
The Safest Path via Safe Zones

Saad Aljubayrin#1 Jianzhong Qi#2 Christian S. Jensen∗3 Rui Zhang#2 Zhen He$4 Zeyi Wen#2

#Department of Computing and Information Systems, University of Melbourne
Melbourne, Australia

1aljubayrin@su.edu.sa
2{jianzhong.qi,rui.zhang,zeyi.wen}@unimelb.edu.au

∗Department of Computer Science, Aalborg University
Aalborg, Denmark
3csj@cs.aau.dk

$Department of Computer Science and Computer Engineering, Latrobe University
Melbourne, Australia

4z.he@latrobe.edu.au

Abstract—We define and study Euclidean and spatial network
variants of a new path finding problem: given a set of safe zones,
find paths that minimize the distance traveled outside the safe
zones. In this problem, the entire space with the exception of the
safe zones is unsafe, but passable, and it differs from problems
that involve unsafe regions to be strictly avoided. As a result,
existing algorithms are not effective solutions to the new problem.

To solve the Euclidean variant, we devise a transformation
of the continuous data space with safe zones into a discrete
graph upon which shortest path algorithms apply. A naive
transformation yields a very large graph that is expensive to
search. In contrast, our transformation exploits properties of
hyperbolas in the Euclidean space to safely eliminate graph
edges, thus improving performance without affecting the shortest
path results. To solve the spatial network variant, we propose
a different graph-to-graph transformation that identifies critical
points that serve the same purpose as do the hyperbolas, thus
avoiding the creation of extraneous edges. This transformation
can be extended to support a weighted version of the problem,
where travel in safe zones has non-zero cost.

We conduct extensive experiments using both real and syn-
thetic data. The results show that our approaches outperform
baseline approaches by more than an order of magnitude in
graph construction time, storage space and query response time.

I. INTRODUCTION

Shortest path computation has been studied extensively.
However, in some scenarios, the desired path may not be
the shortest one. In hazardous environments, it can be life
critical to minimize the distance traveled in unsafe regions.
For example, a person who drives a long distance through
the desert may try to travel via villages (“safe zones”) in the
desert because a breakdown in an unpopulated region can be
life threatening. The traditional shortest path from an origin to
a destination is likely to differ substantially from a “shortest”
path that is based on a preference to travel as little as possible
outside populated regions. In a more familiar scenario, a tourist
who plans to walk to a given destination may prefer a path that
visits interesting street blocks, e.g., with interesting houses,
galleries, or other sights, as much as possible. Here, traveling
in interesting regions (“safe zones”) is merely preferred, and
the tourist is unlikely to choose the “safest path” if it comes
at the cost of a very long walk. In the first of the above two

scenarios, we may assign zero cost to travel in safe zones,
while in the second, we may assign a reduced weight α ∈ [0, 1)
to travel in “safe” zones in order to capture a user’s degree of
preference for “safety” versus distance. To distinguish these
preferred regions from safe zones, we call them preferred
zones. In a large city, the number of buildings and blocks is
very large (e.g., there are over 1 million buildings in New
York City1). Many of these buildings/blocks are regions of
interests (safe zones) and the number of safe zones is hundreds
of thousands. This problem can also help cyclists find routes
with the least distance outside of bicycle lanes (safe zones).
According to OpenStreetMap2, Amsterdam has over 645000
road segments and many of them have bicycle lanes. As we
will see, a naive algorithm for this problem has a squared time
complexity with respect to the number of safe zones. It will
take a long time to solve this problem in the above applications,
so the need for an efficient algorithm is compelling.

Motivated by scenarios such as these, we formulate a new
problem called the safest path via safe zones (SPSZ), which is
to find a path that minimizes the distance traveled outside a set
of discrete safe zones. We study the problem in both Euclidean
and spatial network settings. Existing studies on finding a safe
path aim to strictly avoid a set of unsafe regions [2], [13]–
[15]. Our problem setting is different in that the entire space
is unsafe except for a set of safe zones, and unsafe regions are
still passable. Therefore, algorithms that solve these problems
do not apply.

To solve the SPSZ problem in the Euclidean setting, we
first transform the data space with safe zones into a graph
where the safe zones, the origin, and the destination are
represented by vertices, and paths between safe zones, the
origin, and the destination are represented by edges. Then any
shortest path algorithm may be applied to find the safest path.
As the locations and sizes of the safe zones are relatively static,
the graph can be precomputed. When an SPSZ query is issued,
its origin and the destination are added to the graph as vertices.

A naive transformation of the data space into a graph is to
add an edge between every pair of vertices with a weight that
equals the unsafe distance between the two vertices. This yields

1https://www.mapbox.com/blog/nyc-buildings-openstreetmap/
2http://www.openstreetmap.org/

Figure 1: Pruning with hyperbola

N(N − 1)/2 edges, where N is the number of safe zones. As
we show in our experimental study, most such edges are not
competitive and will never be used in any safest path. One
way to filter out such superfluous edges is to apply the Floyd-
Warshall algorithm [5] to find the shortest paths between all
pairs of vertices. However, the cost of doing so is very high
(O(N3)).

We observe that the regions containing the vertices with
superfluous edges can be elegantly described by hyperbolas
and we propose an algorithm that utilizes the properties of
hyperbolas to avoid such edges, thus obtaining a much more
sparsely connected graph. Figure 1 illustrates the main idea.
Assume that we are constructing edges between v1 and the
other vertices in the graph. The distances between the circles
denote the unsafe distances between the vertices. First, we
construct an edge between v1 and its nearest vertex v4. Then
we compute a hyperbola based on the centers of the two
vertices and the unsafe distance between them. We use the
hyperbola branch closer to v4 to divide the data space into
two parts. As will be shown in Section IV, any vertex located
on the v4 side of the hyperbola branch (in the shaded region)
has a shortest path to v1 that goes through v4. Therefore, we
discard vertices representing safe zones in the shaded part of
the space when creating edges between v1 and other vertices.

When solving the SPSZ problem in the spatial network
setting, straightforwardly introducing Euclidean space hyper-
bola into the spatial network space is not possible because
the hyperbola definition does not apply to network distance.
Instead, we identify a set of critical points that bound the
parts of the spatial network where traveling directly to a safe
zone v has shorter unsafe distance than when traveling to v
through an intermediate safe zone u. We call these critical
points hyperbola points in analogy with the solution for the
Euclidean setting. To identify the hyperbola points of v, we
traverse the spatial network from v in a breath-first fashion
and label every network vertex d by the safe zones that the
path reaching d has passed. The traversal terminates when v
is surrounded by network vertices that have been labeled by
other safe zones, and the surrounding network vertices are the
hyperbola points.

We generalize the problem in the spatial network setting
such that the cost of traveling in a safe zone is added to the
total path length using a weighted distance. In the Euclidean
setting, this generalized problem renders the use of either

hyperbolas or hyperbola points inapplicable. This is due to the
lack of a unified distance metric on a path formed by both safe
and unsafe segments with different weights. As a result, the
graph will be unmanageable. Therefore, we leave the weighted
version of the SPSZ problem in the Euclidean setting for future
research.

