MBR ofQVC(p)
the approximate influence regioof p and denote it byAIR(p)
(Fig. 4(b)). The window query finds all clients &IR(p). For
each client in AIR(p), we comparalist(p,c) with dnn(c,F),
which has been precomputed.

If dist(p,c) >dnn(c,F), then we know that is not in1S(p).

V. NEARESTFACILITY CIRCLE METHOD

In this section, we propose a method that exploits the
nearest facility circle (NFG)and we call it the NFC method.
The nearest facility circle of a cliert denoted byNFC(c), is

a circle centered atwith the radius beinginn(c,F). It can be
observed that for a potential locatign c € I1S(p) if and only

if pisinsideNFC(c). An example is shown in Fig. 5, where

- ,
! & N
¥ \ Wl | \
"\ S} Wi/ ! N
[N ~ Mo ///f / N
RN ! 7 \
R A Cs N
' 1107‘//?\]‘2\ Bg X
~ Pid \
<o L\‘CB/A oC, B
S ’ L

Fig. 5. Example of NFCs

p1 is in the NFCs ofcy, ¢c; andcs, and p; is in the NFCs of
¢z and ¢s. Thus, IS(p1) = {c1,C2,C3} and 1S(pz) = {c4,Cs}.
Therefore, we only need to check which NFCs enclpsi®
identify the clients inS(p). Motivated by this observation, we

build an RNN-tree [8], denoted &, to index the NFCs of

Otherwise c is in IS(p). Since we can identify all the clientsa|| clients. As discussed in the related woR is basically

in 1S(p), we can then computer(p). We computedr(p) for

an R-tree that indexes the MBRs of the NFCs of the clients.

every potential location and the one with the largest dianit can be built based oRc and maintained in accordance to
reduction is the answer. The QVC method is summarized tife updates oRc. Note that there is no extra computation to

Algorithms 2 and 3.

Algorithm 2: QVC(Rc, Rr, Fp)

1 optLoc« NULL;

2 while not EndOfFile( i ) do

3 Bp + ReadBlock(Fp );

Sp 0,

for peBp do
ContructQVC(p) from Rg;
ContructAIR(p), stores it agp.mbr;
if p.mbr intersects Rrootnodembr then

| S« Sup
0 | WQ( Rc.rootnode Sp, optLoc),
11 outputoptLog

© 0 N o 0 b

Algorithm 3: WQ(Nc, S,, optLog

1 if Nc is a leaf nodethen

2 for pe S do

3 for e; € Nc, dist(p,e;) < e..dnn(c,F) do
4 | p.dr< p.dr+ec.dnn(c,F)—dist(p,ec);
5 if optLoc=NULL or p.dr > optLocdr then
6 | optLoc« p;

7 ege

8 for e; € Nc do

9 Sp —0;

10 for pe S, p.mbr intersects gmbr do

1 | S« Sup

12 | WQ(ec.childnode S, optLog;

get the clients’ NFCs, sincednn(c,F) has been precomputed
for all clients and stored ifRc. Besides having an RNN-

Algorithm 4: NFC(Np, N2, optLog

1 if Np and N? are non-leaf nodeshen
2 for (ep,€l) € Np x N2, ep.mbr intersects gmbr do
3 L NFC(ep.childnode €].childnode optLog;

Ise if Np is a leaf node and Jlis a non-leaf nodehen
5 for ef € N2, €l.mbr intersects N.mbr do
6 | NFC(Np, €f.childnode optLog;

IN
[¢)

-
0]

rse if Np is a non-leaf node and (',Nis a leaf nodethen
8 for ep e Np, ep.mbr intersects f.mbr do
9 | NFC(gp.childnode N¢, optLog;

10 else

1 | for epeNp, g intersects I;.mbr do

12 for €l e N,
dist(centerOfel.mbr), ep) < %(edgeLengt(eQ.mbr))
do

13 ep.dr « ep.dr + 3 (edgeLengtfel.mbr)) —

dist(centerOfel.mbr),ep) ;
14 if ep.dr > optLocdr or optLoc= NULL then
15 L optLoc« ep;

tree to index the NFCs, this method also uses an R-tree to
index the potential location sd?, denoted afkp. Then for
every potential locatiorp, we can useRt to quickly identify

all NFCs that enclos@, which is essentially a point query on
an R-tree. We need to do this for all the potential locations
indexed inRp, which makes the process a spatial join between



P and the set of all NFCs @. The spatial join operation finds minDist@, Nc ) MND region ofN,
out all intersected pairs between two sets of objects. In our

case, wherP is a set of points, the spatial join returns for ever§@x{minDistt Nc )| -

p, the set of NFCs that encloge Then we can identifyS(p) s apoint on NFGY ), =123}
using the clients corresponding to the NFCs that enghoaed

computedr(p) for every p. We use a standard R-tree based F--.’-/ éf\‘\\ f\‘ MND(N.)

