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ABSTRACT

Post-click conversion rate (CVR) prediction is an essential task for
discovering user interests and increasing platform revenues in a
range of industrial applications. One of the most challenging prob-
lems of this task is the existence of severe selection bias caused
by inherent self-selection behavior of users and item selection pro-
cess of systems. Currently, doubly robust (DR) learning approaches
achieve the state-of-the-art performance for debiasing CVR predic-
tion. However, in this paper, by theoretically analyzing the bias,
variance and generalization bounds of DR methods, we find that
existing DR approaches may have poor generalization caused by
inaccurate estimation of propensity scores and imputation errors,
which often occur in practice. Motivated by such analysis, we pro-
pose a generalized learning framework that not only unifies existing
DR methods, but also provides a valuable opportunity to develop
a series of new debiasing techniques to accommodate different
application scenarios. Based on the framework, we propose two
new DR methods, namely DR-BIAS and DR-MSE. DR-BIAS directly
controls the bias of DR loss, while DR-MSE balances the bias and
variance flexibly, which achieves better generalization performance.
In addition, we propose a novel tri-level joint learning optimization
method for DR-MSE in CVR prediction, and an efficient training
algorithm correspondingly. We conduct extensive experiments on
both real-world and semi-synthetic datasets to validate the effec-
tiveness of our proposed methods.

CCS CONCEPTS

« Information systems — Recommender systems.
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1 INTRODUCTION

The post-click conversion rate (CVR) prediction has gained much
attention in modern recommender systems [11, 20, 26, 39, 40], as
post-click conversion feedback contains strong signals of user pref-
erence and directly contributes to the gross merchandise volume
(GMV). In many industrial applications, CVR prediction is com-
monly regarded as the central task for discovering user interests
and increasing platform revenues. For a user-item pair, CVR repre-
sents the probability of the user consuming the item after he/she
clicks it. Essentially, the task of CVR prediction is a counterfactual
problem. This is because what we want to know during inference
is intrinsically the conversion rates of all user-item pairs under
the assumption that all items are clicked by all users, which is a
hypothetical situation that contradicts reality.

Most of the literature treats CVR prediction as a missing data
problem in which the conversion labels are observed in clicked
events and missing in unclicked events. A conventional and natural
strategy is to train the CVR model only based on clicked events and
then predict the values of CVR for all the events [19, 31]. However,
this estimator is biased and often obtains a sub-optimal result due
to the existence of severe selection bias [11, 20, 26]. In addition,
the data sparsity issue, namely, the sample size of clicked events
being much smaller than that of unclicked events, will amplify the
difference between these two types of events and thus aggravate
the selection bias issue.

Several approaches have been proposed to derive unbiased esti-
mators of CVR by dealing with selection bias. Error imputation [4]
and inverse propensity score (IPS) weighting [29, 42] are two main
strategies for debiasing CVR prediction tasks. In addition, Doubly
robust (DR) estimators can be constructed by combining EIB and
IPS approaches [26, 39, 42]. A DR estimator enjoys the property of
double robustness, which guarantees the unbiased estimation of
CVR if either the imputed errors or propensity scores are accurate.
Compared with EIB and IPS methods, the DR method has a better
performance in general [34].

There are still some concerns for DR methods, even though they
usually compare favorably with EIB and IPS estimators. Theoretical
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analysis of DR estimators in Section 3.1 shows that the bias, vari-
ance and generalization bounds all depend on the error deviation
of the imputation model weighted by the inverse of propensity
score. This is a worrying result, because the inverse of propensity
score tends to be large in unclicked events and error deviations of
the imputation model are most likely to be inaccurate in unclicked
events due to the selection bias and data sparsity. It indicates that
the bias, variance and generalization bounds may still be large un-
der inaccurate imputed errors in unclicked events. Recently, several
approaches, mainly including doubly robust joint learning (DR-JL)
[34] and more robust doubly robust (MRDR) [11], have been de-
signed to alleviate this problem. MRDR aims to reduce the variance
of DR loss to enhance model robustness, but it may still have poor
generalization performance when the bias is large. DR-JL attempts
to reduce the error deviation of the imputation model in order to
obtain a more accurate estimator of CVR, but this method does
not control the bias and variance directly. Therefore, it would be
helpful if we could find a more effective way to control the bias and
variance directly.

In this paper, we reveal the counterfactual issues behind the
CVR prediction task and give a formal and strict causal definition
of CVR. Then, by analyzing the bias, variance and generalization
bound of the DR estimator, we derive a novel generalized learning
framework that can accommodate a wide range of CVR estima-
tors through specifying different metrics of loss functions. This
framework unifies various existing doubly robust methods for debi-
asing CVR prediction, such as DR-JL and MRDR. Most importantly,
it provides key insights for designing new estimators to accom-
modate different application scenarios in CVR prediction. Based
on this framework, from a perspective of bias-variance trade-off,
we propose two new doubly robust estimators, called DR-BIAS
and DR-MSE, which are designed to more flexibly control the bias
and mean squared error (MSE) of DR loss function, respectively.
DR-MSE achieves better generalization performance based on our
analysis compared with existing DR based methods. In addition,
we propose a novel tri-level joint learning optimization method
for flexible DR-MSE in CVR prediction, and an efficient training
algorithm correspondingly. Extensive experiments are carried out
to validate the advantages of the proposed methods compared with
state-of-the-art techniques. DR-MSE outperforms them up to 3.22%
in DCG@2 in our experiments.

The main contributions of this paper can be summarized as
follows: (1) We propose a generalized framework of doubly ro-
bust learning, which not only unifies the existing DR methods,
but also provides key insights for designing new estimators with
different requirements to accommodate different application sce-
narios. (2) Based on the proposed framework, we design two new
doubly robust methods, called DR-BIAS and DR-MSE, which can
better control the bias and mean squared error, compared with
existing methods. (3) For the bias-variance tradeoff parameter of
DR-MSE, we propose a tri-level DR-MSE joint learning optimiza-
tion for the CVR prediction task, and an efficient training algorithm
correspondingly. (4) Experimental results on both real-world and
semi-synthetic datasets show that the two proposed doubly ro-
bust methods outperform the state-of-the-art methods significantly.
Especially, both datasets with missing-at-random ratings and large
industrial dataset are used for comprehensive evaluation.
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2 PRELIMINARIES

In this section, we uncover the counterfactual feature of CVR pre-
diction task within the potential outcome framework [12, 24], and
discuss some existing approaches for CVR prediction.