We make the following contributions:

1) We propose a new path finding problem and solve the
problem in Euclidean and spatial network settings.

2) To solve the problem of routing through safe zones
in the Euclidean setting, we model the data space as
a total graph from which edges are excluded during
graph construction. We propose a novel edge pruning
algorithm that utilizes hyperbolas.

3) In the spatial network setting, we consider both rout-
ing through safe zones and routing through preferred
zones. Travel in safe zones has zero cost, while a
weighted distance is used for travel in preferred zones
to capture a user’s preference for “safety” versus
distance.

4) We perform extensive experiments to evaluate the
efficiency of the proposed algorithms, and the results
are summarized as follows:

a) In the Euclidean setting, our graph construc-
tion algorithm is more than an order of mag-
nitude faster than an improved naive algo-
rithm and two orders of magnitude faster than
a naive algorithm. Our path finding algorithm
is up to an order of magnitude faster than the
naive and improved naive algorithms.

b) In the spatial network setting, for both the
case of routing through safe zones and the
case of routing through preferred zones, our
algorithms outperform the baselines signifi-
cantly in both graph construction and path
finding.

The reminder of the paper is organized as follows. Related
work is discussed in Section II. Section III presents the pre-
liminaries and a solution framework. Sections IV and V detail
the proposed algorithms in the Euclidean and spatial network
settings, respectively. Experimental results are presented in
Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Shortest path (e.g., [2], [5], [9]) finding has been a popular
research area in the past few decades. However, we are
unaware of any attempt to investigate the problem of finding
the safest path via safe zones in an unsafe space. Only a few
existing studies consider the safety aspect. Hallam et al. [8]
propose to find “multicriterion shortest paths,” which aim to
help submarines find shortest paths based on two factors: the
travel time and the risk of being detected by enemy sensors.
The setting is different from ours in that it assumes safe points,
where the submarine stops, rather than safe zones, in that the
size of a safe point (i.e., the area it spans) is not considered,
and in that navigating through safe points does not reduce the
unsafe distance. In our problem setting, traveling through safe
zones does not contribute to the unsafe traveling, and the aim

Table I: Notation

Notation Explanation
S The set of closed safe zones
o The origin of an SPSZ query
d The destination of an SPSZ query
P A path from o to d
pi, pi+1 A line segment in a path
S(pi, pi+1) Sub-segments within the safe zones
U(pi, pi+1) Sub-segments outside the safe zones
|U(P)| The unsafe distance of P
s A safe zone
α Safe zone traveling cost weight
distR() Spatial network distance

is to travel as little as possible outside safe zones. Therefore,
the solution of Hallam et al. is not applicable to our problem.

Other studies on safest path problems assume the majority
of the data space is safe and has a number of unsafe zones
in it, which is opposite to our assumption. In robotic path
planning [2], [12], [13], [18], it is an objective to find an
optimal path for a robot in the sense that it avoids collisions
with obstacles. Some studies assume that the obstacles are
moving (e.g., [2]). The obstacles in these studies form the
unsafe regions, while the rest of the space is safe. Similarly, in
military unit path finding [14], the problem is to find an optimal
path for a military unit to move from its current location to
another location. These studies also try to avoid certain regions
(e.g., obstacles and regions controlled by an enemy). Studies
of path finding for unmanned aerial vehicles (UAVs) [3], [15]
aim to find a path for a UAV to move to a destination safely.
Here, safety implies not flying in enemy radar detection zones
that form the unsafe regions while the rest of the space is
considered safe. The safest paths for cruise missiles problem
studied in [9] is addressed using a grid based approach. They
assign a certain safety probability to each grid edge based on
its distance from a threat region. Other works (e.g., [3]) use
Voronoi diagrams to represent unsafe polygons and find the
safest path when traveling along diagram edges. Most of the
studies above assume the unsafe zones are strictly not passable,
while unsafe regions are passable in our setting. Therefore,
the existing solutions are not applicable even when the space
definition of safe and unsafe areas is flipped around.

There have been lots of work on the nearest neighbor or
range queries [4], [10], [11], [16], which find those objects in a
database that have the smallest distances to a given query point
or range. They use spatial distance as the measure whereas
the SPSZ problem, after transformed to a graph, uses the
graph distance as the measure when finding the path with
the smallest distance. Therefore, the nearest neighbor or range
query algorithms are not applicable to the SPSZ problem.

III. PRELIMINARIES

We first formalize the SPSZ problem, and then present our
solution framework as well as two baseline algorithms. Table I
summarizes our notation.

A. Problem Definition

We assume that we are given a set of safe zones de-
noted by S, an origin point o, and a destination point d. In
particular, we consider round and polygon safe zones. Let

Figure 2: Paths and safe zones

P = 〈o, p1, p2, ..., pn, d〉 be a path between o and d, where
pi denotes a point on the boundary of a safe zone. Then o, p1,
p1, p2, ..., pn, d each denotes a segment that is either entirely
within a safe zone or not within any safe zone at all. For
example, in path Pod1 of Figure 2, p1, p2 and p3, p4 are within
safe zones s1 and s2, respectively, while remaining segments
are not within any safe zone. We use |P | to denote the length
of P , where |P | is computed as the sum of the lengths of
the segments, i.e., |P | = |o, p1| + |p1, p2| + ... + |pn, d|. Let
S(P) and U(P) be the two sets of segments of P that are
inside and outside of the safe zones, respectively. We call
|U(P)| the unsafe distance of P and |S(P)| the safe distance
of P . In Figure 2, |U(Pod1)| = |o, p1|+ |p2, p3|+ |p4, d|, and
|S(Pod1)| = |p1, p2|+ |p3, p4|

The problem of SPSZ is defined as follows:

Definition 1: Safest Path via Safe Zones (SPSZ) Query:
Given an unsafe Euclidean data space, a set of safe zones S
in it, an origin point o, and a destination point d, the SPSZ
query finds a path P from o to d, such that for any other path
P ′ from o to d, the unsafe distance of P is less than or equal
to P ′, i.e., ∀P ′(|U(P)| ≤ |U(P)′|).

Based on the above definitions, a straightforward solution is
to compute and compare the unsafe distance of all the possible
paths and then return the path with the shortest unsafe distance.
In Figure 2, the unsafe distance of the path Pod1 is smaller than
those of the other paths. However, in the Euclidean setting,
there is potentially an infinite number of paths between any
two points. Therefore, the straightforward solution may not be
feasible. To overcome this problem, we redefine the problem
to confine the number of candidate safest paths to a limited
number, based on which we propose our problem solution.

Definition 2: SPSZ Query (redefinition): Given an un-
safe data space, a set of safe zones S in it, an origin
point o, and a destination point d, the SPSZ query finds a
sequence of safe zones s1, s2, ..., sm, such that |o, s1|⊥ +
|s1, s2|⊥+, ...,+|sm, d|⊥ is minimized, where |·, ·|⊥ denotes
the shortest unsafe distance between two objects (either safe
zones or query points o and d). If o (or d) is in s1 (sm) then
we let |o, s1|⊥ (|sm, d|⊥) be 0.