join algorithm [19] to joinRp and R}, which results in the o \L/ﬁ) 1: ¢

NFC algorithm, as summarized in Algorithm 4. Note that in 2:‘ ! \\Nc: Cﬁlf |

this algorithm, since the MBR of an entg} boundsNFC(c) AR VY

of €'s corresponding client, we can computelnn(c,F) as T /

%edgeLengt(eQ.mbr), whereedgelLengtf) returns the length I 3

of an edge of a square MBR (lines 12, 13). minDisto, Nc ) MND region ofN: MND region of N, MND region ofNc

(a) MND for a leaf node  (b) MND for a non-leaf node
VI. MAXIMUM NFC DISTANCE METHOD Fig. 6. Examples of MND regions
g P g
We have proposed two methods based on common ap- .
proaches to location optimization problems. However, eho%ﬁe boundary ofNFC(ci), so that for any other poin;
methods both have some drawbacks. The QVC method ne8fsthe NFC of any client indexed iNc, minDist(ai,Nc) >
to perform a kNN search to find a nearest facility in eacfinDist(0j,Nc), where minDist(o,N) denotes the minimum
quadrant for every potential location, which is expensivee  distance between two objects (either points or MBRs).
NFC method is simple and efficient, but needs to maintaij'e" We defineMND(Nc) as minDist(0;,Nc). The metric
an extra indexR2. In dynamic environments, insertions an ND(Nc) delimits a rounded rectangular region such that for
deletions on data occur frequently. Maintaining two indese 2N Pointo on its boundaryminDist(0,Nc) = MND(Nc) (cf.
the dataseT makes database management such as concurrefitdy 6(a))- We call this region theIND region of Nc.
control more complicated and brings significant overheads.For non-leaf nodes, MND is defined recursively in a bottom-
Therefore, having the extra index has been considered agPamanner. Given a non-leaf nod in Re and the child
serious drawback in the solutions to other types of locatidiPdes OfNc, we find a pointo; on the boundary of the
optimization problems [10], [9], [20], [21]. We also vieweth MND region of a child nodeN;, so thgt for any cher point
extra index for the NFC method as a serious drawback. ~ Oj on the boundary of the MND region of a child nod,
In this section, we propose a novel method that is simpfBiNDist(ci,Nc) > minDist(oj, Nc). Then we definddND(Nc)
and efficient, but requires no extra index, so it overcomes tASMInDist(0i,Nc), and it delimits the MND region oRc, the
drawbacks of the QVC and NFC methods. This method stffunded rectangular region in Fig. 6(b).
exploits the idea of NFCs. However, unlike the NFC method, The definition of the MND region ofc guarantees that this
which uses an MBR to bound the NFCs of all clients in a nodggion must be intersected by a nolg in Rp if sub(Nc) N
of Rc and physically stores all these MBRs in a separate tr&&(P) 7 0, wherep is a potential location in the subtree rooted
(RY), this method uses just one value to describe a region ti#f\e- If this region is not intersected by, thensul(Nc) N
encloses the NFCs of all clients in a node and stores thaéval$(P) = 0 and we can discard the whole subtreeNefwhen
in the parent entry of the node &. Therefore, this method identifying IS(p). This observation, formalized in Theorem 1,
avoids using another tree but achieves the same purposes Ahe pruning strategy of the MND method.
challenge in this method is to define a value for delimiting a Theorem 1:Let p be a potential location indexed in the
region that can enclose the NFCs of all clients in a nbide Subtree rooted aip, and minDist(Nc,Np) be the minimum
of Rc as tight as possible distance between the MBRs of two nodss and Np. Then,
We propose to use a value with respect to a node called 8#(Nc) N1S(p) = 0 if miNDist(Nc,Np) > MND(Nc).
maximum NFC distance (MNDylenoted asMND(Nc) for a Proof: By definition, minDist(Nc,Np) is the minimum
nodeNc. The intuition is that given the NFCs of the clientglistance between a point in the MBR & and a point
indexed by a nodélc, we find a point from these NFCs whosen the MBR of Np. For any pointp indexed in the subtree
distance to the MBR ol is the largest. This largest distancgooted atNp, p is enclosed by the MBR ofNp. Thus,
definesMND(Nc). If the distance betweeNc and a nodéNp  minDist(p,Nc) > minDist(Nc,Np). If  minDist(Nc,Np) >
in Rp (the R-tree on the set of potential locations) is largdiND(Nc), then minDist(p,Nc) > MND(Nc). According to
than or equal ttMND(Nc), then for any potential locatiop the definition of MND(Nc), p is not inside the NFC of any
in Np, no client inIS(p) is from sub(Nc) since no point in client indexed byNc. Thus,sub(Nc) N1S(p) = 0. [ |
the MBR of Np will be enclosed by the NFC of any client in  Theorem 1 suggests that we only need to check whether a
sub(Nc), wheresul{Nc) denotes the set of clients containechodeNc's distance td\p is less tharMND(N¢) to determine
in the subtree rooted &. In what follows, we first formally whether any client € subl(N¢) is in 1S(p) for any potential
define MND and then explain it in detail. location p enclosed byNp. Like the other methods, we uses
Given a leaf nodeNc in Rz and the clients indexed in an R-tree to index the clients, but in addition, we store the
Nc, we find a clientc; indexed inNc and a pointo; on  MND value of a nodeN?' in its parent entrye', denoted as