2.1 Causal Problem Definition

Notation is described as follows. Let U = {1,2,...,m} and I =
{1,2,...,n} be the sets of m users and n items, respectively, and
D = U X I be the set of all user-item pairs. Let x,,; be the feature
vector of user u and item i, and ry; € {0, 1} be the indicator of
the observed conversion label. Let o, ; be the indicator of a click
event, i.e., 0,,; = 1 if user u clicks item i, 0, ; = 0 otherwise. Then,
O ={(ui) | (ui) € D,o,,; = 1} denotes all the clicked events.

For any user-item pair (u, i), we are interested in predicting the
CVR if user u had clicked item i. Notice in particular that the word
“if” is counterfactual. Specifically, in the real world, each user
clicks only some items and many items have never been clicked by
some users, but what we want to know is the conversion rates of
all the user-item pairs when each user clicks all items, which is a
hypothetical situation that contradicts reality.

Potential outcome is a basic tool to delineate counterfactual
quantity in causal inference [12]. Through it, the task of predicting
CVR can be defined formally. Concretely, we treat o, ; as a treatment
(or an intervention) and define the potential conversion label r, ; (1),
which represents the conversion label of a user u on an item i if the
item is clicked by the user. Correspondingly, r,;(0) is defined as
the conversion label if the user u did not click the item i. Then the
CVR can be fundamentally defined as

P(ry,i(1) = 1| Xui = xu,i), (1)

which is a causal definition and it is coherent and consistent with
the practical implications of CVR in recommender systems. In com-
parison, the conventional definition of CVR (see [20] ), defined
by P(ryi = 1| Xu,i = Xui,0u; = 1), is based on association (or
correlation) and lost the meaning of “counterfactual”.

For estimating CVR in Equation (1), a fundamental challenge is
that only one of the potential outcome (ry,;(1), r,,i(0)) is observ-
able. By consistency assumption, r,,;(1) is observed when o,,; = 1,
missing otherwise. Therefore, the goal of estimating CVR can be
recast into a missing data problem.

For ease of presentation, we denote R € {0, 1} as the full
potential conversion label matrix with each element being r,, ; (1),
and let R = {r,;(1) | (w,i) € O} = {ryi | (u,i) € O} be the set
consisting of potential conversion labels r,, ;(1) in clicked events.
Let R € [0,1]™*" be the predicted conversion rate matrix, where
each entry 7, ;(1) € [0, 1] denotes the predicted conversion rate
obtained by a model f; (xy,;) with parameters ¢. If the full potential
conversion label matrix R was observed, the ideal loss function is

A 1
Ligea RR) = 750 D eus (2)
(u,i)eD

where e, ; is the prediction error. In this paper, we employ the
cross entropy loss ey, ; = —ry,,; (1) log{#,,; (1)} —{1—ry,; (1)} log{1—
Fui(1)}. Ligear(R,R) can be regarded as a benchmark of unbiased
loss function theoretically, even though it is infeasible due to the
inaccessibility of R practically.
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2.2 Existing Methods

A direct method is to use the following loss function
Lnaive ®RR%) = |07} 2i(ui)eo eui based on the observed
conversion labels R. It is well known that Lyzive (ﬁ, R?) is not
an unbiased estimate of £;4,4; (R, R). Next, we will briefly review
some typical and latest methods for addressing the selection bias
issue.

2.2.1 Error Imputation Based Estimator. The error imputation
based (EIB) estimator can be derived by introducing an error impu-
tation model é,; = gg(xy,;) to fit the prediction error e, ;. Given
the imputed errors, the loss function of EIB method is given as

LeB(RR%) = D™ X iy lowiewi + (1 - 0ui)éuil.

2.2.2  Inverse Propensity Score Estimator. The inverse propensity
score (IPS) approach [29] aims to recover the distribution of all
events by weighting the clicked events with 1/p,, ;, where p,; =
P(oy,; = 1) = E[oy,;] is the propensity score [23]. Given the esti-
mate of py, ;, denoted as py, ;, the loss function of IPS estimator is
presented as Lips(RR) = D] 2(ui)eD Ou,i€u,i/ Pu,i-

2.2.3  Doubly Robust Joint Learning Estimator. Doubly robust (DR)
estimator can be constructed in the augmented IPS form [2, 34] by
combining EIB and IPS methods. Given the learned propensities
p= {pu,i | (u,i) € D} and imputed errors E= {éu,i | (u,i) € D},
its loss function is formulated as

Ou,i(eu,i - éu,i)

LDR(RRO)=L Z [éu,i+ ®3)

DI (ui)eD Pui

LDpR (ﬁ, R?) involves the conversion rate model #,,;(1) = f¢(xu,i)
and error imputation model é,; = gg(xy,;). Doubly robust joint
learning (DR-JL) approach [34] estimates them alternately: given 0,
¢ is updated by minimizing (3); given d; 0 is updated by minimizing

£ o=
(u,i)eD

Ou,i (éu,i - ‘3u,i)2

> 4
s 4

2.2.4 More Robust Doubly Robust Estimator. Recently, the more
robust doubly robust (MRDR) method [11] enhances the robustness
of DR-JL by optimizing the variance of the DR estimator with the
imputation model. Specifically, MRDR keeps the loss of the CVR
prediction model in (3) unchanged, while replacing the loss of the
imputation model in (4) with the following loss

LIFPRo) = Y
(w,i)eD

Uu,i(éu,i - eu,i)z . 1 _ﬁu,i

Pui Pu,i

®)

This substitution can help reduce the variance of £ pr(R R?) and
hence a more robust estimator might be obtained.

2.2.5 Bias, Variance and Generalization Bound of DR Estimator.
Given a hypothesis space H of CVR prediction matrix R, we define
the opEimal R* as R* = arg minﬁg(H Lpr(R,R°). Given imputed
errors E and learned propensities P, The following Lemmas 1 and 2
present the existing theoretical results of DR estimator.

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

LEMMA 1 (B1As AND VARIANCE). the bias and variance of DR
estimator are given as

R 1 . eyi— €ui
Bias[ Lpr(R R%)] = @| S (s = ) S )|
(w,i) €D Pu,i
1 (éu,i - eu,i)z
VolLpr(RR?)] = DF Z Pu,i(1 _Pu,i)T~

(u,i)eD u,i

LEMMA 2 (GENERALIZATION BOUND). For any finite hypothesis
space H of prediction matrices, then with probability 1 — 1,

~ A 1 | N p ,'l A%k
Lideal(R ,R) < LDR(R ,RD) + 1D Z PulA ?uz | i~ €y
wiep  Pui
Bias term
ot
log(2|H|/n) Z (6”” eu»i)z
2 S >
2D (wpep  Pui

Variance term

where &, is the prediction error associated with R, ézi is

the prediction error corresponding to the prediction matrix RT =
sh V252
argmaxp cqq 2 (ui)en (ewi = €, )"/} ;-

3 PROPOSED METHODS
3.1 Motivation

We reveal some worrying features of DR method, which provides an
initial motivation. Lemma 1 formally gives the bias and variance of
the DR estimator. According to the lemma, Bias[ L pr(RR%)] ~ 0,
if either (é,,; — ey,;) = 0 or (Ppu,; — pu,i) ~ 0, which is the property
of double robustness. Nonetheless, both the bias and variance terms
still have some issues. Specifically, the bias consists of the product
of the errors of the propensity score model and imputation model
weighted by 1/p,, ;. The term (e, ;j—&,.;) /pu.i is worrisome, as 1/py, ;
tends to be large in unclicked events and inaccurate estimates of
ey,i are most likely to occur in these events. Analogously, (é,,; —
ewi)?/ pi ; in the variance term is also likely to be problematic.

