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ABSTRACT
Post-click conversion rate (CVR) prediction is an essential task for

discovering user interests and increasing platform revenues in a

range of industrial applications. One of the most challenging prob-

lems of this task is the existence of severe selection bias caused

by inherent self-selection behavior of users and item selection pro-

cess of systems. Currently, doubly robust (DR) learning approaches

achieve the state-of-the-art performance for debiasing CVR predic-

tion. However, in this paper, by theoretically analyzing the bias,

variance and generalization bounds of DR methods, we find that

existing DR approaches may have poor generalization caused by

inaccurate estimation of propensity scores and imputation errors,

which often occur in practice. Motivated by such analysis, we pro-

pose a generalized learning framework that not only unifies existing

DR methods, but also provides a valuable opportunity to develop

a series of new debiasing techniques to accommodate different

application scenarios. Based on the framework, we propose two

new DR methods, namely DR-BIAS and DR-MSE. DR-BIAS directly

controls the bias of DR loss, while DR-MSE balances the bias and

variance flexibly, which achieves better generalization performance.

In addition, we propose a novel tri-level joint learning optimization

method for DR-MSE in CVR prediction, and an efficient training

algorithm correspondingly. We conduct extensive experiments on

both real-world and semi-synthetic datasets to validate the effec-

tiveness of our proposed methods.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender Systems; Post-click Conversion Rate; Selection Bias;

Doubly Robust Learning
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1 INTRODUCTION
The post-click conversion rate (CVR) prediction has gained much

attention in modern recommender systems [11, 20, 26, 39, 40], as

post-click conversion feedback contains strong signals of user pref-

erence and directly contributes to the gross merchandise volume

(GMV). In many industrial applications, CVR prediction is com-

monly regarded as the central task for discovering user interests

and increasing platform revenues. For a user-item pair, CVR repre-

sents the probability of the user consuming the item after he/she

clicks it. Essentially, the task of CVR prediction is a counterfactual
problem. This is because what we want to know during inference

is intrinsically the conversion rates of all user-item pairs under

the assumption that all items are clicked by all users, which is a

hypothetical situation that contradicts reality.

Most of the literature treats CVR prediction as a missing data

problem in which the conversion labels are observed in clicked

events and missing in unclicked events. A conventional and natural

strategy is to train the CVR model only based on clicked events and

then predict the values of CVR for all the events [19, 31]. However,

this estimator is biased and often obtains a sub-optimal result due

to the existence of severe selection bias [11, 20, 26]. In addition,

the data sparsity issue, namely, the sample size of clicked events

being much smaller than that of unclicked events, will amplify the

difference between these two types of events and thus aggravate

the selection bias issue.

Several approaches have been proposed to derive unbiased esti-

mators of CVR by dealing with selection bias. Error imputation [4]

and inverse propensity score (IPS) weighting [29, 42] are two main

strategies for debiasing CVR prediction tasks. In addition, Doubly

robust (DR) estimators can be constructed by combining EIB and

IPS approaches [26, 39, 42]. A DR estimator enjoys the property of

double robustness, which guarantees the unbiased estimation of

CVR if either the imputed errors or propensity scores are accurate.

Compared with EIB and IPS methods, the DR method has a better

performance in general [34].

There are still some concerns for DR methods, even though they

usually compare favorably with EIB and IPS estimators. Theoretical
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analysis of DR estimators in Section 3.1 shows that the bias, vari-

ance and generalization bounds all depend on the error deviation

of the imputation model weighted by the inverse of propensity

score. This is a worrying result, because the inverse of propensity

score tends to be large in unclicked events and error deviations of

the imputation model are most likely to be inaccurate in unclicked

events due to the selection bias and data sparsity. It indicates that

the bias, variance and generalization bounds may still be large un-

der inaccurate imputed errors in unclicked events. Recently, several

approaches, mainly including doubly robust joint learning (DR-JL)

[34] and more robust doubly robust (MRDR) [11], have been de-

signed to alleviate this problem. MRDR aims to reduce the variance

of DR loss to enhance model robustness, but it may still have poor

generalization performance when the bias is large. DR-JL attempts

to reduce the error deviation of the imputation model in order to

obtain a more accurate estimator of CVR, but this method does

not control the bias and variance directly. Therefore, it would be

helpful if we could find a more effective way to control the bias and

variance directly.

In this paper, we reveal the counterfactual issues behind the

CVR prediction task and give a formal and strict causal definition

of CVR. Then, by analyzing the bias, variance and generalization

bound of the DR estimator, we derive a novel generalized learning

framework that can accommodate a wide range of CVR estima-

tors through specifying different metrics of loss functions. This

framework unifies various existing doubly robust methods for debi-

asing CVR prediction, such as DR-JL and MRDR. Most importantly,

it provides key insights for designing new estimators to accom-

modate different application scenarios in CVR prediction. Based

on this framework, from a perspective of bias-variance trade-off,

we propose two new doubly robust estimators, called DR-BIAS
and DR-MSE, which are designed to more flexibly control the bias

and mean squared error (MSE) of DR loss function, respectively.

DR-MSE achieves better generalization performance based on our

analysis compared with existing DR based methods. In addition,

we propose a novel tri-level joint learning optimization method

for flexible DR-MSE in CVR prediction, and an efficient training

algorithm correspondingly. Extensive experiments are carried out

to validate the advantages of the proposed methods compared with

state-of-the-art techniques. DR-MSE outperforms them up to 3.22%

in DCG@2 in our experiments.

The main contributions of this paper can be summarized as

follows: (1) We propose a generalized framework of doubly ro-

bust learning, which not only unifies the existing DR methods,

but also provides key insights for designing new estimators with

different requirements to accommodate different application sce-

narios. (2) Based on the proposed framework, we design two new

doubly robust methods, called DR-BIAS and DR-MSE, which can

better control the bias and mean squared error, compared with

existing methods. (3) For the bias-variance tradeoff parameter of

DR-MSE, we propose a tri-level DR-MSE joint learning optimiza-

tion for the CVR prediction task, and an efficient training algorithm

correspondingly. (4) Experimental results on both real-world and

semi-synthetic datasets show that the two proposed doubly ro-

bust methods outperform the state-of-the-art methods significantly.

Especially, both datasets with missing-at-random ratings and large

industrial dataset are used for comprehensive evaluation.

2 PRELIMINARIES
In this section, we uncover the counterfactual feature of CVR pre-

diction task within the potential outcome framework [12, 24], and

discuss some existing approaches for CVR prediction.

2.1 Causal Problem Definition
Notation is described as follows. Let U = {1, 2, ...,𝑚} and I =

{1, 2, ..., 𝑛} be the sets of 𝑚 users and 𝑛 items, respectively, and

D = U × I be the set of all user-item pairs. Let 𝑥𝑢,𝑖 be the feature

vector of user 𝑢 and item 𝑖 , and 𝑟𝑢,𝑖 ∈ {0, 1} be the indicator of

the observed conversion label. Let 𝑜𝑢,𝑖 be the indicator of a click

event, i.e., 𝑜𝑢,𝑖 = 1 if user 𝑢 clicks item 𝑖 , 𝑜𝑢,𝑖 = 0 otherwise. Then,

O = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈ D, 𝑜𝑢,𝑖 = 1} denotes all the clicked events.

For any user-item pair (𝑢, 𝑖), we are interested in predicting the

CVR if user 𝑢 had clicked item 𝑖 . Notice in particular that the word

“if” is counterfactual. Specifically, in the real world, each user

clicks only some items and many items have never been clicked by

some users, but what we want to know is the conversion rates of

all the user-item pairs when each user clicks all items, which is a

hypothetical situation that contradicts reality.

Potential outcome is a basic tool to delineate counterfactual

quantity in causal inference [12]. Through it, the task of predicting

CVR can be defined formally. Concretely, we treat𝑜𝑢,𝑖 as a treatment

(or an intervention) and define the potential conversion label 𝑟𝑢,𝑖 (1),
which represents the conversion label of a user 𝑢 on an item 𝑖 if the

item is clicked by the user. Correspondingly, 𝑟𝑢,𝑖 (0) is defined as

the conversion label if the user 𝑢 did not click the item 𝑖 . Then the

CVR can be fundamentally defined as

P(𝑟𝑢,𝑖 (1) = 1 | 𝑋𝑢,𝑖 = 𝑥𝑢,𝑖 ), (1)

which is a causal definition and it is coherent and consistent with

the practical implications of CVR in recommender systems. In com-

parison, the conventional definition of CVR (see [20] ), defined

by P(𝑟𝑢,𝑖 = 1 | 𝑋𝑢,𝑖 = 𝑥𝑢,𝑖 , 𝑜𝑢,𝑖 = 1), is based on association (or

correlation) and lost the meaning of “counterfactual”.