We explain the intuition of the problem redefinition be-
low after introducing some notation. Given a path P , let
〈o, s1, ..., sm, d〉 be the sequence of the origin point (o), safe
zones (si), and the destination point (d) passed through by P .
For example, in Figure 2, both Pod1 and Pod4 pass through
〈o, s1, s2, d〉, while Pod3 passes through 〈o, s3, d〉. A segment
g ∈ U(P) connects a pair of adjacent objects 〈ob1, ob2〉

in the sequence of P , where obi is an origin (destination)
point or a safe zone. For example, ge2, ge3 ∈ U(Pod4)
connects s1 and s2. While there may be infinite segments that
connect 〈ob1, ob2〉, we can identify the shortest line segment
among them, e.g., p2, p3 for 〈s1, s2〉. Given any sequence
of origin/destination points and safe zones, we just need to
consider the path formed by the shortest line segments that
connect them. As a result, the problem of finding the safest
path between o and d becomes one of finding a sequence
of safe zones such that the line segments connecting them
have the shortest total length. For example, in Figure 2,
sequence 〈o, s1, s2, d〉 has a path Pod1 formed by line segments
o, p1, p2, p3, and p4, d, which have the shortest total unsafe
distance. This is the safest path between o and d.

In the spatial network setting, the problem is defined
analogously to the Euclidean definition. Here the number of
possible paths between safe zones is not infinite, but it may be
very large. Therefore, a similar analysis as for the Euclidean
setting applies where we just need to replace “the shortest line
segment” with “the shortest path in the spatial network.”

B. Solution Framework

In the Euclidean setting, we transform the SPSZ query to
a shortest path problem as follows. We let the set of safe
zones S plus the origin and destination points be the set of
vertices V , i.e., V = S ∪ {o, d}. For every pair of vertices in
V , we add an edge to the set of edges E , and we associate
it with a weight denoting the shortest distance between the
two vertices. After graph construction, finding the safest path
between o and d is equivalent to finding the shortest path
between o and d on a graph G = 〈V, E〉, which can be
done by a standard graph shortest path algorithm such as
the Dijkstra’s algorithm. Different queries may have different
origin and destination points, but they share the same sub-
graph G◦ = 〈V◦, E◦〉, where V◦ = S and E◦ contains the
edges connecting the vertices in S. Therefore, the sub-graph
G◦ can be precomputed. When a query is issued, we add the
origin point, the destination point, and the relevant edges to
connect them to G◦.

Therefore, we achieve a two-stage solution framework for
the SPSZ query as follows:

• Stage 1: Precompute the graph G◦ on S.

• Stage 2: When an SPSZ query with an origin point o
and a destination point d is issued:
(a) Add o and d to G◦ to form a graph G.
(b) Perform a shortest path search on G with o as the
origin and d as the destination.

In this study, we aim to obtain a graph that contains
as few edges as possible while not missing any edge that
may appear in a shortest path between two vertices. This is
because the number of edges plays a vital role in the efficiency
of graph construction and shortest path finding. The shortest
path algorithm used is orthogonal to the work in this paper.
We have used Dijkstra’s algorithm for simplicity, although
any other graph shortest path algorithms such as Contraction
Hierarchies [6] or Hub Labeling [1] may be used.

In the spatial network setting, we apply the same two-stage
framework and replace the Euclidean distance by the network

(a) Improved Naive algorithm (b) HyperEdges algorithm

Figure 3: Constructing Edges for v1

distance according to the weights of edges. In the following
sections, we present our graph construction algorithms for both
the Euclidean and the spatial network settings.

IV. SPSZ QUERY IN THE EUCLIDEAN SETTING

First we describe two straightforward solutions. Then we
present our proposed algorithm named the HyperEdges algo-
rithm. Next, we give details on how the hyperbolas work for
round and polygon safe zones. Finally we discuss how to deal
with overlapping safe zones.

A. Baseline Algorithms

Naive Algorithm: A naive algorithm for graph construc-
tion works as follows. First, we add an edge to every possible
pair of vertices (safe zones). Second, we filter the edges by
using the Floyd-Warshall algorithm [5] to compute the shortest
path between every pair of vertices. Only the edges that appear
in at least one of these shortest paths is kept. This algorithm
produces the minimum graph in the precomputation stage.
However, it is computationally expensive with cost O(N3).

Improved Naive Algorithm: The second baseline algo-
rithm improves on the naive algorithm. Instead of adding an
edge between every pair of safe zones, we only add an edge
if a line segment between two safe zones does not intersect
with any other safe zone. Omission of such edges works
because the route between the two safe zones that goes via
an intersecting safe zone is safer than the direct route. As
indicated in Figure 3a, for vertex v1, only the edges to v2,
v3, v4, and v6 are added to the graph since edges to any other
vertex intersects with a safe zone. We also filter the superfluous
edges using Dijkstra’s algorithm. In the query processing stage,
origin and destination edges are added as already described.

Although the running time and the number of edges created
by this algorithm is significantly smaller than for the naive
algorithm, it is still expensive to check the overlap between
line segments and safe zones as needed to avoid unnecessary
edges.

B. The HyperEdges Algorithm

Here, we present an efficient algorithm to filter out su-
perfluous edges, which are not used in any safest path. Our
solution is based on the observation that the regions containing
the vertices with superfluous edges can be elegantly described
by hyperbolas, and we propose an algorithm that utilizes the
properties of hyperbolas to avoid such edges, thus obtaining a

Algorithm 1: HyperEdges Algorithm - Euclidean
Input: A set of safe zones S indexed in a quad-tree Q
Output: A precomputed graph G◦
V◦ ← S;
// create edges
for v ∈ V◦ do

u ← next_nearest_neighbor(v, Q);
while u 6= null do

v.add_edge(〈v, u〉);
h← compute_hyperbola(v,u);
// use the created hyperbola h to

prune nodes in quad-tree Q
prune_nearest_neighbor(h, Q);
// perform best-first search that

only considers zones outside
the computed hyperbolas

u ← next_nearest_neighbor(v, Q);

// remove superfluous edges
for v ∈ V◦ do

for e ∈ v.edges do
P ← Dijkstra(e.v1, e.v2);
if e /∈ P then

v.remove_edge(e);

much more sparsely connected graph. We call our algorithm
the HyperEdges algorithm.

The main idea of the HyperEdges algorithm is that, for
each vertex v, we add edges connecting v with other vertices
progressively, during which we use the connected vertices
to prune part of the data space from being considered for
edge creation based on the properties of hyperbolas. Next,
we first present our graph construction and query processing
algorithms and then explain in detail how we compute the
parameters of the hyperbolas used and prove its correctness.

