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Abstract—We study the problem of constructing a reverse
nearest neighbor (RNN) heat map by finding the RNN set of
every point in a two-dimensional space. Based on the RNN set of
a point, we obtain a quantitativeinfluence (i.e., heaf) for the point.
The heat map provides a global view on the influence distribution
in the space, and hence supports exploratory analyses in many
applications such as marketing and resource management. To
construct such a heat map, we first reduce it to a problem
called Region Coloring(RC), which divides the space into disjoint
regions within which all the points have the same RNN set. We
then propose a novel algorithm named CREST that efficiently
solves the RC problem by labeling each region with the heat
value of its containing points. In CREST, we propose innovative
techniques to avoid processing expensive RNN queries and greatly
reduce the number of region labeling operations. We perform
detailed analyses on the complexity of CREST and lower bounds
of the RC problem, and prove that CREST is asymptotically
optimal in the worst case. Extensive experiments with both real
and synthetic data sets demonstrate that CREST outperforms
alternative algorithms by several orders of magnitude.

I. INTRODUCTION

(@) RNN heat map

(b) Satellite map
Fig. 1. RNN Heat Map of New York City

of every point in the space. Comparing to existing studiés [8
[10], [22], [26], [31] which give only the points or regionstiv

the highest influence, the RNN heat map enables exploring the
influence of the whole space while considering qualitatae f

tors at any instant during the exploration. Consider a si@na
where RNN heat maps are used to assist selecting locations of
self-pickup and drop-off service points for courier comigan

Let O be the potential clients ang& be the existing service
points. For simplicity, let the size of the RNN set measure th
influence, i.e.,heat (although any other functions related to

In market analysis, urban design, and facility placementyne RNN set can be used). Fig. 1(a) shows such an RNN heat
we often need to select a suitable location for new facilitie map for the New York City, whose satellite image is shown in
such as a warehouse or a hospital. Emerging event-basegy 1(h). The darker regions indicate higher heat valuashS
social networks such as Meetup and Whova also need tQ heat map will allow the exploration of influential regions

select an appropriate location suitable for the eventigipant
arrangement. These problems are calledidication selection

while considering qualitative factors as discussed abNete
that regions with high influence values do not necessarily

problem, which is usually a multi-criteria decision making correspond to regions of high client density because we teeed

process involving various quantitative and qualitativetdas.
A quantitative factor usually considered is tinfluenceof the
location, which is commonly measured by tteverse nearest
neighbor(RNN) set of the location [12], [22], [26]. Given two
sets of pointg) and.F, the RNN set of a locatiop is a subset
of O that are closest tp among all the points iF. There
are many ways to measure the influence &y the RNN set.
Straightforward measures consider only the size or totahte

consider the competition from existing facilities. For exyade

in Fig. 2, the upper left corner has the highest client dgnsit
but the most influential and th&" influential regions are in
the middle, denoted by the two gray rectangles ¢tfeand the

374 most influential regions are also in the middle near these
two but too small to be visible). Without the RNN heat map,
it is very difficult or impossible to explore all these diféant
choices and make well-informed decisions.

of the set [6], [26], [31]. Other measures consider various

attributes of the data points i@ and 7, such as the capacity
constraint [16], [22], social relationship [19], [29], et/hile

To construct such a heat map, we need to obtain the
influence value of every point in the space. We call such a

we can model the quantitative factors precisely by numbersproblem theRNN heat magRNNHM) problem:

we can not do the same to many qualitative factors such as
the area safety, demographic composition and convenieince g

public transportation. Some factors in decision-makirggaiso

vague and imprecise, which are subject to decision maker’
judgments. To assist decision making based on quantitati
measures while still allowing subjective judgments based o
gualitative measures and other factors, we introduce thsl RN
heat map, which shows the influence (quantitative measure

§Corresponding author.

Definition 1 (RNN Heat Map Problem)Given two sets of
points O and F and a distance metric in a two-dimensional
pace, the RNN set of a point(q ¢ F) is a subset o© that
aveq as their nearest neighbor comparing with other points
I F. Given any influence measure, which is a real-valued
function on the RNN set, associate each point in the space

ggith its influence value, i.e., the heat value.

Since the number of points in the space is infinite, to solee th



-existing facilities {ogHos, 04} o1, 0a}on, 02, 04}

LK B R Y e 3.0
O ome ®o d ° OE 4} ;," {01}
l... .. o o ; V‘fQ I "

o o ° _ ¢ 5

Xy . = N m |
/ {o1, 03} L0 ~02 1.0

clients, o o ® . - {01}
° 4
) ) i e {o1,03, 04} (a) {or, 02} (b) A superimposition (c) A heat map
Fig. 2. Client density Fig. 3. An example of the RC problem
RNNHM problem, we first reduce it to a problem calledgion Besides not being able to compute the RNN heat map for

Coloring (RC), which divides the space into disjoirdgions  generic influence measures, a superimposition also caopet s
within which all the points have the same RNN set (detailedport interactive post-processing operations such astsalyc

in Section 1lI). We use Fig. 3(a) to illustrate the RC problemshowing regions with heat values above a threshold or region
with L. For simplicity and ease of presentation, we will first having the topk heat values, whereas these operations can be
discuss how to obtain such regions and compute their infRienceasily applied as post-processing of our proposed techsjqu
values with theL., metric, and then extend the techniqueswhich aim to obtain the RNN set of every region in the space.
to L; and L, metrics. In Fig. 3(a), le®D = {01, 02, 03,04},
represented by the black dots, aid= {f1, f>}, represented
by the small red squares. For each painn O, we draw a
“circle” called the NN-circle with o being the center and the
distance taw’s nearest neighbor (NN) being the radius, which
is a square with thd ., metric. The NN-circles partition the
space into separate regions. It can be proved that all thregpoi
in such a region have the same RNN set. The RC problem iﬁ
to obtain the influence of each such region in the space.

In this paper, we investigate algorithms to efficiently solv
the RNN heat map problem. In some applications such as
taxi-sharing, the heat map may change as clients move around
and need to be recomputed frequently. Therefore, an efficien
algorithm to the RNNHM problem is crucial. A straightforwdar
approach such as employing a grid to divide the space and then
sing the cells to fit the regions has difficulties in finding th
ght granularity and suffers from low efficiency. When the
influence measure involves a large amount of attributes such

Note that if we measure the influence simply by the size oS the capacities of_taxis and connections of clients, it can
the RNN set, we can build the heat map bguperimposition also be very expensive to compute [22]. To overcome these
of the NN-circles, i.e., overlap/overlay of translucent NN challenges, we propose an innovative algorithm named CREST
circles as shown in Fig. 3(b). A darker region suggests moréConstructingRNN hEat map with theSweep line Jrategy)
NN-circles overlapping there and hence a higher influencewhich efficiently solves the RNNHM problem. Through a
However, for a more generic influence measure than the sizéetailed analysis, we prove that CREST is asymptotically
(or a weighted sum of the RNNSs), the heat map can nofptimal in the worst case. CREST is also generic in the
be achieved by such a simple superimposition. For examplé&ense that it applies to any influence measure computabte fro
consider a taxi-sharing scenario [14] where the heat magtass RNN sets and can easily support interactive post-proogssin
taxi drivers to decide the next pick-up locations. In Figa)3( Operations as described above. The main contributionsisf th
let © be potential passengers, e.g., users of taxi booking appBaper are summarized as follows.

and 7 be taxis. Assume that taxi drivers make more profits We propose the RNN heat map problem, which com-
when taking together multiple passengers whose destirgtio putes a heat map showing the distribution of RNN-
are close, say within one kilometer. Let the data pointso,, based scores to support effective exploratory analyses.
and o4 connected by an edge denote such passengers. Under . . )
such setting, the influence of a location becomes the number ® We propose an innovative algorithm named CREST

of connected passengers in the RNN set. We build the heat which efficiently solves the RNN heat map problem.
map as shown in Fig. 3(c). We can see that there is only one The algorithm utilizes two novel techniques to respec-
darkest region, which has an influence value3df since its tively avoid processing any RNN queries and greatly
RNN set is{o1, 02,04} and there are three edges connecting reduce the times of influence computation.