It can be seen that both the bias and variance are correlated with
the term of error deviation |é,; — e,;|. Thus, it may be helpful
to reduce them if the magnitude of error deviation is small. This
is the basic idea of DR-JL approach that tries to reduce the error
deviations of all events by optimizing the loss function (4). Further,
the MRDR method [11] proposed replacing LERi] L(H) in (4) with
.EQ/[RD R(0) in (5) to deal with the large variance term. The idea
behind Equation (5) is the truth that

04,i (1 = pui) (€ — eu,i)z

TolLo®R] = g Y Eol !

IDF o Pri

namely, the expectation of LQ/IRDR (0) equals to Vo[ Lpr (R,R%)].
Interestingly, Lemma 2 shows that the generalization bound
depends on a weighted sum of the bias term and square root of the
variance term in addition to the empirical loss, which fully reflects
the feature of bias-variance trade-off. Since DR-JL does not control
the bias and variance directly and MRDR pays no attention to the
bias, both of them may still have poor generalization performance.
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3.2 A Generalized DR Learning Framework

The difference between DR-JL and MRDR lies in the loss function
of the error imputation model. As presented in Section 2.2, the
alternating algorithm of DR-JL implies that its underlying loss
is Lpr(R R%) + LER_]L(Q). Similarly, the real loss of MRDR is
Lpr(R R?) +££’IRDR (0). Note that the real loss functions of DR-JL
and MRDR share a similar structure, so they can be discussed within
a generalized framework. The real loss function of this framework
has the following form

LR R®) + Metric{ L(R R°)}, (6)

where £(R R?) is an arbitrary unbiased loss function for train-

ing CVR prediction model, such as L;ps(R,R°), Lz75(R,R%) and
Lpr(R R). Metric{ L(R,R%)} is a pre-specified metric that re-
flects some features of £(R,R°) and is usually applied to learn
the error imputation model. For example, the MRDR chooses
VO[LDR(R R?)] as the metric, and DR-JL uses 3y j)ep (éui —
ey,i)?. Table 2 summarizes the metrics and ideas of existing doubly
robust methods and our proposed methods, DR-BIAS and DR-MSE,
which will be detailedly illustrated in Section 3.3.

Table 1: Generalized framework of various DR methods

Method  Metric Goal
DR-JL 2uwiyen (bui = ewi) 2" Control error of imputation.
MRDR VolLpr(RR?)] Control variance.

DR-BIAS  Bias[£Lpr(R,R%)]
DR-MSE  MSE[Lpr(R R%)]

Further reduce bias.
Bias-variance trade-off.

It is noteworthy that due to the missing ry ;(1), optimizing
Metric{ L(R,R®)} directly is sometimes not feasible. In this case,
one can use an approximation of M etric{ L(R,R%)}. For example,
DR-JL adopts the feasible loss function (4) to approximate the in-
feasible X’y 5y e p (8ui — ew,i)?, and MRDR employs (5) to substitute
Vol Lor(RR)].

Importantly, the proposed framework provides a valuable op-
portunity to develop a series of new unbiased CVR estimators with
different characteristics to accommodate different application sce-
narios. In Section 3.3, we will develop two new DR approaches
based on this framework.

3.3 Two New DR Methods

As discussed in Section 3.1, MRDR aims to reduce the variance of
Lpr(R R%), and is expected to achieve a more robust performance.
However, this strategy works well only when Bias[ Lpgr (R R)] is
small enough as suggested by the generalization bound presented in
Lemma 2. Reducing variance is less effective when the bias is large.
DR-JL attempts to lower both the bias and variance by reducing the
error deviation of the imputation model. Nevertheless, it does not
directly control the bias and variance of £pg(R, R°). To alleviate
these limitations, we propose two new DR methods, DR-BIAS and
DR-MSE, which are designed to further reduce bias and achieve
better bias-variance trade-off, respectively.

3.3.1 DR-BIAS. DR-BIAS aims at further reducing the bias of the
typical DR method through the optimization of the imputation
model, since an accurate CVR prediction means that the bias should

Quanyu Dail, Haoxuan Li?, Peng Wu?%, Zhenhua Dongl, Xiao-Hua Zhou?*, Rui Zhang“, Rui ZhangS,Jie Sun’

be small enough. Based on Lemmas 1 and 2, we design a variant of
the bias of DR method as the metric to achieve this goal, given by
1 (0ui = pui)? ;
D] 5 (ewi — éui)’
(wnep  Pui
However, the above metric is infeasible due to the missing of e, ;
in unclicked events. We make an approximation of it and define
the loss of the imputation model of DR-BIAS as follows

LER*BIAS (9) — Z
(u,i)eD

Ou,i(éu,i - eu,i)2 . (Ou,i _ﬁu,i)z (7)
Pu,i ﬁlzl,i

By a comparison between Equation (5) and (7), we find that (7)
just substitutes the weight (1 — py ;) /pu,; with (1 — ﬁu’i)z/ﬁii in
clicked events. Also note that

(1= pui)/pui > 1, if pu; < 1/2,
(1= pui)/Pui < 1, if pui > 1/2,

which means that DR-BIAS further magnifies the penalty of the

clicked events with low propensity, and minifies those with high
propensity. This leads to a desired effect: in the clicked events
that the propensity model performs poorly, the amplified weights
force the error imputation model to perform well. In other words,
error imputation model complements the inaccurate part of the
propensity score model. Thus, DR-BIAS would have smaller bias
than other methods.

3.3.2 DR-MSE. Lemma 2 indicates that pursuing the bias reduction
or variance reduction alone cannot fully control the generalization
error. Seeking a better balance between the bias and variance ap-
pears to be a more effective way to improve the prediction accuracy.
Therefore, we design a new model, namely DR-MSE, to achieve this
goal. Specifically, a generalized Mean Squared Error (MSE) metric
for DR-MSE method is defined as

LDR-MSE () = ) pDR-BIAS (9) . (1 — ) LMRDR(g)  (g)

where A is a hyper-parameter for controlling the strength of the
bias term and the variance term. When A = 1, DR-MSE is reduced to
DR-BIAS; when A = 0, DR-MSE is reduced to MRDR; when A = 0.5,
DR-MSE optimizes the MSE of £ pr(R R?) scaled by 0.5 through
the imputation model.