Graph Precomputation: We start with a graph containing
just vertices (the safe zones) and no edges, and then we
progressively add edges. To add the edges for a vertex v1,
as Figure 1 shows, we first create an edge between v1 and
its nearest vertex, which is v4. Then we compute a hyperbola
using the two vertices as the foci. We use the branch of the
hyperbola closer to v4 and call it the hyperbola branch of v4
(the shaded curve in Figure 1). This hyperbola branch divides
the data space into two parts. The property of the hyperbola
guarantees that any safe zone located on the v4 side of the
hyperbola branch has a shortest path to v1 that goes through
v4. A path that goes directly to v1 is longer Therefore, no
edges between v1 and any vertex representing a safe zone on
the v4 side of the hyperbola branch is needed. This way, we
have pruned a large number of possible edges.

Next, we find the nearest vertex of v1 located on the
unpruned side of the hyperbola branch, create an edge between
it and v1, and compute another hyperbola branch to prune
edges. The above process is repeated until no vertex is left to
be connected to v1 as shown in Figure 3b. Having done the
above for every vertex, we obtain a graph that contains all the
necessary edges for safest path computation. In Section IV-C,

Figure 4: A Hyperbola

we prove that the hyperbola-based pruning algorithm is safe
in that no edge that can belong to a shortest path is pruned.

As will be discussed in the following, although this graph
construction algorithm is very effective, it may still contain a
small number of edges that will not be in any shortest path.
We call these edges superfluous edges. To filter superfluous
edges, we run Dijkstra’s algorithm for every pair of vertices
that have an edge between them, and we only keep an edge if
it is the shortest path between the two vertices.

Algorithm 1 summarizes the process described above,
where a special index Q is used to index the safe zones for fast
nearest vertex computation. We use the quad-tree [17] in our
implementation, although any hierarchical index can be used.

Query Processing: The query origin and destination points
come in three possible states: (i) both are located in safe
zones; (ii) one of them is in a safe zone; (iii) both are outside
safe zones. If the origin point or the destination point is in a
safe zone, we simply use the safe zone as the origin (or the
destination). Otherwise, we add edges to connect the points
to the graph G◦, which is done by applying the edge creation
strategy described above. After edge creation, we run Dijkstra’s
algorithm to find the safest path. We do not need to filter
superfluous edges because we run Dijkstra’s algorithm anyway.

Since the hyperbolas are used differently for edge pruning
with round and polygonal safe zones, we detail the differences
next.

C. Hyperbolas for Round Safe Zones

As shown in Figure 4, a hyperbola is a smooth curve with
two branches, where every point p on the curve satisfies that
the distance difference from p to two points f1 and f2 is a
positive constant k [7], i.e.

|f1, p| − |f2, p| = k.

Here, f1 and f2 are called the foci of the hyperbola. Straight-
forwardly, we can derive that a point p1 to the right of the
right hyperbola branch satisfies

|f1, p1| − |f2, p1| > k.

We exploit this property to prune edges.

In particular, Let vc and uc be the centers of two round
safe zones v and u, respectively. We use these two centers
as the foci to construct a hyperbola as shown in Figure 5.
Then the right hyperbola branch divides the space into two

Figure 5: Hyperbola for Safe Zones

sub-spaces, and by definition, a point (e.g., p3) on the uc side
of the sub-space satisfies

|vc, p| − |uc, p| > k ⇒ |vc, p| > |uc, p|+ k.

By letting k be |vc, up1| − ru, where up1 denotes the closest
point to v on u and ru denotes the radius of u, we obtain

|vc, p| > |uc, p|+ |vc, up1| − ru.

Since |vc, up1| = |v, u|⊥ + rv , where |v, u|⊥ denotes the
shortest distance between v and u and rv denotes the radius
of v, we have

|vc, p| > |uc, p|+ |v, u|⊥ + rv − ru
⇒ (|vc, p| − rv) > (|uc, p| − ru) + |v, u|⊥.

Here, |vc, p| − rv and |uc, p| − ru are the minimum unsafe
distances from p to v and u, respectively, while |v, u|⊥ is the
minimum unsafe distance between v and u. As a result, we
know that, the unsafe distance from p to v is larger than that
from p to u and then to v. It is safer to travel to u first, and
there is no need to create an edge between v and any vertex
in the right sub-space of the hyperbola branch of u. Thus, we
add no edges to safe zones in this sub-space. We formalize the
pruning strategy as the following theorem.

Theorem 1: Let two round safe zones v and u be given
along with a hyperbola defined by

(|vc, p| − rv)− (|uc, p| − ru) = |v, u|⊥.

For any point p located beyond the hyperbola branch closer to
u, it is safer to travel through u rather than to travel directly
from v, i.e.,

(|vc, p| − rv) > (|uc, p| − ru) + |v, u|⊥.

Proof: The correctness of the theorem is guaranteed by
the definition of hyperbola as shown by the derivation above.

As an example, in Figure 5, |p1, vc| − rv = 4, |(p1, uc)| −
ru = 1 and |v, u|⊥ = 3. At p1, it is the same in terms of
safety to travel to u then to v as to travel directly to v. The
same applies for point p2 because |(p2, vc)| − rv = 1.5 and
|(p2, uc)|− ru = 4.5. However, point p3 is located beyond the

hyperbola branch closer to u, and hence it is safer to travel
through u to v rather than to v directly. In contrast, p4 is not
located beyond the hyperbola branch. Traveling from p4 to v
directly is safer than traveling through u:

|p4, vc|−rv = 6.37 < |p4, uc|−ru+|v, u|⊥ = 3.53+3 = 6.53.

Theorem 1 guarantees no false negatives in edge creation,
i.e., only superfluous edges are pruned. However, it cannot
guarantee no false positives, meaning that superfluous edges
can be created. While such edges do not affect correctness,
they may affect performance. Since the number of superfluous
edges is usually small due to the pruning capability of the
HyperEdges algorithm (within 1% of the total number of edges
created in experiments), filtering them incurs small overhead.

There are two cases where superfluous edges are generated:

• If the safe zone of a vertex spans the two sub-spaces
created by a hyperbola branch, we cannot prune the
vertex since it contains points that should not be
pruned. However, it is still possible that it is safer to
travel from the vertex through u to v. An example can
be seen in Figure 1, where v7 spans the two sub-spaces
created by the hyperbola branch of v4, and hence it
cannot be pruned by v4. This type of vertex usually
does not yield many superfluous edges, as they may
still be fully enclosed in a sub-space pruned by some
other vertices. For example, v7 in Figure 3b is pruned
by v3.

• When adding an edge between v and u, our prun-
ing strategy essentially disregards the vertices whose
respective shortest paths to v contain only one in-
termediate vertex u. However, we cannot prune the
vertices whose respective shortest paths to v contain
additional intermediate vertices, even though this case
is infrequent especially in the Euclidean setting.

Correctness: The correctness of using hyperbolas to prune
the edges is guaranteed as follows. Using the proposed hy-
perbola based pruning algorithm, only when there is a path
v → u → ... → w shorter than edge v → w, the edge
v → w will be pruned. Such a path will not exist if edge
v → w appears in some shortest path. This means that the
graph constructed in the pre-computing stage keeps the edges
that appear in at least one of the shortest paths between any
two safe zones. Therefore, in the path finding stage the correct
shortest path can be found.