01, 02 andoy. In comparison, the superimposition as shown in e«  We carefully analyze the complexity of CREST and
Fig. 3(b) creates two darkest regions, both have an influence lower bounds of the RC problem, and prove that
value of3.0, one with the RNN sefoy, 03,04} and the other CREST is asymptotically optimal in the worst case.

{01,02,04}. Under the measure that favors connected data
points, the RNN sefo1, 03,04} only has an influence value
of 1.0, which is not a good choice for picking up passengers.
Another example is that in the previous courier company
scenario, all the service points have a capacity limit (e.g.
the storage space). Taking these attributes into accob@t, t The remainder of this paper is organized as follows. Sedtion
influence of a location will depend not only on the size of thereviews related work. Section Il formalizes the problem.
RNN set but also on its serving capaditffhe superimposition  Section IV discusses a baseline algorithm. Section V dessri
will not be able to handle such influence measures. the CREST algorithm. Section VI analyzes the complexity.
LThe influence of a locatiom is computed byS < .., min{e(f), [R(f)I}, Section VII extends CREST to other settings. Section VIII
wherec(f) is the capacity anR (f) the RNN set off [22]. shows the experiments and Section I1X concludes the paper.

We also conduct extensive experiments with both real
and synthetic data sets. The results confirm the superi-
ority of CREST by showing that CREST outperforms

alternative algorithms by several orders of magnitude.




I[I. RELATED WORK only pairwise intersections of line segments or rectangles
while CREST computes the overlaps and relative complements

—_of multiple circles, squares, and axis-aligned line segmen
al. [12]. Yang et al. [28] proposed the Rdnn-tree (a variant , . ; . -
of R-tree) to process the RNN query. Maheshwari et al. [15]\évh|ch are much more challenging. ii) In order to efficiently

present a data structure for answering the monochromatié RN ompute the ﬁNg,\?ﬁtS’ be3|fdes the line statug,l_,h(_:REST_ need
query by utilizing a persistent search tree [18]. The stmect to memorize the Sets of previous events. ThIS requires a

first obtains the NN-circles enclosing a query point in the delicate design to minimize the overhead and achieve optima

dimension and then among these retrieved NN-circles Iecateperformance. BO does not have such optimization.
the face (region) enclosing the point in thelimension. These

algorithms focus on computing the RNN set of a single query
point. None of them directly applies to the RNNHM problem. e first introduce basic concepts in Section I1I-A and then
In the RNNHM problem, the aim is to compute the RNN setreduce RNNHM to the Region Co|oring (RC) pr0b|em in

for every point in the space all at the same time, and th&ection III-B. Frequently used symbols are listed in Table |
challenge is to avoid the expensive RNN computation. The

RNN Query. The RNN query is introduced by Korn et

IIl. PROBLEM FORMULATION

. , : TABLE |

All Nearest Neighbor (ANN) [7] operation takes as input two FREQUENTLY USED SYMBOLS
discrete and finite sets of points and computes for each point -
in the first set the NN in the second set. For the RNNHM Symbol | Meaning
problem, however, we need to obtain RNN sets for essentially o the set of client
infinite points in a continuous space. Therefore, the tepies € Set of cents
for ANN do not apply. F the set of facilities

f b q . infl n the number of data points i

Influence Measures based on RNN Setd/arious influ- (o)) the NN-circle ofo, € O

ence measures based on the RNN set have been studied. Korn the Toft | e o
et al. [12] propose to use the size (or sum of weights) of RNN _Zi (esP-g) | the left (resp. lower) side (01)
sets as the influence value. To find the optimal points whose _Ti (resp.zi) | the right (resp. upper) side 6f(o;)

RNN sets are of the maximum size (influence), Cabello et e the I-th event
al. [6] propose the maximization problem MaxCov and they x the xz-coordinate ofe;
solve the problem by finding the depth of an arrangement of  1(1) the line status betweeni_; ande;
disks. Wong et al. [26] solve MaxCov by the devised MaxOver- v the -th element in a line status
Igap algorlthm. Huang et aI: [11] and Xia et al. [27] investga o1, 50) TWo consecutive elements in a line status
finding such points in a given set. Sun et al. [21], [22], [23] 7
. . . . - ] the rectangldz;—1, 1, yi—1, Yy
additionally consider the capacity constraints of suchnizoi = he RNN ; o
and study how to achieve a global influence maximization ) the set of an object

instead of a local maximization. Qi et al. [17] define the
influence based on the average distance between a poinsand &, Preliminaries
RNNs. As RNNHM applies to a general measure, the RNNHM ) . ) )
problem can be viewed as a generalized version of the above We consider two types of RNN queries: the bichromatic
problems and therefore the solution of RNNHM can be adapte@nd monochromatic RNN queries. In the former type, the data
to solve these problems. However, their solutions do nolyapp POiNts and their NNs belong to two different sé#sand 7.
to RNNHM, since the special properties exploited in thesdn the latter type, they are from the same set, i@.= F.
problems do not present in RNNHM. Let d(p, q) be the_ dlstance_ between two pointsand ¢q. We
o ] . consider three different distance metrids,,, L;, and Ls.
RNN Variations. RNNHM is a variant of the RNN query. e start with solving the bichromatic RNNs with.. metric

There are also many other studies on variations of the RNMecause the bichromatic type is generic dnd is simpler.
query. For instance, Lu et al. [13] investigate reverseiapat

and textual nearest neighbor queries, in which both lopatio  RNN Query. In bichromatic RNNs, we are given two sets
and textual descriptions are considered in the distanceanet © and.F. The setO can be considered as (the locations of)
Similarly, Sun et al. [24] consider temporal aggregates oflients whileF as (the locations of) facilities. The clients find
location-based social network check-ins in the distanceice their NNs from the facility set. The RNN set of a poifitin
Zhang et al. [30] design indexes utilizing modern memory/ denoted byR(f), consists of the points i that havef
hierarchies to speed up such query processing. Ali et al. [13S their NN, i.e.,

study approaches to continuous retrieval of the query thjec R(F) = OV e F-d <d /

She et al. [19], [20] devise algorithms to arrange sociaheve (f) ={oc OIS € F:dlo,f) < dlo, )}

to proper users using RNN sets. These problems are quifeor a pointg not in 7, we obtain its RNN seR(q) by adding
different from RNNHM and the proposed algorithms cannotg into the facility set7 and computingR(q) as above.

be adapted to solve the RNNHM problem. Nearest Neighbor Circle (NN-circle) An NN-circle of a

Sweep Line Strategy The sweep line strategy is a quite point o, denoted byC(o), is a circle witho being the center
generic approach to handling geometric objects. The Bentle and the distance frona to its NN being the radius. With
Ottmann (BO) algorithm uses this strategy to compute ieters the L., distance metric, the distance between two points is
tions of line segments [4] or rectangles [5]. The BO alganith the maximum difference between their coordinates among all
and the proposed CREST algorithm compute very differentlimensions, i.e.d(p, ¢) = max{|p, — ¢z|, [py —py|} In @ two-
problems and are different in many aspects. i) BO computedimensional space, where the subscripts denote the catedin
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Definition 2 (Region Coloring):Given a set of NN-circles,
Region Coloring is to label each region in the arrangement of
the NN-circles based on the RNN set of any point contained

in the x and y dimensions, respectively. Hence, NN-circles
are of a square shape. (Withy and L, the NN-circles are
of diamond and circular shapes, respectively.) For exaniple