el.mnd To distinguish this R-tree from the normal R-tree on Next, we propose a much more efficient method to compute
C, we denote it aR". The algorithm for processing the querythe MND. The key observation is that the MND can be derived
mimics a spatial join on the two R-treeRY and Rp. We from those points on the boundary BfFC(c) (MND region
traverse the two trees simultaneously and compare every nod a child nodeN) that are the “furthest” ta\T", and we can
from RY with every node fronRp, starting from the roots. As limit our search for the “furthest” point within a set of four
we traverse down the tree, we compare a node &rN") candidate furthest points (CFPslescribed as follows.

only if minDist(Np, N7') < MND(NZ"); this condition can be  Fig. 7(a) illustrates the CFPs for a clienindexed in a leaf
checked before retrievingy" since MND(NY) is stored in nodeNZ'. In the figure,M denotes the MBR oRZ', R denotes
the parent entry oN. When the traversal of the two treesNFC(c), R's center pointO is located atc and its radiusr
finishes, all nodes that may contain point$®p) are checked denotesr’s NFD value. A horizontal lineL, and a vertical

and hence we obtail5(p). Algorithm 5 details the steps.

Algorithm 5: MND(Np, NT', optLog

1 if Np and NI are non-leaf nodethen

2 for (ep,€l") € Np x NI, minDist(e[", ep) < €f'.mnd do
3 L MND(ep.childnode €]'.childnode optLog;

Ise if Np is a leaf node and fl is a non-leaf nodehen
for €' e NI, minDist(el’, Np) < €f".mnd do
6 L MND(Np, €'.childnode optLog;

0]

7 else ifNp is a non-leaf node and Nis a leaf nodethen
8 for ep € Np, minDist(NT', ep) < NT.mnd do
9 | MND(ep.childnode NT', optLog;

10 else
11 for (ep,€l') € Np x NI, minDist(e]l',ep) < e'.mnd do
12 | ep.dr < ep.dr+el.dnn(c,F) —dist(e]',ep);

13 if ep.dr > optLocdr or optLoc= NULL then
14 | optLoc« ep;

A. Efficient computation of the Maximum NFC Distance

line Ly intersect each other &, and they intersedR at I,
Ino, lva andly, respectively. The four pointk, Ino, 1 and
Iz are the CFPs of. Similarly, Fig. 7(b) illustrates the CFPs
for a child nodeN of a non-leaf nodeNT. In the figure,M;
denotes the MBR of\, R denotes the MND region df, r
denotesMND(N) and O is Rs center point. The four points
Ihts Ih2, v andly, are the CFPs oN.

We denote the largeshinDist(l;, NI") value for the CFPs
asmaxMinDis{1,M), wherel; denotes a CFP. We will prove
below (Theorems 2 and 3) that one of the CFPs must be the
“furthest” point from the boundary oNFC(c) (or the MND
region of a child nodeN) to N, i.e., maxMinDis{(I,M) =
maxMinDis{c,NZ'") (or maxMinDis{N,NT)) if NT" is a leaf
node (or a non-leaf node). The intuition here is that we can
divide the boundary oNFC(c) (or the MND region of a child
nodeN) into a set of arc segments, and for each segment, there
must be a CFR; such that for any poinb on the segment,
minDist(l;, NY") > minDist(o,NT"). We find the CFP with the
largestminDist(l;, NT") value and it is the “furthest” point from
NFC(c) (or the MND region ofN) to NT.