Complexity: The key advantage of the HyperEdges al-
gorithm is that, as Figure 5 shows, a hyperbola branch can
prune edges to vertices representing safe zones in a significant
portion of the space. If the vertices surrounding a vertex v are
distributed evenly, only a few hyperbola branches are needed
to cover the whole space. Thus, only a few edges will be
created for each vertex. Roughly speaking, unless the vertices
are highly skewed, the number of edges created per vertex is
on the order of O(1), and the number of edges created for N
vertices is on the order of O(N). In the worst case scenario,
none of the safe zones can serve as an intermediate node in
any other safe zone’s safest paths. Then no edge can be pruned
and the time complexity to generate these edges is the same
as the naive algorithm. However, this is usually not the case

Figure 6: Hyperbolas for 3 Partitions

for real data and our pruning algorithm is very effective as
shown by experiments. In contrast, the naive algorithm always
creates an edge for every pair of vertices, i.e., the number of
edges created for N vertices is always on the order of O(N2).

D. Hyperbolas for Polygonal Safe Zones

For polygons, we need more than one hyperbola per pair
of vertices to prune edges. This is because a polygon does not
have a center that is equidistant to every point on the boundary,
and therefore we cannot define (|vc, p|−rv)− (|uc, p|−ru) >
|v, u|⊥ on the centers vc and uc of two polygons v and u. To
overcome this difficulty we divide the space for each vertex
into multiple partitions and use multiple hyperbolas for pruning
the different partitions.

We observe that the above inequality for round safe zones
essentially defines a region where the unsafe distance from
a point p to v (|vc, p| − rv) exceeds the sum of the unsafe
distance from p to u (|uc, p| − ru) and the minimum unsafe
distance between v and u (|v, u|⊥). We rewrite this inequality
as follows:

|v, p|⊥ − |u, p|⊥ > |v, u|⊥.

Here, |v, p|⊥ and |u, p|⊥ denote the minimum unsafe distance
from p to v and u, respectively.

We relax this inequality as follows to obtain the hyperbola
for two polygon safe zones v and u:

|vp1, p| − |up1, p| > |v, u|⊥.

Here, vp1 and up1 are two points from v and u that serve as
the foci (cf. Figure 6, where the dashed line connecting v and
u is |v, u|⊥). We need to find the two points that satisfy the
following for every point p:

|vp1, p| ≤ |v, p|⊥ and |up1, p| ≥ |u, p|⊥,

so that the original inequality is also satisfied and we guarantee
the correctness of pruning using the hyperbola. By definition,
|up1, p| ≥ |u, p|⊥ is satisfied for any point up1 on u. Mean-
while, |vp1, p| ≥ |v, p|⊥ holds for any point vp1 on v. Thus,
to satisfy |vp1, p| ≤ |v, p|⊥, we need a point vp1 such that
|vp1, p| = |v, p|⊥. This means that vp1 must be the closest
point on v to any point p. Since different points have different
closest points on v, there is no single point vp1 that satisfies
|vp1, p| = |v, p|⊥ for every different p. To overcome this

(a) Same overlapping set (b) Different overlapping sets

Figure 7: Hyperbolas for Overlapping Round Safe Zones

limitation, we divide the space into multiple partitions, where
the points in each partition share the same closet point on v.

We extend the edges of the minimum bounding rectangle
(MBR) of v across the space to divide the space into 8
partitions s1, s2, ..., s8 as shown in Figure 6. We use the MBR
of v rather than v directly to simplify the processing of finding
the closest point on v for the points in each partition. This
does not introduce false negatives because any point outside
the MBR of v must be at least as close to the MBR as it is
to v. It may result in superfluous edges, but the number of
these is expected to be small as the MBR is usually a good
approximation of a spatial object.

After the space division, every shaded partition has only
one point in the MBR of v as its closest point, which is the
corresponding corner point. For example, in Figure 6, vp1 is
the closest point among the points in partitions s1 to the MBR
of v. Similarly, vp2, vp3, and vp4 are the closest points for the
points in partitions s3, s5, and s7, respectively. We use the
corner point and a point from u to compute a hyperbola for
pruning in a shaded partition. The non-shaded partitions still
do not have a unique point that is the closest to all the points in
the partition. This will cause a problem which we call the blind
area problem. A blind region is a small region with uncertain
safety that therefore cannot be used straightforwardly for edge
pruning. Blind regions are covered shortly.

Since there are multiple partitions to be used for pruning,
we compute multiple hyperbolas, each with a different pair of
foci. An example is shown in Figure 6, where three hyperbola
branches are computed for pruning in partitions s1, s3, and
s5. When u is in different partitions, we use different sets of
hyperbolas, which is straightforward and hence omitted.

Blind Region: As mentioned above, for an unshaded
partition, there is no single point that can serve as one of the
hyperbola foci. This is because different points in an unshaded
partition have different closest points on the MBR of v. For
example, in Figure 6, points in s2 may view vp1, vp2 or some
other point in-between as their closest point on the MBR of v,
depending on the positions of the points. As a result, there is
no single hyperbola for pruning in s2. However, we can still
achieve some pruning in this type of partitions.

Assume that we can find all the points on vp1, vp2 and
compute hyperbolas for all of them with another foci on
u, such as up1. Then the intersection of all the pruning
regions defined by these hyperbolas can be used safely for

Figure 8: HyperEdges in Spatial Networks

pruning. Since this is impossible, we relax the pruning by
only computing the hyperbola for vp1 and up1. Because vp1 is
farthest from up1 among all the points on vp1, vp2, we know
that Hyp(vp1, up1) must have the right-most intersection point
on the extended edge of vp4, vp1. Any point in s2 to the right
of the intersection is enclosed by the pruning region defined
by the hyperbola of any other point on vp1, vp2. In contrast,
we cannot infer that it is safe to use the region to the left of
the intersection for pruning; thus, we call it a blind region and
do not use it for the pruning of edges.

E. Overlapping Safe Zones

Until now we have implicitly assumed that safe zones do
not overlap. However, this assumption may not hold in the
Euclidean setting. Thus, the minimum unsafe distance between
two safe zones may not be the direct distance between them,
but a distance through some other safe zones they overlap with.
We thus adjust the HyperEdges algorithm to handle this case.

Overlapping round safe zones: We first group the vertices
(safe zones) to form subsets of vertices V1, V2, ..., Vm as
follows. For each vertex v, if it has not been assigned to any
subset, we find the subset that contains at least one vertex that
overlaps v, and we assign v to the subset. If no such subset
can be found, we create a new subset and assign v to it. This
way, for any subset Vi, traveling between any two points in Vi
can always occur within safe zones, and the minimum unsafe
distance between any two vertices in Vi is 0. For example, in
Figure 7a, all the vertices belong to the same subset, while in
Figure 7b, there are two subsets, {v1, v2, v3, v4} and {v5}.

In edge creation, if two vertices v and u are in the same
subset, the minimum unsafe distance between them is 0, which
is then used as the constant k in hyperbola computation, i.e.,
we compute the hyperbola as

(|vc, p| − rv)− (|uc, p| − ru) = 0.

