Scalable Hypergraph Processing

Jin Huang ™, Rui Zhang 2, Jeffrey Xu Yu *

 Department of Computing and Information Systems, University of Melbourne, Australia

{*huang. j,

2 rui.zhang}@unimelb.edu.au

Y Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, China
3 yu.@se.cuhk.edu.hk

Abstract—A hypergraph allows a hyperedge to connect more
than two vertices, using which to capture the high-order re-
lationships, many hypergraph learning algorithms are shown
highly effective in various applications. When learning large
hypergraphs, converting them to graphs to employ the distributed
graph frameworks is a common approach, yet it results in major
efficiency drawbacks including an inflated problem size, the
excessive replicas, and the unbalanced workloads. To avoid such
drawbacks, we take a different approach and propose HyperX,
which is a thin layer built upon Spark. To preserve the problem
size, HyperX directly operates on a distributed hypergraph.
To reduce the replicas, HyperX replicates the vertices but not
the hyperedges. To balance the workloads, we investigate the
hypergraph partitioning problem aiming at minimizing the space
and the communication cost subject to two separate constraints
on the hyperedge and the vertex workloads. With experiments
on both real and synthetic datasets, we verify that HyperX
significantly improves the efficiency of the learning algorithms
when compared with the graph conversion approach.

I. INTRODUCTION

Recently, a number of hypergraph learning algorithms
have demonstrated high effectiveness in various applications
(Table I). Such effectiveness is achieved because a hypergraph
allows a hyperedge to connect multiple vertices, perfectly
capturing the high-order relationships of interest, e.g., the gene
expressions in protein-protein interactions, and the interest
based communities among the users in a social network.

When implementing an algorithm as those in Table I, a
common approach is to convert the hypergraph to a bipartite
by treating the hyperedges as the vertices. For large hyper-
graphs, the well-studied techniques for processing large scale
graphs[12], [4], [5], [14] can be applied to the converted
bipartite. However, adopting the distributed graph frameworks,
this conversion approach has major efficiency drawbacks.

An Inflated Problem Size. The bipartite has orders of mag-
nitude more vertices and edges, e.g., a hypergraph [19]
with 2 million vertices and 15 million hyperedges results
in a bipartite with 17 million vertices and 1 billion edges.

An Enormous Replication Cost. Most distributed graph
frameworks employ vertex replication to reduce the
communication. When partitioned, the bipartite produces
excessive replicas because 1) the inflated problem size; 2)
in addition to the vertices, the hyperedges are replicated.
This poses enormous space and communication costs.

A Great Difficulty in Balancing Workloads. As the parti-
tioning algorithm may not distinguish the vertices and
the hyperedges, the unbalanced workloads may drastically
penalize the efficiency of the distributed computation.

TABLE I: Various hypergraph learning algorithms

Application ‘ Algorithm ‘ Vertex ‘ Hyperedge
Recommendation [16] Songs and users Listening histories
Text retrieval [6] Documents Semantic similarities
Image retrieval [11] Images Descriptor similarities
Multimedia [15] Videos Hyperlinks
Bioinformatics [7] Proteins Interactions

Social mining [17] Users Communities
Machine learning [18] Records Labels

To avoid these efficiency drawbacks, we take a different
approach and propose HyperX, a thin layer built upon Spark,
for easily implementing efficient and scalable hypergraph
learning algorithms. We overcome the three drawbacks with
the following three designs in HyperX .

First, to preserve the problem size, HyperX directly
operates on a hypergraph rather than a converted graph.
Specifically, it stores the hyperedges and the vertices using the
Resilient Distributed Dataset (RDD) [20], a fault-tolerant data
collection partitioned and persisted in the distributed memory.
Because the hyperedges are not converted to vertices, for the
ease of implementing hypergraph learning algorithms, HyperX
provides the hyperedge program in addition to the widely
adopted vertex program in the graph frameworks. While the
vertex program computes vertex values based on the inci-
dent hyperedges, the hyperedge program computes hyperedge
values based on the incident vertices. Both operations are
executed independently on distributed machines. Together, they
update the values in a hypergraph based on its structure.

