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ABSTRACT
Inspired by the great success of machine learning in the past decade,

people have been thinking about the possibility of improving the

theoretical results by exploring data distribution. In this paper,

we revisit a fundamental problem called Distributed Tracking (DT)

under an assumption that the data follows a certain (known or

unknown) distribution, and propose a number data-dependent al-
gorithms with improved theoretical bounds. Informally, in the DT

problem, there is a coordinator and k players, where the coordinator

holds a threshold N and each player has a counter. At each time

stamp, at most one counter can be increased by one. The job of the

coordinator is to capture the exact moment when the sum of all

these k counters reaches N . The goal is to minimise the communi-

cation cost. While our first type of algorithms assume the concrete

data distribution is known in advance, our second type of algo-

rithms can learn the distribution on the fly. Both of the algorithms

achieve a communication cost bounded byO(k log logN )with high
probability, improving the state-of-the-art data-independent bound
O(k log

N
k ). We further propose a number of implementation opti-

misation heuristics to improve both efficiency and robustness of

the algorithms. Finally, we conduct extensive experiments on three

real datasets and four synthetic datasets. The experimental results

show that the communication cost of our algorithms is as least as

20% of that of the state-of-the-art algorithms.
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1 INTRODUCTION
The great success of machine learning in the past decade has proven

the assumption that data in practice follows certain patterns (e.g.,
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either known or unknown distributions). Such an assumption in

turn becomes the base of those (machine learning) techniques. In-

spired by this, people have been thinking about the possibility to

improve theoretical results on traditional problems with machine

learning techniques. Successful progresses have been made on a

wide range of problems, such as frequency estimation [1, 9], approxi-

mate membership [15], combinatorial optimization [3, 12, 17], index

structures [14], and etc. The rationale behind these progresses is to

explore and exploit the underlying distribution of the input data

and to design data-dependent algorithms customized for the data

distribution. In this paper, we design data-dependent algorithms,

improving the state-of-the-art theoretical bounds, for solving the

Distribution Tracking (DT) problem [7].

The DT problem setting. In the DT problem, there is a coor-

dinator and k players (a.k.a. sites); between each player and the

coordinator, there is a two-way communication channel. The coor-

dinator holds a threshold N , while the i-th player has a counter ni
initialized as 0 for all i ∈ {1, 2, . . . ,k}. At each time stamp, there is

at most one (that means it can be none) player having its counter

increased by one, conceptually representing an item arrives at the

player. The job of the coordinator is to raise an alarm at the exact
moment that the N -th item arrives (at some player), equivalently,

the moment that the sum of the counters of all the players reaches

N , i.e.,

∑k
i=1

ni = N . The efficiency of an algorithm for solving

the DT problem is measured by the communication cost, i.e., the

total number of messages that received and sent by the coordinator,

where each message can only carry at most O(1) words.
To solve the DT problem, a straightforward algorithm is to in-

struct each player to send a message to notify the coordinator for

every increment on its counter. The communication cost of this

algorithm is clearly N (messages). However, such a communication

cost is considered expensive, as N is large in practice. Existing

work [7] showed that the DT problem actually admits an algorithm

(the CMY algorithm named after its authors) with a communica-

tion cost ofO(k log
N
k ). When N is far larger than k , this algorithm

consumes significantly less communication cost than the straight-

forward algorithm.

The CMY algorithm. For the ease of explanation, we introduce a
simplified version of the state-of-the-art CMY algorithm achieving

the same communication bound. The simplified algorithm runs in

rounds. In each round, if N < 4k , run the straightforward algo-

rithm with O(N ) = O(k) messages. Otherwise (i.e., N ≥ 4k), the

coordinator sends a slack s = ⌊ N
2k ⌋ to each player. Each player

sends a message to notify the coordinator, whenever its counter is

increased by s since its last communication with the coordinator. If

the coordinator receives the k-th message, then it collects all the k

counter values ni from the players and calculate N ′ = N −
∑k
i=1

ni .
If N ′ = 0, the coordinator raises the alarm. Otherwise, start a new
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Figure 1: A running example of the simplified CMY algo-
rithm with N = 50 and k = 4, where the counter increments
in different rounds are highlightedwith different colors and
textures. The slack values in the first two rounds are s = 6

and s = 2, respectively; and in the third round, the algorithm
switches to the straightforward algorithm.

round to solve a new DT problem instance with N = N ′ from
scratch. As it is easy to verified that in each round, the coordinator

sends and receives O(k) messages; and after each round, N is de-

creased by a constant factor. Hence, there can be at most O(log
N
k )

(with respect to the original N ) rounds; the total communication

cost is bounded by O(k log
N
k ) messages.

A running example. Figure 1 shows a running example of the

DT algorithm on an instance with N = 50 and k = 4, In the

first round, since N > 4k = 16, the coordinator sends a slack

s = ⌊ N
2k ⌋ = ⌊

50

2∗4 ⌋ = 6 to each player. At the end of this round,

Player 1 has received 18 counter increments and thus in total 3

messages have been sent from Player 1 to the coordinator, which

were sent for every s = 6 increments. Likewise, Player 2 has sent

a message as its counter is increased by s = 6, while both of the

counters of Players 3 and 4 are just increased by 3: no messages

were sent from them. The coordinator collects all the counters as

soon as it receives the k-th (i.e., the fourth) messages and calculate

N ′ = 50− (6 ∗ 3+ 6+ 3+ 3) = 20. Next, the coordinator starts a new

round with a new instance with N = 20 and k = 4 from scratch,

where s = ⌊ 20

2∗4 ⌋ = 2. As shown in the figure, at the end of this

round, the counters of the four players have been increased by 6,

2, 1 and 1, respectively; and N ′ = 10. A new round with N = 10

and k = 4 is thus started, in which the algorithm switches to the

straightforward algorithm (as N < 4k): a message is sent for each

counter increment. As for the communication cost, in each of the

first two rounds, the coordinator sends 4 messages for sending the

slack s to the four players, receives 4 messages, sends 4 messages

for requesting the counter values, and finally receives 4 messages

for the counter values. Therefore, the communication cost in each

of these two rounds is 16. Plus the 4+ 10 messages in the last round,

the total communication cost is thus 16 ∗ 2 + 14 = 46.