Fig. 4, set® consists of two points, ando,. SetF consists N the region.

of one pointf,;. The NNs ofo; andos are bothf;. The NN-

circlesC(o1) andC(oz) are the two squares. IV. A BASELINE ALGORITHM

B. Problem Reduction A simple approach to the RC problem is to pick a pgint

) ) inside each region, use@int enclosure queryo obtain the
Our goal is to draw the heat map of a given space based oQn_circles that enclose, obtain the RNN set and label the

the RNN sets of the points. In a continuous space, the numb%gion_ However, picking a point in each region is an expensi
of points is infinite, which makes finding the RNN set of every operation. This is because it requires computing an exact

point infeasible. To overcome this, we reduce RNNHM to anygpresentation of each region in the arrangement, whichenea
equivalent problem Region Coloring (RC), which divides theeyery edge bounding a region needs to be computed (cf. Fig. 6)
space ‘|‘nto r"eg|ons. and “colors” (i.e., as;o_mates) evemON  and hence has a very high complexit(@2logn) [9]). To

with a *heat” (i.e., influence value). We divide the spacegsi  40id such complicated computations, we extend the sides of
the NN-circles as follows. Tharrangement(i.e., layout) of  gach NN-circle to let them span across the whole arrangement
the. NN—cchgs, as |IIustratf-zq in Fig. 5, forms a planar ap 55 shown in Fig. 7. By doing so we form a grid over the
which also induces aubdivisionof the space. We use the 5rangement, where each grid cell can be easily located. We
notions in planar graphs such asrtices edgesand faces  gcan the grid cells and compute the RNN set for the centroid

(as illustrated in Fig. 5) in the arrangement directly. I® th ot each cell, which solves the RC problem. An alternative
arrangement, each face represents a uniggen whichis a \\ay is to use a regular grid where each cell has the same

maximal connected subset of the space that does not contadfye However, it is difficult to determine a proper cell size

a vertex or an edge (e.g., the gray region in Fig. 5). In eacly ;arantee that each cell falls in exactly one region unlask e
region, all the points have the same RNN set. If two points ot is treated as a cell, which again is impossible to campu
a region have different RNN sets, there must exist at least onry efficiently compute the RNN set of a point, instead of
NN-circle that one point lies inside but the other does g t  checking each NN-circle to test whether it encloses a certai
means one side of the NN-circle musit the region, making  oint, we build an index that supports point enclosure @seri
it no longer a region by definition. The RNN set of each pointis, the NN-circles. We use the-tree[25] for ease of analysis,

in the region consists of the centers of the NN-circles thagihough other spatial indexes such as the R-tree may be used
enclosethe region. For example, in Fig. 5, poings and ¢

lie in the region enclosed by NN-circl€Xo;) andC(o2), and Algorithm Complexity . Let n = |O| denote the number
they have the same RNN séb;,05}. For pointgs, its RNN  of NN-circles, andm denote the number of grid cells. There
set is{o; }, which is different from that of;; or ¢-. Therefore, are at mosn extended sides vertically or horizontally, thus
g3 must lie in a different region. Note that the opposite doesn = O((2n)?) = O(n?). To obtain the grid cells, it takes
not hold, i.e., different regions may have the same RNN setO(2 x 2nlog2n) = O(nlogn) time to sort the sides. It then
We formalize the above facts with the following proposition takesO(nlog® n) time to build an S-tree index an@(log n +

- . L , . a) time to process a point enclosure query [25], wheiie the
Proposition 1: The points in the same region of the subdi number of NN-circles returned. Let be the maximum size

vision formed by the arrangement of the NN-circles have the : . .
same RNN set. of the RNN sets in the arrangement. The time complexity of

the baseline algorithm i§(n log® n 4+ mlogn + m\). Since
For RNNHM, each region can be used to represent all theve consider a general influence measure, which can be any
points it contains. To associate each point with a heat, ifunction with any computational cost, in the analysis weyonl
suffices to color each region with the heat of the points itcount the number of times of influence computation, ie.,
contains. Since the influence is computed straightforwardlin the above complexity. We further derive a bound feras
based on the RNN set, in the following discussion, we do nofollows. Let r» be the number of regions formed by NN-
distinguish the process of outputting the RNN set of a regiortircles. It can be proved b¥uler characteristicthat r is
and the process of computing and outputting the influencéetweer®(n) and©(n?). In particular, when the NN-circles
value. We will simply use the term “labeling a region” to do not intersect with each other=n+1 = ©(n); when the
denote the two processes. Assuming that the NN-circles are NN-circles are placed as shown in Fig. 8, where they all
already precomputed (there are efficient algorithms to egenp have the same side lengthand thei*” NN-circle is centered
and maintain the NN-circles [12]), we define the above regiorat point (i,i), 7 = n> —n + 2 = ©(n?). Sincer < m and
coloring problem as follows. m = O(n?), we obtain®(r) < m < 0(n?).
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The S-tree index for point enclosure queries occupies :y_l: (2 3; 1 |C(o03)
the most space, which i©(nlog®n) [25]. Thus, the space oy ‘
complexity isO(nlog® n). We summarize the above analysis P s R o ‘
with the following theorem. T T i3 T TeieTiis To
Theorem 1:The baseline algorithm for the RC problem stops Fig. 10. Example of events and line status

in O(nlog®n + mlogn + m\) time and usesD(nlog®n)
space, wheren is the number of grid cells and is the
maximum size of the RNN sets.

RNN sets of adjacent regions thmse setsand cache them

for obtaining the RNN sets of newly swept regions. We also

devise techniques to constrain the number of cached base set
Limitations of the algorithm. One drawback of the Powered by these techniques, we achieve a highly efficient

baseline algorithm is that it needs to process point enobosu algorithm to the RNNHM/RC problem, which is proved to be

queries, which is reflected in thelog” n andm logn termsin - asymptotically optimal in many cases (cf. Section VI). Next

the time complexity. Another drawback is that it furtherides  we detailed these techniques.

the regions into multiple grid cells, which means a region in

the original arrangement will bellabeled muItipIe_times.eTh A. Concepts and Notation

number of these grid cells: may increase quadratically with

the increase of. (closer to©(n?)). A largemm means we need Events Letz; (resp.y;) andz; (resp.y;) be thezx- (resp.y-

to process a large number of point enclosure queries anbidabe) coordinates of the left and right (resp. lower and uppei¢si

large number of grid cells, which significantly deteriosatae  of NN-circle C(o;), respectively. Thelistinct z-coordinatesof

efficiency. We aim to reduce: (the number of times of region the vertical sides (of all the NN-circles) are stored in asioeg

labeling) to the number of regions in the arrangement, wisich order in a queue, which is called tiegent queu@and denoted

optimal in the RC problem. Therefore, we have two directionsdy Q.. The elements inQ. are called theeventsor event

for improvements: (i) to avoid point enclosure queries, andooints For convenience, we refer to the coordinates of the

(i) to reduce the number of times region labeling. We présensides simply as sides when the context is clear. We denote the

our CREST algorithm which achieves these two goals in thé'” event (i.e., thé’" ejected element fron®.) by ¢; and the

following section. z-coordinate of; by z;. Note the difference between an event
coordinater; and the side coordinates 6fo;) (i.e., z; or z;).
V. THE CREST ALGORITHM They may have an equal value, but different semantics.