Second, by replicating only vertices, HyperX avoids the
prohibitive cost of replicating hyperedges that is attributed to
the unrestrictive number of vertices in each hyperedge. Since
the hyperedges and the vertices are both partitioned, such a
replication suggests that while the hyperedge program accesses
the vertex values via the local replicas, the vertex program
accesses the hyperedge values via network communications.

Third, to minimize the replicas and to balance the
workloads, we investigate the problem of simultaneously
partitioning the hyperedges and the vertices. Considering all
the costs involved, we formuate the problem as a minimization
problem with hard constraints on the vertex and hyperedge
workloads. Unfortunately, as this optimization problem does
not admit efficient (approximate) solution, we apply a propa-
gation style heuristic partitioning algorithm'.

Our contributions in this paper are as follows.

Due to the limit of space, details of the theoretic analysis
and the partitioning algorithm can be found in the technical report
http://iojin.com/resources/hyperx-report.pdf

hl.src OO h3.src
h2.src @ h4.src @O

Fig. 1: Converting a hypergraph to a graph: SE and CE

SE: 12 edges 11 vertices CE: 9 edges 7 vertices

1) This is the first study to systematically tackle scalable
hypergraph processing. Interestingly, hypergraphs are ex-
tensively used as a popular model in optimizing dis-
tributed systems [13], yet scaling computation over data
represented as hypergraphs has not been explored.

2) We design a new approach, HyperX, to directly process
large hypergraphs in a distributed manner. We implement
HyperX and evaluate its performance with extensive ex-
periments on three hypergraph learning algorithms. The
results are as follows.

e Compared with the graph conversion approaches im-
plemented on GraphX [5], for the learning algorithms,
HyperX saves up to 77% space, communicates up to
98% fewer data, and runs up to 49 times faster.

e HyperX gracefully scales out on a commodity cluster.

In Section II, we explain the drawbacks of the conversion
approach in details. We then present an overview of HyperX
in Section III, and discuss the implementation details in
Section IV. The related work in discussed in Section V. The
experiments are shown in Section VI and the paper concludes
in Section VIL

II. GRAPH CONVERSION DRAWBACKS

Following the seminal study of Pregel [12], most dis-
tributed graph frameworks choose a vertex-centric approach
and provides the vertex program, which updates the vertex
value based on the values of the neighboring vertices. To
avoid extensive communication over the network, vertices are
replicated to the distributed partitions [5], [4], [1], [14]. When
the vertex value changes, the new value is sent to its replicas;
a local aggregation that combines values sent to the same
destination is employed to enable the batch update. To adopt
these frameworks to process large hypergraphs, we need to
convert a hypergraph to a graph. Two common approaches
can realize this conversion [21], i.e.,the clique-expansion (CE)
which treats each hyperedge as a clique among the incident
vertices, and the star-expansion (SE) which treats each hy-
peredge as a new vertex (therefore converting the hypergraph
to a bipartite). Fig. 1 demonstrate an example on converting a
hypergraph to a graph following these two approaches. Though
intuitive, applying these approaches to adopt the distributed
graph frameworks poses substantial drawbacks.

1) CE is not applicable to the algorithms that update h.val
as it no longer has records corresponding to the original
hyperedges in the converted graph.

2) The graph grows orders of magnitude larger. Fig. 1
illustrates a substantial growth even in a tiny hypergraph.
In this regard, we compare the conversion approaches
with a direct hypergraph representation in Section IV-A,
and a quick comparison is in Table II on page 5.

Learning
Algorithm ‘ '
‘ Hypergraph Partitioning Algorithm ‘ Impl. HyperX APIs

Distributed Hypergraph J
hRDD vRDD J

Hyperedge P1 P2 P3 P4 Vertex P1
Hyperedges Vertices

Vertex Replicas -

[Apache Spark RDD APIs |

l Apache Hadoop YARN ‘ l Apache Hadoop HDFS ‘

Fig. 2: An overview of HyperX

3) When partitioned, the converted graph produces excessive
replicas that leads to high space and communication cost.
e The graph partitioning problem deals with an inflated

graph. Partitioning this graph naturally produces more
replicas. This is especially fatal for CE as it increases
the number of edges quadratically.

e For SE, as the hyperedges are converted to vertices, not
only the vertices but also the hyperedges are replicated.
In real applications the hyperedge arity tends to be
larger than the vertex degree (e.g., a community could
easily have thousands of members yet the number of
connections of each person could establish is usually
at most hundreds). Replicating hyperedges could easily
produce a replica spike, which further poses prohibitive
space cost on storing the replicas and communication
cost on updating the replicas.