However, simply using a hyper-parameter A for all samples is
not flexible enough due to the different characteristics and pop-
ularities of users and items. Specifically, different samples suffer
from different issues during training, i.e., some might have higher
variance while others might have worse bias. Thus, it is neces-
sary to adopt different bias-variance tradeoff strategies for different
user-item pairs. To achieve this goal, A can be computed through
a function A (xy,;) parameterized by &, such as a neural network,
which enables personalized values for different user-item pairs. The
improved loss of DR-MSE is as follows

LDR-MSE (9, /15) _ . g‘e@

ou,iAgf (xu,i) (éu,i_eu,i)z . (01,4,i*f7u,i)2
Pui [Jii
Ou.i(l_/lg(xu,i))(éu,i_eu,i)z . l_ﬁu,i
Pui Pui

©)

+
(u,i)eD
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Figure 1: Model architecture of DR-BIAS and DR-MSE for ex-
periments on large-scale industrial dataset. DCN is used as
the base model for feature interaction learning for illustra-
tion only, and it can be readily replaced with other models
such as FM [21], Wide&Deep [8] and DeepFM [10].

Essentially, the generalization bound of DR methods contains a
weighted sum of the bias term and square root of the variance term,
which can be flexibly tradeoff via the proposed generalized MSE
metric in (8). Thus, it is expected that DR-MSE can obtain a better
prediction performance under the tighter generalization bound.

4 PROPOSED TRAINING APPROACH

4.1 Model Architecture and Training Objective

Figure 1 shows the architecture of DR-BIAS and DR-MSE for exper-
iments on real industrial scenarios. It is a multi-task learning frame-
work with three DCN networks for the predication of post-view
click-through rate (CTR), CVR, and error imputation, respectively.
The embedding lookup layers of the DCN models for the CTR and
CVR tasks are shared to tackle data sparsity issue, while the DCN
model for the error imputation has its own embedding lookup layer.
Note that DCN can be readily replaced with other models such
as FM [21], Wide&Deep [8] and DeepFM [10]. We evaluate our
proposed methods with both FM and DCN in our experiments.

During optimization, the CTR, CVR, and error imputation models
are updated alternatively with stochastic gradient descent. Specifi-
cally, with the parameters of both CTR and CVR models fixed, the
error imputation model is updated first by optimizing (9). With
model parameters of the error imputation model fixed, the CTR
and CVR models are optimized jointly through the sum of CVR loss
and CTR loss

Lerevw (¢:4.00)) =Lor(8,00) + Lerr(@),

where Lpr($,0(A)) = Zwienlui + ouilewi — ui)/pu,il,
Letr(D) = = Zwiyen [ouwi - log(pui) + (1 = 0y,) - log(1 = pu,i)],
pu,i is the predicted CTR value, and used as the estimated propen-
sity for unbiased CVR estimation. This joint learning process con-
tinues until the model converges. For DR-MSE, the optimization
process involves updating A¢(-), which makes it more challenging.
In Section 4.2, we formally formulate the optimization problem and
propose an effective training algorithm.
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Lower
$o.1

Figure 2: The proposed tri-level DR-MSE joint learning opti-
mization method updates the A; in DR-MSE adaptively in up-
per level, while the existing bias-variance tradeoff approach
uses a fixed 1. Middle and lower levels are for the joint train-
ing between the CTR&CVR and error imputation models.

4.2 Tri-Level DR-MSE Joint Learning (JL)
Optimization and Training Algorithm

We propose the tri-level optimization DR-MSE JL approach shown

in Figure 2. Compared to the existing joint learning methods, our

approach allows adaptively updating the A¢ in DR-MSE. This goal

can be formalized as the following tri-level optimization problem

£ = argmin Lo (76", (0" (29))

4.8°(0 () (0 () = argmin Lerov (4,£,0° ()

" _ . ~DR-MSE
s.t. 07 (A¢) = arg mem L, (0, /15)

There are two challenges for solving the above problem. Firstly, it
is computationally expensive to search for the optimal DR-MSE by
minimizing the upper loss in the tri-level DR-MSE JL optimization
method. Secondly, the DR-MSE parameter A of the upper model
is difficult to be minimized as there is no closed-form solution.
To address them, we further propose a training algorithm for this
tri-level optimization problem as shown in Alg. 1.

For illustration purposes, the relevant parameters in Alg. 1 are
updated using vanilla SGD. In practice, both SGD and its variants
can be used for iterative updates. Specifically, for the error impu-
tation optimization problem, LEDR_MSE is differentiable w.r.t. the
parameter 6 of the error imputation model. Given A, one can com-
pute the value of 0541 (4s) after a single vinalla SGD. It should
be noted that this value is not directly used for the update of the
error imputation model parameter 0s,1. Moreover, the reason for
using single-step SGD is that multi-step SGD here does not re-
sult in better performance, but rather increases the computational
complexity [13].

Similarly, LcTcvr is differentiable w.r.t. both CTR model param-
eter { and CVR model parameter ¢. Given the pseudo-updated
Os+1 (As), one can compute the value of {541 (6541 (As)) and
¢s+1 (0541 (As)) after a single vanilla SGD. Both of the values are
not directly used for the update of the CTR and CVR model as well.
After that, with given {511 (0s4+1 (As)) and ¢si1 (0541 (As)), we up-
date the bias-variance tradeoff parameter in DR-MSE from A to
As+1 via a single vanilla SGD. Finally, based on the updated A1, we
take the idea of joint learning to update the error imputation model
parameter 6g;1 and the CTR&CVR model parameters {41, Ps+1,
in which the classical multi-step SGD is used until the stopping
criteria is satisfied.