If v and u are in two different subsets Vi and Vj , we
use the minimum unsafe distance between the two subsets as
the constant k rather than using the minimum unsafe distance
between the two vertices directly. This is because the former

may be shorter as there is no cost of traveling in the same
subset. Formally,

(|vc, p|−rv)−(|uc, p|−ru) = min {|vi, vj |⊥}, vi ∈ Vi, vj ∈ Vj .
For example, in Figure 7b, when computing the hyperbola for
vertices v5 and v4, we use the distance between v5 and v1 as
k rather than the distance between v5 and v4.

Overlapping polygonal safe zones: Handling overlapping
polygonal safe zones is simpler. When two polygonal safe
zones v and u overlap, we simply merge them and generate a
new polygon mv,u. This newly generated polygon mv,u then
replaces v and u in all subsequent computations.

V. SPSZ QUERY IN THE SPATIAL NETWORK SETTING

We consider a spatial network R represented by a graph
GR = 〈VR, ER〉, where vertices VR represents the set of
network vertices (e.g., intersections) and edges ER represents
the set of segments connecting the vertices. A safe zone s
in the spatial network is represented by the set of network
vertices sV and the set of edges sE covered by the safe zone,
i.e., s = 〈sV , sE〉. If an edge is partly covered by a safe zone,
a new vertex is introduced at the safe zone intersection point,
and the edge is replaced by a safe and an unsafe edge. We call
these network vertices and edges safe vertices and safe edges,
respectively. For example in Figure 8, every circle represents
a safe zone that covers the safe vertices and edges denoted by
the gray points and dashed line segments.

To solve the SPSZ problem in a spatial network R, as
discussed in Section III, we construct a graph G◦ where the
safe zones serve as the vertices. To connect the vertices we
add the paths in GR to the graph G◦. A naive approach to
connect the vertices is to compute the shortest path between
every pair of safe zones in GR and add the (safe and unsafe)
edges and vertices used by each such path to GR. However,
this would result in searching the whole spatial network for
each safe zone, which is expensive.

A. The HyperEdges Algorithm

Similar to solving the SPSZ problem in the Euclidean
setting, we again consider using hyperbolas to reduce the edge

creation cost. However, straightforwardly applying the Eu-
clidean hyperbola described in Section IV-C does not guarantee
correct edge pruning. This is because the Euclidean distance
between two points in a spatial network is usually different
from the network distance. To overcome this problem, we use
network hyperbola. A network hyperbola is a set H of points
in a spatial network, where every point p in the set satisfies

|distR(f1, p)− distR(f2, p)| = k.

Here, distR() returns the network distance between two points,
i.e., the length of the shortest path in the spatial network. The
two points f1 and f2 are the foci of the network hyperbola, and
k is a given positive constant. A network hyperbola contains
a set of points that partition the network into two. In one of
the partitions, the shortest path to f1 of every point passes
through f2. In the other partition, the shortest path to f1 of no
point passes through f2. Given two safe zones sv and su, their
network hyperbola is computed by testing whether the points
in the network vertices satisfy the hyperbola inequality3. When
a point p is to be tested, we use two safe vertices of sv and
su that are the closest to p as f1 and f2, respectively. The
network distance between the two safe zones is used as the
constant k. For example in Figure 8, for the two safe zones
v1 and v5, the minimum distance between them (4 distance
units) is k. The network vertex at (5, 7), denoted by n5,7 is a
network hyperbola point such that

distR(n5,7, n4,4)− distR(n5,7, n3,7) = 6− 2 = 4 = k.

We use Figure 8 to illustrate the HyperEdges algorithm
using network hyperbolas:

1) For every safe zone vertex v (e.g., v1), perform a
single source shortest path search on GR starting
from all of v’s border safe vertices (vertices inside v
with an edge ending outside v, e.g., n3,3, n4,4). This
is to find a path to connect v with every neighboring
safe zone u.

2) For every safe zone u (e.g., v5), use the network
distance distR(v, u) as k (e.g., 4) along with two safe
vertices f1 and f2 from v and u to form a hyperbola
equation. We do this for all the neighboring safe
zones at the same time using a graph vertex labeling
technique, which is detailed below.

3) The search of paths to neighboring safe zones contin-
ues until v is fully surrounded by network hyperbola
points. The remainder of the spatial network is pruned
(e.g., the x vertices).

Finding the network vertices satisfying the network
hyperbola condition: In the graph pre-computation stage, we
need to identify the network vertices in v’s partition of the
spatial network as defined by a network hyperbola. A query
starting at any of these network vertices towards v should go
directly to v rather than going through any intermediate safe
zones. We use a labeling technique to identify these network
nodes. We attach a variable l to each network vertex n to store
the id of the safe zone that is passed through by the search
before reaching n. The labeling technique works as follows:

3We do a best-first traversal on the spatial network and hence only a limited
number of points are tested.

(a) HyperEdges (b) Im-Naive

Figure 9: Edges Created in Graph Construction

1) For every safe zone v (e.g., v1), use Dijkstra’s algo-
rithm to search the neighboring network vertices in
all directions. Every found network vertex (e.g., the
black dots in Figure 8) is labeled with the id of v and
added to a priority queue Q. When a new neighboring
safe zone u is reached during the search (e.g., v5), we
continue the search beyond u, but omit the distance
to travel through the safe zone.

2) Label every network vertex reached through u with
the id of u (e.g., the hollow dots for v5) and add it
to Q.

3) Continue the search as long as there are vertices
labeled with v’s id in Q. The search stops when
Q becomes empty or Q does not contain any vertex
labeled with the id of v.

Here, the termination condition means that either all net-
work vertices have been accessed or any path from the safe
zone v has reached a network vertex that is labeled by some
other safe zone. In the latter scenario, a network vertex n
labeled by another safe zone u has a safer path through u to
v than going directly to v. Since any network vertex reached
from n should also go through n first, it should also go through
u first, and hence a direct path to v is unnecessary.

At query time, we treat the origin and destination points as
safe zones and label the network vertices for them similarly to
build edges from them to the neighboring safe zones. Then the
origin and destination points are connected to the precomputed
graph G◦, and we can apply Dijkstra’s algorithm to find the
safest path.

B. Adding the Cost of Traveling in Safe Zones

In the above discussion we assumed that travel in safe
zones has zero cost. We proceed to introduce a weighting
parameter α ∈ [0, 1) and add the cost of traveling in safe
zones to the formalization of network hyperbola as follows:

|distR(v, p)− distR(u, p) + (α ∗ distR(u))| = k.

Here, distR(u) denotes the length of the shortest path to
travel through a safe zone u. To accommodate this cost in the
HyperEdges algorithm, we just need to change the computation
of the network hyperbolas in the algorithm to use the equation
above.

VI. EXPERIMENTAL STUDY

In this section, we empirically study the performance of the
HyperEdges algorithm. In the experiments for the Euclidean
setting, we compare HyperEdges to both the naive and the
improved naive (here denoted as “Im-Naive”) algorithms de-
scribed in Section IV-A. We observe that the naive algorithm
is significantly less efficient in terms of the number of cre-
ated edges as well as running time than both Im-Naive and
HyperEdges: this naive algorithm takes more than a day to
construct a graph for a dataset of 10,000 objects. Therefore,
we omit the results of the naive algorithm. In the experiments
for the spatial network setting, we compare HyperEdges with
the naive algorithm as described at the beginning of Section V.