We employ the classicweep linestrategy [4], [9] (cf. Line Statuses Let s, be the x-coordinate of the sweep

Section Il) to avoid forming a large number of cells to beline. We say that the lineuts NN-circle C(o;) if and only
labeled as done by the grid dividing strategy. We let a lindf s. € (zi,77] (i.e., it is in the horizontal range af(0;)).
sweep from the left to the right of the space, and storeBy definition, the NN-circles that are cut by thg line remain
information about the NN-circles that are currentiyt by the ~ the same between two consecutive events (including their
sweep line. We call such information thiee status and say Positions). LetC(oy, ),C(or,), - ..,C(or,,,) be then(l) NN-
that aneventis triggered when the line status changes. Ascircles cut by the line when it sweeps fram , to ;. We sort
illustrated in Fig. 10, we use thdistinct vertical sides of the horizontal sides (not only coordinateg), v, , Y1,, Y1, - - -

the NN-circles as event points (i.exq,2,...,79), and the ¥4, Of these NN-circles in ascending order (ties are
sorted horizontal sides of the NN-circles as the line status.broken arbitrarily), and use the sorted list as the lineustat
Every pair of adjacent vertical sides and horizontal sidedetween eventg;_; and ¢;, which is denoted byZ(l) =
forms a subregionto be labeled. We notice that some of |ly,,,..., 95, Ui, - y,ll, a,b,e,d € {1,2,...,n(])}.
these subregions come from the same original region formeHor example, in Fig. 10, the current line statusZig3) =

by the NN-circles, and hence do not require the RNN set|y; v,, 4, 72|. For convenience, we denote hy the i
and influence computations repetitively. We use th@nge element in the line status, and hence the line status between
intervals to avoid labeling such regions multiple times. We ¢;_; ande; is

avoid the RNN computation with point enclosure queries by

utilizing the fact that the RNN set of a region can be obtained ~ Z(1) = ly1, 42, - - . y2nll, ¥1 <92 <. < yonqy-
efficiently by modifying the RNN sets of the adjacent regions

For example, in Fig. 9, if the RNN set of the lower region is  Pair and Subregion Any two consecutive elements in the
{01,02} and the boundary between the two regions is formedine status is termed asgir, which is denoted byy; 1, y;).

by the upper and lower sides 6fo;) andC(o3), denoted by, ~ We denote by(y; 1, y:) € Z(I) that the pair(y;_1,y:) comes
andys, respectively, then we can immediately obtain the RNNfrom the line statu€ (). We denote byz, 2/, y,y'] a rectangle
set{o1, 03} of the upper region by removing, from {01,02}  whose diagonally opposite corners drey) and (z’,’) with
and then addings to {01}. We call the already-computed =z < 2’ andy < y'. Wheny = ¢/, [z,2',y,y] is in fact a



horizontal line segment. For ease of presentation, weitraat It is easy to observe that if we have obtained the RNN set
a special rectangle. We denote by, yo) € [z,y,2',y'] that  R({y:—1,v:)) of a valid pair, we can start frong; (which
point (zg,yo) IS in rectanglelx, y, 2, y']. Here the rectangle is the first element among elements of the same value) and
is open (i.e., (zo,y0) € [z,y,2',y] iff 29 € (z,2') and useR({y:;—1,y:)) as the base set for the valid pair 1,y )

Yo € (y,9")) and no point is in the special rectangle. Whenimmediately next to it. In this way, we can obtain the RNN set
the line sweeps frome;_; to ¢;, the x-coordinater;_; of  of everyvalid pair (in one line status) with a single traversal of
event ¢;_, is strictly less than that of;. This forms a the line status. Continuing with the above example in Fig. 10
rectangle(z; 1, 1, y1, y2n()] between the two events. In this for pair (yo,y3), we useR((y1,y2)) = {o1} as base set,
rectangle, each paify:—1,y:) € Z(1) forms asmallrectangle encounterys, add oy, and stop WithR((y2,ys3)) = {o01,02}.
[1-1, 21, y+—1,y:). The small rectangle has no vertex or edgeFor pair (y3,y4), we removeo; from {o1,02} and stop with

in it, which makes it a connected subset of a region. WeR((y3,v4)) = {02}.

call each small rectangle subregion and denote by the

one formed by pairy;_1,y:) € Z(l). We denote byR(r{)  C. Reducing the Number of Times of Region Labeling

the RNN set of the points in subregiorf, or simply by

R((y:—1,y:)) when the line status is clear. 1) Locating the Change IntervalVith the above approach,

we obtain the RNN sets and label the corresponding regions
between two eventg; ; ande;. We then move the sweep
line forward acrosg; and label regions between ande; ;.

We obtain the RNN set of each subregion by finding theCrossinge;, we obtain a new line status(/ + 1). We notice
NN-circles enclosing it. When the line sweeps frem; to  that some of the pairs iff(l) and Z(I + 1) represent the
e;, the subregions between_; ande; are enclosed by the same regions (not subregions) even though they are formed
NN-circles in thex dimension if and only if these NN-circles by different NN-circles. For example, in Fig. 10, between
are cut by the line. Therefore, we only need to check whethesnd e3, Z(3) = ||y1, y2, %1, 72|, While betweenes and ey,
these NN-circles enclose the subregions in ghdimension,  7(4) = |ys,y1, y2, U3, U1, 72| The pair{ys,71) € Z(3) and
which can be easily achieved by checking the line status. Waew pair {y3,71) € Z(4) represent the same region. Besides
use the following lemma to show the RNN set of a pair in thenew pairs, a pair also represents the same region if it exists
line status. Due to space limitation, we omit the proofs & th in poth Z(l) and Z(I + 1) and the RNN sets of the pair in
lemmas in this section. the two line statuses are the same (&(@, 7>) in the above

Lemma 1:¥(y,_1,4:) € Z(1), the RNN setR(r}) of subre- ~€Xample). The reason is that, by Lemma 1, the RNN set of a
gion rf = [z, xzvytq v is an empty set ifj,_, =y, or  PaIris changed if and only if the pair is entirely enclosed by
a set consists of the centers of the NN-circles that are cut by NN-circle that is inserted into (i.e., newly cut) or reradv

the line and enclose! in the y dimension, i.e.R(r}) is rom (i.e., no longer cut by) the line. When the RNN set of
a pair does not change, the two subregions formed by the