The definition of MND does not give an efficient way for
its computation. According to the definition, MND can be
computed straightforwardly as follows. Suppdd€ is a leaf
(or non-leaf) node. We compute for every cliem{or child
nodeN) indexed byN[ the largestminDist(o,N"") value for
a point o on the boundary oNFC(c) (or MND region of
N), denoted asnaxMinDis{c,NZ') (or maxMinDis{N,N™)).
Since the MND region ofNZ' should enclose the NFCs (or
MND regions) of allN™s children, MND(NT) must be the
largest among all these childrenisaxMinDistvalues, that is:
max{maxMinDis{c,NI")|c € NI},

if NI'is a leaf node
max{maxMinDis(N,NT)|
N is a child node ofNT"},
if NI is a non-leaf node.

minDistQ M )

minDist(I M ) minDist( M) |l

(a) CFPs for a client

(b) CFP for a node

MND(NT) = Fig. 7. Candidate furthest points

Theorem 2:Given an MBRM, a circleR= (O,r) and a set
| of four candidate furthest points, the largesinDist value
However, minDist(o,NZ") is a piecewise function based ornfrom a pointQ on the boundary oR to M, maxMinDis(R, M),
the relative position of a poinb and the MBR ofNI. The equals tomaxMinDis{I,M).
computation of themaxMinDist values requires computing Proof: If R is enclosed byM, then for every point
the maxima of a piecewise function with two variables. Thi® on R, minDist(Q,M) = 0. Thus, maxMinDis{R M) =
is typically obtained by numerical methods, specifically, bmaxMinDis{(l,M) = 0.
finding the stationary points of a Lagrange function. Howeve Otherwise, there are the following two cases.
numerical methods are iterative methods and there is no(l) The center pointO is on the boundary ofM (cf.
guarantee on the number of iterations needed to find thRay. 8(a)). Without loss of generality, we assur@eis on
solution. Therefore, the computation cost is very high artle top edge oM. ThenminDist(ly;,M) = r. For any other
unpredictable for the straightforward way of computing MNDpoint Q on R, minDist(Q,M) < r. Thus,maxMinDis{R,M) =



L,| minDistQ M ) minDistQ ,M) Now we have proved that for a poi@on an arc segment in
either group 1 or group 2ninDist(Q,M) < maxMinDis{1,M).

o ?\ Therefore, the theorem is proved. ]
\\c Theorem 3:Given two MBRsM and M1, the MND re-
e gion R of My centered atO and a setl of four candidate

Phe furthest points, the largeshinDist value from a pointQ
) on the boundary oR to M, maxMinDis{R,M), equals to
M| 4D maxMinDis{I,M).

b o N E%\ Proof: The proof of this theorem is very similar to that
minDist(l M ) minDist(y, M ) 7| Iz R of Theorem 2. Thus, we only provide a sketch of the proof.
(a) Case (1) (b) Case (2) If R is enclosed byM, the theorem holds because
Fig. 8. Examples of Theorem 2 minDist(Q,M) = 0 for every pointQ on R's boundary.
maxMinDis(I,M) =r. Otherwise, there are the following two cases.

(2) The center poinD is insideM (cf. Fig. 8(b)). In this (1) The center pointO is on the boundary ofM.
case, we divide the boundary & into eight arc segments Like case (1) in Theorem 2, the theorem holds because

using four lines overlapping the four edgesMf A resultant maxMinDis(R, M) = maxMinDis{l,M) =r.

arc segment is categorized into group 1 if it passes through
one of the CFPs (e.gGH passing througlh,), and into group o A Y ;\R
2 if it does not (e.g.HA). H},{Y‘\

For the arc segments in group 1, the theorem holds because H 5 [I— 5 c
for a pointQ on any of these arc segmentsinDist(Q,M) < R : ! ’ 4/%
minDist(l;,M), wherel; denotes the CFP passed through by N =l
this arc segment. For example, for a po@ty on GH, R, i M, M\T‘D\Ra
minDist(QgH, M) < minDist(lpy, M). G 04)?\403

For group 2, without loss of generality, we prove that R =
for a point Q on HA, minDist(Q,M) < minDist(In;,M) or minDist(y M )|

minDist(Q,M) < minDist(ly1,M), wherely; andly; are passed
through by the two arc segmer@H andAB that are adjacent

to HA, respectively.

Let the top left corner oM be K. As Fig. 8(b) shows,
radius OJ passes throughKk and intersectsR at J. Then
minDist(J,M) = |JK|. RadiusOly; is perpendicular to the left
edge ofM and they intersect ab. Then minDist(ly;, M) =
[Ih1S. We proveminDist(J,M) < minDist(lp;,M) as follows.

Fig. 9. Theorem 3, case (2)

(2) The center poinO is insideM. As shown in Fig. 9, we
draw four circlesR; = (O4,r), Ry = (Op,r), R3 = (0O3,r) and
R4 = (Og4,r) centering at the four corne@;, O, O3 and Oy
of M3, respectively. For each circle, a horizontal line and a
vertical line intersecting at its center point also intetsene
boundaryR. This results in eight candidate furthest points of
the four circles, denoted b¥, B, ..., H. The CFPs divideR

minDist(lny,M) = |I;nO| — SO =r — |ST into eight segments. The resultant segments are catedorize
minDist(J,M) = |JO| — |[KO| = — |[KO| = into two groups. Every segment in group 1 passes through
Oly; L SK=|KO| > |SQ one of the CFPs, while no segment in group 2 does.