We conducted the experiments on a desktop PC with 8GB
RAM and a 3.4GHz Intel(R) Core(TM) i7 CPU. The disk page
size is 4K bytes. For the Euclidean setting experiments, we use
a real dataset containing the locations of 1042 villages in Saudi
Arabia4. Specifically, the coordinates of the 1042 villages are
used as the base safe zone dataset, and we generate additional
safe zones following a Gaussian distribution (σ = 0.166)
centered at the real villages. By default, we use 10,000 safe
zones covering 8% of the total area of the data space. For
the spatial network setting experiments, we use the London
road network extracted from Open Street Map5, which contains
515,120 vertices and 838,702 edges. We also extracted the
location of 192 police stations in London and use them as
safe zone centers. We call this the “Police Stations” dataset.

We vary parameters such as dataset size, safe zone density,
and data distribution to gain insight into the algorithm perfor-
mance in different settings. The detailed settings are given in
the individual experiments.

A. Euclidean Setting Experiments

First, we evaluate the effectiveness of the HyperEdges
algorithm in term of constraining the number of edges created.
This includes the edges created in both the graph construction
and query processing stages. Then we evaluate the algorithm
efficiency, also in both stages. We use a default dataset
of 10,000 safe zones covering 8% of the total area of the
data space generated based on real data as described at the
beginning of the section.

Edge Pruning Effectiveness: We measure the number of
edges created by the different algorithms and observe that
HyperEdges (i) creates a much smaller number of edges before
filtering and (ii) creates the same set of edges as the improved
naive algorithm does after filtering in both stages. The graph
constructed by HyperEdges has almost no superfluous edges
(less than 1%), while more than 90% of the edges created by
Im-Naive are superfluous edges and need to be filtered. We
also compare the graphs after filtering and confirm that the
two algorithms achieve the same graph.

To given a more intuitive view of the algorithm perfor-
mance on edge pruning, we generate 200 round safe zones
with random distribution as shown in Figure 9. We ran
HyperEdges and Im-Naive to create the edges, and the figure
shows the edges produced before filtering. We can see that

4http://www.sl3sl.com/vb/showthread.php?t=7032
5http://metro.teczno.com/# london

(a) Graph Construction (b) Query Processing

Figure 10: Effect of Safe Zones Cardinality

(a) Different Density Level (b) Memory Consumption

Figure 11: Effect of Density and Memory Consumption

HyperEdges creates a much smaller number of edges, which
demonstrates the effectiveness of our hyperbola based edge
pruning technique.

Algorithm Efficiency: We measure the running time of
both the graph construction and the query processing stages in
different dataset cardinality, object distribution and object den-
sity level. In addition, we measure the memory consumption
of the two algorithms for storing the graph created.

1) Effect of Dataset Cardinality: We used the base safe
zone dataset to create datasets of different sizes. Figure 10a
shows the running time on graph construction for the generated
datasets of different sizes. HyperEdges is more than an order
of magnitude faster than Im-Naive when the dataset size is
within 80,000. At the 160,000 dataset, the Im-Naive algorithm
cannot finish within 7 days and no result is obtained. This again
confirms the advantage of our hyperbola based edge pruning
techniques in reducing the graph construction time. Also the
running time of HyperEdges increases much slower with
the increase in dataset cardinality in the graph construction
stage, while that of Im-Naive increases dramatically. This
demonstrates the scalability of the HyperEdges algorithm.

In the query processing stage, we compare the average
running time of HyperEdges with that of Im-Naive for pro-
cessing 100 queries where each query has randomly generated
origin and destination points. Note that in these experiments
the precomputed graphs for both algorithms are the same as
both algorithms produce the same graph after filtering.

Figure 10b illustrates the query processing time, which
is the time taken to add the origin and destination points
to the graph and to find the safest path, where the dataset
cardinality is varied. We observe that, HyperEdges can be more
than 50 times faster than Im-Naive when processing safest
path queries. This is because HyperEdges inserts the query
origin and destination points into the graph using the hyperbola
based technique, which is more efficient than Im-Naive. The
total query processing time of HyperEdges is at least 90%
smaller than that of Im-Naive for the various datasets tested.
Experiments where the other settings are varied for the query
processing stage show similar results. They are omitted due to
the space limit.

2) Effect of Safe Zone Density: Figure 11a shows the graph
construction time where we vary the percentage of the data
space covered by the safe zones from 32% to 1% by varying
the radius of the safe zones. Again, HyperEdges outperforms
Im-Naive constantly and it is at least seven times faster for all
density levels tested. Note that the size and density of the safe
zones do affect the efficiency of both algorithms. This effect
is not too observable for HyperEdges in the figure due to the
large range of the Y-axis. However, when the density is 1%,
the running time of HyperEdges is three times that when the
density is 32%.

3) Memory Consumption: Figure 11b shows the maximum
memory consumption (in MB) of the two algorithms in graph
construction on the datasets of different sizes. As the figure
shows, HyperEdges constantly consumes less memory com-
paring with Im-Naive. This is because HyperEdges creates
much fewer edges. Meanwhile, the advantage of HyperEdges
grows as the dataset cardinality increases. This is in accordance
to our discussion at Section IV-C that HyperEdges creates
edges whose number increases approximately linearly to the
number of safe zones, while the number of Im-Naive increases
approximately quadratically.

4) Effect of Safe Zone Distribution: Figure 12a shows the
graph construction time when the safe zone distribution is
varied. We use µ = 0.5 and σ = 0.166 for the Gaussian
distribution and α = 0.1 for the Zipfian distribution to generate
10,000 safe zones covering 8% of the total area of the space,
where the safe zone centers follow the given distributions
around the safe zones in the base dataset. As the figure shows,
HyperEdges runs more than an order of magnitude faster than
Im-Naive for all different distributions tested.

5) Effect of Safe Zone Shape: Both HyperEdges and Im-
Naive can process round and polygon shaped safe zones.
We test their performance with the default dataset (round
sate zones) and a dataset of the same parameters but with
polygon safe zones. Figure 12b shows that the running time
of HyperEdges in the different safe zone shapes is significantly
less than that of Im-Naive. We notice that HyperEges is about
three time faster in the round safe zone experiment than in the
polygon safe zone experiment. This is expected as for polygon
safe zones we need more hyperbolas for each pair of safe zones
to constrain the edges created.

B. Spatial Network Setting Experiments

First we validate the effectiveness of HyperEdges in re-
ducing the number of network vertices accessed in both graph
construction and query processing stages. Then, we evaluate
the algorithm efficiency. The default setting is 192 safe zones
(all police stations) where each safe zone has a radius of 2
kilometers and α = 0, and the spatial network used is the
London road network.

Network Pruning Effectiveness We measure the number
of network vertices accessed by both HyperEdges and the
naive algorithm and show that HyperEdges accesses a much
smaller number of network vertices. This leads to the better
performance of HyperEdges in graph construction and query
processing.