Exploiting the counter increment distribution. In order to pro-
vide a worst-case communication bound, the CMY algorithm has

to be pessimistic and conservative: it makes no assumption on the

data distribution; and only identical slacks s can be sent to all the

players in a round. Such pessimism and conservation, unfortunately,

prevents the CMY algorithm from reducing the communication by

exploiting the data distribution. In particular, the data distribution

Notation Description
N the threshold to monitor

k the number of players

[k] the set of integers from 1 to k

ni the counter of the i-th player

si the slack of the i-th player

µi the probability that a new item arrives at player i

µ̄i the estimation of µi
T (N ) the communication cost with threshold N

Table 1: Frequently used notations

we mean here is the Multinomial Distribution of the counter incre-
ments, more specifically, the probability distribution of a counter

increment happening in the players. For the example shown in

Figure 1, the probability distribution of the counter increments is

(0.6, 0.2, 0.1, 0.1): for each counter increment, it has probability of

0.6 happening in Player 1, 0.2 in Player 2, 0.1 in Player 3, and 0.1

in Player 4.

The knowledge on the probability distribution (i.e., the Multino-

mial Distribution) of the counter increments indeed can be lever-

aged to significantly reduce the communication cost. As an extreme

case in our earlier example in Figure 1, suppose that one knows the

final counter value ci of the i-th player for all i ∈ {1, 2, . . . ,k} at
the moment when their sum reaches N , namely, c1 = 30, c2 = 10,

c3 = c4 = 5. A better solution is to instruct the coordinator to send

a customized slack si = ci to the i-th player, and to raise the alarm

when it receives the fourth messages from the players. Clearly,

the communication cost of this solution is only 8 messages, five
times less than the cost of the CMY algorithm. While knowing

all the final counter values ci a prior is, of course, too good to be

true, this observation sheds a light on the possibility of designing

improved data-dependent algorithms with the knowledge of the

counter increment distribution.

Motivated by the above, in this paper, we consider the DT prob-

lem under the assumption below:

Assumption 1. The counter increments follow a certain Multi-
nomial Distribution which can be unknown. More specifically, each
counter increment occurs in the i-th player with probability µi for all
i ∈ {1, 2, . . . ,k}, where

∑k
i=1

µi = 1.

Our contributions.We make the following contributions:

• First, for the case that the concrete Multinomial Distribution (i.e.,

the concrete values of all µi ’s) is known a prior, we show a data-

dependent algorithm, called StcSlk-KwnDst , for solving the DT

problem. The communication cost of the StcSlk-KwnDst algo-
rithm is bounded byO(k log logN )with high probability, improv-

ing the state-of-the-art O(k log
N
k ) bound. We further propose

the DynSlk-KwnDst algorithm which improves the practical per-

formance of StcSlk-KwnDst , while retaining exactly the same

communication bound.

• Second, for the case that the distribution is unknown, we pro-
pose two learning based algorithms, called StcSlk-LrnDst and
DynSlk-LrnDst, corresponding to the two algorithms in the first

case. Both of these two algorithms can learn the data distribution

on the fly, meanwhile achieving exactly the same theoretical

bounds as their counterpart algorithms.



• Moreover, we design an effective heuristics to optimize our algo-

rithm implementations.

• Finally, we conduct extensive experiments on both three real

datasets and four synthetic datasets of different data distributions.

The experimental results show that our proposed algorithms

outperform the state-of-the-art algorithms by consuming up to

five times (i.e., 5x) less communication cost.

2 RELATEDWORK
The distributed tracking (DT) problem has been well studied in

terms of both upper bounds and lower bounds, since it was first

proposed.

Prior to the CMY algorithm, an uniform slack (called UniSlk)
algorithm was proposed by Cormode et al. [5]. The communication

cost of UniSlk is bounded by O(k2
log

N
k ). The design of UniSlk

is based on the observation that for N items arriving at k play-

ers, there must be at least one of player received N /k items. The

UniSlk algorithm runs in rounds. At the at the beginning of the

first round, the coordinator broadcasts a slack N /k to each players.

The player notifies the coordinator when its counter exceeds N /k .
Upon receiving one notification, the coordinator informs the rest

of players to report the values of their counters. This ends the first

round. The number of items arrived, namely,

∑k
i=1

ni is at least
N /k and at most ⌈N /k⌉ + (k − 1)⌊N /k⌋ ≤ N . The coordinator

updates the threshold N ← N −
∑k
i=1

ni . If N = 0, it raises an

alarm, otherwise it starts a new round. Each round incurs O(k)
communications and decreases the threshold N by a factor of at

least (1 − 1/k) ≤ exp(−1/k). Therefore, the number of rounds is at

most O(k log
N
k ) and the communication cost is thus O(k2

log
N
k ).

Later on, theCMY algorithm was proposed in [7]. As introduced

earlier, the CMY algorithm consumes O(k log
N
k ) communication

cost. Although we are focusing on the number of messages in this

paper, in [7], Cormode et al. showed a Ω(k log
N
k )-bit communica-

tion lower bound for the DT problem.Moreover, theCMY algorithm

indeed admits a bit-version implementation with communication

cost of O(k logN ) bits.
More works have been done for the variants of the DT prob-

lem. Randomized algorithm was also proposed for approximate

count tracking [7]. Instead of reporting exactly the N -th item, the

coordinator is allowed to raise an alarm on the arrival of any item

between [(1−ϵ)N ,N ], where ϵ ∈ (0, 1) is a specified parameter. The

problem is easier than the exact count tracking problem due to the

relaxation and the proposed algorithm has costO( 1

ϵ 2
log

1

δ ) bits [7],

where δ is the failure probability of the algorithm. [10, 11] studied

the continuous count tracking problem, in which the coordinator

is required to report an estimation n̂ of n =
∑
i ∈[k ] ni at any time

stamp, such that n̂ ∈ (1 ± ϵ)n. Their algorithms have communi-

cation costs of O(kϵ log
ϵN
k ) [11] and O(

√
k
ϵ logN ) messages [10],

respectively. The work of [7] also considered threshold tracking of

Fp moment, where DT can be considered as a special case of p = 1.

Data pattern has been studies and exploited for different dis-

tributed monitoring queries ([6, 8]), but none of them targets the

fundamental threshold count tracking problem. [6] introduced the

Update-Rate Model for distributed tracking of approximate quan-

tiles, which assumes that items arrives at the ith player at a local

Algorithm 2.1 The ℓ-Notifications-to-End Framework

Input: a threshold N , the number of players k , and
possibly a failure probability δ if applicable

1: Set ni ← 0 for all ∀i ∈ [k]
2: IfN ≤ 4k , run the straightforward algorithm until it terminates.

3: If N ≤ β · k ln
k
δ , run the CMY algorithm until it terminates,

where β is an algorithm-specified constant.