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

580



592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Algorithm 1: Tri-Level DR-MSE JL Optimization Training

Input: S, observed ratings R, learned propensities f’,
1 for 0L, 0% c O and Ds ¢ D (s € {0,1,---,5—1}) do

2 Compute an update function based on O!
Os+1 (As) — 05— ’]VGSLeDR_MSE (9, ).5);
3 Compute an update function based on Dg
Bs+1(Os+1 (As)) < ¢s =V LeTevr (. 8, Os+1 (As));s
4 Compute an update function
{s41(0s41 (As)) « & = Vg Letevr (¢, 8 51 (As))s
5 Compute the upper loss based on O¥
6 LR (¢s+1(0s+1 (A5)), Ls+1(0s+1 (As)));
7 Update the bias-variance trade off parameter
8 | Bt &= nVe Lo ($or1 0o (A)). Lot (Bor1 (A)) )
9 Update the bias-variance trade off model Ag11 < Agm;
w | forOl, cO@te{01--,T-1})do
11 Update the imputation model based on Oé,t
93,t+1 — 95,t - Uvesy,LER_MSE (6, As+1);
12 end
13 for Ds; c D (t€{0,1,---,T—1})do
14 Update the propensity model based on Dy ;
{41 < Gt = V¢, LeTevr (9,6, $ Os.7)s
15 Update the predication model based on Ds ;
Pse1 b5 — Vg, Letevr (9 Gty s.7);3
16 end
17 Copy the model parameter 05410 < 05 7;
18 Copy the propensity model’s parameter {s+1,0 < {573
19 Copy the predication model’s parameter ¢sy10 < ¢s .
20 end

5 REAL-WORLD EXPERIMENTS

In this section, we evaluate the proposed methods by conducting
experiments on three real-world datasets, including two benchmark
datasets with missing-at-random (MAR) ratings and one large-
scale industrial product dataset. We aim to answer the following
two research questions (RQ): (1) How do our methods compare
with state-of-the-art models in terms of debiasing performance in
practice? (2) How do the bias-variance tradeoff and the modeling of
unobserved data affect the performance of the proposed methods
in practice?

5.1 Experimental Setup

5.1.1 Datasets with MAR Ratings. A MAR testing set is impor-
tant for assessing the performance of an unbiased recommender.
Thus, we follow existing studies [11, 26] to use Coat Shopping!
and Yahoo! R3? for the evaluation of CVR prediction model. To
make the two datasets consistent with the CVR prediction task, we
further preprocess them following previous studies [11, 26]. The
detailed descriptions of these two datasets and the corresponding
data preprocessing method are provided in Appendix B.1.

https://www.cs.cornell.edu/~schnabts/mnar/
Zhttp://webscope.sandbox.yahoo.com/
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Table 2: Statistics of the advertising dataset Product

Dataset #Impression #Click #Conversion #User #ltem
Training 739.66M 3.73M 1.90M 524K 68K
Testing 99.73M 519K 268K 283K 52K

Note: “M” means million, and “K” means thousand.

5.1.2 Industrial Product Dataset. To provide more comprehensive
and reliable evaluation, we also conduct experiments on a large-
scale App advertising dataset collected from a real-world system.
We denote this dataset as Product with some statistics of it dis-
played in Table 2. It contains 8 consecutive days logged data from
the system, with the first 7 days for training and the last day for
testing. Each sample of the dataset contains features from a user, an
item and the corresponding context. Although the unbiased data
in CVR prediction is unobtainable in real applications since we
cannot force users to randomly click the exposed items, the experi-
ments can still provide valuable observations for the applications
of debiasing CVR prediction models in real systems.

5.1.3 Baselines and Implementation. For experiments on Coat and
Yahoo, we compare our methods with several competitive base-
lines, including Naive, IPS, DR-JL and MRDR. The base model for all
methods is factorization machine. Some brief descriptions of them
and implementation details are provided in Appendix B. For exper-
iments on Product, we also select some state-of-the-art CVR pre-
diction models for large datasets, including DCN [33], ESMM [20],
Multi_IPW [42] and Multi_DR [42]. The base model for all methods
is DCN. More details are provided in Appendix C.

5.1.4 Experimental Protocols. For experiments on Coat and Ya-
hoo, we evaluate the ranking performance with two types of met-
rics, i.e., discounted cumulative gain (DCG) and recall, as prior work
on debiasing CVR prediction [11, 26]. For experiments on Product,
we evaluate our proposed methods on three important tasks, i.e.,
CTR, CVR, and CTCVR (CTCVR = CTR * CVR) predictions, with
the AUC score following existing works [20, 42].

5.2 Overall Performance (RQ1)

5.2.1 Unbiased Evaluation. The experimental results on Coat and
Yahoo are shown in Table 3. We have the following observations.
First, our proposed methods are effective for debiasing CVR
prediction task. As shown in Table 3, both DR-MSE and DR-BIAS
consistently outperform all the other ones in terms of DCG@K and
Recall@K (K = 2,4, 6) on the two real-world datasets, with only one
exception of DR-MSE on Recall@6 of Yahoo. In particular, DR-MSE
achieves a significant 3.22%, 2.65% and 1.87% relative improvements
over MRDR on DCG@2, DCG@4 and DCG@6, respectively.
Second, it is necessary to improve the bias and variance of the
typical DR method under inaccurate propensity estimation and
error imputation so as to enhance its robustness and ranking per-
formance. As shown in Table 3, IPS has worse performance on
Coat and only comparable performance on Yahoo compared with
the Naive method, since it suffers heavily from the high variance
issue. Both DR-JL and MRDR performs better compared with IPS
because of their double robustness. DR-BIAS improves over MRDR
by achieving smaller bias through magnifying the penalty of the
clicked events with low propensity while minifying those with
high propensity as analyzed in Section 3.3.1. However, these DR

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

A Generalized Doubly Robust Learning Framework for Debiasing Post-Click Conversion Rate Prediction

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Table 3: Performance comparison based on Coat and Yahoo.

Datasets Models DCG@2 DCG@4 DCG@6 Recall@2 Recall@4 Recall@6

Naive 0.7283 + 0.0264 0.9763 + 0.0258 1.1512 £ 0.0241 0.8474 + 0.0310 1.3786 + 0.0374 1.8490 £ 0.0379

1PS 0.7102 + 0.0220 0.9596 + 0.0222 1.1299 £ 0.0210 0.8248 + 0.0272 1.3596 + 0.0360 1.8174 £ 0.0377

DR-JL 0.7416 + 0.0224 1.0021 + 0.0224 1.1762 £ 0.0229 0.8645 + 0.0264 1.4225 + 0.0362 1.8906 + 0.0403

Coat MRDR 0.7442 + 0.0225 1.0132 £ 0.0219 1.1947 £ 0.0194 0.8736 + 0.0273 1.4494 + 0.0325 1.9370 £ 0.0318
DR-BIAS | 0.7648 + 0.0192*  1.0353 + 0.0169* 1.2127 + 0.0162* | 0.8959 + 0.0251* 1.4751 + 0.0273* 1.9517 + 0.0324"
DR-MSE | 0.7682 + 0.0151* 1.0401 + 0.0150" 1.2170 + 0.0139" | 0.8997 + 0.0194* 1.4816 = 0.0241* 1.9569 + 0.0262"

Naive 0.5469 + 0.0009  0.7466 + 0.0008  0.8714 = 0.0004 | 0.6479 + 0.0012 1.0745 + 0.0016 1.4098 + 0.0013