For a pointQ on a segment in group 1, the theorem holds
_ _ because there is a CFP BF in the segment.
Point J further dividesHA into two arc segmentsiJ and For group 2, by definition, each segment in it must

JA For a pointQuy on HJ, we proveminDist(Q;,M) < be overlapped by one of the circles ifRi,Rx,Rs,Ru}.

minDist(ln;,M). Similarly, we can proveminDist(Qja, M) < Then Theorerrl 2 guarantees the theorem’s correctness.

minDist(ly1,M) for a pointQ;a on JAand the proof is omitted For example,HA belongs to this group and it is over-

due to space limit. lapped byR;. Theorem 2 guarantees that, for any pomt
ProvingminDist(Qn3,M) < minDist(Iy;,M) equals to prov- on HA, minDist(o,M) < minDist(A,M) or minDist(H,M).

ing |QuiK| < [InS]. First, we draw radiusOQyj, which At the same time,minDist(A,M) < minDist(ly;,M) and

intersectsM at N. Then we prove|QuiK| < |QuiN| and minDist(H,M) < minDist(In;, M). ThereforeminDist(o,M) <

|QuiN| < |InnS so as to provegQuiK| < [InnS. The proof minDist(l,M), wherel is one of the CFPs dfl;. [

of |QuiK]| < |QuiN]| is straightforward based on the law of Theorems 2 and 3 provide an efficient way to compute the

sines, since QuiKN > /QniNK. Meanwhile,|QuiN| < |lnS  MND, which requires the computation of tmeinDist values

holds becausfuN|=r—|NQ|, [InS=r—|SQ and|NO| > for the four CFPs. The specific steps are as follow.

|SA. Thus,|QniK]| < |QnaN| < [InnS andminDist(Qnj, M) < We denote the coordinates @ as (Ox,Oy), and the

minDist(lp, M). coordinates ofp, In2, Iv1 andlyz as(Ox—r,0y), (Ox+r1,0y),

minDist(J,M) < minDist(In1, M).
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(Ox, Oy +r) and (O, Oy —r), respectively. LetM be (My_,
My, My, My,) (“=" and “+” stand for lower bound and

upper bound, respectively). TheminDist(ln;,M) = My_ — Method | Precomp| Indexes ',/,SCCOSt
(Ox—r), minDist(In2, M) = (Ox+r) — My;, minDist(ly1,M) = SS dnn N/A K S
(Oy+r) — My, and minDist(lnz, M) = My_ — (Oy —1). As a QvC | dnn Re, Re cn tkert
result, according to Theorem 2, we have: np(lqu)loﬁnc
maxMinDis{R M) = max{My_ — (Ox—r), ) NFC | dnn an Re: Re | (1—wn) (C%;?p)z
(O+1) =M, My —(Oy 1), (Oytr) —My. } VND jdm [RERe | G- Wnie i

Now we can computenaxMinDis{c,NT") using Equation (1)

for a client ¢ indexed in a leaf nodeNZ. Further, we

can computeMND(NZ') as follows since it is defined as
max{maxMinDis{(c,NT")|c is a client indexed byN_'}.

to be computed. The result dhn(c,F) may be incrementally
maintained and therefore the cost is amortized.

QVC usesR: and R=. NFC and MND all useRp. In
addition, NFC useRc and the RNN-treeR}, while MND

MND(NT') = max{d,dp,d3,ds}, where uses the R-tree variarRZ. The cost of maintaining any of
dri = max{cy +dnn(c,F)|c € NI'} — max{cy|c € N}, the R-tree variants is very similar to the cost of maintajnin
dz = max{cx +dnn(c,F)|c € NI} — max{cx|c € NT'}, a traditional R-tree. For exampl&2 has the sam€&y, andCe
dg = min{c,|c € NT'} —min{cy —dnn(c,F)|c e N¢'}, asRc, so it has almost the same maintenance coRART
ds = min{cx|c € N&'} —min{cx—dnn(c,F)|c € NZ'}. has an additional attribute in each entry, which redGgea

According to Theorem 3, we can replacby N and replace little bit. However, the effect on the height of the tree isye
dnnby MND in the above equation to obtain an equation foimall- For example, in our experiments, where every entry of
computing the MND value of a non-leaf not¥', whereN Rc stores only its MBR and a child node pointer, the height
denotes a child node T and MND denotes its MND. pf Rg‘ is less than 10% larger than that Rf. The difference