For estimating CVR in Equation (1), a fundamental challenge is

that only one of the potential outcome (𝑟𝑢,𝑖 (1), 𝑟𝑢,𝑖 (0)) is observ-
able. By consistency assumption, 𝑟𝑢,𝑖 (1) is observed when 𝑜𝑢,𝑖 = 1,

missing otherwise. Therefore, the goal of estimating CVR can be

recast into a missing data problem.

For ease of presentation, we denote R ∈ {0, 1}𝑚×𝑛 as the full

potential conversion label matrix with each element being 𝑟𝑢,𝑖 (1),
and let R𝑜 = {𝑟𝑢,𝑖 (1) | (𝑢, 𝑖) ∈ O} = {𝑟𝑢,𝑖 | (𝑢, 𝑖) ∈ O} be the set
consisting of potential conversion labels 𝑟𝑢,𝑖 (1) in clicked events.

Let R̂ ∈ [0, 1]𝑚×𝑛 be the predicted conversion rate matrix, where

each entry 𝑟𝑢,𝑖 (1) ∈ [0, 1] denotes the predicted conversion rate

obtained by a model 𝑓𝜙 (𝑥𝑢,𝑖 ) with parameters 𝜙 . If the full potential

conversion label matrix R was observed, the ideal loss function is

L𝑖𝑑𝑒𝑎𝑙 (R̂,R) =
1

|D|
∑
(𝑢,𝑖) ∈D

𝑒𝑢,𝑖 , (2)

where 𝑒𝑢,𝑖 is the prediction error. In this paper, we employ the

cross entropy loss 𝑒𝑢,𝑖 = −𝑟𝑢,𝑖 (1) log{𝑟𝑢,𝑖 (1)}−{1−𝑟𝑢,𝑖 (1)} log{1−
𝑟𝑢,𝑖 (1)}. L𝑖𝑑𝑒𝑎𝑙 (R̂,R) can be regarded as a benchmark of unbiased

loss function theoretically, even though it is infeasible due to the

inaccessibility of R practically.
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2.2 Existing Methods
A direct method is to use the following loss function

L𝑛𝑎𝑖𝑣𝑒 (R̂,R𝑜 ) = |O|−1∑(𝑢,𝑖) ∈O 𝑒𝑢,𝑖 based on the observed

conversion labels R𝑜 . It is well known that L𝑛𝑎𝑖𝑣𝑒 (R̂,R𝑜 ) is not
an unbiased estimate of L𝑖𝑑𝑒𝑎𝑙 (R̂,R). Next, we will briefly review

some typical and latest methods for addressing the selection bias

issue.

2.2.1 Error Imputation Based Estimator. The error imputation

based (EIB) estimator can be derived by introducing an error impu-

tation model 𝑒𝑢,𝑖 = 𝑔𝜃 (𝑥𝑢,𝑖 ) to fit the prediction error 𝑒𝑢,𝑖 . Given

the imputed errors, the loss function of EIB method is given as

L𝐸𝐼𝐵 (R̂,R𝑜 ) = |D|−1
∑
(𝑢,𝑖) ∈D [𝑜𝑢,𝑖𝑒𝑢,𝑖 + (1 − 𝑜𝑢,𝑖 )𝑒𝑢,𝑖 ] .

2.2.2 Inverse Propensity Score Estimator. The inverse propensity
score (IPS) approach [29] aims to recover the distribution of all

events by weighting the clicked events with 1/𝑝𝑢,𝑖 , where 𝑝𝑢,𝑖 =
P(𝑜𝑢,𝑖 = 1) = E[𝑜𝑢,𝑖 ] is the propensity score [23]. Given the esti-

mate of 𝑝𝑢,𝑖 , denoted as 𝑝𝑢,𝑖 , the loss function of IPS estimator is

presented as L𝐼𝑃𝑆 (R̂,R𝑜 ) = |D|−1
∑
(𝑢,𝑖) ∈D 𝑜𝑢,𝑖𝑒𝑢,𝑖/𝑝𝑢,𝑖 .

2.2.3 Doubly Robust Joint Learning Estimator. Doubly robust (DR)

estimator can be constructed in the augmented IPS form [2, 34] by

combining EIB and IPS methods. Given the learned propensities

P̂ = {𝑝𝑢,𝑖 | (𝑢, 𝑖) ∈ D} and imputed errors Ê = {𝑒𝑢,𝑖 | (𝑢, 𝑖) ∈ D},
its loss function is formulated as

L𝐷𝑅 (R̂,R𝑜 ) =
1

|D|
∑
(𝑢,𝑖) ∈D

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
. (3)

L𝐷𝑅 (R̂,R𝑜 ) involves the conversion rate model 𝑟𝑢,𝑖 (1) = 𝑓𝜙 (𝑥𝑢,𝑖 )
and error imputation model 𝑒𝑢,𝑖 = 𝑔𝜃 (𝑥𝑢,𝑖 ). Doubly robust joint

learning (DR-JL) approach [34] estimates them alternately: given
ˆ𝜃 ,

𝜙 is updated by minimizing (3); given
ˆ𝜙 , 𝜃 is updated by minimizing

L𝐷𝑅−𝐽 𝐿
𝑒 (𝜃 ) =

∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

. (4)

2.2.4 More Robust Doubly Robust Estimator. Recently, the more

robust doubly robust (MRDR) method [11] enhances the robustness

of DR-JL by optimizing the variance of the DR estimator with the

imputation model. Specifically, MRDR keeps the loss of the CVR

prediction model in (3) unchanged, while replacing the loss of the

imputation model in (4) with the following loss

L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ) =

∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

·
1 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

. (5)

This substitution can help reduce the variance of L𝐷𝑅 (R̂,R𝑜 ) and
hence a more robust estimator might be obtained.

2.2.5 Bias, Variance and Generalization Bound of DR Estimator.
Given a hypothesis spaceH of CVR prediction matrix R̂, we define
the optimal R̂∗ as R̂∗ = argminR̂∈H L𝐷𝑅 (R̂,R𝑜 ). Given imputed

errors Ê and learned propensities P̂, The following Lemmas 1 and 2

present the existing theoretical results of DR estimator.

Lemma 1 (Bias and Variance). the bias and variance of DR
estimator are given as

𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂,R𝑜 )] =
1

|D|

��� ∑
(𝑢,𝑖) ∈𝐷

(𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 )
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖

���,
VO [L𝐷𝑅 (R̂,R𝑜 )] =

1

|D|2
∑
(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

𝑝2
𝑢,𝑖

.

Lemma 2 (Generalization Bound). For any finite hypothesis
spaceH of prediction matrices, then with probability 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (R̂∗,R) ≤ L𝐷𝑅 (R̂∗,R𝑜 ) +
1

|D|
∑
(𝑢,𝑖) ∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |
𝑝𝑢,𝑖

|𝑒𝑢,𝑖 − 𝑒∗𝑢,𝑖 |︸                                         ︷︷                                         ︸
Bias term

+

√√√√
log(2|H |/𝜂)

2|D|2
∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2︸                                           ︷︷                                           ︸
Variance term

,

where 𝑒∗
𝑢,𝑖

is the prediction error associated with R̂∗, 𝑒†
𝑢,𝑖

is
the prediction error corresponding to the prediction matrix R̂† =

argmaxR̂ℎ ∈H
∑
(𝑢,𝑖) ∈D (𝑒𝑢,𝑖 − 𝑒ℎ𝑢,𝑖 )

2/𝑝2
𝑢,𝑖

.

3 PROPOSED METHODS
3.1 Motivation
We reveal some worrying features of DRmethod, which provides an

initial motivation. Lemma 1 formally gives the bias and variance of

the DR estimator. According to the lemma, 𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂,R𝑜 )] ≈ 0,

if either (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) ≈ 0 or (𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 ) ≈ 0, which is the property

of double robustness. Nonetheless, both the bias and variance terms

still have some issues. Specifically, the bias consists of the product

of the errors of the propensity score model and imputation model

weighted by 1/𝑝𝑢,𝑖 . The term (𝑒𝑢,𝑖−𝑒𝑢,𝑖 )/𝑝𝑢,𝑖 is worrisome, as 1/𝑝𝑢,𝑖
tends to be large in unclicked events and inaccurate estimates of

𝑒𝑢,𝑖 are most likely to occur in these events. Analogously, (𝑒𝑢,𝑖 −
𝑒𝑢,𝑖 )2/𝑝2𝑢,𝑖 in the variance term is also likely to be problematic.