IPS 0.5502 +0.0010  0.7520 +0.0009  0.8751 0.0009 | 0.6545+0.0017 10797 +0.0017  1.4168 % 0.0019

DRJL | 05602+0.0034 07586 +0.0030  0.8808 +0.0025 | 0.6615+0.0042 10849 +0.0049  1.4129 + 0.0039

Yahoo MRDR 0.5623 + 0.0024 0.7603 + 0.0027 0.8820 + 0.0020 0.6646 + 0.0033 1.0881 + 0.0045 1.4145 + 0.0037
DR-BIAS | 0.5646 + 0.0023*  0.7624 + 0.0021* 0.8841 + 0.0018" | 0.6676 + 0.0026*  1.0904 + 0.0028* 1.4169 + 0.0020

DR-MSE | 0.5662 + 0.0017* 0.7639 + 0.0016* 0.8850 + 0.0014* | 0.6670 + 0.0026" 1.0891 + 0.0029 1.4140 £ 0.0028

Note: * statistically significant results (p-value < 0.05) using the paired-t-test compared with the best baseline.

Table 4: Performance comparison based on Product.

Models  CTR AUC (%) CVR AUC (%) CTCVR AUC (%)
DCN 90.763 75.691 95.254
ESMM 90.704 81.647 95.505
DR-JL 90.754 81.768 95.548
Multi_IPW 90.794 81.912 95.571
Multi_DR 90.807 81.864 95.569
MRDR 90.721 81.810 95.535
DR-BIAS 90.913 81.974 95.633
DR-MSE 90.825 82.067 95.654

methods still suffer from the high bias and/or variance issues. Our
proposed DR-MSE can further achieve improvements over all other
DR methods by better controlling the bias and variance.

5.2.2 Large-scale Industrial Dataset. The experimental results on
Product are shown in Table 4. Firstly, we can observe that ESMM
improves over DCN on CVR and CTCVR prediction tasks by tack-
ling the data sparsity issue with the multi-task learning framework,
but it still suffers from the selection bias issue. Secondly, the de-
biasing CVR models can simultaneously tackle the data sparsity
and selection bias issues, thus they outperform DCN and ESMM.
Thirdly, our proposed DR_BIAS and DR-MSE achieve significant im-
provements over existing debiasing CVR prediction models, includ-
ing DR-JL, Multi_IPW, Multi_DR and MRDR, which is consistent
with the observations on experiments with unbiased evaluation.
It demonstrates that our proposed methods have both theoreti-
cal guarantee and great application potentials in real industrial
systems.

5.3 In-depth Analysis of DR-MSE (RQ2)

We conduct an analysis of two important aspects of DR-MSE with
Coat in this section. The experimental results are displayed in
Figure 3. Note that similar results can be observed on other datasets,
and we do not present them here only due to space limitations.
The loss of the imputation model of DR-MSE contains a bias term
and a variance term. We conduct experiments by manually varying
A1in Eq. (8) to demonstrate the necessity of conducting bias-variance
tradeoff. The left part of Figure 3 presents the experimental results
of DR-MSE when varying A from 0.1 to 0.9. We can find that the
performance of DR-MSE first improves with the increase of A, and
then gradually drops. It shows that an appropriate tradeoft between
this two terms can improve model generalization performance.
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Figure 3: The effect of the coefficient A for balancing bias and
variance, and the sample ratio of unclicked events to clicked
events on the ranking performance of DR-MSE.

DR methods can achieve double robustness by jointly consider-
ing clicked events and unclicked events. Here, we also study the
effect of the sample ratio of unclicked events to clicked events on
the performance of DR-MSE. When the sample ratio is set to “All”,
all the unclicked events are utilized for training; when the sample
ratio is set to 0, only clicked events are utilized. As shown in Fig-
ure 3, when the sample ratio ranges from 0 to “All”, the DCG@K
(K = 1,3,5) scores on Coat show an apparent increase first, and
then tend to saturate or decrease slightly. It suggests that a certain
amount of unclicked events can provide useful information for im-
proving the prediction model with the assistance of an imputation
model, but further improvement is marginal when passing some
threshold. In real advertising applications, the unclicked events are
usually composed of the exposed but unclicked events in consider-
ation of time efficiency. This empirical study on the sample ratio
can provide some justification of the practice.

6 SEMI-SYNTHETIC DATA EXPERIMENTS

In this section, we aim to investigate the robustness of our proposed
method through experiments based on semi-synthetic datasets with
different levels of selection bias.

6.1 Experimental Setup

6.1.1 Datasets and Preprocessing. MovieLens 100K> (ML-100K)
is a dataset collected from a movie recommendation service with
100,000 MNAR ratings from 943 users and 1,682 movies. We used
it to generate semi-synthetic datasets for experiments with the
following standard procedures as previous studies [26, 28].

(1) Obtain an approximation of the true ratings of each user on
all items with rating-based matrix factorization [17]. We denote the

3https://grouplens.org/datasets/movielens/100k/
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Table 5: Performance comparison on semi-synthetic datasets based on ML-100k.

Metrics AUC

Log-loss

p 05 1 2

0.5 1 2

Naive 0.7250 + 0.0001

IPS 0.7316 + 0.0001
DR-JL 0.7319 = 0.0004
MRDR 0.7335 + 0.0006

0.6731 + 0.0001
0.6648 + 0.0028
0.6673 + 0.0035
0.6765 + 0.0021

0.5279 % 0.0070
0.5263 + 0.0055
0.5703 + 0.0032
0.5563 + 0.0082

0.3178 + 0.0000 0.3343 + 0.0001 0.4683 + 0.0179
0.3165 + 0.0001 0.3304 + 0.0034 0.4789 + 0.0132
0.3116 = 0.0002 0.3255 + 0.0012 0.3607 + 0.0014
0.3067 % 0.0002 0.3238 + 0.0006 0.3650 + 0.0047

DR-BIAS | 0.7349 + 0.0006*
DR-MSE | 0.7359 + 0.0002*

0.6916 + 0.0009*
0.6928 + 0.0020*

0.6073 + 0.0054"
0.6084 + 0.0168"

0.3064 + 0.0001* 0.3194 + 0.0013"  0.3494 + 0.0058
0.3059 + 0.0001*  0.3193 + 0.0028"  0.3477 + 0.0084

Note: * statistically significant results (p-value < 0.05) using the paired-t-test compared with the best baseline.

predicted rating of a user u on an item i as Ry, ;. Then, the ground-
truth CVR for conversion generation is generated as follows:

€),Y(u,i) € D,

P = o(Rui -

where o(-) is the sigmoid function, and € controls the level of
overall relevance; € is set to 5 in experiments.