4: The coordinator send a slack si to player i for ∀i ∈ [k].
5: Each Player i notifies the coordinator,when ni meets certain

condition with respect to si .
6: The coordinator collects all the ni ’s from the players, when it

receives the ℓ-th notification.
7: Set N ← N −

∑k
i=1

ni
8: If N = 0, the coordinator raises an alarm and terminate.

9: Otherwise, go to Step 1 and start a new round.

rate specified to i . Note that this is captured by the multinomial dis-

tribution model if we normalize the rates by the summation of the

players’ rates (and with proper scaling of time). Later [8] extends

the idea for geometric monitoring to reduce the communication

cost.

Besides, interestingly, the techniques for solving the DT problem

has also been applied to solve some seemly “remote” problem in

the single machine setting [16].

3 A UNIFIED ALGORITHM FRAMEWORK
Before we get into the details of our algorithms, in this section, we

first propose a unified algorithm framework, called ℓ-Notifications-
to-End, where ℓ is a characteristic parameter of an algorithm and not

an input parameter. As we will see shortly, all our algorithms, the

CMY algorithm as well as the UniSlk algorithm are all under this

framework. Algorithm 2.1 shows the pseudo code of the framework.

Algorithm characteristics. Essentially, algorithms under the ℓ-
Notifications-to-End framework only differ in the following three

characteristics:

• Characteristic 1: the value of slack si for ∀i ∈ [k] (Line 4);
• Characteristic 2: the condition for a player to notify the coor-

dinator (Line 5);

• Characteristic 3: the number ℓ of notifications received to end

a round (Line 6).

To see this, consider the CMY algorithm, where: (i) si = ⌊
N
2k ⌋; (ii)

a player notifies the coordinator when ni is increased by si ; and
(iii) ℓ = k . Thus, the CMY algorithm is an k-Notifications-to-End
algorithm. On the other hand, the UniSlk algorithm is, in fact, a

1-Notification-to-End algorithm with si = N /k , where a player

notifies the coordinator when ni ≥ si , and with Line 3 being never

executed. As we will see in the next two sections, all our algorithms

will be focusing on designing the above three characteristics.

Communication cost expression. Observe that the communi-

cation cost for executing Line 2 and Line 3 in Algorithm 2.1 are

bounded by O(k) and O(k log log
k
δ ), respectively. As these two

cases are easy to check and solve, it suffices to focus on the case

N = ω(k ln
k
δ ). In this case, it can be verified that an ℓ-Notification-

to-End algorithm consumesO(k+ℓ) communication cost per round.



Therefore, the overall communication cost in this case is bounded

byO((k +ℓ) ·R+k log log
k
δ ), where R is the total number of rounds

that have been executed before entering into Line 2.

4 TRACKINGWITH KNOWN DISTRIBUTION
In this section, we consider the case that the concrete Multinomial

Distribution of the counter increments (a.k.a. the item arrivals) is

known. That is, the concrete values of µi for i ∈ [k] are given. This
case allows us to just focus on algorithmic design without worrying

too much about the learning of the distribution.

4.1 Tracking with Static Slacks
The challenges. We note that even the concrete values of µi ’s are
known in advance, the problem is still challenging.

As the concrete values of all µi ’s are known, it is natural to think
about modifying the CMY algorithm such that the slack si is set to
the expected number of items that Player i will receive when the

N -th item arrives, namely, si = µiN for ∀i ∈ [k]. We denote this

new k-Notifications-to-End algorithm by A.

Unfortunately, in general, it is unlikely that every player will

receive exactly µiN items, i.e., ni = µiN , when the N -th item

arrives; the actual ni could be more or less than µiN . As a result,

A may fail to capture the moment of the N -th item’s arrival, when

the coordinator receives the k-th notification.

To remedy this, one possible way is to further modify A into

a 1-Notifications-to-End algorithm by setting ℓ to 1, where the

coordinator in A collects all the ni ’s as soon as it receives a notifi-

cation from the player. This guarantees that

∑k
i=1

ni < N and the

coordinator would not miss the N -th item. However, A could be

less efficient than CMY . This is because any small deviation from

µiN would easily make A end the round too early, resulting in an

increase on the number of rounds R. As an illustration, suppose that
there are 10 players and the first three players have very low prob-

abilities of receiving items. In particular, µ1 = µ2 = µ3 =
1

N . In this

case, if any item arrives at any of the first three players, a notifica-

tion is sent to the coordinator and the round ends. With probability

at least 1 − 1/e , this round captures only N /3 items: for a given

item, the probability that it arrives at a player other than the first

three is (1 − 3/N ); therefore, with probability (1 − 3/N )N /3 ≤ 1/e ,
none of the first N /3 items arrive at any of the first three player. In

comparison, CMY captures at least N /2 in one round.

To capture more items in one round, the slack should contain a

leeway for the player’s counter to bear deviations from its expec-

tation, i.e., si should be greater than µiN for i ∈ [k]. The player
should receive a few more items than its expectation to defer the

notification. However, this conflicts with our goal of capturing the

N -th item – if we set si > µiN for i ∈ [k], then
∑
i ∈[k ] si > N . The

coordinator could miss the arrival of the N -th item. The following

constraint for ensuring the correctness

k∑
i=1

si ≤ N (1)

implies that trackingN items in just one round seems too ambitious.

We relax our goal and, instead, aim to track t items for some t < N

and set si > µi t , while ensuring the correctness, i.e.,
∑k
i=1

si ≤ N .

We prove that there exists si ’s, such that when the first t items

arrives, with high probability that none of the player has received

more than si items. It implies that no notification would have been

sent to the coordinator. In other words, when the first notification

is sent, more than t items have arrived in this round. Clearly, the

larger t is, the less number of rounds we need.

The StcSlk-KwnDst Algorithm. Motivated by the above ob-

servation, we propose our first data-dependent algorithm,

StcSlk-KwnDst , which is an 1-Notifications-to-End algorithm. char-

acterized by the followings:

• Characteristic 1:

si = µi t +

√
2tµi (1 − µi ) ln

k

δ
+

2

3

ln

k

δ
,∀i ∈ [k]; (2)

• Characteristic 2: Player i notifies the coordinator when ni = si ;
• Characteristic 3: ℓ = 1, that is, the coordinator ends a round

when it receives the first notification from the players.

Substituting the above implementations of the three characteristics

to Lines 4, 5 and 6, respectively, in Algorithm 2.1 gives the pseudo

code of the StcSlk-KwnDst algorithm. Furthermore, we have the

following key theorem:

Theorem 4.1. With probability 1 − δ ′, the StcSlk-KwnDst algo-
rithm:
• runs at most O(log log

N
k log

k
δ
+ log log

k
δ ) rounds;

• has total communication cost O(k log log
N

k log
k
δ
+ k log log

k
δ ),

where δ ′ = δ ·O(log logN ).