4) For SE, there are two types of vertex program, i.e., one for
the vertices and one for the hyperedges. As demonstrated
in right-hand part of Fig. 3, when executing the vertex
program iteratively, it takes two iterations to update h.val
and v.val. This is a problem due to the following.

e Updating the vertex replicas for the changed vertex
values is a constant overhead thanks to the local ag-
gregation. However, two iterations results in doubling
the cost of such an overhead.

e When partitioning a graph following the classic tech-
niques, either the vertices or the edges are balanced.
On the converted graph, such a partitioning does not
necessarily yield balanced distributions on either the
real vertices or the vertices that represent hyperedges.
As a result, in each iteration, there is no guarantee that
the execution of either type of vertex program generates
balanced workloads on the distributed machines.

III. HYPERX OVERVIEW

HyperX has a similar architecture (demonstrated Fig. 2) to
the existing graph frameworks: 1) it builds on top of Spark;
2) it runs on the Hadoop platform, i.e. YARN and HDFS;
3) it shares all the optimization techniques with GraphX [5].
HyperX directly stores a hypergraph as two RDDs, vRDD for
the vertices and hRDD for the hyperedges. Moreover, HyperX
differs from the graph frameworks in two major design choices.

e We provide two common operations for implementing the
hypergraph learning algorithms. In addition to the widely

vProg: update v.val hProg: update h.val®,

g

‘ Update vertex replicas ‘ ‘ Update hyperedge replicas i
'

. Iteration 1: update v.val Iteration 2: update h.val /!
. L . .
. Graph Conversion: Two iterations and more replicas <

\
N

Fig. 3: Comparing HyperX with SE, the gray shapes and bold
arrows indicate the running vProg (hProg) in each step

adopted vertex program (denoted as vProg) in the graph
frameworks, the hyperedge program (denoted as hProg)
is essential for HyperX.

o We simultaneously partition the hyperedges and the ver-
tices. This extends the classic vertex partitioning and edge
partitioning techniques. Only the vertices are replicated to
avoid excessive replicas.

‘We elaborate these two choices in the remainder of this section.

A. Hyperedge Program and Vertex Program

Hypergraph learning algorithms usually involve accessing
and updating h.val, e.g., the weight of relations between the
visual descriptors are gradually learned during the computa-
tion [3]. Hence, in addition to vProg that computes v.val
based on h.val on the incident hyperedges, we provide hProg
that operates on every hyperedge to update h.val according
to v.val on its incident vertices. Both hProg and vProg
execute independently on each hyperedge and vertex partition,
respectively. By executing hProg and vProg sequentially
in one iteration, both h.val and v.val are updated. This
sequential execution does not degrade the parallelism because
both the hyperedges and the vertices are fully partitioned; all
the computing resources are utilized in hProg and vProg.

As demonstrated in Fig. 3, to update h.val and v.val,
HyperX takes only one iteration, while SE takes two iterations.
Meanwhile, this makes it much easier to balance the workloads
in the two steps during each iteration: all the vertices partici-
pate in vProg and all the hyperedges participate in hProg.

B. Partitioning with Hybrid-Cut and Vertex Replication

HyperX brings the computation to the distributed data. To
distribute the workloads is therefore to partition vertices and
hyperedges and assign them to the distributed workers (the unit
of resource in Spark). This requires a hybrid-cut that disjointly
partitions the vertices and the hyperedges. This differs from
the vertex-cut that cuts the vertices to disjointly partition the
edges[1] and the edge-cut that cuts the edges to disjointly
partition the vertices [9].