It can be seen that both the bias and variance are correlated with

the term of error deviation |𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 |. Thus, it may be helpful

to reduce them if the magnitude of error deviation is small. This

is the basic idea of DR-JL approach that tries to reduce the error

deviations of all events by optimizing the loss function (4). Further,

the MRDR method [11] proposed replacing L𝐷𝑅−𝐽 𝐿
𝑒 (𝜃 ) in (4) with

L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ) in (5) to deal with the large variance term. The idea

behind Equation (5) is the truth that

VO [L𝐷𝑅 (R̂,R𝑜 )] =
1

|D|2
∑
(𝑢,𝑖) ∈D

EO [
𝑜𝑢,𝑖 (1 − 𝑝𝑢,𝑖 ) (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

𝑝2
𝑢,𝑖

],

namely, the expectation of L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ) equals to VO [L𝐷𝑅 (R̂,R𝑜 )].

Interestingly, Lemma 2 shows that the generalization bound

depends on a weighted sum of the bias term and square root of the

variance term in addition to the empirical loss, which fully reflects

the feature of bias-variance trade-off. Since DR-JL does not control

the bias and variance directly and MRDR pays no attention to the

bias, both of them may still have poor generalization performance.
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3.2 A Generalized DR Learning Framework
The difference between DR-JL and MRDR lies in the loss function

of the error imputation model. As presented in Section 2.2, the

alternating algorithm of DR-JL implies that its underlying loss

is L𝐷𝑅 (R̂,R𝑜 ) + L𝐷𝑅−𝐽 𝐿
𝑒 (𝜃 ) . Similarly, the real loss of MRDR is

L𝐷𝑅 (R̂,R𝑜 ) +L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ). Note that the real loss functions of DR-JL

andMRDR share a similar structure, so they can be discussed within

a generalized framework. The real loss function of this framework

has the following form

L(R̂,R𝑜 ) +𝑀𝑒𝑡𝑟𝑖𝑐{L(R̂,R𝑜 )}, (6)

where L(R̂,R𝑜 ) is an arbitrary unbiased loss function for train-

ing CVR prediction model, such as L𝐼𝑃𝑆 (R̂,R𝑜 ), L𝐸𝐼𝐵 (R̂,R𝑜 ) and
L𝐷𝑅 (R̂,R𝑜 ). 𝑀𝑒𝑡𝑟𝑖𝑐{L(R̂,R𝑜 )} is a pre-specified metric that re-

flects some features of L(R̂,R𝑜 ) and is usually applied to learn

the error imputation model. For example, the MRDR chooses

VO [L𝐷𝑅 (R̂,R𝑜 )] as the metric, and DR-JL uses

∑
(𝑢,𝑖) ∈D (𝑒𝑢,𝑖 −

𝑒𝑢,𝑖 )2. Table 2 summarizes the metrics and ideas of existing doubly

robust methods and our proposed methods, DR-BIAS and DR-MSE,

which will be detailedly illustrated in Section 3.3.

Table 1: Generalized framework of various DR methods

Method Metric Goal

DR-JL

∑
(𝑢,𝑖) ∈D (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 Control error of imputation.

MRDR VO [L𝐷𝑅 (R̂,R𝑜 )] Control variance.

DR-BIAS 𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂,R𝑜 )] Further reduce bias.

DR-MSE 𝑀𝑆𝐸 [L𝐷𝑅 (R̂,R𝑜 )] Bias-variance trade-off.

It is noteworthy that due to the missing 𝑟𝑢,𝑖 (1), optimizing

𝑀𝑒𝑡𝑟𝑖𝑐{L(R̂,R𝑜 )} directly is sometimes not feasible. In this case,

one can use an approximation of𝑀𝑒𝑡𝑟𝑖𝑐{L(R̂,R𝑜 )}. For example,

DR-JL adopts the feasible loss function (4) to approximate the in-

feasible

∑
(𝑢,𝑖) ∈D (𝑒𝑢,𝑖 −𝑒𝑢,𝑖 )2, and MRDR employs (5) to substitute

VO [L𝐷𝑅 (R̂,R𝑜 )].
Importantly, the proposed framework provides a valuable op-

portunity to develop a series of new unbiased CVR estimators with

different characteristics to accommodate different application sce-

narios. In Section 3.3, we will develop two new DR approaches

based on this framework.

3.3 Two New DR Methods
As discussed in Section 3.1, MRDR aims to reduce the variance of

L𝐷𝑅 (R̂,R𝑜 ), and is expected to achieve a more robust performance.

However, this strategy works well only when 𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂,R𝑜 )] is
small enough as suggested by the generalization bound presented in

Lemma 2. Reducing variance is less effective when the bias is large.

DR-JL attempts to lower both the bias and variance by reducing the

error deviation of the imputation model. Nevertheless, it does not

directly control the bias and variance of L𝐷𝑅 (R̂,R𝑜 ). To alleviate

these limitations, we propose two new DR methods, DR-BIAS and

DR-MSE, which are designed to further reduce bias and achieve

better bias-variance trade-off, respectively.

3.3.1 DR-BIAS. DR-BIAS aims at further reducing the bias of the

typical DR method through the optimization of the imputation

model, since an accurate CVR prediction means that the bias should

be small enough. Based on Lemmas 1 and 2, we design a variant of

the bias of DR method as the metric to achieve this goal, given by

1

|D|
∑
(𝑢,𝑖) ∈𝐷

(𝑜𝑢,𝑖 − 𝑝𝑢,𝑖 )2

𝑝2
𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 .

However, the above metric is infeasible due to the missing of 𝑒𝑢,𝑖
in unclicked events. We make an approximation of it and define

the loss of the imputation model of DR-BIAS as follows

L𝐷𝑅−𝐵𝐼𝐴𝑆
𝑒 (𝜃 ) =

∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

·
(𝑜𝑢,𝑖 − 𝑝𝑢,𝑖 )2

𝑝2
𝑢,𝑖

. (7)

By a comparison between Equation (5) and (7), we find that (7)

just substitutes the weight (1 − 𝑝𝑢,𝑖 )/𝑝𝑢,𝑖 with (1 − 𝑝𝑢,𝑖 )2/𝑝2𝑢,𝑖 in
clicked events. Also note that{

(1 − 𝑝𝑢,𝑖 )/𝑝𝑢,𝑖 > 1, if 𝑝𝑢,𝑖 < 1/2,
(1 − 𝑝𝑢,𝑖 )/𝑝𝑢,𝑖 < 1, if 𝑝𝑢,𝑖 > 1/2,

which means that DR-BIAS further magnifies the penalty of the

clicked events with low propensity, and minifies those with high

propensity. This leads to a desired effect: in the clicked events

that the propensity model performs poorly, the amplified weights

force the error imputation model to perform well. In other words,

error imputation model complements the inaccurate part of the

propensity score model. Thus, DR-BIAS would have smaller bias

than other methods.

3.3.2 DR-MSE. Lemma 2 indicates that pursuing the bias reduction

or variance reduction alone cannot fully control the generalization

error. Seeking a better balance between the bias and variance ap-

pears to be a more effective way to improve the prediction accuracy.

Therefore, we design a new model, namely DR-MSE, to achieve this

goal. Specifically, a generalized Mean Squared Error (MSE) metric

for DR-MSE method is defined as

L𝐷𝑅−𝑀𝑆𝐸
𝑒 (𝜃 ) = 𝜆L𝐷𝑅−𝐵𝐼𝐴𝑆

𝑒 (𝜃 ) + (1 − 𝜆)L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ), (8)

where 𝜆 is a hyper-parameter for controlling the strength of the

bias term and the variance term. When 𝜆 = 1, DR-MSE is reduced to

DR-BIAS; when 𝜆 = 0, DR-MSE is reduced to MRDR; when 𝜆 = 0.5,

DR-MSE optimizes the MSE of L𝐷𝑅 (R̂,R𝑜 ) scaled by 0.5 through

the imputation model.

However, simply using a hyper-parameter 𝜆 for all samples is

not flexible enough due to the different characteristics and pop-

ularities of users and items. Specifically, different samples suffer

from different issues during training, i.e., some might have higher

variance while others might have worse bias. Thus, it is neces-

sary to adopt different bias-variance tradeoff strategies for different

user-item pairs. To achieve this goal, 𝜆 can be computed through

a function 𝜆𝜉 (𝑥𝑢,𝑖 ) parameterized by 𝜉 , such as a neural network,

which enables personalized values for different user-item pairs. The

improved loss of DR-MSE is as follows

L𝐷𝑅−𝑀𝑆𝐸
𝑒

(
𝜃, 𝜆𝜉

)
=

∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖𝜆𝜉 (𝑥𝑢,𝑖 ) (𝑒𝑢,𝑖−𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

· (𝑜𝑢,𝑖−𝑝𝑢,𝑖 )
2

𝑝2

𝑢,𝑖

+ ∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖 (1−𝜆𝜉 (𝑥𝑢,𝑖 )) (𝑒𝑢,𝑖−𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

· 1−𝑝𝑢,𝑖
𝑝𝑢,𝑖

.