(7] if y:—1 =y, pair must be connected (and hence represent the same region)
{ {oilzi <o <zyandy; <ys1 <y: <} if y:—1#y:. since no side of NN-circles separates them. To reduce the
number of times of region labeling, we should avoid processi
By Lemma 1, we can obtain the RNN s@{(y,_1,1;)) of  pairs representing the same regions, i.e., csyneof the
a pair as follows. Whem,_, = ., the RNN set is empty. For newly formed pairs and the pairs that exist in both line statu
convenience, we call such painsvalid pairs and the others Whose RNN sets are changed should be processed. We use
(with y,_1 < ) valid pairs. For a valid pair, we check the the following lemma to precisely locate the pairs that need
elements in the line status in the range(efoo, y;_1]. Since  to be processed when only one NN-circle is changed in (i.e.,
the elements are sorted in ascending orger, (resp.y;)  inserted into or removed from) the line.
of a valid pair must be the last (resp. first) element among Lemma 2:When a line statug
elements of the same value. Thus, we only need to checfﬁﬁIe status?
elements from the beginning of the line status to the firsii
element (inclusive) of the pair. Starting with an empty set, : =
which is called thebase setand denoted byr, if an element lrr:zepr)tz;?s”i]r:othoer ;c?lrlro]\(/)v\i/r?g ;reotrﬁ(l), we only need to process
is a lower side, we add the center of the corresponding NN-
circle to R, otherwise we remove the center frdRw When {we—1.ue) € ) | ye < yeo1 < ye < Yo}
reaching the second element (exclusive) of the pair, we stop B
and R is the RNN set of the pair. For example, in Fig. 10, By Lemma 2, the pairs that need to be processed are located
the line status i€(3) = |ly1,y2, %1, 72/. For pair(y1,42), y1  within a range We call such a range ehanged intervabnd
is the only element we encountered in the checking range angenote it by|y.,,, ye,]. Note thaty., andy., are coordinate
henceR((y1,y2)) = {o1}. We formally describe the above values, not line elements. When the line triggers (i.e.,sgsp
approach with the following corollary. an event, multiple NN-circles are inserted into or removed
. ; from the line, and hence several (initial) changed interval
Rﬁﬂogg{%bt)v Oef éyéai)’rzt>- = tI(_l) With ye-1 7 b, the are created. We cannot process s(uch c)hangeg intervals one
I gionr; = [z—1, 21, Y1, ¢) can ; !
be obtained by checking elemengsfor i — 1 to ¢ — 1 and by one, since they may intersect and'affect each other. We
maintaining the seR(r!) as follows need to merge the intersected changed intervals. When rgergin
two changed intervals, we need to be careful about the line
oy, is removed fromR(r}) if y; is yx, elements that are of the same value so that no regions are
oy is added intoR(r}) if y; is yg. labeled repeatedly. Specifically, any two changed interval

B. Avoiding Point Enclosure Queries

(1) is changed into a new
(I') because an NN-circlé(o.) = [z, T¢, Ye, Ye)
s newly or no longer cut by the sweep line, i.g.,andy, are
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Fig. 11. Example of changed intervals

respectively. IZ(3), C(o2) is inserted and the changed interval
is [y2, 7). The element immediately preceding the changed
interval isy;. We obtain{o;} as the base set with key x
1—1=1, and keep record® x 2 — 1 = 3, {01,02}), (2 x
1=2,{o2}) and(2 x 2 = 4,9) for (y2,91), (y1,y2) andyz,
respectively. We now havél, {o1}), (2,{02}), (3,{01,02})
and (4, @) cached for future use.

D. The Algorithm

We now present the detailed steps of CREST, as summa-
rized in Algorithm 1. We first obtain the event quegs by
storing the vertical sides of the NN-circles @, in ascending
order (line4). The sides are stored in a way such that for

each side, we can directly obtain the NN-circle to which it

[Yei Ye;) @nd [y, ye, ] With ye, < y., are merged into a pelongs and whether it is the left or right side.

We then

new one[yci,max{ycj,ycj,}] if y., > y, . After merging,

we only need to handle separated changed intervals, whichAlgorithm 1: The CREST algorithm

can be processed individually. For example, in Fig. 11, when
the line crossesrs, the grey area is processed, in which

for convenience denoted Hy 2, and3, need to be processed,
which are in changed intervédds, i3]. When the line crosses
x4, C(01) is removed and’(o4) is inserted. Only paird, 5,

6 and 7 in [y1,y4] (merged from[y;,41] and [y4,v4]) are
processed. When the line crosses C(os) is removed and
only pair8, the only one inys, 2], is processed. The validity
of the sweep line strategy still holds with the above appnpac
since a simple induction will show that all pairs in all line 4
statuses are properly processed. 11

© 0 N o

2) Caching and Retrieving Base Seffo obtain the RNN |,
set within a changed interval, an efficient way is to use the,
RNN set of the pair that is immediately preceding of the 15
changed interval as the base set. Such a pair must be a valid
pair, since the changed interval includes the line elements7
whose values are equal to the interval boundary. Thereforels
we cache (only) the RNN set of each valid pair in the line *°
status. We index the RNN set of a pair with its first element. %°
Specifically, if the pair’s first element is the lower (resppar) "
side ofC(0;), we assign the RNN setlkey2i — 1 (resp.2i). .
When the RNN set of a pair is changed, the record in the,,
index is also updated accordingly (for elements of the sames;
value, the record is always maintained only at the last one fo 2
efficient access and space saving). In this way, the base set
for a changed interval is the record of the element that is oness
position ahead of the changed interval. (In case that thegeha 29
interval is at the end of the line status, we also keep an empty
set for the last element of a line status.) When we process®

Input: An arrangement ofi NN-circles

Output: A subdivision with each region labeled
C(o03) is inserted into the line. The pairs (i.e., subregions), 1 7 + @
2 U+~ O
3 P+ o
4 Q. « the vertical sides of the NN-circles in ascending order
5 for each element in Q, do

o the index structure for the horizontal sides
o the changed NN-circles between events
o the cached RNN sets

C(0:) < the NN-circle to whichv belongs
Add C(o;) into U
if v is a left sidethen
| Inserty;, g; into structureT
else
Deletey;, y; from structureT
Remove the corresponding records frgn
if the next element’ of Q, equalsv then
| Continue the outer for-loop
Merge the changed intervals of the NN-circlesin
Delete all elements it/
for each separated changed interdal
Find the starting elementt and ending elemenrdd
R <+ Retrieve the base set frofd
for each element betweenst and ed do
C(o0;) + the NN-circle to whichy belongs
if y is the lower sidehen
R « addo; into the base set

p2j—1
else
R + removeo; from the base set
P2

=

y is greater than the next elemegt then
Label the region represented by péir, v')
with setR
Plpl + R

several separated changed intenialsascending orderit is

guaranteed that such a record is always available and up-tBrocess the elements @, one by one (lin€). If an element
date. Specifically, leg; be the element whose record we need.iS & left (resp. right) side, we insert (resp. remove) the two
If no such elemeny;, exists, the base set is an empty set, sincd0rizontal sizes of the NN-circle corresponding to the eletn
the changed interval must be at the beginning of the lineistat INto (resp. from) a balanced search tréein which the data

If y, is the boundary of a preceding changed interval, then sucff€ stored in the doubly linked leaf nodes (e.g., a-tiee)

arecord is already updated and ready to use, othemyisrist

(lines 6-14). When the next element i@, is greater than the

exist in the last line status and the record is also available Current one, we process the event. The strucfurow stores
the information of the current line status. We obtain setjeara
We use an example to illustrate the above approach. Ishanged intervals by merging thyecoordinates of the inserted

Fig. 10,Z(1) is empty,Z(2) = ||y1, %1/, and [y1, 1] is the
changed interval which is at the beginning Bf2). We thus

and removed sides in this event (liné). For each changed
interval (line17), we locate the starting and ending elements in

use an empty set as the base set, and keep the rg@ords— T (line 18), and retrieve the base set from the RNN set records

1,{o1}) for (y1,71), and(2 x 1, @) for ¢, (the last element),

(line 19), which are stored in a random access data structure



as a3 al a4 a2 ae

Q
such as an array. We then sequentially check the elements in il az ]
each changed interval (lin20). For each element, we either as 06,
add or remove the corresponding data point (bg.from the i Pyid
base set to obtain RNN sets of the valid pairs and label the 1] 01 a
regions (lines21-29). To facilitate efficient insert, delete and [ o «03
copy operations on the base set, we keep the data points in | [[] C(o1 as |05
a linked list and store pointers to the nodes in the linked lis as
with an additional random access data structure indexetéy t Fig. 12. Multilabelling Fig. 13. Reduction

data points. The RNN sets we obtained are also dynamicallyy,a| to the number of regions in the arrangement which is
recorded to support the future base set retrieval @eAfter in "y, greater than or equal to the number of NN-circles

all changed intervals are processed, we eject the next atemerparefore. the time complexity of CREST@n logn + k).

in Q. and repeat the above steps urd is empty. Shortly (in Section VI-B) we will prove that = O(r), where

r is the number of regions in the arrangement.