Following the convention, the vertices whose incident
hyperedges are assigned to different workers are replicated
to those workers. The hyperedges are not replicated because

replicating the hyperedges is prohibitive as each hyperedge
connects an unrestrictive number of vertices, whose ids need
to be replicated with the hyperedge value. As a result, vProg
does not operate locally. Instead, the hyperedge values are sent
to the vertex partitions over the network. The communication
cost during vProg is thus attributed to the number of vertex
replicas, as h.val is sent to a vertex partition precisely because
there are vertex replicas in that hyperedge partition. Another
network communication of updating replicas according to the
changed v.val, is also attributed to the number of replicas.
Both communications employ the local aggregation to combine
the values destined to the same partition.

IV. HYPERX IMPLEMENTATION

We briefly discuss the distributed hypergraph represen-
tation and the APIs in HyperX, and then show how three
widely used hypergraph learning algorithms can be easily
implemented over HyperX.

A. Representing A Distributed Hypergraph

HyperX stores a hypergraph as one vRDD and one hRDD.
Conceptually, each vertex and each hyperedge is stored as one
row in its corresponding RDD. Let vid and hid denote the
vertex and the hyperedge id, respectively. While the vRDD
simply stores (vid,v.val) pairs, the hRDD deals with the
arbitrary number of source and destination vertices in each
hyperedge. Directly storing the source and the destination
vertex sets in one row introduces the overhead of the object
headers and the linking pointers. Instead, we flatten each hy-
peredge to multiple (vid, hid, isSrc) tuples in hRDD.
This enables an efficient (columnar) array implementation.

However, as now that each hyperedge spans multiple
consecutive rows in the hRDD, given a hid, we cannot access
the hyperedge directly. To resolve this, we create an additional
map structure to associate hid with the first row the hyperedge
is stored in the hRDD. Compared with the cost of directly
storing hyperedges that is attributed to O(3_, o4, an), the cost
of this additional structure is only attributed to O(n). We
conducted a set of experiments to evaluate the space efficiency
of this design on various datasets. The results show that by
flattening the hyperedges, we save 41% to 88% memory space
for persisting the hRDD in the memory.

We compare the representation of HyperX with that of SE
and CE implemented over GraphX in Table II. Intuitively, SE
and CE increase the number of vertices and hyperedges, as
shown by x’ and %' in the first column. In real datasets such
as Ork [19], this increase could be orders of magnitude, as
demonstrated in the last two columns in the table. Moreover,
the resultant number of replicas in these approaches could be
drastically larger than that in HyperX as 1) they deal with
a problem orders of magnitude larger; 2) a large number of
hyperedges are subject to replication as well.

B. HyperX APIs

HyperX has five major APIs: mrTuples, joinV, mapV,
mapH, and subV. The function mrTuples corresponds to
hProg and includes the execution of three steps on a hyper-
edge: 1) aggregating the incident v.val from the local replicas;
2) computing the new h.val; 3) aggregating the h.val destined

TABLE II: Comparison on the representations

Representation ‘ # of Replicas) ‘ m in Ork ‘ n in Ork

HyperX R(x,y), |x| = km, |y| = nk | 2,322,299 15,301,901
GraphX-SE R(x,y). x| = k(m +n), | 17,624.200 | 1,086,434,971
ly'| =k 2 hew Oh
GraphX-CE R(x,y"), |x| = km, 2322299 | 122,956,922,990
2_
D

Algorithm 1: HyperPregel

Algorithm 2: Random Walks (RW) with restart

input : G, label vertex set L, restart probability rp
output: RDD[(Id, Double)]

vProg(id, (v,d),msg)= ((1 —rp) X msg + rp X v, d)
hProg (S, D, Sd, Dd, h)=3" S
combine(a,b)=a+b

G < G.joinV (G.outDegq, (id, v, d) = d)

G «+ GmapV((id, v) = if id € L (1.0, v) else (0.0, v))
g HyperPregel(§, vProg, hProg, combine,0)

;
i<|S| Sd; x|D]

Y I S R

input : G: Hypergraph[V, H], vProg: (Id,V) =V,
hProg: Tuple = M, combine: (M,M) = M,
initial: M

output: RDD [(Id, V)]

G < GmapvVv((id, v) = vProg(id, v, initial))

msg < GmrTuples(hProg, combine)

while |msg| > 0 do

G < G.joinV (msg) (vProg).subH(v’, t’)
L msg < GmrTuples(hProg, combine)

[I N I

6 return G.vertices

to the same vertex partition. The function joinV corresponds
to vProg and includes the execution of two steps: 1) comput-
ing the new v.val based on the h.val received; 2) updating the
replicas for each updated v.val. The function subH restricts
the computation on a sub-hypergraph, and it is mainly for
efficiency considerations. The functions mapV and mapH are
simply the setters for v.val and h.val. With these APIs, we can
easily implement an iterative computation paradigm similar to
Pregel for hypergraphs, i.e., HyperPregel (Algorithm 1).