(9)
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Figure 1:Model architecture of DR-BIAS andDR-MSE for ex-
periments on large-scale industrial dataset. DCN is used as
the base model for feature interaction learning for illustra-
tion only, and it can be readily replaced with other models
such as FM [21], Wide&Deep [8] and DeepFM [10].

Essentially, the generalization bound of DR methods contains a

weighted sum of the bias term and square root of the variance term,

which can be flexibly tradeoff via the proposed generalized MSE

metric in (8). Thus, it is expected that DR-MSE can obtain a better

prediction performance under the tighter generalization bound.

4 PROPOSED TRAINING APPROACH
4.1 Model Architecture and Training Objective
Figure 1 shows the architecture of DR-BIAS and DR-MSE for exper-

iments on real industrial scenarios. It is a multi-task learning frame-

work with three DCN networks for the predication of post-view

click-through rate (CTR), CVR, and error imputation, respectively.

The embedding lookup layers of the DCN models for the CTR and

CVR tasks are shared to tackle data sparsity issue, while the DCN

model for the error imputation has its own embedding lookup layer.

Note that DCN can be readily replaced with other models such

as FM [21], Wide&Deep [8] and DeepFM [10]. We evaluate our

proposed methods with both FM and DCN in our experiments.

During optimization, the CTR, CVR, and error imputationmodels

are updated alternatively with stochastic gradient descent. Specifi-

cally, with the parameters of both CTR and CVR models fixed, the

error imputation model is updated first by optimizing (9). With

model parameters of the error imputation model fixed, the CTR

and CVR models are optimized jointly through the sum of CVR loss

and CTR loss

LCTCVR

(
𝜙, 𝜁 , 𝜃 (𝜆𝜉 )

)
=L𝐷𝑅 (𝜙, 𝜃 (𝜆𝜉 )) + L𝐶𝑇𝑅 (𝜁 ),

where L𝐷𝑅 (𝜙, 𝜃 (𝜆𝜉 )) =
∑
(𝑢,𝑖) ∈D [𝑒𝑢,𝑖 + 𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )/𝑝𝑢,𝑖 ],

L𝐶𝑇𝑅 (𝜁 ) = −
∑
(𝑢,𝑖) ∈D [𝑜𝑢,𝑖 · log(𝑝𝑢,𝑖 ) + (1 − 𝑜𝑢,𝑖 ) · log(1 − 𝑝𝑢,𝑖 )],

𝑝𝑢,𝑖 is the predicted CTR value, and used as the estimated propen-

sity for unbiased CVR estimation. This joint learning process con-

tinues until the model converges. For DR-MSE, the optimization

process involves updating 𝜆𝜉 (·), which makes it more challenging.

In Section 4.2, we formally formulate the optimization problem and

propose an effective training algorithm.

𝜆!

𝜃!,# 𝜃!,$

𝜁!,#
𝜙!,#

𝜁!,$
𝜙!,$

𝜆%

𝜃%,# 𝜃%,$

𝜁%,#
𝜙%,#

𝜁%,$
𝜙%,$

Adaptively Update DR-MSE

Update Imputation Model

Update CTR Model

Update CVR Model

Upper

Middle

Lower

Figure 2: The proposed tri-level DR-MSE joint learning opti-
mizationmethod updates the 𝜆𝑠 inDR-MSE adaptively in up-
per level, while the existing bias-variance tradeoff approach
uses a fixed 𝜆0. Middle and lower levels are for the joint train-
ing between the CTR&CVR and error imputation models.

4.2 Tri-Level DR-MSE Joint Learning (JL)
Optimization and Training Algorithm

We propose the tri-level optimization DR-MSE JL approach shown

in Figure 2. Compared to the existing joint learning methods, our

approach allows adaptively updating the 𝜆𝜉 in DR-MSE. This goal

can be formalized as the following tri-level optimization problem

𝜉∗ = argmin

𝜉
L𝐷𝑅

(
𝜙∗ (𝜃∗ (𝜆𝜉 )), 𝜁 ∗ (𝜃∗ (𝜆𝜉 ))

)
s.t. 𝜙∗ (𝜃∗ (𝜆𝜉 )), 𝜁 ∗ (𝜃∗ (𝜆𝜉 )) = argmin

𝜙,𝜁
LCTCVR

(
𝜙, 𝜁 , 𝜃∗ (𝜆𝜉 )

)
s.t. 𝜃∗ (𝜆𝜉 ) = argmin

𝜃
L𝐷𝑅−𝑀𝑆𝐸
𝑒

(
𝜃, 𝜆𝜉

)
There are two challenges for solving the above problem. Firstly, it

is computationally expensive to search for the optimal DR-MSE by

minimizing the upper loss in the tri-level DR-MSE JL optimization

method. Secondly, the DR-MSE parameter 𝜆𝜉 of the upper model

is difficult to be minimized as there is no closed-form solution.

To address them, we further propose a training algorithm for this

tri-level optimization problem as shown in Alg. 1.

For illustration purposes, the relevant parameters in Alg. 1 are

updated using vanilla SGD. In practice, both SGD and its variants

can be used for iterative updates. Specifically, for the error impu-

tation optimization problem, L𝐷𝑅−𝑀𝑆𝐸
𝑒 is differentiable w.r.t. the

parameter 𝜃 of the error imputation model. Given 𝜆𝑠 , one can com-

pute the value of 𝜃𝑠+1 (𝜆𝑠 ) after a single vinalla SGD. It should

be noted that this value is not directly used for the update of the

error imputation model parameter 𝜃𝑠+1. Moreover, the reason for

using single-step SGD is that multi-step SGD here does not re-

sult in better performance, but rather increases the computational

complexity [13].

Similarly, LCTCVR is differentiable w.r.t. both CTR model param-

eter 𝜁 and CVR model parameter 𝜙 . Given the pseudo-updated

𝜃𝑠+1 (𝜆𝑠 ), one can compute the value of 𝜁𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )) and

𝜙𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )) after a single vanilla SGD. Both of the values are

not directly used for the update of the CTR and CVR model as well.

After that, with given 𝜁𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )) and 𝜙𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )), we up-
date the bias-variance tradeoff parameter in DR-MSE from 𝜆𝑠 to

𝜆𝑠+1 via a single vanilla SGD. Finally, based on the updated 𝜆𝑠+1, we
take the idea of joint learning to update the error imputation model

parameter 𝜃𝑠+1 and the CTR&CVR model parameters 𝜁𝑠+1, 𝜙𝑠+1,
in which the classical multi-step SGD is used until the stopping

criteria is satisfied.
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Algorithm 1: Tri-Level DR-MSE JL Optimization Training

Input: 𝑆 , observed ratings R𝑜 , learned propensities P̂,
1 for O𝑙𝑠 ,O𝑢𝑠 ⊂ O and D𝑠 ⊂ D (𝑠 ∈ {0, 1, · · · , 𝑆 − 1}) do
2 Compute an update function based on O𝑙𝑠

𝜃𝑠+1 (𝜆𝑠 ) ← 𝜃𝑠 − 𝜂∇𝜃𝑠L𝐷𝑅−𝑀𝑆𝐸
𝑒 (𝜃, 𝜆𝑠 );

3 Compute an update function based on D𝑠

𝜙𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )) ← 𝜙𝑠 − 𝜂∇𝜙𝑠
LCTCVR (𝜙, 𝜁𝑠 , 𝜃𝑠+1 (𝜆𝑠 ));

4 Compute an update function

𝜁𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )) ← 𝜁𝑠 − 𝜂∇𝜁𝑠LCTCVR (𝜙𝑠 , 𝜁 , 𝜃𝑠+1 (𝜆𝑠 ));
5 Compute the upper loss based on O𝑢𝑠
6 L𝐷𝑅 (𝜙𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )), 𝜁𝑠+1 (𝜃𝑠+1 (𝜆𝑠 )));
7 Update the bias-variance trade off parameter

8 𝜉𝑠+1 ← 𝜉𝑠 −𝜂∇𝜉𝑠L𝐷𝑅

(
𝜙𝑠+1 (𝜃𝑠+1 (𝜆𝜉 )), 𝜁𝑠+1 (𝜃𝑠+1 (𝜆𝜉 ))

)
;