VI. COMPLEXITY ANALYSIS . .
The space required by the quedgk, and structure] is

A. Complexity of CREST O(n). The space required by caching the RNN set9(g)),
and the storage of the base set requiés+ ) space. Overall,

We analyze the time complexity of CREST following the space complexity of CREST @(n)\)

the steps in Algorithm 1. We sort thgn vertical sides of

the n NN-circles in O(nlogn) time. When we process the
events, each horizontal side is inserted into and theneatklet B. Bounding the Times of Region Labeling in CREST
from the structure7 once. Therefore, there are at mast

elements in7, and the2 x 2n insertions and deletions can : ; .
be done inO(nlogn) time. To merge the changed intervals times of region labeling: largely decides the performance of

N i first t th in lexi hical ord CREST. In CREST, we successfully avoid labeling the same
a (?r][heven BtW.e fﬁn Irs sodr eﬂ] |r]theX|clqgrap Ica O[rr?.'}egion multiple times in different line statuses. Althouginely
and then obtain the merged result with ‘a linear scan. : appens, multi-labeling still exists within the same litatgs.
requiresO(flog § + ) = O(Blog ) time, wheref is the oo ole 'in Fig. 12, at the event of the left sideCof, ),
n_umber of changed mtervals_at the event. Since each N he gray region is labeled six times. Despite the multi-iaige
circle can only be a changed interval twice, the total numbe(Ne show with the following lemma that the number of times
of changed intervals in all events @(n). Thus, the overal f region labeling in CREST and the number of regions in the

time required for merging the changed intervals is bounde ;

by O(> Blog 3) = Ologn 3 B) = O(nlogn). For each rrangement, up to a constant factor, are asymptoticady th
. . ¢ ; same (as a function of).

merged changed interval, we obtain its starting elemefit in

O(nlog n+\) time, where\ is the maximum size of the RNN  Lemma 3:k = O(r), wherer is the number of regions in
sets in the arrangement. This is because we first searfhnn  the arrangement.

O(logn) time to obtain an elemeny; whose value is equal to
the lower endpoint of the interval. Starting frogn, we obtain . ;
the starting element by checking backward (to the beginnin nd connected components in the arrangement, respectively

of 7) until the elements are less thgn This procedure takes (Ve call the number of edges bounding a region the degree of
O(2)) = O()\) time, since) is the maximum size of the RNN the region, and the number of edges incident to a vertex the

sets and there are at mostipper sides and lower sides that degree of the vertex. In an arrangement of squares, there are
are of the samey-coordinate. Symmetric analysis applies to ©NlY 2-» 3-, and4-degree vertices, which are denotedipyvs,
obtaining the ending element. We have oilfn) changed 2Ndva, respectively. In CREST, the number of times a region
intervals, and thus obtaining starting and ending elemeauts is labeled cannot be greater than the degree of the regug si

be done inD(n log n-+n) time. We then process the elements €aCh time the region is labeled we need a distinct valid pair
between them. We first retrieve a base set, which takes at mo‘_%’}?ICh requires at least one of the edges bounding the region.
O(\) copying time. Thus, it take®(n)\) time to obtain base erefore  is less than or equal 10 the sum of degrees of
sets forO(n) changed intervals. For each element betweer!l €gions which equalSe, i.e., k < 2e. In the arrangement,
the starting and ending elements, we either add into or remoWVe @S0 havev = vz + vs + v4, 2e = 4dvy + 3vs + 2v; and
from the base set its corresponding data point @@.,t takes ¢ ¢+r—c=1 (Euler characteristic). Combining these three
at mostO()) time for the adding or removing operations to €duations, we obtain = v, +v3/2+c+1. We then have that
obtain an RNN set for a valid pair. This is because to get a _ . . _

RNN set of sizea; by changing an RNN set of size,, at % < 26 = duat3us+20p < 6(vatvs/24e+1)+2u = Br+20,.
mosta, data points are removed ang data points are added, The number of 2-degree vertices is less than or equdlto
which takesO(a;s + a;) = O()\) time. We denote by: the  and hence less than or equaldiq since each square makes at
number of valid pairs, and hence the time for obtaining themost four 2-degree vertices amd< r. Therefore, it follows
RNN sets fork valid pairs is bounded by (k\). For each that

valid pair, we record its RNN set and label its corresponding k< 6r 4 2vy < 61+ 8n < 14r.

region, and this take®(k\) time.

From the above analysis, we can see that the number of

Proof: Let v, e, and ¢ be the number of vertices, edges

_ ) _Obviously,r < k, and hencer < k < 14r, which completes
Putting all things together, we have that CREST stops inthe proof. u

O(nlogn + nA + kX) time. Sincek denotes the number of o )
times of region labeling in CREST, must be greater than or We conclude the above analysis with the following theorem.



Theorem 2:The CREST algorithm solves the (bichromatic)
RC problem inO(n log n+r\) time with O(n \) space, where
r and A are the number of regions and the maximum size of
the RNN sets in the arrangement, respectively.

C. A Lower Bound of the RC Problem

We show thatQ(nlogn + rA*) is a lower bound of the :
RC problem (in the algebraic computation tree model) [3], ! !
where\* is theaveragesize of RNN sets in the arrangement. T1T3 TaTs T7  T16Z17 Too  Tag Tao Ta1
When r\* is the dominating term, at least the RNN sets of Fig. 14. CREST withL, distance metric
all regions need to be output, the above bound is a triVialTherefore it follows that
lower bound. Thus, we only need to show that it requires '
Q(nlogn) operations even without considering the output \F— nd+2n n. n® + 2n n
cost. This bound is proved by the reduction from thant S 3n2-n+2) 3 m3-n2+2n -3 3
distinctness probleno a special case of the RC problem. _ . C

Since A* < ), it follows that A\ = ©(\*), which indicates

Definition 3 (Element Distinctnessiziven real numbers CREST is overall asymptotically optimal.
ai,...,a, € R, determine whether or not there is a pairj

with i # j anda; = a;. VII. RNNHM IN OTHER SETTINGS

We show that the element distinctness problem can be reduced We show how CREST solves the RNNHM problem with
to the RC problem in linear time. For each real numbgr the monochromatic RNN<,;, and L distance metrics.

we create a poinfa;,a;), @ = 1,2,...,n in the plane. We

then build a squar€(o;) with point (a;,a;), i = 2,...,n A Monochromatic RNNs

and point(a1,a,) being the diagonally opposite corners and

o; being the center. An example of such reduction is shown in CREST directly applies to the monochromatic RNNs, since
Fig. 13. These squares form an arrangement of NN-circles i and F being the same set does not affect the computation
a two-dimensional space. We use this arrangement as input @ the NN-circle and these NN-circles still form a planar
any algorithm that solves the RC problem. A correct alganith subdivision with axis-aligned edges as in the bichromatic
outputs exactly. RNN sets (including the empty set) if and RNNs. By Korn et al. [12], an RNN set contains at most
only if the elements are distinct. The reason is that each RNI§ix points for monochromatic RNN queries, which means
set corresponds to only one region, and thereramegions A = O(1). Therefore, by Theorem 2, the time complexity of
(including the exterior face) in the arrangement if and ahly CREST for the monochromatic RNNs {8(nlogn + r) and

the elements are distinct. It has been proved that the elemethe space complexity i©(n).

distinctness problem has a lower bouigh log ) [3] (in the

algebraic computation tree model), which implies that R€ haB. RNNHM with 11 Distance

a lower bound(nlogn) without the output cost. Therefore,
Q(nlogn + rA\*) is a lower bound of the RC problem.