Compared with the straightforward MND computation ap! helght will be even smaller in practical databases where a
proach, which requires an expensive iterative method fBPLTY is much larger than just an MBR. Therefore, we do not
computing maxima, the above proposed method requires ofli§tinguishCm (Ce) of different R-tree variants.
several arithmetic operations, which has a constant low. cos I summary, except for the costs of building indexes, all
As the MND computation is performed recursively in a bottorfl€thods have the same precomputation cost. QVC and MND
up manner, it resembles the procedure of MBR computatibgve similar R-tree maintenance costs and the NFC method
for R-tree construction and maintenance. Therefore, theOMNNaintains one more R-tree.
computation can be integrated straightforwardly into ttams B. 1/O Cost

dard R-tree procedures with negligible overhead. ) i ] ]
For SS, the data points are retrieved in blocks from the disk;

VII. COSTANALYSIS the 1/0 cost isIOs = %% SR

In this section, we analytically compare for all described For the other three methoﬁﬂs, the I/O costs depend on the
methods (SS, QVC, NFC and MND) the precomputation costumber of R-tree nodes accessed. In NFC and MRPjs
I/O cost, and CPU cost. Table Ill summarizes the analyticihiversed in a depth-first order and for every ndieof Rp,
results, but omits CPU cost as it is just the product of I/Ct cowe need to retrieve the nodes in the client R-tr&g or
and processing cost per node (block). RY) that satisfy certain conditions withp. In the worst case,

We first introduce the notation and equations used in tlewery node ofRp is traversed, and for every node Bf, the
analysis. LeCy, be the maximum number of entries in a diskvhole client R-tree is traversed. Therefore, the worsed3
block (i.e.,Cm = block size / size of a data enjryLet Ce be  costs for these two methods are the sapfe; 2 = %2)2'
the effective capacity of an R-tree, i.e., the average numhghile this worst-case 1/0 cost is worse than the ﬁ/O cost of
of entries in an R-tree node. The average height of an BS, in practice, many nodes of the R-trees are pruned during
tree ish= [logc,n| wheren is the cardinality of the dataset;traversals. We quantify the percentage of pruned nodes in
the cardinalities oC, F and P are denoted bye,nf andnp,  the simultaneous traversal of the two R-trees as the pruning
respectively. The expected_ number of nodes in an R-treepiswer, denoted byv; the number of nodes accessed is then
the total number of nodes in all tree levels (leaf nodes beu@_w) nc_ni ,, wherew should be replaced by, andwm, for

. i ie <h _ (Ce
level 1 and the root node being leve), which is5i'; & = NFc and MND, respectively. The cost difference among the

n (Cie + 612 4o c*lh) = &(1_ C*lh) ~ &_ We assume an two methods lies in the different pruning powers of the two

R-tree node has the size of a disk block. algorithms. Next, we focus on their pruning power differesic
] The pruning power is associated with the metrics used in
A. Precomputation and Index Cost the determination of whether the subtree rooted at a client

We precomputednn(c,F) for all methods. Computing R-tree node indexes the clients i8(p) of some potential
dnn(c,F) for all clients has the cost oD(n.-n¢) since location p, which arednn(c,F) and MND for NFC and
dist(c, f) for each pair of client and existing facilityf needs MND, respectively. The affected regions corresponding to



TABLE IV

these metrics are the MBR of the NFCs and the MND region.
PARAMETERS AND THEIR SETTINGS

According to the definitions of these metrics, the area axer

S L Parameter Setting

b?! t:e RIA;\ICD r(_argr:f)n IS very T:mllafvr o that(jcrsverztjoby:F:(aOMBR Data distribution Uniform, Gaussian, Zipfian
of the NFCs. This means thak, ~ wn and hencéOm ~ IOn.  ~Fjent set size 10K, 50K, 100K, 500K, 1000K
This relationship is also observed in our experiments. Existing facility set size | 0.1K, 0.5K, 1K,5K, 10K

QVC involves the following 1/O costs. (i) Fetdd from the Potential location set size| 1K, 5K, 10K, 50K, 100K
disk in blocks,|Oq1 = % (ii) For each potential locatiomp, U (Gaussian distribution ) | 0
perform a best-first NN query to constru&tR(p): the I/O cost | 0° (Gaussian distribution ) 0.125, 0.25, 0,51, 2
is 10gz = np-ks7 Wherek indicates the average percentage N (Zipfian distribution) 1000

a (Zipfian distribution) 0.1, 0.3,0.60.9 1.2

of Re nodes accessed in the NN query. (iii) For evAhR(p),
perform a window query offi:: the 1/O cost islOgz = 2—:1

(1—wq)loge, Ne. Therefore,nptrt:e VO cost of QVC i#0q = In this section, we report the results of our experiments.