9 Update the bias-variance trade off model 𝜆𝑠+1 ← 𝜆𝜉𝑠+1 ;

10 for O𝑙𝑠,𝑡 ⊂ O (𝑡 ∈ {0, 1, · · · ,𝑇 − 1}) do
11 Update the imputation model based on O𝑙𝑠,𝑡

𝜃𝑠,𝑡+1 ← 𝜃𝑠,𝑡 − 𝜂∇𝜃𝑠,𝑡L𝐷𝑅−𝑀𝑆𝐸
𝑒 (𝜃, 𝜆𝑠+1);

12 end
13 for D𝑠,𝑡 ⊂ D (𝑡 ∈ {0, 1, · · · ,𝑇 − 1}) do
14 Update the propensity model based on D𝑠,𝑡

𝜁𝑠,𝑡+1 ← 𝜁𝑠,𝑡 − 𝜂∇𝜁𝑠,𝑡LCTCVR

(
𝜙𝑠,𝑡 , 𝜁 , 𝜃𝑠,𝑇

)
;

15 Update the predication model based on D𝑠,𝑡

𝜙𝑠,𝑡+1 ← 𝜙𝑠,𝑡 − 𝜂∇𝜙𝑠,𝑡
LCTCVR

(
𝜙, 𝜁𝑠,𝑡 , 𝜃𝑠,𝑇

)
;

16 end
17 Copy the model parameter 𝜃𝑠+1,0 ← 𝜃𝑠,𝑇 ;

18 Copy the propensity model’s parameter 𝜁𝑠+1,0 ← 𝜁𝑠,𝑇 ;

19 Copy the predication model’s parameter 𝜙𝑠+1,0 ← 𝜙𝑠,𝑇 .

20 end

5 REAL-WORLD EXPERIMENTS
In this section, we evaluate the proposed methods by conducting

experiments on three real-world datasets, including two benchmark

datasets with missing-at-random (MAR) ratings and one large-

scale industrial product dataset. We aim to answer the following

two research questions (RQ): (1) How do our methods compare

with state-of-the-art models in terms of debiasing performance in

practice? (2) How do the bias-variance tradeoff and the modeling of

unobserved data affect the performance of the proposed methods

in practice?

5.1 Experimental Setup
5.1.1 Datasets with MAR Ratings. A MAR testing set is impor-

tant for assessing the performance of an unbiased recommender.

Thus, we follow existing studies [11, 26] to use Coat Shopping1

and Yahoo! R32 for the evaluation of CVR prediction model. To

make the two datasets consistent with the CVR prediction task, we

further preprocess them following previous studies [11, 26]. The

detailed descriptions of these two datasets and the corresponding

data preprocessing method are provided in Appendix B.1.

1
https://www.cs.cornell.edu/~schnabts/mnar/

2
http://webscope.sandbox.yahoo.com/

Table 2: Statistics of the advertising dataset Product

Dataset #Impression #Click #Conversion #User #Item

Training 739.66M 3.73M 1.90M 524K 68K

Testing 99.73M 519K 268K 283K 52K

Note: “M” means million, and “K” means thousand.

5.1.2 Industrial Product Dataset. To provide more comprehensive

and reliable evaluation, we also conduct experiments on a large-

scale App advertising dataset collected from a real-world system.

We denote this dataset as Product with some statistics of it dis-

played in Table 2. It contains 8 consecutive days logged data from

the system, with the first 7 days for training and the last day for

testing. Each sample of the dataset contains features from a user, an

item and the corresponding context. Although the unbiased data

in CVR prediction is unobtainable in real applications since we

cannot force users to randomly click the exposed items, the experi-

ments can still provide valuable observations for the applications

of debiasing CVR prediction models in real systems.

5.1.3 Baselines and Implementation. For experiments on Coat and
Yahoo, we compare our methods with several competitive base-

lines, including Naive, IPS, DR-JL and MRDR. The base model for all

methods is factorization machine. Some brief descriptions of them

and implementation details are provided in Appendix B. For exper-

iments on Product, we also select some state-of-the-art CVR pre-

diction models for large datasets, including DCN [33], ESMM [20],

Multi_IPW [42] and Multi_DR [42]. The base model for all methods

is DCN. More details are provided in Appendix C.

5.1.4 Experimental Protocols. For experiments on Coat and Ya-
hoo, we evaluate the ranking performance with two types of met-

rics, i.e., discounted cumulative gain (DCG) and recall, as prior work

on debiasing CVR prediction [11, 26]. For experiments on Product,
we evaluate our proposed methods on three important tasks, i.e.,

CTR, CVR, and CTCVR (𝐶𝑇𝐶𝑉𝑅 = 𝐶𝑇𝑅 ∗𝐶𝑉𝑅) predictions, with
the AUC score following existing works [20, 42].

5.2 Overall Performance (RQ1)
5.2.1 Unbiased Evaluation. The experimental results on Coat and
Yahoo are shown in Table 3. We have the following observations.

First, our proposed methods are effective for debiasing CVR

prediction task. As shown in Table 3, both DR-MSE and DR-BIAS

consistently outperform all the other ones in terms of DCG@K and

Recall@K (𝐾 = 2, 4, 6) on the two real-world datasets, with only one

exception of DR-MSE on Recall@6 of Yahoo. In particular, DR-MSE

achieves a significant 3.22%, 2.65% and 1.87% relative improvements

over MRDR on DCG@2, DCG@4 and DCG@6, respectively.

Second, it is necessary to improve the bias and variance of the

typical DR method under inaccurate propensity estimation and

error imputation so as to enhance its robustness and ranking per-

formance. As shown in Table 3, IPS has worse performance on

Coat and only comparable performance on Yahoo compared with

the Naive method, since it suffers heavily from the high variance

issue. Both DR-JL and MRDR performs better compared with IPS

because of their double robustness. DR-BIAS improves over MRDR

by achieving smaller bias through magnifying the penalty of the

clicked events with low propensity while minifying those with

high propensity as analyzed in Section 3.3.1. However, these DR
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Table 3: Performance comparison based on Coat and Yahoo.

Datasets Models DCG@2 DCG@4 DCG@6 Recall@2 Recall@4 Recall@6

Coat

Naïve 0.7283 ± 0.0264 0.9763 ± 0.0258 1.1512 ± 0.0241 0.8474 ± 0.0310 1.3786 ± 0.0374 1.8490 ± 0.0379

IPS 0.7102 ± 0.0220 0.9596 ± 0.0222 1.1299 ± 0.0210 0.8248 ± 0.0272 1.3596 ± 0.0360 1.8174 ± 0.0377

DR-JL 0.7416 ± 0.0224 1.0021 ± 0.0224 1.1762 ± 0.0229 0.8645 ± 0.0264 1.4225 ± 0.0362 1.8906 ± 0.0403

MRDR 0.7442 ± 0.0225 1.0132 ± 0.0219 1.1947 ± 0.0194 0.8736 ± 0.0273 1.4494 ± 0.0325 1.9370 ± 0.0318

DR-BIAS 0.7648 ± 0.0192* 1.0353 ± 0.0169* 1.2127 ± 0.0162* 0.8959 ± 0.0251* 1.4751 ± 0.0273* 1.9517 ± 0.0324*
DR-MSE 0.7682 ± 0.0151* 1.0401 ± 0.0150* 1.2170 ± 0.0139* 0.8997 ± 0.0194* 1.4816 ± 0.0241* 1.9569 ± 0.0262*

Yahoo

Naïve 0.5469 ± 0.0009 0.7466 ± 0.0008 0.8714 ± 0.0004 0.6479 ± 0.0012 1.0745 ± 0.0016 1.4098 ± 0.0013

IPS 0.5502 ± 0.0010 0.7520 ± 0.0009 0.8751 ± 0.0009 0.6545 ± 0.0017 1.0797 ± 0.0017 1.4168 ± 0.0019
DR-JL 0.5602 ± 0.0034 0.7586 ± 0.0030 0.8808 ± 0.0025 0.6615 ± 0.0042 1.0849 ± 0.0049 1.4129 ± 0.0039

MRDR 0.5623 ± 0.0024 0.7603 ± 0.0027 0.8820 ± 0.0020 0.6646 ± 0.0033 1.0881 ± 0.0045 1.4145 ± 0.0037

DR-BIAS 0.5646 ± 0.0023* 0.7624 ± 0.0021* 0.8841 ± 0.0018* 0.6676 ± 0.0026* 1.0904 ± 0.0028* 1.4169 ± 0.0020
DR-MSE 0.5662 ± 0.0017* 0.7639 ± 0.0016* 0.8850 ± 0.0014* 0.6670 ± 0.0026* 1.0891 ± 0.0029 1.4140 ± 0.0028

Note: * statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline.

Table 4: Performance comparison based on Product.