A

>

In two-dimensional spaces, thlg distance can be viewed
as equivalent to the.., distance by rotation and scaling.
Specifically, with thel, distance, NN-circles are of diamond
D. Optimality of CREST shape. If we rotate (around the origin) the coordinate syste
counter-clockwise byr/4, diamonds become squares. Each
point (z,y) in the original system has a corresponding point
(2/,y’) in the rotated system with’ = xcosf — ysinb,

y' = xsinf + ycosf andf = w/4. In the rotated system,
CREST directly applies. The transformation takeg:) time

In the following cases, we show that the upper bound@nd the overall time and space complexities stay unchanged.
O(nlogn + rX) of CREST is also tight, which indicates that
CREST is overall asymptotically optimal. For the bound to beC. RNNHM with I2 Distance

tight, it is sufficient to show thak = ©(\"). With the L, distance, the NN-circles are of circular shape.
Case (i) When the clients and facilities are relatively They form a planar subdivision witturvededges, as shown in
uniformly distributed such thak is bounded by a sufficiently Fig. 14. CREST still applies in such a subdivision but reesiir
large constan€' (which depends oé%\), since)* <\, \* is njodn‘ma}tlons as folloyvs. We use the-extreme points .of
also bounded by’. Thus, A = ©(\*) = O(1). An example is circles (instead of vertical sides of squares) as eventtgolin

that none of then squares intersects any other ones (or onlythe line status, we use Fhe arc segments of circles l_)etyvemn tw
a few of them overlap). consecutive events as line elements (instead of horizeittas

of squares). For each line element(i.e., an arc segment), we
Case (i) When )\ is unbounded, we show with the worst assign two valueg; andy!, which are the smallest and largest

case illustrated in Fig. 8 thax = ©(\*) also holds when y-coordinates ofy; between two consecutive events ; and

every square intersects all the other ones. In this arraegem e;, respectively. Line elemeny; is less thany; iff (i) y; <y;

A =n, and we have that =n? —n+2 andr-\* = 2422 or (i) y7 = y5 andy, < ¢! or (i) y; = y5,y! = ¥} and

From the time complexity of CREST and lower bound of
the RC problem, CREST is asymptotically optimal in terms
of the number of times of region labeling (i.e., influence
computation) in all cases, sinée= O(r).
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y;" < yj', wherey;” andy;" are the y-coordinates of; and

y; at “=LT2 respectively. We include intersection points as Name | Size | Description
event points (e.gm. andx; in Fig. 14)_. This is becausg Fhe arc NYC | 128,547 points-of-interest in New York City
segments of NN-circles switch positions at intersectiom{so LA | 116,596 points-of-interest in Los Angeles

We also use the center of each NN-circle as event points (e.g. ) - -
x5 and 249 in Fig. 14) to guarantee that each line element@ special case of the bichromatic RNNs. We useand L

is y-monotone (i.e., strictly increasing or decreasing in thedistance metrics since they are used more often thanin
y-dimension). Before processing an event, we update valuggal-world scenarios, anfl; and L, are equivalent in two-

y; andy! for each line elemeny; regardless of whether it is dlmens_|onal spaces. We umformly_ _sample from the_ data sets
related to the event. This update is required in order to tamin  to obtain the client se and the facility sefF. All algorithms

a proper order in the line status because the arcs go up or dov@ie implemented using C++ and the experiments are conducted
between events and their upper and lower values changefeverfin & desktop computer with:4GHz Intel i7-2600 CPU and

they are irrelevant to the events. Note that such an updats do8GB main memory.

not change the relative order of the line elements irrelet@n

the events, and thus can be completed in linear time. A. Showcasing Real-World Heat Maps

Apart from the above modifications, CREST remains the In the first set of experiments, we show the RNN heat
same. Specifically, if an event pointat ; is the left boundary ~maps for two cities: New York City and Los Angeles. For each
point of C(o.), we inserty, and ¢, into the line status with data set NYC and LA, we uniformly sampl, 000 points
gl = §.° = yo, andy,® and 7.! being the lower and upper aS the clients an@, 000 points as the facilities, since in real

y-coordinates where; intersectsC(o,.), respectively. We also world scenarios the number of clients is usually larger tien
create a change interval with andy.. If an event point is an number _of facilities. For simplicity, we measure the_ inflaen
intersection point, we obtain the relevant line elementssa PY the size of RNN sets, although any other function on the
incident to the intersection point) in the line status, stvitheir ~ RNN sets may be used. Fig. 1(a) and Fig. 1(b) (in Section I)
positions and create a change interval with these element&hoW the RNN heat map and the satellite map of New York
If an event point is the right boundary point or center of City (within latitude and longitude ranged0.50, 40.95] x

an NN-circle, we remove or update the two line elementd—74-15, —73.70]), while Fig. 15(a) and Fig. 15(b) show the
corresponding to the NN-circle. We do not create changd'€at and satellite maps of Los Angeles (witfif.82, 34.17] x
intervals for either of these two types of event points, sino | —118-47, —118.12]), respectively. Comparing the heat and
pair is between the removed elements and updating the ling2t€llite maps, we can see that they are closely geograiyhica

elements by the centers is only to keep thgmonotone. We correlated as expected. For instance, the mountain andesa a
then merge and handle change intervals as before. have few clients or facilities, and hence have very low heat.

N o We can easily explore regions of various influences to help
Complexities In the worst case (as shown in Fig. 8), various decision making applications such as those destrib
CREST runs inO(n°) time with the L, distance, since there in the motivating examples. If the decision maker is interés

2 . e . X
can be as many a9(n") events and for each event we needin any specific area, she can zoom in to see more details.
to updateO(n) line elements. However, the worst case com-

plexity is much lower than that of an existing algorithm [22] RS SV o Y
which suffers from an exponential running time in the worst 4

&
»

| A% :
case. The algorithm was proposed to obtain regions with het y
the maximum influence value, but it could be adapted to {; y :
solve the RC problem if we remove its pruning techniques. i 2 i

The algorithm [22] follows the filter and refine paradigm by

enumerating all possible regions and then checking thésr ex pin % 20 Oy & 2,‘

tence. For example, whaf(o, ) intersectL(o2) andC(o3), it *.%3’;,‘,-" +

enumerates the regiow$c,03, 010203, 610203, 010203, Where ‘:“,&»‘}z"ﬁq‘?‘ o

6; means insid&(o;) and o; means outsid€ (o;), and then (a) Heat map for LA (b) Satellite map for LA

checks whether such regions really exist. In our experiment
(in Section VIII), CREST constantly outruns the algorithm o
data sets of various settings. B. Performance of CREST withLIDistance

Fig. 15. Real-world heat map

In this set of experiments, we compare the running time
of three algorithms: the baseline algorithBA(), the CREST

In this section, we experimentally evaluate the perforreanc algorithm with only the RNN computation optimization, de-
of CREST. We use both real and synthetic data sets. Twaoted by CREST-A, and theCREST algorithm with both
real data sets, NYC and LA, contain points-of-interest inRNN computation optimization and repetitive region labeli
New York City and Los Angeles, respectively (we obtain theoptimization. We cannot evaluate the effect of the latter op
data sets from the authors of [2]). Table Il lists the detailstimization alone, since it is built upon the former optimiza
of the real data sets. We also generate two synthetic datson. We compute the influence by (i) the size of RNN sets
sets, Uniform and Zipfian, which contain points of uniform and (ii) the function considering the capacity constraiots
and Zipfian distributions, respectively. The skew coeffitiem  facilities [22] (described in the Introduction), respeety. The
Zipfian distribution is set td@.2. In the experiments, we use results of the latter function are consistent with thosegighe
the bichromatic RNNs since the monochromatic type is jussize and hence are omitted due to space limitation.