Answering the following three questions is the key to proving

Theorem 4.1:

• Why does Expression (2) ensure that StcSlk-KwnDst can capture
at least t items at one round with probability 1 − δ?
• How large can t be?
• How many rounds does StcSlk-KwnDst need?

In what’s follows, we address these questions one by one.

Setting the Slack. Expression (2) is actually derived from the fol-

lowing concentration inequality:

Fact 1. (Bernstein inequality [4]) Let Y1, . . . ,Yt be independent,
random variables. Let Y =

∑t
j=1

Yj , and M > 0 be such that Yj ≤
E[Yj ] +M for all j ∈ [t]. For any λ ≥ 0,

Pr[Y ≥ E[Y ] + λ] ≤ exp

(
−

λ2

2(Var [Y ] +Mλ/3)

)
. (3)

Consider a fixed Player i and the first t items arrived in the

current round. Denote by X j the Bernoulli random variable that

X j = 1 if the j-th item arrives at player i , and X j = 0 otherwise.

Then E[X j ] = µi , Var [X j ] = µi (1 − µi ) and X j ≤ E[X j ] + 1 for

j ∈ [t]. By dentition, the counter ni =
∑
j ∈[t ] X j . Fact 1 gives the

following results:

Lemma 4.2. Given t > 0 and a failure probability δ > 0, define

UBi = µi t +

√
2tµi (1 − µi ) ln

k

δ
+

2

3

ln

k

δ
. (4)

Then the probability Pr [ni ≥ UBi ] ≤
δ
k . Likewise, for

LBi = µi t −

√
2tµi (1 − µi ) ln

k

δ
−

2

3

ln

k

δ
, (5)



we have Pr [ni ≤ LBi ] ≤
δ
k .

The proof of Lemma 4.2 can be found in the Appendix A. By

Lemma 4.2, for a fixed i , by setting the slack si = UBi , when the

first t items arrive, the event ni ≥ si happens with probability at

most δ/k . By union bound, the probability that ni ≥ si for any
i ∈ [k] is at most δ . Therefore, the following corollary holds.

Corollary 4.3. With probability ≥ 1−δ , the coordinator receives
no notification from the players for the first t items in a round.

Setting t . Define function f (t) �
∑
i ∈[k ] si , with si = UBi (Expres-

sion (2)). It is easy to verify that f (t) is monotonically increasing

with t . Clearly, the larger t the more items can be tracked in a

round, while t should also satisfy: f (t) ≤ N to ensure the cor-

rectness of the algorithm. As a result, it is desired to maximise t
subject to f (t) ≤ N . This will possibly reduce the total number

of rounds in the StcSlk-KwnDst algorithm and hence, reduce the

total communication cost. However, computing the optimal t pre-
cisely may not be an easy task. Nonetheless, as we show shortly,

t = N − (
√

2 + 2/3)

√
kN ln

k
δ is already good enough for our pur-

pose. In particular, we have the following lemma whose proof is in

given in Appendix A.

Lemma 4.4. f (t) ≤ N for t = N − (
√

2 + 2/3)

√
kN ln

k
δ .

Bounding the communication cost. Consider an implementa-

tion of the StcSlk-KwnDst algorithm with its three characteristics

plug in to the unified framework (Algorithm 2.1), where we further

explicitly set β = 2 · (
√

2+ 2/3)2. According to this implementation,

we know that when N ≥ β · k ln
k
δ , at the end of each round, the

value of N can be decreased to at most (
√

2 + 2/3)

√
kN ln

k
δ with

probability 1 − δ (by Corollary 4.3 and Lemma 4.4). Furthermore,

when N is found smaller than β · k ln
k
δ at the start of a round,

the algorithm switches to the CMY algorithm (according to Line

3 in Algorithm 2.1). Therefore, this gives the following recursion,

where T (N ) denotes the communication cost of the algorithm with

respect to N .

T (N ) =


T

(
(
√

2 + 2/3)

√
kN ln

k
δ

)
+O(k), N ≥ 2(

√
2 + 2/3)2k ln

k
δ

T (N /2) +O(k), 4k ≤ N < 2(
√

2 + 2/3)2k ln
k
δ

O(k), N < 4k

Solving the recursion gives the last lemma we need for Theorem 4.1.

Lemma 4.5. T (N ) = O(k log log
N

k ln
k
δ
+ k log log

k
δ ).

Proving Theorem 4.1. Putting Corollary 4.3, Lemma 4.4 and 4.5

together, it thus completes the proof for Theorem 4.1.

4.2 Tracking with Dynamic Slacks
In the previous subsection, we know that the StcSlk-KwnDst al-
gorithm assigns to Player i a slack si = UBi > µi t . In expectation,

µi t items arrives at the i-th player. Intuitively, UBi − µi t is the
tolerance that how much the counter ni is allowed to deviate from

its expectation µi t , when t items arrives. As soon as ni reachesUBi ,
Player i is not allowed to further receive any new items (to ensure

the correctness). Hence, at this moment, the coordinator collects

the precise counters and ends the current round.

While the above strategy has been shown to be effective in the

previous subsection, setting si = UBi is a static slack assignment

strategy. In the sense that, the tolerance for deviations, i.e.,UBi−µi t ,
is pre-determined and fixed for each Player i . When the coordinator

ends a round, except for the player sending the notification, all

other players actually have not fully used up their deviation toler-

ance. An immediate question comes up: Can we further improve

the utilization of those non-fully-used deviation tolerances, before

ending a round?

Motivated by the question, we design a new slack assignment

strategy to dynamically adjust the deviation tolerance for the play-

ers. The basic idea is as follows. First, observe that the sum of all

the deviation tolerance of the players is computed as

k∑
i=1

(UBi − µi t) ≤ N − t .

Instead of pre-assigning a static tolerance to each player, we adopt

the strategy of the CMY algorithm. More specifically, the coor-

dinator sends a base value bi = µi t , and a deviation tolerance

si = ⌊
N−t
2k ⌋ to Player i , for ∀i ∈ [k]. A player sends a notifica-

tion to the coordinator for every counter increment si only when
ni ≥ bi . The coordinator collects the counters and ends the round

when it receives the k-th notification. The resulted algorithm is

called DynSlk-KwnDst; since a round is ended when the coordi-

nator receives k notifications, the DynSlk-KwnDst algorithm is a

k-Notifications-to-End algorithm, according to our unified frame-

work.