1Oq1 +10q2 + 1043 = 27?1 ket +(%(1_Wq)|°gce Ne. Section VIII-B studies the behavior of the different method
The /0 cost of SS is much larger than that of NFC Ofsing uniform datasets, varying the sizes of the different

MND due to its lack of pruning capability. The 1/O cost ofyaiasets used in the query. Section VIII-C studies the per-

QVC depends oy and can be larger than SS under certaigyymance of the methods using datasets of Gaussian and

. nf -
circumstances as follows. LéDn = k=7 (i.e., the I/O cost ZiEfian distributions, varying the skewness of the data dis-
of the NN query discussed above). Based on the I/O costsigftion. Section VIII-D presents the experimental résun

SS and QVC, |i$,%l0nn > Ne, we obtainCylOpp > % Hence, |eal datasets.

87:; (1_|_ka% + (]__Wq)logCe nc) > nCp%r:c and thus |04 >

I0s. For example, in our experiments, whep = 10K and A. Experimental Setup
Cm = 204,10q > |05 wheneverOp, > 2.4. This is a situation All experiments were conducted on a desktop PC with 3GB
where NN query only accesses 2.4 nodediin In general, RAM and 2.66GHz Intel(R) Core(TM)2 Quad CPU. The disk

VIIl. EXPERIMENTAL STUDY

10s > 10q whennc is huge oms is small. page size is 4K bytes. We measure the running time, the
number of I/Os and the index size.
C. CPU Cost We conduct experiments on synthetic and real datasets. Syn-

The CPU cost can be considered as the product of the CHhgtic datasets are generated with a space domain of 1000
cost per block (node) multiplied by the number of block000. The dataset cardinalities range from 100 to 1000000.
(nodes) accessed. The I/O cost analysis provides the numblree types of datasets are used:Upiform datasetswhere
of nodes accessed. The CPU cost per block, denotet| bylata points are distributed randomly; ({aussian datasets
involves MBR intersection check and/or metric computatiorwhere data points follow the Gaussian distribution; diipfian

The NFC method requires the intersection examination datasetswhere data points follow the Zipfian distribution. The
the MBRs, and MND requires only the computatiomufiDist parameters of the synthetic data experiments are sumrdarize
and the comparison ofinDist and MND. Thereforet,, == in Table 1V, where values in bold denote default values.
tn. For QVC, recall thalOq = 10q + 10q2 + 10g3. Since the ~ We use two groups of real datasets provided by Digital Chart
first part only involves disk block retrieval, there is veitflé  of the World [22], which contain the points of populated gac
CPU cost; the CPU cost of QVC is mainly|Oq +t4310qz  and cultural landmarks in the US and in North America. We
wheretg, corresponds to the CPU cost per pair Rf and name them as the US group and the NA group, respectively.
Re nodes during the construction 8iR(p) andtys indicates For each group of datasets, the populated places are udeel as t
the CPU cost per pair oAIR(p) block andR: node. The client setC. The cultural landmark dataset is divided into two
third part,tq31Ogs, is comparable with the CPU costs of NFQatasets. Half of the cultural landmarks are chosen randtaml|
and MND. In facttys ~ tn because both methods perform &orm the existing facility sef, and the remaining are used as
window query with the query window being eithédR(p) the potential location sé. For the US group, the cardinalities
or Np.mbr, respectively. Due to the additional quasi-Voronodf C, F, P are 15206, 3008 and 3009, respectively, while those
cell construction stage, QVC has higher CPU cost in genefar the NA group are 24493, 4601 and 4602.
compared with NFC and MND. We use the R-tree [17] (or its variants as proposed in this

While the other methods only compute the values of sevegaper) as the underlying access methods.
metrics for each pair of accessed nodes, SS complig#s, p)
for every pair of clientt and potential locatiom for each pair
of blocks of the client set and the potential location sendtg The following experiments focus on the effect of dataset
the CPU cost per pair of blocks of Stg, is much higher than cardinalities. We vary the sizes 6f F and P independently.
that of any other method. AlsdQs is not smaller than other 1) Varying the Number of Clientsn our experiments, we
I/O costs. Thus, SS has the highest CPU cost. show that MND is the only method whose performance is as

In summary, we hav€PUs > CPU; > CPUy, =~ CPU,. Our good as NFC in terms of the running time and the number of
experimental study will also validate this inequality. I/Os, while MND has a much smaller index size.