VIII. EXPERIMENTS



foz I o Again we can see that CREST outruns the baseline by
ENO T e X L P at least three orders of magnitude and outruns CREST-A
g0’ cresTEE K g10’ cresTER & by up to an order of magnitude. The running time of the

S 03 Geste gl o T o O baseline increases much faster than that of the other two
F10° . F10° W algorithms, which indicates the number of point enclosure

101 - - = 107t® - : - queries computed in the baseline increases dramaticanwh
2 Retio lo1iE) 2 perio loloiE] n = |O| becomes larger. The growth rate of CREST-A is also
(a) LA (b) NYC higher than that of CREST. This implies that the number of
108 - 10f times of repeated labeling becomes larger with the increse
B105 e B10° ¥**** data size. The lowest growth rate of CREST also demonstrates
BT |k S e X its scalability for processing much larger data sets.
010 BA -~ 0l0 BA-X-
G CERE _ogl Gl CERE g -
oo oy - 559 C. Performance of CREST witle IDistance
2107 %10 5|
° o . We repeat the above experiments with the distance
2! 28 2! 2t 2! 2! 2’ 2% metric, where the CREST algorithm fdr, (CREST-L2) is
Ratio |O|/|F]| Ratio |O|/|F| . . . . . .
(c) Uniform () Zipfian compared with the pruning algorithnPiuning) described in
Fia. 16, Effect of |21 with L1 diat Section VII-C. We compute the influence with the function
19 25 ect oz W atance in [22] and use the two algorithms to find the regions with
Effect of % We first vary the ratio of% from 2! to  the maximuminfluence, since in such settings the pruning

algorithm performs the best. This also shows the flexibility
of CREST since the adaptation to various influence functions
¥nd supporting post-processing operations is very easy.

210 Since the baseline algorithm does not terminate witdin
hours on large data sets, we only show results on relativel
small data sets and fix = |O] at 2!°. We plot the results in
Fig. 16 (note the log scale in the axes). We can see that in all

B3

data sets, CREST outperforms the baseline by at least three 5, cHE8 9%« 510 | REEIE, ¥
orders of magnitude, and outperforms CREST-A by several iza * iz
times. With the increase o@‘ the running time of CREST ot Fg8
also moderately increases. This is because both the number 5,43 2107
of regions and the maximum size of the RNN sets increase ~1,1% e
with % The growth rates of CREST-A and CREST are S S R
similar, which indicates that the ratio d& mainly affects (@ LA (b) NYC
the number of regions in the arrangement, but not the number | /[t mimee X 10T Pronima X
of times a same region is repeatedly labeled. We can also seeg | “ " *x* Boos TN
from the slope of the lines that with the increase%, the g10°
number of regions increases only polynomially (rather than @10’
exponentially). This indicates that the performance of GRE gL’

10°

will stay stable even it2 becomes very large.

7l a RatAio \O\/\/F\ 2 Ratio [O|/I|F|
Effect of Data Set Size We then ﬁx'%| at 2”7 and vary (¢) Uniform (d) Zipfian
the size of the client set from 27 to 246. The results are Fig. 18.  Effect of |2} with L2 distance
plotted in Fig. 17. When the size @ is greater thar2'?, the Effect of 121, We first vary the ratio from2! to 2!° and plot
baseline runs for more thaht hours and is early terminated, the results in‘ ig. 18. In all data sets, when the ratio istgrea
hence the results are not presented. than 23, we can see that CREST consistently outperforms the
Lot Lo ] Pruning algogthm by several orders of magnitude. With the
210" cresTER B W 510" cresToA B w increase of%, the performance of the Pruning algorithm
E1pf  CRESTOX E1ofy  CRESTIOX o deteriorates rapidly, since the number of regions enumérat
%154 figq . grows exponentially with the increase @J Comparing with
5107 510’ the Pruning algorithm, CREST has a much lower growth rate.
e e When% is less than or equal 7, in Fig. 18(d) the Pruning
Cardinality of o Cardinality of o algorithm runs slightly faster than CREST. This is because
(@) LA (b) NYC the number of regions enumerated in the Pruning algorithm is
108 o § small, while the number of events in CREST is large when the
S107 cresToA B ¥ 5107 cresToA B 5 data distribution is very skewed. Overall, CREST still onts
igs CRES?*' s igé CRESf;ﬁ{” - the Pruning algorithm by up to three orders of magnitude.
5124 %x% g . ;:j Effect of Data Set Size Next, we fix% at2’ and vary the
810 810 size of|0| from 27 to 2!6. The results are presented in Fig. 19.
e T L In all the data sets, again CREST consistently outperfohas t
Cardinality of O Cardinality of 0 Pruning algorithm. With the increase |, CREST and the
(c) Uniform (d) Zipfian Pruning algorithm have a similar growth rate. The running

Fig. 17. Effect of data set size withlLdiatance



time of the Pruning algorithm gets closer to that of CREST [3]
when |O] is very large. This is because although the number
of regions increases with the increasg©f, most of them are
pruned without being searched in the Pruning algorithmgtvhi
does not happen in CREST. It is notable that even we solve
the maximization problem with CREST which is quite general, (5]
it still outruns the specialized Pruning algorithm desigrier

(4]

. D 6
the problem, which demonstrates the efficiency of CREST. tel
10’ 10’ 7
2108 £10°
BRI Pruning-¥- b10° % Pruning-—2¥-
203 CREST-LZ 4 2.0 CREST-LZ2 -
102 10° [9]
27 210 2;3 216 2" 210 213 216
Cardinality of O Cardinality of O [10]
(a) LA (b) NYC
107 10’ K
0 6 0 6 o 11
\%105 gloc xx*¥ [11]
gro’p 210’ X
3104 X Pruning % ‘3104 4 Pruning-X¥- [12]
D3 CREST-LZ - D 3 CREST-LZ -
10 Aa10 13]
102 102 [
27 210 21’& 216 27 210 213 216
Cardinality of O Cardinality of O [14]
(c) Uniform (d) Zipfian
Fig. 19. Effect of data set size with2 distance [15]
IX. CONCLUSIONS [16]

In this paper, we proposed the RNN heat map problem
which computes the influence of every point in the spacef”]
Comparing to existing studies which give only the points or
regions with the highest influence, the RNN heat map enabled®!
exploring the influence of the whole space while considerinqlg]
gualitative factors at any instant during the exploratitve
solved the problem by first reducing it to the Region Coloringyq
(RC) problem, and then computing the influence on regions
instead of points with a novel algorithm called CREST. We[21)
proposed two techniques in CREST, one to avoid point en-
closure queries in the influence computation and the other to
reduce the total number of times of the influence computation22]
Through a detailed analysis, we showed that the number of
influence computation in CREST is asymptotically optimal. 3
We also showed that the worst-case time complexity of crest
is much lower than that of the baseline algorithm and in many
cases meets the lower bound of RC. We conducted extensiygy)
experiments on both real and synthetic data sets. The sesult
showed that CREST outperforms alternative algorithms by upes)
to three orders of magnitude.
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