In particular, DynSlk-KwnDst implements the three characteris-

tics as follows:

• Characteristic 1: the slack is a pair (bi , si ) for ∀i ∈ [k], where
bi = µi t and si = ⌊

N−t
2k ⌋;

• Characteristic 2: Player i sends a notification to the coordinator
for every counter increment si only when ni ≥ bi ;
• Characteristic 3: ℓ = k .
Substituting the above implementations to the algorithm frame-

work (Algorithm 2.1), gives the pseudo code of the DynSlk-KwnDst
algorithm.

As strategy of CMY can guarantee that the coordinator will

not miss the arrival of the (N − t)-th item, it thus guarantees that

no more than N items can be received in a round. Therefore, the

correctness of the DynSlk-KwnDst algorithm follows. Furthermore,

the theorem below shows that with probability at least 1− δ , at the
end of a round, at least t items arrive to the players.

Theorem 4.6. With probability at least 1 − δ , less than k notifica-
tions will be sent from the players for the first t items in a round.

By Theorem 4.6, Lemmas 4.4 and 4.5, we have:

Theorem 4.7. The DynSlk-KwnDst algorithm achieves exactly
the same bounds of StcSlk-KwnDst as stated in Theorem 4.1.

5 LEARNING BASED TRACKING
In this section, we consider the case that the underlying counter

increment distribution is unknown. The basic idea is to learn the



distribution on the fly. To learn the unknown distribution, we run

the CMY algorithm for the first round. This allows us to receive

at least N /2 items with only O(k) communication. At the end of

this first round, we estimate µi by µ̄i =
ni∑

i∈[k ] ni
for ∀i ∈ [k].

These µ̄i ’s are used in the subsequent rounds to determine the

slacks. As µ̄i ’s are just estimations, they may introduce additional

errors. Furthermore, since µ̄i could be an underestimation of µi ,
the upper boundUBi computed by simply replacing µi with µ̄i in
Expression (4) may be no longer a proper upper bound for ni when
the first t items arrive. Therefore, modifications to the previous

algorithms are required.

The modifications consist of three steps. First we construct some

µ̂i based on µ̄i such that it is guaranteed that µ̂i ≥ µi . Next, we
show how to constructUBi with µ̂i . Last, t needs to be change to

ensure

∑
i ∈[k ]UBi ≤ N .

Upper bound on µi . The concentration inequality below is needed.

Fact 2. (Empirical Bernstein Bound) [2] Let Y1, ...,Yw be inde-
pendent, random variables with mean µ. Let Ȳ = 1

w
∑
j ∈[w ] Yj , and

M > 0 be such that |Yj | ≤ M for all j ∈ [w]. With probability at most
δ , it holds that

|Ȳ − µ | ≥

√
2σ̄ 2

ln
3

δ
w

+
3M ln

3

δ
w

where σ̄ 2 is the empirical variance ofYj ’s: σ̄ 2 = 1/w
∑
j ∈[w ](Yj −Ȳ )

2.

Consider a fixed i ∈ [k] and the number of items ni that arrive
at Player i , for the w items tracked in the first round. Denote Yj
the Bernoulli random variable such that Yj = 1 if the j-th item

arrives at Player i , and Yj = 0 otherwise. Then Yj ≤ 1 for j ∈ [w].
Denote µ̄i = Ȳ = 1/w

∑
j ∈[w ] Yj as the empirical mean. As Yj ’s are

Bernoulli random variables, the empirical variance is σ̄ 2 = µ̄i (1−µ̄i ).
According to Fact 2, a upper bound µ̂i on µi can be obtained:

µ̂i � µ̄i +

√
2(µ̄i − (µ̄i )2) ln

3

δ
w

+
3 ln

3

δ
w

(6)

Modification onUBi . The slack si = UBi is modified as below,

UBi = µ̂i t +

√
2t µ̂i ln

k

δ
+

2

3

ln

k

δ
(7)

Modification on t .We need to change the value of t . Define Σ̂ =∑
i ∈[k ] µ̂i . Then we set

t = N /Σ̂ − (
√

2 +
2

3

)

√
k(N /Σ̂) ln

k

δ
(8)

Substituting themodified ûi ,UBi and t to the known-distribution
counterparts, we can have the learning based versions for tracking

with static slack (called StcSlk-LrnDst ) and with dynamic slacks

(called DynSlk-LrnDst) respectively. Some extra care is required to

set the constant β = 2 · (2
√

2 + 2/3 + 3)2 in the condition of when

to switch to the CMY algorithm (at Line 3 in Algorithm 2.1) in the

framework. Moreover, we show our final theorem whose proof can

be found in Appendix A.

Theorem 5.1. With probability at least 1 − δ , the communication
cost of the StcSlk-LrnDst algorithm (respectively, the DynSlk-LrnDst
algorithm) is bounded by O(k log log

N
k ln

k
δ
+ k log log

k
δ )).

Name Threshold (N ) #Players (k)
WorldCup Day 30/60/90 3.4 M/48 M/1.8 M 8/29/2

Dartmouth 1st Oct/Nov/Dec 184 K/254 K/297 K 336/348/319

Uber Feb/Apr/June 2.2 M/2.2 M/2.8 M 262/262/262

Uniform 2
10 − 2

24
2 − 256

Gaussian 2
10 − 2

24
2 − 256

Zipfian 2
10 − 2

24
2 − 256

Exponential 2
10 − 2

24
2 − 256

Table 2: Dataset Characteristics (M = 10
6 and K = 10

3)

6 EXPERIMENTAL EVALUATION
This section evaluates the proposed algorithms against the state-

of-art competitors on a machine running on Ubuntu 18.04 with

Intel(R) Core(TM) i7-8665U CPU @1.90 GHz and 16GB memory.

We compare our four algorithms: StcSlk-KwnDst , StcSlk-LrnDst ,
DynSlk-KwnDst, DynSlk-LrnDst with CMY and UniSlk. All the al-
gorithms are implemented by C++ and compiled with gcc 7.4.0.

A backup heuristic is implemented such that, when the empirical

distribution is not stable, our algorithms can detect this case and

switch to CMY . The details can be found in Appendix B. We con-

duct experiments on three real datasets and four synthetic datasets;

the meta data are summarised in Table 2.

Real Datasets. Below are the three real datasets we used. In each

of the real datasets, we assign a unique id to each player (randomly

and uniquely) in [0,k), where k is the number of players in the

corresponding dataset.