C. Implementing Learning Algorithms

In this section, we briefly describe how three common
hypergraph learning algorithm can be implemented easily
using HyperX. Fig. 4 gives the running examples of the random
walks and the spectral learning.

1) Random Walks: We show the implementation of directed
random walks with restart on a hypergraph [16] using the
APIs in Algorithm 2. Here, joinV is used to set up the
attribute for a vertex to its corresponding out degree, which can
be trivially obtained by G.mrTuples with map generating
(u,1) for every source vertex in the tuples, and combine
summing the messages to the same vertex. Next, mapV is used
to distinguish the vertices in the starting set (e.g., the songs
already labeled) from the other vertices. Then, HyperPregel
is used to execute the random walk procedure iteratively with
the vProg to compute the new stationary probability and
the hProg to aggregate the probabilities from the incident
vertices. As demonstrated in Algorithm 1, vProg and hProg
will be executed in an interleaving manner in each iteration.

2) Label Propagation: Algorithm 3 demonstrates the the
implementation of a label propagation on HyperX. The pro-
cedure is similar to RW, except that now h.val and v.val are
the labels instead of the stationary probabilities and there is
no starting vertex set.

3) Spectral Learning: We demonstrate how the hypergraph
spectral learning (e.g., clustering and embedding) [21], can
be implemented using HyperX APIs in Algorithm 4. The
technique consists of two subtasks, 1) computing the Laplacian
matrix and 2) eigen-decomposing the matrix. We employ

Algorithm 3: Label Propagation (LP)
input : G
output: RDD [(Id,

Id)]

1 vProg(id, (v,d), [(1,c)]) = argmax;c,q) ¢
2 hProg (S, D, Sl, DI, h)= (Sl + Dl)map(= (I,1))
3 agg(a,b)=(a+ b).reduceByKey((c,c’) = c+)
4 G + GmapV((id, v) = id)

5 §.HyperPregel (G,vProg,hProg, agg, null)

the Lanzcos method with selective reorthogonalization (lanz-
cosSRO) as the numeric method for the eigen-decomposition.
The lanzcosSRO method is an iterative procedure that involves
matrix-vector multiplication. On HyperX, a straightforward ap-
proach would first explicitly compute Laplacian and then per-
form lanzcosSRO. However, as demonstrated in Algorithm 4,
the Laplacian matrix can be implicitly computed during the
matrix-vector multiplication phase in the second step. The
idea is that a matrix-vector multiplication is basically a series
of multiply-and-add operations, which can be decomposed
and plugged into the Laplacian computation. Specifically, the
multiplication could be realized using MRTuples while the
addition is simply mapV. We omit the details of lanzcosSRO
in Algorithm 4 since most steps are identical to that in [§]
and are orthogonal to HyperX.

V. RELATED WORK
A. Distributed Graph Processing Frameworks

Distributed graph processing has been intensively investi-
gated in recent years [14], [12], [4], [5]. A number of issues
that HyperX addresses for hypergraphs have been studied
for graphs: replicating data [4], aggregating messages [5],
partitioning the data [14], [4], and providing common APIs for
a wide range of applications [12], [5]. However, as described in
Section II, there are major efficiency issues in adopting these
graph techniques when processing a hypergraph.

B. Hypergraph Learning

The applications of hypergraphs include music and news
recommendations [16], [10], multimedia retrieval [2], [15],
bioinformatics [7], social mining [17], and information re-
trieval [3]. All these studies have demonstrated that the hy-
pergraph model is a highly effective tool for harvesting the
rich relationships not captured by a graph model. However,
these studies evaluate their techniques on datasets containing
a few hundred thousand records. To the best of our knowledge,
there is no study specifically addressing the scalability issues
in hypergraph learning with a cluster of commodity machines.