(2) Obtain an approximation of the true observations with logistic
matrix factorization [14]. We denote the predicted probability of a
user-item pair (u, i) being observed as éu,i. Then, the ground-truth
CTR for generating the click events is defined as follows:

ctr

Pui = (0u)P ¥ (u,i) € D,

where p controls the skewness of the distribution of the CTR. A
large value of p means a huge selection bias in the clicked events
and a small number of observed click and conversion events. We
set p as 0.5, 1, and 2 in the experiments.

(3) Sample binary click and conversion events with Bernoulli
sampling based on the ground-truth CTR and CVR as follows:

oui ~ Bern(pcl), ry; ~ Bern(p<®r), VY(u,i) € D,

u,i u,i
where Bern(-) is the Bernoulli distribution. Then, the post-click
conversions can be derived as {(u, i, ;) |0y, = 1}.

6.1.2  Baselines and Implementation. The baseline algorithms in-
clude the Naive method, IPS [30], DR-JL [34], and MRDR [11]. The
detailed descriptions of the baselines and model implementation
are provided in Appendix B.

6.1.3  Evaluation Protocols. In semi-synthetic datasets, we have the
ground-truth user preference information and the level of selection
bias of the considered datasets, so that we can investigate model
robustness through experiments. We generate the semi-synthetic
datasets by setting p as 0.5, 1 and 2. The biased set consists of the
clicked events generated by the procedure described in Section 6.1.1,
which is further divided into a training set (90%) and a validation
set (10%). We conduct experiments in each setting for 10 times and
report the average results. Note that larger value of p means higher
selection bias and less clicked events for training because of lower
propensity. We use AUC and Log-loss on test sets to evaluate the
ranking performance and the relevance prediction, respectively.
The test set consists of user-item pairs randomly sampled from the
unclicked ones, and we uniformly sample 50 items for each user in
the experiments.

6.2 Results & Discussion

Our method DR-MSE has the best AUC scores and Log-loss results
across all the considered levels of selection bias (p = 0.5, 1, 2). It
demonstrates that DR-MSE can achieve better ranking performance
and relevance prediction. DR-BIAS also has impressive performance

and outperforms MRDR significantly, which is probably because
DR-BIAS achieves smaller bias by magnifying the penalty of the
clicked events with low propensity while minifying those with high
propensity. With the increase of the power p, the performance of
IPS drops dramatically, and was even worse than that of the Naive
method. It shows that IPS suffers heavily from the high variance
issue. Doubly robust learning approaches, including DR-JL, MRDR,
DR-BIAS and DR-MSE, have better robustness against the selection
bias and demonstrate better results compared with the IPS method.
Our proposed DR-MSE performs the best because of its bias and
variance reduction characteristics.

7 RELATED WORK

7.1 Approaches to CVR Estimation

In practice, CTR prediction models are commonly applied to CVR
prediction task due to their inherent similarity. These CTR predic-
tion approaches include logistic regression based methods [9, 22],
factorization machine based methods [15, 21], deep learning based
methods [8, 10, 33, 37], etc. In addition, many approaches are spe-
cially designed for CVR prediction because of several unique and
critical issues of the task, such as delayed feedback [5, 31, 36], data
sparsity [20, 38] and selection bias [11, 42]. In this paper, we mainly
focus on tackling the selection bias issue.

Selection bias refers to the distribution drift between the train
and inference data, which is widely studied recently [11, 20, 26, 42].
Some existing multi-task learning methods, such as ESMM [20] and
ESM? [38], can alleviate the selection bias, but they are heuristic
methods and lack theoretic guarantee. Further, the author in [42]
tried to use DR method to debias CVR prediction and proposed a
model namely Multi_DR with theoretic guarantee. But they only
validated the proposed methods with the biased training and testing
sets. The authors in [27] proposed a dual learning algorithm for
simultaneously tackling the delayed feedback issue and the selec-
tion bias issue. MRDR [11] designs a new loss for the imputation
model to reduce the variance of Multi_DR [42]. However, it might
still suffer from the high bias of DR method due to the incorrect
estimations of both propensity scores and imputed errors (which
is common in practice). To tackle these problems, in this paper,
we proposed a generalized doubly robust learning framework for
debiasing CVR prediction, which enables us to propose two new
DR methods with more favorable properties.

7.2 Debiasing in Recommendation Tasks

Recent years have witnessed many contributions on incorporat-
ing the causal inference idea into the recommendation domain for
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unbiased learning [25, 30]. For example, [30] explains the recom-
mendation problem by a treatment-effect model, and designs an
IPS based method to remove the bias in the observed data based on
explicit feedback. [34] improves over the IPS based method by de-
signing a doubly robust learning approach. [25, 41] design tailored
unbiased loss to handle user implicit feedback. In addition, several
existing works [3, 6, 18, 35] design debiasing models by leveraging
the available small set of unbiased data. [7] provides a thorough
discussion on the recent progress on debiased recommendation.
Though these methods have achieved many successes in debiasing
recommendation tasks, none of them are specially proposed for
CVR prediction. How to design an unbiased learning algorithm for
CVR prediction is highly important and needs to be studied further.

8 CONCLUSION

We have proposed a generic doubly robust (DR) learning framework
for debiasing CVR prediction based on the theoretical analysis of the
bias, variance and generalization bounds of existing DR methods.
This framework enables us to develop a series of new estimators
with different desired characteristics to accommodate different ap-
plication scenarios in CVR prediction. In particular, based on the
framework, we proposed two new DR methods, namely DR-BIAS
and DR-MSE, which are designed to further reduce the bias and
achieve a better bias-variance trade-off. In addition, we propose
a novel tri-level optimization for DR-MSE, and the corresponding
efficient training algorithm. Finally, we empirically validate the
effectiveness of the proposed methods by extensive experiments
on both semi-synthetic and real-world datasets.
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Appendices

Appendix A PROOF OF LEMMAS

This supplementary material contains the proofs of Lemma 1 and
Lemma 2. For ease of exposition, let L(R) = L(R,R).

LEMMA 1 (BiAs AND VARIANCE). Given imputed errors E and
learned propensities P with py, ; > 0 for all user-item pairs, the bias
and variance of DR estimator are given as

Z (Pui — Pul)(eul_eul)

Pu,i

Bias[ Lpr(R,R%)] = |D|‘

(u,i)eD
~ 1 B .
VO[-CDR(R,RO)]=W Z Pui(1— pul)M'
(w,i)eD puz

PRroOF. According to the definition of bias,
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The variance of Lpg(R) with respect to click indicator is given as
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To show the generalization bound of doubly robust estimator,
we need the Hoeffding’s inequality for general bounded random
variables, which is presented in Lemma 3.