World Cup HTTP request data1. The dataset consists of 92 days’

requests to the 1998 World Cup website servers between April 30,

1998 and July 26, 1998. We use the requests of three representative

days, namely the 30-th, the 60-th and the 90-th day, as the datasets

in our experiment. On each selected day, the players are the servers

that have received at least one request and the threshold to track

is the number of requests on that day. Each item is a request that

arrives at some server, in ascending order according to its time

stamp.

Dartmouth Campus Snmp Traceset [13]. The dataset contains polling
records of access points (AP) at Dartmouth College by Simple Net-

workManagement Protocol (SNMP) in Fall 2001. We use the records

in three days, i.e., 1st Oct, 1st Nov, and 1st Dec. Each AP is reviewed

as a player and the number of polling records on the selected day as

the threshold. Each polling record is an item arriving in ascending

order by its time stamp.

Uber Pickups2. This dataset contains data on over the Uber pickups

in New York City from January to June, 2015. Each record has a

pickup time, a pickup location id and some other information. We

take the pickups in three months, i.e., February, April and June as

datasets. We consider the locations as players and the threshold to

report is the number of pickups within the corresponding month.

Each pickup record is treated as an item arriving in ascending order

by the pickup time.

Synthetic Datasets. The data in the synthetic datasets are gener-

ated with various distributions. Specifically, the distributions are:

1
ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html

2
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city#uber-raw-

data-janjune-15.csv
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Figure 2: The Untracked Item Percentage v.s. Communication Cost (10x) on WorldCup datasets
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Figure 3: The Untracked Item Percentage v.s. Communication Cost (10
3x) on Dartmouth datasets
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Figure 4: The Untracked Item Percentage v.s. Communication Cost (10
3x) on Uber datasets

Uniform, Gaussian, Zipfian and Exponential. The number k of the

players varies from 2 to 256 (with multiplicative factor 2) and the

threshold N ranges from 2
10

to 2
24
. Moreover, for each generated

value x , if x is not [0,k), then we just simply discard it; on the other

hand, if x is not an integer, we take its floor, i.e., ⌊x⌋ to round it

into a player id. In particular, the parameters of each of distribution

are as follows:

• Uniform: the id of the player for each item is generated uni-

formly at random in [0,k).
• Gaussian: we set the mean to k/2 and standard variance to k/6;
• Zipfian: each item arrives at player i with probability propor-
tional3 to 1√

i+1

;

• Exponential: each item has probability proportional to exp(−i)
arriving at the i-th player.

3
By proportional we mean here: the probability is normalized subject to the condition

that the sum of the probabilities corresponding to the players is 1.

Parameter Settings. As the combination of all the parameters and

the distributions is considerably large, we set the default values

of N to 2
20

and of k to 16. When varying a parameter, the other

is set to its default value. Furthermore, the StcSlk-KwnDst and
DynSlk-KwnDst require to know the concrete distribution of the

datasets as an input, which may be unavailable for real datasets.

Thus, we use frequencies of each players as its multinormial distri-

bution. Finally, we set the failure probability to 1%, which suffices

for most of the applications in practice.

6.1 Results on the Real Datasets
Figure 2-4 illustrate the results of the algorithms on three real

datasets. All plots in the figures refer to the percentage of untracked

items as a function of the number of used communications. Each

plot represents a round. Different algorithms require different num-

ber of communications for a round. Some plots are truncated for

UniSlk because it takes much more communications that others.



The figures show several results. First all algorithms,

StcSlk-KwnDst and DynSlk-KwnDst perform the best, with

DynSlk-KwnDst slightly better in most cases. This is as expected

because they know the frequency information and have more

knowledge than the other algorithms. It confirms the effectiveness

of our strategy. Compared to CMY , the number of communications

reduces by 25% (Figure 3 (b)) to 75% (Figure 2 (c)).

Second, the performances of StcSlk-LrnDst and DynSlk-LrnDst
are inferior to StcSlk-KwnDst/DynSlk-KwnDst but better than
CMY in general. Compared to the StcSlk-KwnDst /StcSlk-KwnDst ,
they don’t know the item arrival frequency at each player in the

datasets and therefore have less information. They run CMY for

the first round to learn an approximate distribution of the dataset.

Therefore, their performance in the first round is exactly the same

asCMY in the first round. The learned distribution helps in tracking

the incoming items in most cases. Compared to CMY , we observe
much sharper decreases in the curves from the second round.

Third, both DynSlk-KwnDst and DynSlk-LrnDst exhibit better
performance than StcSlk-KwnDst and StcSlk-LrnDst . As the real
datasets do not necessarily have perfect distribution, incorporating

CMY to handle counters’ deviation from their expectation values

in an aggregate and dynamic manner is more stable than using

merely predetermined and static slacks. The only exception is the

datasetWorldCup Day 90 (Figure 2 (c)), in which there are only two

players and the distribution is rather skew and stable. Therefore,

StcSlk-KwnDst and StcSlk-LrnDst win with static slacks.

The figures also show the effectiveness of our backupmechanism

(as described in Appendix B) when the distribution of real dataset is

not stable. In Dartmouth datasets, the distribution is rather unstable

– StcSlk-KwnDst and StcSlk-LrnDst fail in the second round and

track much fewer percentage of items in the second round than

the first one. Detecting the degeneracy in efficiency, they switch

to CMY in the third round. StcSlk-LrnDst lose only by a marginal

amount to CMY even in this case.

Finally, the UniSlk algorithm gives the worst performance as its

time complexity grows quadratically with respect to k , the number

of players. Further, it is sensitive to skew distortions. In WorldCup
Day 60 (Figure 2 (b)),UniSlk exhibits frequent termination of rounds

as the tailing items comes in a very unbalanced manner. All other

algorithms have switched to CMY and handle the tailing items

smoothly.

6.2 Results on the Synthetic Datasets
Sensitivity to Distribution. Figure 5 shows the efficiency of the

algorithms under various distributions. It plots the percentage of

untracked items as a function of the number of communications.

Each plot represents one round. When the datasets are generated

from some distribution, our algorithms perform consistently

better than the CMY algorithms, regardless of the distribution.

The communication is reduced by 33% to 80%. Furthermore, our

algorithms with static slacks perform better than their CMY
counterparts. When the distribution is stable, the static slacks

capture more accurately the number of items a player will receive.

Sensitivity to Threshold. Figure 6 plots the number of

communications as a function of the N (the threshold) under

the various distributions, with the number of players fixed to

default value 16. We truncate the plots with cost more than

10
3
. UniSlk performs really good on Uniform distribution as

each player receives roughly the same number of items. But its

communication cost blows up on other datasets. It does not show

up in the plot for Exponential distribution because it uses more

than 10
3
communication even for N = 1k . Moreover, the figures

shows an increasing efficiency gain of our algorithms compared to

CMY , as N increases. This is consistent with our analysis of their

communication complexity. While StcSlk-KwnDst offers the best
performance over all the datasets, DynSlk-KwnDst, StcSlk-LrnDst
and DynSlk-LrnDst yield comparable performance.