Hypergraph

RW (Algorithm 2) starting v1,v4, reset = 0.7)

SP (Algorithm 4) Laplacian and Eigend

Step I joinV to associate out degree
Step 2: mapV to tag starting vertices

v5:0,0,v6:1,0,v7:0,0

hl: 1, h2: 0.5, h3: 1, h4:
Step 4: vProg to update vertices values
hl:[vl,v2]=>v3
h2:v4 =>[vl,v2]
h3:v3 => v6
h4:{v4,ve}=>{v5,v7}

v5:0.3,0,v6:0.3,0,v7:0.15,0

vl:1,v2:1,v3:1,v4:1,v5:0,v6:1,v7:0
v1i:1,1,v2:1,0,v3:1,0,v4:1,1,

Step 3: hProg to aggregate vertices values

v1:0.85,1,v2:0.15,0,v3:0.3,0,v4:0.7,1,

Step 5: HyperPregel to iterate step 3 and step 4

Step 1: joinV to get square root diagonal matrix D
vl:1,v2:1,v3:1,v4:1,v5:0,v6:1,v7:0
Step 2: mrTuples to multiple Laplacian with vectors during
Lanzcos ;e.g., (0,0,0.5,0,0.5,0.5,0.5,0)
Step 2.1: map on hyperedges to prepare the multiplication
hl: (v1,0.33),(v2,0.33),(v3,0.33)
h2: (v4,0), (v1,0), (v2,0)
h3: (v3,0.5),(v6,0.5)
h4: (v4,0.25),(v6,0.25), (v5,0),(v7,0)
Step 2.2: combine and map to get the multiplication
vl:-0.17,v2:-0.17,v3:0.09,v4:-0.13,
v5:0.5,v6:0.13,v7:0

Step 3: repeat step 2 until the Lanzcos procedure terminates

Fig. 4: Running examples of implementing Random Walks and Spectral Learning on HyperX

310 = = _ ® evg—

@ 55 : 225 | Write £ 10* tar

O 45 Vertices B B = 20 Read mmmm s

? Hyperedges mm © - 108

g 6 g0 7102

T 4 5 4 o 4

g 2 o , E10

© £ =

e G, G G G, G, G -g, O 2 su cu o 2w § 10° 1, 4, o) o) £ £,
T T T Ty T g © %% %% %% %% %% %% o3 Y T 0, %%,
MedRW MedLP OrkRW OrkLP FriRW FriLP 8 MedRW MedLP OrkRW OrkLP FriRW FriLP w 'Pli, ad 3 i 2

(a) Space efficiency

(b) Communication efficiency

(c) Time efficiency

Fig. 5: Comparing HyperX with graph conversion approaches

Algorithm 4: Laplacian Spectral Learning (SP)

input : G, eigK
output: Eigenvectors [eigC], eigenvalue [eigV]
1 map (mapS, mapD, w) =(mapS + mapD).map((id, val) =
(Zd, UGZX((me Z (S + D)map
(u = u.wval X vec(u.id)))
combine (a,b)=a+b
multiple (G, vec) =G.mrTuples
(map,combine).map((id, val) = vec(id) — val)
G < G.joinV (G.degq,(id,v,d) = d™ 2)
lanzcosSRO(G, multiple, eigK)

[F3 N}

L7 N

TABLE III: Datasets presented in the empirical study

Dataset ‘ n ‘ m
Medline Coauthor (Med) 2 3,228,002 8,007,214
Orkut Communities (Ork)[19] 2,322,299 15,301,901
Friendster Communities (Fri)[19] 7,944,949 1,620,991
Synthetic (Zipfian s = 2) 2M - 10M 8M - 24M

VI. EMPIRICAL STUDY

We evaluate HyperX (shortened to hx in the figures)
against the alternative techniques via extensive experiments.
We measure the memory space consumption of data RDDs,
i.e., vRDD and hRDD (eRDD with no edge values for GraphX),
the network communication, and the elapsed time of the three
learning algorithms. Due to the limit of space, we only show
the elasped time when varying the dataset cardinality and the
number of workers?.

A. Datasets and Experimental Settings

The datasets used are listed in Table III. The synthetic
datasets are generated using Zipfian distribution with exponent
s set to 2.