B. Experiments on Uniform Datasets



The results for the experiments that vary the number of 10 10°
clients are shown in Fig. 10. From this figure, we can see th%lml
the NFC method and the MND method perform best in terms
of the running time and the number of 1/0s (cf. Fig. 10(a§
and (b)). Meanwhile, the MND method has a much smaller

100 L

index size compared to the NFC method (cf. Fig. 10(c)). o o 2 s 1ok T T T
i I I i I I xisting Facility Set Cardinali Existing Facility Set Cardinali
Fig. .10(d) gives a different representgtlon of thg |nde>e_ siz E(al) gRFum;{nSgltclme ty (b; ,glumt%r éf P ty

requirements using the measure relative to the index size of
the NFC method. For example, for the 10K datasets the indeX-os ——— .
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00 e ok 100k S0k 1000k %ox s 1o s w0 When the number of facilities is small enough, the number of
Client Set Cardinality Client Set Cardinality I/0s of QVC is less than that of SS, which is in accordance
(¢) Index size (d) Index size in percentage  \yith our cost analysis. Fourth, varying the number of et
Fig. 10. The effect of client set size facilities only affects the index size of the QVC methodcsin

From Fig. 10, we also observe that, compared with othenly this method requires an index &n
methods, the SS and QVC methods have significantly higher3) Varying the Number of Potential LocationExperiments
running time and larger numbers of I/Os, although the Qvtbat vary the number of potential locations also give result
method requires slightly less index size than the MND methd@at are very similar to those of the experiments varying the
does and the SS method does not require any index. When fihgber of clients, as shown in Fig. 12. MND still shows high
cardinality of the client set is large enough (e.g. 500Kg trefficiency in terms of the pruning time, the number of I/Os
number of 1/0s of SS exceeds that of QVC. The observatiofgd the index size.
above are in accordance with the cost analysis. QVC trayerse .
Re for each potential location, while either NFC or MND only_ j oos o
traverses the R-trees once on average for the entire mitenE’ ] e -6 10°
location set. Thus, QVC has larger number of 1/0s and hlghgr
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running time. For SS|Os > |04 whenevern. is large. It is g w_l S10°
slow because it does not have any pruning strategy. & 102 10 ‘ ‘ ‘
2) Varying the Number of Existing Facilitiesthe running tk 5k 10k 50k 100K 1k 5k 10k 50k 100k
H H H Potential Location Set Cardinality Potential Location Set Cardinality
tlmﬁ, the number: of I/Ots) and the index S|Ize of the r?]ethods, (a) Running time (b) Number of 1/0s
with respect to the number of existing facilities, are shown
100
Fig. 11. Again, MND and NFC are the most efficient methods % [ Aoe =
in terms of the running time and the number of I/Os, whilg 2:10° |- e = € o
MND outperforms NFC in terms of index size due to NFC%> 2126 [ 7 ] &
. . . . x 40
extra index tree for client indexing. E 1*106 S g e 0
Other observations can be made from the figure are aé*lo ] . e
follows. First, in terms of the running time and the number of ° 5k 10k 50k 100k ik 5k 10k 50k 100k
Potential Location Set Cardinality Potential Location Set Cardinality
I/Os, the comparative performance of the methods is sirtolar () Index size (d) Index size in percentage

that of the experiments varying the number of clients. Sécon The effect of potential location set size

an increase in the number of facilities yields a drop in both From Flg 12(c) and (d), we notice that the index sizes of
the running time and the number of 1/0s. The effect is motbe SS and QVC methods are not affected by the increase in
explicit for the NFC and MND methods. The reason is that ahe number of potential locations. This is because these two



methods do not index the potential locations, and as a result IX. CONCLUSIONS

they are both slow and have large numbers of I/0s. We alsoye formulated the min-dist location selection problem and
observe that the growth in the number of potential locatioRgducted a comprehensive study. We proposed two methods,
has the same effect on the running time and the number@{/c and NFC, based on common approaches to location
I/Os as increa_sing the number of clients. When the numberdﬁtimization problems. Our experiments show that they sig-
potential locations, becomes very large (i.@p > 10K), the pficantly outperform the sequential scan algorithm. Hoevev
advantages of NFC and MND in terms of the number of I/Qgey photh have some drawbacks. NFC performs the best but
become much significant (cf. Fig. 12(b)). requires maintaining an additional index. QVC requiresdiew
indexes, but is not as efficient as NFC. We further proposed
the MND method, which has very close efficiency to NFC
In the following experiments, we vary the distribution okth \without the need of maintaining an additional index. We

C. Experiments on Gaussian and Zipfian Datasets

datasets. We focus on performance of the algorithms in terggyided a detailed comparative cost analysis for all meégho
of the running time and the 1/O cost rather than the index sig@d performed extensive experiments to evaluate the erapiri
because the influence of detail data distribution on thexindserformance of them. The results agree with our ana'ysis and

size requirement is not the major concern of this paper.

validate the advantages of the MND method.
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