Models CTR AUC (%) CVR AUC (%) CTCVR AUC (%)

DCN 90.763 75.691 95.254

ESMM 90.704 81.647 95.505

DR-JL 90.754 81.768 95.548

Multi_IPW 90.794 81.912 95.571

Multi_DR 90.807 81.864 95.569

MRDR 90.721 81.810 95.535

DR-BIAS 90.913 81.974 95.633
DR-MSE 90.825 82.067 95.654

methods still suffer from the high bias and/or variance issues. Our

proposed DR-MSE can further achieve improvements over all other

DR methods by better controlling the bias and variance.

5.2.2 Large-scale Industrial Dataset. The experimental results on

Product are shown in Table 4. Firstly, we can observe that ESMM

improves over DCN on CVR and CTCVR prediction tasks by tack-

ling the data sparsity issue with the multi-task learning framework,

but it still suffers from the selection bias issue. Secondly, the de-

biasing CVR models can simultaneously tackle the data sparsity

and selection bias issues, thus they outperform DCN and ESMM.

Thirdly, our proposed DR_BIAS and DR-MSE achieve significant im-

provements over existing debiasing CVR prediction models, includ-

ing DR-JL, Multi_IPW, Multi_DR and MRDR, which is consistent

with the observations on experiments with unbiased evaluation.

It demonstrates that our proposed methods have both theoreti-

cal guarantee and great application potentials in real industrial

systems.

5.3 In-depth Analysis of DR-MSE (RQ2)
We conduct an analysis of two important aspects of DR-MSE with

Coat in this section. The experimental results are displayed in

Figure 3. Note that similar results can be observed on other datasets,

and we do not present them here only due to space limitations.

The loss of the imputation model of DR-MSE contains a bias term

and a variance term. We conduct experiments by manually varying

𝜆 in Eq. (8) to demonstrate the necessity of conducting bias-variance

tradeoff. The left part of Figure 3 presents the experimental results

of DR-MSE when varying 𝜆 from 0.1 to 0.9. We can find that the

performance of DR-MSE first improves with the increase of 𝜆, and

then gradually drops. It shows that an appropriate tradeoff between

this two terms can improve model generalization performance.

1.1350

1.1375

0.9200

0.9225

0.1 0.3 0.5 0.7 0.9
0.5425

0.5450 DCG@1
DCG@3
DCG@5

0.9
1.0
1.1
1.2

0.7

0.8

0.9

0 2 4 6 8 10 All
sample ratio

0.4

0.5 DCG@1
DCG@3
DCG@5

Figure 3: The effect of the coefficient 𝜆 for balancing bias and
variance, and the sample ratio of unclicked events to clicked
events on the ranking performance of DR-MSE.

DR methods can achieve double robustness by jointly consider-

ing clicked events and unclicked events. Here, we also study the

effect of the sample ratio of unclicked events to clicked events on

the performance of DR-MSE. When the sample ratio is set to “All”,

all the unclicked events are utilized for training; when the sample

ratio is set to 0, only clicked events are utilized. As shown in Fig-

ure 3, when the sample ratio ranges from 0 to “All”, the DCG@K

(𝐾 = 1, 3, 5) scores on Coat show an apparent increase first, and

then tend to saturate or decrease slightly. It suggests that a certain

amount of unclicked events can provide useful information for im-

proving the prediction model with the assistance of an imputation

model, but further improvement is marginal when passing some

threshold. In real advertising applications, the unclicked events are

usually composed of the exposed but unclicked events in consider-

ation of time efficiency. This empirical study on the sample ratio

can provide some justification of the practice.

6 SEMI-SYNTHETIC DATA EXPERIMENTS
In this section, we aim to investigate the robustness of our proposed

method through experiments based on semi-synthetic datasets with

different levels of selection bias.

6.1 Experimental Setup
6.1.1 Datasets and Preprocessing. MovieLens 100K3 (ML-100K)
is a dataset collected from a movie recommendation service with

100,000 MNAR ratings from 943 users and 1,682 movies. We used

it to generate semi-synthetic datasets for experiments with the

following standard procedures as previous studies [26, 28].

(1) Obtain an approximation of the true ratings of each user on

all items with rating-based matrix factorization [17]. We denote the

3
https://grouplens.org/datasets/movielens/100k/
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Table 5: Performance comparison on semi-synthetic datasets based on ML-100k.

Metrics AUC Log-loss

𝜌 0.5 1 2 0.5 1 2

Naïve 0.7250 ± 0.0001 0.6731 ± 0.0001 0.5279 ± 0.0070 0.3178 ± 0.0000 0.3343 ± 0.0001 0.4683 ± 0.0179

IPS 0.7316 ± 0.0001 0.6648 ± 0.0028 0.5263 ± 0.0055 0.3165 ± 0.0001 0.3304 ± 0.0034 0.4789 ± 0.0132

DR-JL 0.7319 ± 0.0004 0.6673 ± 0.0035 0.5703 ± 0.0032 0.3116 ± 0.0002 0.3255 ± 0.0012 0.3607 ± 0.0014

MRDR 0.7335 ± 0.0006 0.6765 ± 0.0021 0.5563 ± 0.0082 0.3067 ± 0.0002 0.3238 ± 0.0006 0.3650 ± 0.0047

DR-BIAS 0.7349 ± 0.0006* 0.6916 ± 0.0009* 0.6073 ± 0.0054* 0.3064 ± 0.0001* 0.3194 ± 0.0013* 0.3494 ± 0.0058
DR-MSE 0.7359 ± 0.0002* 0.6928 ± 0.0020* 0.6084 ± 0.0168* 0.3059 ± 0.0001* 0.3193 ± 0.0028* 0.3477 ± 0.0084
Note: * statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline.

predicted rating of a user 𝑢 on an item 𝑖 as 𝑅𝑢,𝑖 . Then, the ground-

truth CVR for conversion generation is generated as follows:

𝑝𝑐𝑣𝑟𝑢,𝑖 = 𝜎 (�̂�𝑢,𝑖 − 𝜖), ∀(𝑢, 𝑖) ∈ D,

where 𝜎 (·) is the sigmoid function, and 𝜖 controls the level of

overall relevance; 𝜖 is set to 5 in experiments.

(2) Obtain an approximation of the true observationswith logistic

matrix factorization [14]. We denote the predicted probability of a

user-item pair (𝑢, 𝑖) being observed as �̂�𝑢,𝑖 . Then, the ground-truth

CTR for generating the click events is defined as follows:

𝑝𝑐𝑡𝑟𝑢,𝑖 = (�̂�𝑢,𝑖 )𝜌 , ∀(𝑢, 𝑖) ∈ D,

where 𝜌 controls the skewness of the distribution of the CTR. A

large value of 𝜌 means a huge selection bias in the clicked events

and a small number of observed click and conversion events. We

set 𝜌 as 0.5, 1, and 2 in the experiments.

(3) Sample binary click and conversion events with Bernoulli

sampling based on the ground-truth CTR and CVR as follows:

𝑜𝑢,𝑖 ∼ 𝐵𝑒𝑟𝑛 (𝑝𝑐𝑡𝑟𝑢,𝑖 ), 𝑟𝑢,𝑖 ∼ 𝐵𝑒𝑟𝑛 (𝑝𝑐𝑣𝑟𝑢,𝑖 ), ∀(𝑢, 𝑖) ∈ D,

where 𝐵𝑒𝑟𝑛(·) is the Bernoulli distribution. Then, the post-click
conversions can be derived as {(𝑢, 𝑖, 𝑟𝑢,𝑖 ) |𝑜𝑢,𝑖 = 1}.

6.1.2 Baselines and Implementation. The baseline algorithms in-

clude the Naive method, IPS [30], DR-JL [34], and MRDR [11]. The

detailed descriptions of the baselines and model implementation

are provided in Appendix B.

6.1.3 Evaluation Protocols. In semi-synthetic datasets, we have the

ground-truth user preference information and the level of selection

bias of the considered datasets, so that we can investigate model

robustness through experiments. We generate the semi-synthetic

datasets by setting 𝜌 as 0.5, 1 and 2. The biased set consists of the

clicked events generated by the procedure described in Section 6.1.1,

which is further divided into a training set (90%) and a validation

set (10%). We conduct experiments in each setting for 10 times and

report the average results. Note that larger value of 𝜌 means higher

selection bias and less clicked events for training because of lower

propensity. We use AUC and Log-loss on test sets to evaluate the

ranking performance and the relevance prediction, respectively.

The test set consists of user-item pairs randomly sampled from the

unclicked ones, and we uniformly sample 50 items for each user in

the experiments.