Discussion on the size of the datasets. These datasets may
seem small yet they are adequate for the purpose of evaluation

3the results on the memory space consumption and the network communi-
cation can be found in the report http://iojin.com/resources/hyperx-report.pdf

for three reasons. First, the interconnection between vertices
in a hypergraph is rather intense. For example, the clique-
expansion graph in the Fri and the Ork datasets respectively
contain 1,834,786,185 and 122,956,922,990 edges, which is
of similar magnitude to the size of datasets used in recent
publications such as [5]. Second, the data RDDs may appear
small in the figures, yet because of significant intermediate
RDDs, these datasets are the largest we can evaluate in our
settings. Third, the hypergraph learning algorithms can be
of high complexity, where the previous studies only tackle
problems with hundreds of thousands of hyperedges [10], [17].

The experiments are carried out on an 8 virtual-node
cluster created from an academic computing cloud running on
OpenStack. Each virtual-node has 4 cores running at 2.6GHz
and 16GB memory. Note that each worker corresponds to one
core, 4 workers effectively simulate a single node running with
4 processes. The network bandwidth is up to 600Mbps. One
node acts as the master and the other 7 nodes act as slaves (i.e.,
up to 28 workers) using Apache Hadoop 2.4.0 with Yarn as
the resource manager. The execution engine is Apache Spark
1.1.0-SNAPSHOT. HyperX is implemented in Scala.

B. Comparing with the Graph Conversion Approaches

We implement the graph conversion approaches on
GraphX and compare them with HyperX. GraphX is a great
competitor for evaluating HyperX because 1) it also executes
on Spark, Hadoop, and JVM; 2) it is also implemented
in Scala; 3) it shares all the optimization techniques with
HyperX such as filtered index scanning and automatic join
elimination. For GraphX, we use Edge2DPartition as
recommended [5], while for HyperX, we use LPP. The results
are illustrated in Fig. 5. CE is not a practical choice in real
applications due to its O(}, .4, a7) extra edges, it consumes
up to two orders of magnitude more memory than both SE and
HyperX. We therefore omit it thereafter. When compared with
SE, HyperX is clearly the better choice in all criteria: data
RDDs consume 48% to 77% less memory; communication
transfers 19% to 98 % less data while exchanging 27% to 93 %

” RW - LP 8 SP < ” RW = LP & SP <
21600 b 21600 &
© 1200 /ﬂ/ L1200 | g |
@ 800 . T s00c
2 400! 2 400
E Oy oM TeM 2oM 2aM = oM 4 6V 8W ToM

Number of hyperedges Number of vertices

(a) Time Efficiency, Hyper- (b) Time Efficiency, Vertices
edges
Fig. 6: Varying dataset cardinality

o 1200 (AW &= LP -5 SP 010t ([BW & 1P &SP
21000 8 [;\B\H\M

S 800 =

—. 600 B\‘E«)\h ~ 10° g
Q 40e, Ty 2 >

200

£ 048 12 16 20 24 28 qg)1024 8 12 16 20 24 28
[=

Number of workers Number of workers

(a) Time Efficiency, Medline (b) Time Efficiency, Orkut
Fig. 7: Varying number of workers

fewer messages; the elapsed time is shortened by up to 49.1
times. This verifies the drawbacks we identified in Section II:
graph conversion enlarges the problem size, produces excessive
replicas, and makes it difficult to balance workloads for the
hypergraph learning algorithms.

C. Varying Dataset Cardinality and the Number of Workers

The results of varying the dataset cardinality are illustrated
in Fig. 6. As depicted in the figures, both RW and SP are
relatively insensitive to the dataset cardinality. This is because
while RW starts with a particular number of vertices irrespec-
tive of the size of the datasets, SP leverages the sparseness in
the matrix multiplication to avoid unnecessary computation.
LP grows approximately linearly to the growth of the number
of hyperedges and sub-linearly to the growth of the number of
vertices.