LEMMA 2 (GENERALIZATION BOUND). For any finite hypothesis
space H of prediction matrices, given imputed errors E and learned
propensities P, then with probability 1 — 1,

2
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Variance term
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where é,; is the prediction error corresponding to the prediction

matrix RT = arg maxps cqy 2 (wi)en (€u,i = éz,i)z/[)i,i, e, ; is the
prediction error associated with R*.

Proor. We first note that

Ligea(R*,R) = Lpr(RY)
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Lemma 2 follows immediately from inequalities (10) and (11). O

LEMMA 3 (HOEFFDING’S INEQUALITY FOR GENERAL BOUNDED RAN-
DOM VARIABLES). Let X1, .., XN be independent random variables.
Assume that X; € [m,-,M,-] for every i, Then, for any € > 0, we have

|ZX1 ZEX, >€}<26Xp{— }

Proor. The proof can be found in Theorem 2.2.6 of [32]. O
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Appendix B EXPERIMENTAL SETTINGS ON
COAT, YAHOO, AND
SEMI-SYNTHETIC DATASETS

Here, we provide more detailed experimental settings on Coat,
Yahoo, and semi-synthetic datasets generated from ML-100K.

B.1 Datasets

e Coat Shopping: It contains a MNAR training set and a MAR
testing set. Specifically, there are 6,960 five-star ratings from
290 Amazon Mechanical Turkers on an inventory of 300 coats
in the training set. There are 4,640 ratings collected from the
290 workers on 16 randomly selected coats in the testing set.
¢ Yahoo! R3: It includes a MNAR training set with 311,704 five-
star ratings from 15,400 users and 1,000 songs, and a MAR
testing set with 54,000 ratings from 5,400 users on 10 randomly
selected songs.
To make the two datasets consistent with the CVR prediction task,
we further preprocess them following previous studies [11, 26]:
(1) The conversion label r, ; is defined as 1 if the rating of item
i by user u is greater than or equal to 4, and 0 otherwise.
(2) The click indicator o0y ; is defined as 1 if user u rated item i,
and 0 otherwise.
(3) The sets of observed potential conversion labels r;;(1) is
denoted as R® = {ry,; (1) | 0y; = 1} = {ru,i | oy,; = 1}.
For both datasets, we split the corresponding MNAR dataset into a
training (90%) and a validation (10%) sets, while all the MAR data is
set to testing set. In addition, we restrict our samples to the users
with at least one conversion behavior in the testing set as [11, 26].

B.2 Baselines
We compare our proposed methods with the following baselines:

o Naive: It directly uses the naive estimator as the loss function
for CVR prediction.

o IPS [30]: It uses the inverse propensity reweighting approach
to adjust the distribution of the biased training data.

e DR-JL [34]: It proposes a doubly robust learning model which
jointly trains the imputation model and prediction model.

e MRDR [11]: It is the state-of-the-art model for debiasing CVR
prediction, which reduces the variance of doubly robust learn-
ing method by designing a new loss for the imputation model.

For all considered methods, we follow prior work [11] to use fac-
torization machine (FM) [21] for both CTR and CVR predictions in
experiments of Coat, Yahoo, and the semi-synthetic datasets. The
CTR prediction model is firstly learned with FM, and used to gen-
erate the CTR scores for inverse propensity weighting as [11, 34].

B.3 Model Implementation

We implement all models with TensorFlow [1] and optimize them
with mini-batch Adam [16]. We determine the hyper-parameters
of each model based on grid search, and the search ranges for
the embedding size, batch size, learning rate, L2 regularization
coefficient, and sample ratio of unclicked events to clicked events
are set as {16, 32, 64, 128, 256}, {256, 512, 1024, 2048}, {5e-5, le-4, 5e-4,
le-3, 5e-3, le-2}, {le-5, 5e-5, le-4, 5e-4, 1e-3, 5e-3}, and {2, 4, 6, 8},
respectively. The best configuration for each method is determined
based on the ranking performance on the validation set.
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Appendix C EXPERIMENTAL SETTINGS ON
DATASET PRODUCT

C.1 Baselines

We further provide some descriptions of the baselines as follows:

e DCN [33]: It is a widely used deep CTR prediction model with
a naive estimator. It consists of a deep network and a cross
network for feature interaction learning. It is the base model
for building all other models.

ESMM [20]: It is a multi-task learning model that jointly opti-
mizes CTR prediction and CTCVR prediction.

DR-JL [34]: This model is proposed for debiasing rating pre-
diction by designing a doubly robust learning approach that
jointly trains the error imputation model and prediction model.
We adapt it for CVR prediction on large-scale dataset with the
model architecture shown in Figure 1.

e Multi_IPW [42]: This model tackles the selection bias in CVR
prediction with the inverse propensity weighting approach. It
jointly optimizes the CTR loss and IPS based CVR loss.
Multi_DR [42]: This model tackles the selection bias in CVR
prediction with the doubly robust learning approach inspired
by the DR-JL method.

MRDR [11]: It is the state-of-the-art model for debiasing CVR
prediction, which reduces the variance of DR method by de-
signing a new loss for the imputation model. However, in the
original paper, no experiments on large-scale datasets have
been conducted. The original model implementation is not suit-
able for large-scale dataset, thus we adapt it for experiments
on Product with the model architecture shown in Figure 1.

For DCN, we train two separate models for CTR and CVR predic-
tions, respectively, and then combine the predictions of these two
tasks to obtain the prediction of CTCVR. Besides, the prediction
models of DR based methods, including DR-JL, MRDR, DR-BIAS
and DR-MSE, are adapted into a multi-task learning framework
presented in Figure 1 to jointly model CTR prediction and CVR pre-
diction. In other words, the propensity estimation model is jointly
learned with the prediction model to handle the data sparsity and
selection bias issues.

C.2 Model Implementation

We implement all models with TensorFlow and optimize them with
mini-batch Adam. For DCN, the embedding size, batch size, learning
rate, keep probability of dropout, L2 regularization coefficient and
L1 regularization coefficient are set to 150, 8000, 1.5e-4, 0.9, le-4,
and le-8, respectively. The structure of deep network of DCN is set
to [1024, 512, 64], and the number of cross layers is set to 3. Other
models, including ESMM, DR-JL, Multi_IPW, Multi_DR, DR-BIAS
and DR-MSE, are built upon DCN. They use similar settings as the
baseline DCN for common hyper-parameters. Besides, IPS based
loss suffers from the high variance issue. We clip the predicted CTR
with max{0.03, CTR} to obtain propensity score for both IPS based
methods and DR based methods to alleviate this issue. Product
contains a training set and a testing set. We report the best results
among all training epochs on the testing set of all methods in Table 4
for comparison.
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