Sensitivity to Number of Players. Figure 7 plots the number

of communications as a function of the number of players under

the various distributions, with the threshold fixed to default value

1m. We truncate the result for UniSlk when its communication

exceeds 10
4
. The figures illustrate a shrinking gap in the number

of communications between CMY and the our algorithms as the

number of players increases. This complies with our theoretical

analysis as the ratio of the communication complexity between

the two is given by O((k log
N
k )/(k log log

N
k ln

k
δ
+ k log log

k
δ )) =

O((log
N
k )/(log log

N
k ln

k
δ
+ log log

k
δ )). When N and δ are fixed,

the ratio decreases as k increases. The only exception is the dataset

with Exponential distribution and with 2 players, in which the

CMY perform very well. In such case the number of items the first

player receives is roughly exp(1) times that of the second player. A

round terminates after player one sending two notifications to the

coordinator (the slack size is s = n1/2). On the other hand, player

two is assigned the same slack s = n1/2 but receives n1/exp(1)

items. Only a small fraction of the slack is wasted in this case.

7 CONCLUSION
The paper exploits the counter increment distribution and presents

four data-dependent algorithms that utilize knowledge on the

data distribution. All our algorithms have communication cost

O(k log log
N

k ln
k
δ
+k log log

k
δ ), where δ is a parameter controls the

failure probability, improving the state-of-the-artO(k log
N
k ) bound.

In addition, our algorithms are equipped with backup mechanism

that guarantees comparable performance as the data-independent

CMY algorithm when the distribution fluctuates. We experimen-

tally evaluate our algorithms against the state-of-the-art competi-

tors, using both real and synthetic datasets. Our experimental re-

sults show the efficiency and robustness of our algorithms.
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A PROOFS OF LEMMAS AND THEOREMS
Proof of Lemma 4.2. Denote X = ni =

∑
j ∈[t ] X j . As E[X j ] = µi ,

by linearity of expectation and independence, we have E[X ] = tµi .
Further, as theX j ’s are independent andVar [X j ] = σ 2 = µi (1− µi ),

Var [X ] = tσ 2
. Applying Fact 1 with Yj = X j , M = 1 and setting

the failure probability to
δ
k , we have

Pr[X − tµi ≥ λ] ≤ exp

(
−

λ2

2(tσ 2 + λ/3)

)
=

δ

k

It follows that

λ2 −

(
2

3

ln

k

δ

)
λ − 2tσ 2

ln

k

δ
= 0

Solving the quadratic equation gives

λ =
1

2

(
2

3

ln

k

δ
+

√
4

9

ln
2
k

δ
+ 8tσ 2

ln

k

δ

)
≤

2

3

ln

k

δ
+

√
2tσ 2

ln

k

δ

ThereforeUBi � tµi +
2

3
ln

k
δ +

√
2tσ 2

ln
k
δ ≥ tµi +λ, and we have

Pr[X ≥ UBi ] ≤ Pr[X ≥ tµi + λ] ≤
δ

k

Similarly, if we take Z j = −X j , then E[Z j ] = −µi and Var [Z j ] =

Var [−X j ] = σ 2
. Let Z =

∑
j ∈[t ] Z j , then we have

Pr
[
Z ≥ −tµi +

√
2tσ 2

ln

k

δ
+

2

3

ln

k

δ

]
≤

δ

k

which is equivalent to

Pr
[
X ≤ tµi −

√
2tσ 2

ln

k

δ
−

2

3

ln

k

δ

]
≤

δ

k

This finishes the proof.

□

Proof of Lemma 4.4. Recall that si = µi t +
√

2tµi (1 − µi ) ln
k
δ +

2

3
ln

k
δ . Summing over all players i ∈ [k], we get

f (t) =
k∑
i=1

µi t +
k∑
i=1

√
2tµi (1 − µi ) ln

k

δ
+

k∑
i=1

2

3

ln

k

δ

The first and third terms sum up to t and 2k
3

ln
k
δ respectively. It

is left to bound the second term. We utilize the concavity of the

square root function

√
· and obtain

k∑
i=1

1

k

√
2tµi (1 − µi ) ln

k

δ
≤

√√√ k∑
i=1

1

k

(
2tµi (1 − µi ) ln

k

δ

)
(9)

≤

√
2t

k
ln

k

δ
(10)

The second inequality follows from (1 − µi ) ≤ 1 for ∀i ∈ [k] and∑k
i=1

µi = 1. Therefore,

f (t) ≤ t +

√
2kt ln

k

δ
+

2k

3

ln

k

δ
(11)

Further, when the StcSlk-KwnDst does not run theCMY algorithm,

it holds that k ln
k
δ ≤ N . Hence

2k
3

ln
k
δ ≤

2

3

√
kN ln

k
δ . Combining

that t ≤ N , we have

f (t) ≤ t +

√
2kN ln

k

δ
+

2

3

√
kN ln

k

δ
(12)

It suffices to take t = N − (
√

2 + 2/3)

√
kN ln

k
δ to ensure that

f (t) ≤ N □.

Proof of Lemma 4.5. The claim is trivial true when N ∈ (0, 4k).

If 4k ≤ N ≤ 2(
√

2 + 2/3)2k ln
k
δ , then

T (N ) = T (N /2) +O(k) = T (4k) +O(k log

N

4k
) = O(k log

N

k
)

Since N ≤ 2(
√

2 + 2/3)2k ln
k
δ , we have T (N ) = O(k log log

k
δ ).

Finally, if N > 2(
√

2 + 2/3)2k ln
k
δ , rewrite the following numbers

as a power of two:

(
√

2 + 2/3)2k ln

k

δ
= 2

d1 , N = 2
d2

for positive numbers d1 = log

(
(
√

2 + 2/3)2k ln
k
δ

)
and d2 = logN .

Define S(d2) = T (2
d2 ) = T (N ). Then

S(d2) = T

(
(
√

2 + 2/3)

√
kN ln

k

δ

)
+O(k)

= S((d1 + d2)/2) +O(k)

= S(d1 + (d2 − d1)/2) +O(k)

= S(d1 + (d2 − d1)/4) + 2 ·O(k)

= ...