The results of varying the number of available workers
are shown in Fig. 7. In terms of the time efficiency, all the
algorithms on all the datasets speed-up at a sub-linear rate to
the increasing number of workers. The reason for this sub-
linear speed-up character is as follows. 1) The communication
and the space cost intuitively increase due to more replicas
when there are more partitions. 2) The overhead caused by
YARN scheduler in each iteration is rather steady and will not
diminish when there are more workers. 3) The less significant
speedup of RW and SP is because both of them only compute
on a sub-hypergraph, where the CPU power for the distributed
hProg and vProg may not be the bottleneck.

VII. CONCLUSIONS

We studied large scale hypergraph processing in a dis-
tributed environment. Our solution, HyperX, systematically
overcomes the drawbacks in the graph conversion approach
by preserving the problem size, minimizing replicas, and
balancing the workload. We conducted an empirical study on
both real and synthetic datasets to evaluate the performance
of HyperX. The results confirmed that for the hypergraph
learning tasks, HyperX is much more efficient than adopting
the graph frameworks via a graph conversion. HyperX offers
great scalability and the ease of implementation to the ever

growing family of hypergraph learning algorithms. We intend
to open source HyperX to the community shortly.

ACKNOWLEDGMENT

This work is supported in part by the Australian Research
Council (ARC) Discovery Project DP130104587 and the Re-
search Grants Council of the Hong Kong SAR, China, No.
14209314 and 418512. Dr. Zhang is supported by the ARC
Future Fellowships Projects FT120100832.

REFERENCES

[1] F Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition.
In KDD, 2014.

[2] A. Docournau and A. Bretto. Random walks in directed hypergraphs
and applications to semi-supervised image segmentation. CVIU, 2014.

[3] Q. Fang, J. Sang, C. Xu, and Y. Rui. Topic-sensitive influencer mining
in interest-based social media networks via hypergraph learning. /EEE
™, 2014.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
OSDI, 2012.

[5] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. Graphx: Graph processing in a distributed dataflow
framework. In OSDI, 2014.

[6] T. Hu, H. Xiong, W. Zhou, S. Y. Sung, and H. Luo. Hypergraph
partitioning for document clustering: a unified clique perspective. In
SIGIR, 2008.

[71 T. Hwang, Z. Tian, R. Kuang, and J.-P. Kocher. Learning on weighted
hypergraphs to integerate protein interactions and gene expressions for
cancer outcome prediction. In /CDM, 2008.

[8] U. Kang, B. Meeder, and C. Faloutsos. Spectral analysis for billion-
scale graphs: Discoveries and implementation. In PAKDD, 2011.

[9] R. Krauthgamer, J. S. Naro, and R. Schwartz. Partitioning graphs into

balanced components. In SODA, 2009.

L. 1i and T. Li. News recommendation via hypergraph learning:

Encapsulation of user behavior and news content. In WSDM, 2013.

[10]

[11] Q. Liu, Y. Huang, and D. N. Metaxas. Hypergraph with sampling for
image retrieval. Pattern Recognition, 2011.

G. Malewicz, M. H. Austern, A. J. C. Matthew, J. C. Dehnert, 1. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph
processing. In SIGMOD, 2010.

N. Selvakkumaran and G. Karypis. Multi-objective hypergraph parti-
tioning algorithms for cut and maximum subdomain degree minimiza-
tion. [EEE TCAD, 2006.

B. Shao, H. Wang, and Y. Li. Trinity: a distributed graph engine on a
memory cloud. In SIGMOD, 2013.

H.-K. Tan, C.-W. Ngo, and X. Wu. Modeling video hyperlinks with
hypergraph for web video ranking. In MM, 2008.

S. Tan, J. Bu, C. Chen, B. Xu, C. Wang, and X. He. Using rich social
media information for music recommendation via hypergraph model.
ACM TMCCA, 2013.

S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen. Mapping users
across networks by manifold alignment on hypergraph. In AAAI 2014.

[12]

[13]

[14]
[15]

[16]

[17]
[18] Y. Wang, P. Li, and C. Yao. Hypergraph canonical correlation analysis
for multi-label classification. Signal Processing, 2014.

[19] J. Yang and J. Leskovec. Defining and evaluating network communities

based on ground-truth. In /CDM, 2012.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
a fault-tolerant abstraction for in-memory clutser computing. In NSDI,
2012.

[21] D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In NIPS, 2006.

[20]