6.2 Results & Discussion
Our method DR-MSE has the best AUC scores and Log-loss results

across all the considered levels of selection bias (𝜌 = 0.5, 1, 2). It

demonstrates that DR-MSE can achieve better ranking performance

and relevance prediction. DR-BIAS also has impressive performance

and outperforms MRDR significantly, which is probably because

DR-BIAS achieves smaller bias by magnifying the penalty of the

clicked events with low propensity while minifying those with high

propensity. With the increase of the power 𝜌 , the performance of

IPS drops dramatically, and was even worse than that of the Naive

method. It shows that IPS suffers heavily from the high variance

issue. Doubly robust learning approaches, including DR-JL, MRDR,

DR-BIAS and DR-MSE, have better robustness against the selection

bias and demonstrate better results compared with the IPS method.

Our proposed DR-MSE performs the best because of its bias and

variance reduction characteristics.

7 RELATEDWORK
7.1 Approaches to CVR Estimation
In practice, CTR prediction models are commonly applied to CVR

prediction task due to their inherent similarity. These CTR predic-

tion approaches include logistic regression based methods [9, 22],

factorization machine based methods [15, 21], deep learning based

methods [8, 10, 33, 37], etc. In addition, many approaches are spe-

cially designed for CVR prediction because of several unique and

critical issues of the task, such as delayed feedback [5, 31, 36], data

sparsity [20, 38] and selection bias [11, 42]. In this paper, we mainly

focus on tackling the selection bias issue.

Selection bias refers to the distribution drift between the train

and inference data, which is widely studied recently [11, 20, 26, 42].

Some existing multi-task learning methods, such as ESMM [20] and

ESM
2
[38], can alleviate the selection bias, but they are heuristic

methods and lack theoretic guarantee. Further, the author in [42]

tried to use DR method to debias CVR prediction and proposed a

model namely Multi_DR with theoretic guarantee. But they only

validated the proposed methods with the biased training and testing

sets. The authors in [27] proposed a dual learning algorithm for

simultaneously tackling the delayed feedback issue and the selec-

tion bias issue. MRDR [11] designs a new loss for the imputation

model to reduce the variance of Multi_DR [42]. However, it might

still suffer from the high bias of DR method due to the incorrect

estimations of both propensity scores and imputed errors (which

is common in practice). To tackle these problems, in this paper,

we proposed a generalized doubly robust learning framework for

debiasing CVR prediction, which enables us to propose two new

DR methods with more favorable properties.

7.2 Debiasing in Recommendation Tasks
Recent years have witnessed many contributions on incorporat-

ing the causal inference idea into the recommendation domain for

8
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unbiased learning [25, 30]. For example, [30] explains the recom-

mendation problem by a treatment-effect model, and designs an

IPS based method to remove the bias in the observed data based on

explicit feedback. [34] improves over the IPS based method by de-

signing a doubly robust learning approach. [25, 41] design tailored

unbiased loss to handle user implicit feedback. In addition, several

existing works [3, 6, 18, 35] design debiasing models by leveraging

the available small set of unbiased data. [7] provides a thorough

discussion on the recent progress on debiased recommendation.

Though these methods have achieved many successes in debiasing

recommendation tasks, none of them are specially proposed for

CVR prediction. How to design an unbiased learning algorithm for

CVR prediction is highly important and needs to be studied further.

8 CONCLUSION
We have proposed a generic doubly robust (DR) learning framework

for debiasing CVR prediction based on the theoretical analysis of the

bias, variance and generalization bounds of existing DR methods.

This framework enables us to develop a series of new estimators

with different desired characteristics to accommodate different ap-

plication scenarios in CVR prediction. In particular, based on the

framework, we proposed two new DR methods, namely DR-BIAS

and DR-MSE, which are designed to further reduce the bias and

achieve a better bias-variance trade-off. In addition, we propose

a novel tri-level optimization for DR-MSE, and the corresponding

efficient training algorithm. Finally, we empirically validate the

effectiveness of the proposed methods by extensive experiments

on both semi-synthetic and real-world datasets.
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Appendices

Appendix A PROOF OF LEMMAS
This supplementary material contains the proofs of Lemma 1 and

Lemma 2. For ease of exposition, let L(R̂) = L(R̂,R𝑜 ).

Lemma 1 (Bias and Variance). Given imputed errors Ê and
learned propensities P̂ with 𝑝𝑢,𝑖 > 0 for all user-item pairs, the bias
and variance of DR estimator are given as

𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂,R𝑜 )] =
1

|D|

��� ∑
(𝑢,𝑖) ∈𝐷

(𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 )
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖

���,
VO [L𝐷𝑅 (R̂,R𝑜 )] =

1

|D|2
∑
(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

𝑝2
𝑢,𝑖

.

Proof. According to the definition of bias,

𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂)] =
���EO [L𝐷𝑅 (R̂)] − L𝑖𝑑𝑒𝑎𝑙 (R̂,R)

���
=

��� 1

|D|
∑
(𝑢,𝑖) ∈D

EO [𝑒𝑢,𝑖 +
𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖
− 𝑒𝑢,𝑖 ]

���
=

��� 1

|D|
∑
(𝑢,𝑖) ∈D

[𝑒𝑢,𝑖 +
𝑝𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖
− 𝑒𝑢,𝑖 ]

���
=

1

|D|

��� ∑
(𝑢,𝑖) ∈𝐷

𝑝𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
���.

The variance of L𝐷𝑅 (R̂) with respect to click indicator is given as

VO [L𝐷𝑅 (R̂)] =
1

|D|2
∑
(𝑢,𝑖) ∈D

VO [𝑒𝑢,𝑖 +
𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖
]

=
1

|D|2
∑
(𝑢,𝑖) ∈D

VO [𝑜𝑢,𝑖 ] ·
(
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖
𝑝𝑢,𝑖

)
2

=
1

|D|2
∑
(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2
𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 .

□

To show the generalization bound of doubly robust estimator,

we need the Hoeffding’s inequality for general bounded random

variables, which is presented in Lemma 3.

Lemma 2 (Generalization Bound). For any finite hypothesis
spaceH of prediction matrices, given imputed errors Ê and learned
propensities P̂, then with probability 1 − 𝜂,

L𝑖𝑑𝑒𝑎𝑙 (R̂∗,R) ≤ L𝐷𝑅 (R̂∗,R𝑜 ) +
1

|D|
∑
(𝑢,𝑖) ∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |
𝑝𝑢,𝑖

|𝑒𝑢,𝑖 − 𝑒∗𝑢,𝑖 |︸                                         ︷︷                                         ︸
Bias term

+

√√√√
log(2|H |/𝜂)

2|D|2
∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2︸                                           ︷︷                                           ︸
Variance term

,

where 𝑒†
𝑢,𝑖

is the prediction error corresponding to the prediction

matrix R̂† = argmaxR̂ℎ ∈H
∑
(𝑢,𝑖) ∈D (𝑒𝑢,𝑖 − 𝑒ℎ𝑢,𝑖 )

2/𝑝2
𝑢,𝑖
, 𝑒∗

𝑢,𝑖
is the

prediction error associated with R̂∗.

Proof. We first note that

L𝑖𝑑𝑒𝑎𝑙 (R̂∗,R) − L𝐷𝑅 (R̂∗)
= L𝑖𝑑𝑒𝑎𝑙 (R̂∗,R) − EO [L𝐷𝑅 (R̂∗)] + EO [L𝐷𝑅 (R̂∗)] − L𝐷𝑅 (R̂∗)
≤ 𝐵𝑖𝑎𝑠 [L𝐷𝑅 (R̂∗)] + EO [L𝐷𝑅 (R̂∗)] − L𝐷𝑅 (R̂∗)

≤ 1

|D|
∑
(𝑢,𝑖) ∈D

|𝑝𝑢,𝑖 − 𝑝𝑢,𝑖 |
𝑝𝑢,𝑖

|𝑒𝑢,𝑖 − 𝑒∗𝑢,𝑖 | + EO [L𝐷𝑅 (R̂∗)] − L𝐷𝑅 (R̂∗).