= S(d1 + (d2 − d1)/2
log(d2−d1)) + log(d2 − d1) ·O(k)

By the definition of S(·), we have S(d1 + (d2 − d1)/2
log(d2−d1)) =

S(d1 + 1) = T (2d1 · 2) = T
(
2(
√

2 + 2/3)2k ln
k
δ

)
. Moreover, log(d2 −

d1) = log log 2
d2−d1 = log log

N
(
√

2+2/3)2k ln
k
δ
. Therefore,

T (N ) = T

(
2(
√

2 + 2/3)2k ln

k

δ

)
+O(k log log

N

k ln
k
δ

)

The former term equals to O(k log log
k
δ ).

□

Proof of Theorem 4.6. Denote by ni the number of items received

by player i and by I the set of players with ni > µi t (i.e., the set of
players that may send notifications to the coordinator). Our goal is

to prove that players in I send less than k notifications
4
:∑

i ∈I

ni − µi t

(N − t)/2k
< k

First notice that by Lemma 4.2, with probability at least 1 − δ , we
have for all i ∈ [k]

|ni − µi t | ≤

√
2tµi (1 − µi ) ln

k

δ
+

2

3

ln

k

δ

4
Without loss of generality, we assume that

N−t
2k is always an integer and thus, we

can get rid of the floor operation. This is because otherwise, one can always use at

most 2k straightforward communications to reduce N − t to a multiple of 2k . The
communication bound will not be affected.



by similar argument as Inequality (9-10), we have∑
i ∈[k ]

|ni − µi t | ≤

√
2kt ln

k

δ
+

2k

3

ln

k

δ
(13)

On the other hand, we have

∑k
i=1

ni = t , hence∑
i ∈I
(ni − µi t) =

∑
i ∈[k]\I

(µi t − ni )

It follows that ∑
i ∈[k ]

|ni − µi t | = 2

∑
i ∈I
(ni − µi t) (14)

Combining Inequality (13) and Equality (14), we have

∑
i ∈I

ni − µi t

(N − t)/2k
≤

1

2

√
2kt ln

k
δ +

2k
3

ln
k
δ

(N − t)/2k
< k

The last inequality can be simplified to t +
√

2kt ln
k
δ +

2k
3

ln
k
δ <

N , which holds for t = N − (
√

2 + 2/3)

√
kN ln

k
δ , as proven in

Lemma 4.4.

□

Proof of Theorem 5.1.Denote N0 the threshold to track when the

algorithm begins and letw be the items tracked byCMY in the first

round. As CMY tracks at least half the threshold in one round, it

holds thatw ≥ N0/2. After the first round, the threshold to track is

N ← N0 −w . Therefore,w ≥ N holds in all the subsequent rounds.

For any subsequent round that runs our customized tracking

algorithm, we are going to prove that: (i) it captures at least t items,

where t is defined by Expression (8); (ii)

∑
i ∈[k]UBi ≤ N ; (iii)

t = N −O(
√
kN log

k
δ ), in order to construct a similar recursion as

the one that Lemma 4.5 solves. The theorem is proven by the same

techniques used by Lemma 4.5.

First, when the first t items arrives, by Equation (4), with proba-

bility 1 − δ , we have

ni ≤ µi t +

√
2tµi (1 − µi ) ln

k

δ
+

2

3

ln

k

δ

for all i ∈ [k]. Observing that (1 − µi ) ≤ 1 and µi < µ̂i , we get

ni ≤ µ̂i t +

√
2t µ̂i ln

k

δ
+

2

3

ln

k

δ

As a result, UBi = µ̂i t +
√

2t µ̂i ln
k
δ +

2

3
ln

k
δ defined by Expres-

sion (7) is indeed an upper bound of ni .
Second, it remains to verify that the theseUBi satisfy that correct-

ness constraint (Inequality (1)). Recall that

∑
i ∈[k ] µ̂i = Σ̂. Summing

over i ∈ [k], we have

k∑
i=1

UBi = t Σ̂ +
k∑
i=1

√
2t µ̂i ln

k

δ
+

k∑
i=1

2

3

ln

k

δ

The third term sums up to
2

3
k ln

k
δ . By concavity of the square root

function, the second term is upper bounded by

√
2kt Σ̂ ln

k
δ . Now, by

the definition of t = N /Σ̂−(
√

2+ 2

3
)

√
k(N /Σ̂) ln k

δ in Expression (8),

we have

k∑
i=1

UBi ≤ N − (
√

2 +
2

3

)

√
kN Σ̂ ln

k

δ
+

√
2kN ln

k

δ
+

2

3

k ln

k

δ

which concludes that

∑k
i=1

UBi ≤ N as N > k ln
k
δ when this

round runs our customized algorithm.

Finally, we need to show that t = N −O(
√
kN log

k
δ ). It suffices

to show that N /Σ̂ = N − O(
√
kN log

k
δ ). By substituting µ̂i with

Expression (6), and by a similar argument as in Inequality (9-10),

we get

Σ̂ ≤ (1 +

√
2k ln

3

δ
w

+
3k ln

3

δ
w
)

Therefore,

N /Σ̂ ≥ N /(1 +

√
2k ln

3

δ
w

+
3k ln

3

δ
w
)

Define д(x) =

√
2k ln

3

δ
x +

3k ln
3

δ
x . Byw ≥ N , it holds д(w) ≤ д(N ).

Hence N (1 + д(w))(1 − д(N )) ≤ N (1 − д(N )2) ≤ N and N /Σ̂ ≥
N /(1 + д(w)) ≥ N (1 − д(N )). Thus, the proof is completed.

□

B IMPLEMENTATION OPTIMISATIONS
Detecting non-stable distribution. In general, the performance

of a data-dependent algorithm may degenerate, when the empirical

data does not follow the underlying distributionwell. This is also the

case for our algorithms. To remedy this issue, we propose a simple

heuristic to detect whether the current empirical data still follows

a distribution well. If it does not, we switch to the CMY algorithm

right away to minimize the impact of performance degeneration.

The heuristic works as follows.

Denote by N the threshold to track at the start of the current

round and N ′ the one at the start of the next round. In other words,

N − N ′ items have been tracked in the current round. Intuitively,

the ratio of
N−N ′
N serves as an indicator of the effectiveness of

the algorithm. If the ratio drops below a pre-specified threshold

(say 0.75), we switch the algorithm to the CMY algorithm. Such a

mechanism guarantees that as soon as the empirical distribution is

detected to be unstable, our algorithm will lose its effectiveness in

at most one round, compared to theCMY algorithm. And therefore,

at mostO(k) communication can be wasted and performance is still

upper bounded by the communication bound of theCMY algorithm.
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