Figure 13a shows the average number of vertices accessed
for each safe zone (query) on the London road network.

(a) Different Distributions (b) Different Shapes

Figure 12: Effect of Safe Zone Distribution and Shape

(a) Number of vertices accessed (b) Query point search range

Figure 13: Network Vertices Accessed in London Network

We can see that the average number of vertices accessed by
HyperEdges in both graph construction and query processing
stages is about 85% less than that of the naive algorithm.
Figure 13b illustrates the search range needed by the two
algorithms to add a random query point to the constructed
graph in the London network dataset. As can be seen from
the figure, the naive algorithm accesses about nine times more
vertices than HyperEdges does. Algorithm Efficiency: We
measure the running time in both graph construction and query
processing stages using different number of safe zones, safe
zone sizes and α values.

1) Effect of Safe Zone Density: We randomly sample the
“Police Station” dataset to obtain safe zone datasets of different
sizes. Figure 14a shows that the running time of HyperEdges
is up to 85% less than that of the naive algorithm in the
graph constructing stage. This is due to the advantage of
using the hyperbola labeling technique in HyperEdges over the
straightforward Dijkstra’s algorithm based solution. Figure 14b
shows that, the average running time to answer an SPSZ query
of HyperEdges is again up to seven times faster than that of the
naive solution. An important notice from this figure is that, the
performance of HyperEdges improves as the number of safe
zones increases, while the performance of the naive solution
is almost the same regardless of the number of safe zones.
This is because HyperEdges terminates the search earlier when
it reaches enough neighboring safe zones, while the naive
solution searches the entire network.

2) Effect of Safe Zone Size: We vary the radius of each
safe zone from 0.5 to 4 kilometers. As Figure 15a shows,
HyperEdges again outperforms the naive algorithm constantly.

(a) Graph Construction (b) Query Processing

Figure 14: Effect of the Number of Safe Zones

We notice that when the safe zone size is 4 both algorithms
achieve better performance. This is due to overlapping of the
safe zones, which leads to fewer safe zones effectively as
discussed in Section IV-E. This in turn, reduces the graph
construction time.

3) Effect of the Value of α: We further evaluate the effect
of the value of α, which controls the weight of the cost of
traveling inside safe zones. We vary the value of α in the
graph construction stage from 0 to 0.75. As Figures 16a and
16b show, the running time of HyperEdges increases as the
value of α increases, which is expected because when the cost
of traveling within safe zones has a higher weight, the labeling
technique needs to access more vertices to ensure finding the
safest path. However, HyperEdges still outperforms the naive
algorithm in all cases.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a new path finding problem, safest path via
safe zones, which finds the path between two points with the
shortest unsafe distance. We modeled the problem in both
Euclidean and spatial network settings as a graph shortest path
problem and proposed a solution framework, which contains a
precomputed graph construction stage and a path finding stage
at query time. This framework uses the properties of hyperbo-
las to prune the search space and reduce the number of edges
created. As shown by the experimental study, our algorithm
outperforms both the naive and the improved naive baseline
algorithms in the Euclidean setting in three aspects. First, the
number of edges created by our algorithm before filtering is
an order of magnitude smaller than that of the improved naive
algorithm. This successfully reduces the memory consumption.
Second, the time taken for edge creation by our algorithm is
an order of magnitude smaller than that of the improved naive
algorithm and two orders of magnitude smaller than that of
the naive algorithm. Third, our algorithm in query processing
is up to an order of magnitude faster than the naive and Im-
Naive algorithms. Similarly, in the spatial network setting, our
algorithm consistently outperforms the baseline algorithm in
term of the running time and the number of vertices accessed
in both graph construction and query processing stages.

For future work we will investigate whether there is a
solution to the generalized version of the problem in the
Euclidean setting where the cost of traveling in safe zones
is added to the total path length as a weighted distance.

VIII. ACKNOWLEDGMENT

The author Saad Aljubayrin is sponsored by Shaqra Uni-
versity, KSA. This work is supported by Australian Research
Council (ARC) Discovery Project DP130104587 and Aus-
tralian Research Council (ARC) Future Fellowships Project
FT120100832.

REFERENCES

[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F
Werneck. A hub-based labeling algorithm for shortest paths in road
networks. In SEA, pages 230–241. 2011.

[2] Jur Berg and Mark Overmars. Planning the shortest safe path amidst
unpredictably moving obstacles. In Algorithmic Foundation of Robotics
VII, pages 103–118. 2008.

(a) Graph Construction (b) Query Processing

Figure 15: Effect of Safe Zone Size

(a) Graph Construction (b) Query Processing

Figure 16: Effect of Safe Zone Traveling Cost

[3] Scott A Bortoff. Path planning for UAVs. In American Control
Conference, pages 364–368, 2000.

[4] M Eunus Ali, Rui Zhang, Egemen Tanin, and Lars Kulik. A motion-
aware approach to continuous retrieval of 3d objects. In ICDE, pages
843–852, 2008.

[5] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345, 1962.

[6] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel
Delling. Contraction hierarchies: Faster and simpler hierarchical routing
in road networks. In SEA, pages 319–333. 2008.

[7] A. Gray, E. Abbena, and S. Salamon. Modern Differential Geometry
of Curves and Surfaces with Mathematica. Chapman and Hall/CRC,
2006.

[8] Christina Hallam, KJ Harrison, and JA Ward. A multiobjective optimal
path algorithm. Digital Signal Processing, 11(2):133–143, 2001.

[9] RV Helgason, JL Kennington, and KH Lewis. Shortest path algorithms
on grid graphs with applications to strike planning. Technical report,
DTIC Document, 1997.

[10] HV Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
idistance: An adaptive b+-tree based indexing method for nearest
neighbor search. TODS, 30(2):364–397, 2005.

[11] Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang. Approxi-
mate nn queries on streams with guaranteed error/performance bounds.
In Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30, pages 804–815. VLDB Endowment, 2004.

[12] Alain Lambert, S Bouaziz, and R Reynaud. Shortest safe path planning
for vehicles. In Intelligent Vehicles Symposium, pages 282–286, 2003.

[13] Alain Lambert and Dominique Gruyer. Safe path planning in an
uncertain-configuration space. Robotics and Automation, 3:4185–4190,
2003.

[14] L Leenen, A Terlunen, and H Le Roux. A constraint programming
solution for the military unit path finding problem. Mobile Intelligent
Autonomous Systems, 9(1):225–240, 2012.

[15] Shashi Mittal and Kalyanmoy Deb. Three-dimensional offline path plan-
ning for uavs using multiobjective evolutionary algorithms. Congress
on Evolutionary Computation, 7(1):3195–3202, 2007.

[16] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The v*-
diagram: a query-dependent approach to moving knn queries. PVLDB,
1(1):1095–1106, 2008.

[17] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Comput. Surv., 16(2):187–260, 1984.

[18] Suk-Hwan Suh and K.G. Shin. Robot path planning with distance-safety
criterion. In IEEE Conf. on Decision and Control, pages 634–641, 1987.