(10)

Next we focus on analyzing EO [L𝐷𝑅 (R̂∗)] − L𝐷𝑅 (R̂∗). By Ho-

effding’s inequality in Lemma 3, let 𝑋𝑢,𝑖 =
𝑜𝑢,𝑖 (𝑒𝑢,𝑖−𝑒𝑢,𝑖 )

𝑝𝑢,𝑖
, then

𝑀𝑢,𝑖 −𝑚𝑢,𝑖 =
|𝑒𝑢,𝑖−𝑒𝑢,𝑖 |

𝑝𝑢,𝑖
, and for any 𝜖 > 0, we have

P
{��L𝐷𝑅 (R̂∗) − EO [L𝐷𝑅 (R̂∗)]

�� ≤ 𝜖}
= 1 − P

{��L𝐷𝑅 (R̂∗) − EO [L𝐷𝑅 (R̂∗)]
�� > 𝜖}

≥ 1 − P
{

sup

R̂ℎ ∈H

��L𝐷𝑅 (R̂ℎ) − EO [L𝐷𝑅 (R̂ℎ)]
�� > 𝜖}

≥ 1 −
H∑
ℎ=1

P
{��L𝐷𝑅 (R̂ℎ) − EO [L𝐷𝑅 (R̂ℎ)]

�� > 𝜖}
= 1 −

H∑
ℎ=1

P
{�� ∑
(𝑢,𝑖) ∈D

(𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒ℎ𝑢,𝑖 )
𝑝𝑢,𝑖

− EO
(𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒ℎ𝑢,𝑖 )

𝑝𝑢,𝑖

) ) �� > 𝜖 |D|}

≥ 1 −
H∑
ℎ=1

2 exp

{
− 2𝜖2 |D|2

/ ∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒ℎ𝑢,𝑖
𝑝𝑢,𝑖

)2
}

≥ 1 − 2|H | exp
{
− 2𝜖2 |D|2

/ ∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2
}
.

Letting 2|H | exp
{
− 2𝜖2 |D|2

/ ∑
(𝑢,𝑖) ∈D (

𝑒𝑢,𝑖−𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2
}
= 𝜂 yields

that

𝜖 =

√√√√
log(2|H |/𝜂)

2|D|2
∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2 .

Then with probability 1 − 𝜂, we have

EO [L𝐷𝑅 (R̂∗)]−L𝐷𝑅 (R̂∗) ≤

√√√√
log(2|H |/𝜂)

2|D|2
∑
(𝑢,𝑖) ∈D

(
𝑒𝑢,𝑖 − 𝑒†𝑢,𝑖
𝑝𝑢,𝑖

)2 .

(11)

Lemma 2 follows immediately from inequalities (10) and (11). □

Lemma 3 (Hoeffding’s ineqality for general bounded ran-

dom variables). Let 𝑋1, ..., 𝑋𝑁 be independent random variables.
Assume that 𝑋𝑖 ∈ [𝑚𝑖 , 𝑀𝑖 ] for every 𝑖 , Then, for any 𝜖 > 0, we have

P
{�� 𝑁∑

𝑖=1

𝑋𝑖 −
𝑁∑
𝑖=1

E𝑋𝑖
�� > 𝜖} ≤ 2 exp

{
− 2𝜖2∑𝑁

𝑖=1 (𝑀𝑖 −𝑚𝑖 )2
}
.

Proof. The proof can be found in Theorem 2.2.6 of [32]. □
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Appendix B EXPERIMENTAL SETTINGS ON
COAT, YAHOO, AND
SEMI-SYNTHETIC DATASETS

Here, we provide more detailed experimental settings on Coat,
Yahoo, and semi-synthetic datasets generated fromML-100K.

B.1 Datasets
• Coat Shopping: It contains a MNAR training set and a MAR

testing set. Specifically, there are 6,960 five-star ratings from

290 Amazon Mechanical Turkers on an inventory of 300 coats

in the training set. There are 4,640 ratings collected from the

290 workers on 16 randomly selected coats in the testing set.

• Yahoo! R3: It includes a MNAR training set with 311,704 five-

star ratings from 15,400 users and 1,000 songs, and a MAR

testing set with 54,000 ratings from 5,400 users on 10 randomly

selected songs.

To make the two datasets consistent with the CVR prediction task,

we further preprocess them following previous studies [11, 26]:

(1) The conversion label 𝑟𝑢,𝑖 is defined as 1 if the rating of item

𝑖 by user 𝑢 is greater than or equal to 4, and 0 otherwise.

(2) The click indicator 𝑜𝑢,𝑖 is defined as 1 if user 𝑢 rated item 𝑖 ,

and 0 otherwise.

(3) The sets of observed potential conversion labels 𝑟𝑢,𝑖 (1) is
denoted as R𝑜 = {𝑟𝑢,𝑖 (1) | 𝑜𝑢,𝑖 = 1} = {𝑟𝑢,𝑖 | 𝑜𝑢,𝑖 = 1}.

For both datasets, we split the corresponding MNAR dataset into a

training (90%) and a validation (10%) sets, while all the MAR data is

set to testing set. In addition, we restrict our samples to the users

with at least one conversion behavior in the testing set as [11, 26].

B.2 Baselines
We compare our proposed methods with the following baselines:

• Naive: It directly uses the naive estimator as the loss function

for CVR prediction.

• IPS [30]: It uses the inverse propensity reweighting approach

to adjust the distribution of the biased training data.

• DR-JL [34]: It proposes a doubly robust learning model which

jointly trains the imputation model and prediction model.

• MRDR [11]: It is the state-of-the-art model for debiasing CVR

prediction, which reduces the variance of doubly robust learn-

ing method by designing a new loss for the imputation model.

For all considered methods, we follow prior work [11] to use fac-

torization machine (FM) [21] for both CTR and CVR predictions in

experiments of Coat, Yahoo, and the semi-synthetic datasets. The

CTR prediction model is firstly learned with FM, and used to gen-

erate the CTR scores for inverse propensity weighting as [11, 34].

B.3 Model Implementation
We implement all models with TensorFlow [1] and optimize them

with mini-batch Adam [16]. We determine the hyper-parameters

of each model based on grid search, and the search ranges for

the embedding size, batch size, learning rate, L2 regularization

coefficient, and sample ratio of unclicked events to clicked events

are set as {16, 32, 64, 128, 256}, {256, 512, 1024, 2048}, {5e-5, 1e-4, 5e-4,

1e-3, 5e-3, 1e-2}, {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}, and {2, 4, 6, 8},

respectively. The best configuration for each method is determined

based on the ranking performance on the validation set.

Appendix C EXPERIMENTAL SETTINGS ON
DATASET PRODUCT

C.1 Baselines
We further provide some descriptions of the baselines as follows:

• DCN [33]: It is a widely used deep CTR prediction model with

a naive estimator. It consists of a deep network and a cross

network for feature interaction learning. It is the base model

for building all other models.

• ESMM [20]: It is a multi-task learning model that jointly opti-

mizes CTR prediction and CTCVR prediction.

• DR-JL [34]: This model is proposed for debiasing rating pre-

diction by designing a doubly robust learning approach that

jointly trains the error imputation model and prediction model.

We adapt it for CVR prediction on large-scale dataset with the

model architecture shown in Figure 1.

• Multi_IPW [42]: This model tackles the selection bias in CVR

prediction with the inverse propensity weighting approach. It

jointly optimizes the CTR loss and IPS based CVR loss.

• Multi_DR [42]: This model tackles the selection bias in CVR

prediction with the doubly robust learning approach inspired

by the DR-JL method.

• MRDR [11]: It is the state-of-the-art model for debiasing CVR

prediction, which reduces the variance of DR method by de-

signing a new loss for the imputation model. However, in the

original paper, no experiments on large-scale datasets have

been conducted. The original model implementation is not suit-

able for large-scale dataset, thus we adapt it for experiments

on Product with the model architecture shown in Figure 1.

For DCN, we train two separate models for CTR and CVR predic-

tions, respectively, and then combine the predictions of these two

tasks to obtain the prediction of CTCVR. Besides, the prediction

models of DR based methods, including DR-JL, MRDR, DR-BIAS

and DR-MSE, are adapted into a multi-task learning framework

presented in Figure 1 to jointly model CTR prediction and CVR pre-

diction. In other words, the propensity estimation model is jointly

learned with the prediction model to handle the data sparsity and

selection bias issues.

C.2 Model Implementation
We implement all models with TensorFlow and optimize them with

mini-batch Adam. For DCN, the embedding size, batch size, learning

rate, keep probability of dropout, L2 regularization coefficient and

L1 regularization coefficient are set to 150, 8000, 1.5e-4, 0.9, 1e-4,

and 1e-8, respectively. The structure of deep network of DCN is set

to [1024, 512, 64], and the number of cross layers is set to 3. Other

models, including ESMM, DR-JL, Multi_IPW, Multi_DR, DR-BIAS

and DR-MSE, are built upon DCN. They use similar settings as the

baseline DCN for common hyper-parameters. Besides, IPS based

loss suffers from the high variance issue. We clip the predicted CTR

with max{0.03,𝐶𝑇𝑅} to obtain propensity score for both IPS based

methods and DR based methods to alleviate this issue. Product
contains a training set and a testing set. We report the best results

among all training epochs on the testing set of all methods in Table 4

for comparison.
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