Contextual Intent Tracking for Personal Assistants

Yu Sun[†], Nicholas Jing Yuan^{*}, Yingzi Wang^{*‡}, Xing Xie[‡], Kieran McDonald^{*}, Rui Zhang[†]

[†] University of Melbourne [‡] Microsoft Research * Microsoft Corporation * University of Science and Technology of China {sun.y, rui.zhang}@unimelb.edu.au {nicholas.yuan, t-yingwa, xing.xie, kieran.mcdonald}@microsoft.com

August 16th 2016 @ KDD

< ロ > < 同 > < 回 > < 回 > < □ > <

KP2 Model

3 Experiments

< □ > < 同 > < 回 > < 回 > < 回 >

э

Experiments Conclusion and Future Work Motivation Problem Definition Related Work

< 回 > < 回 > < 回 >

Outline

Motivation and Problem Definition

Motivation

- Problem Definition
- Related Work

2 KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

3 Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

Motivation Problem Definition

Apple's Siri

Related Work

Google Now

・ロト ・聞 ト ・ ヨト ・ ヨト

Intelligent Personal Assistants

Microsoft Cortana Windows 10 Win Phone

●●○○○ vodafone AU ♥ 08:02 0 M Event ticket I've gathered a look at the day Your narcel has arrived into a for you. Parcel Locker and is waiting f S CARLTON SOUTH POST, MONASH Read Live Updates From The MSNBC Democratic Debate Event today at 08:31 Sunny 26 minutes via Lypon St Traffic to work B 10 Add your work address to get traffic updates. Plastic debris crossing the Pacific can Get directions transport more species with the help of Yahoo! Inc (NASDAQ: YHOO) View email 29.15 1.47 (5.31%) M Recent orders A cancer's surprise origins caught in action 708.01 + 18.94 (2.61%) 360* Mount Car Holder for Apple iPhone 6 Plus 5 4 4. **DISPATCHED** Australia Post Parc Ŧ Q Ask me anything

IPAs proactively recommend various information

Motivation and Problem Definition Experiments KP2 Model Conclusion and Future Work

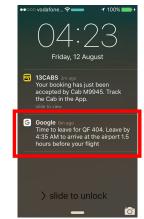
Motivation Problem Definition Related Work

Intelligent Personal Assistants

Morning: Email

Evening: Music

Travel Reminder



< ロ > < 同 > < 回 > < 回 >

Motivation Problem Definition Related Work

→ ∃ > < ∃ >

< 一 →

What Users Intend to Know/Do

Focused Recommendation/Notification

- Limited display sizes
 show limited content
- Push one notification or remind one task



Track Users' Intent

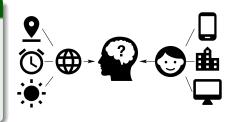
- What users intend to know: information intent
- What users intend to do: task-completion intent

Experiments Conclusion and Future Work Motivation Problem Definition Related Work

Intent and Context

Contextual Signals

- external: physical environment, e.g, location, time
- internal: users' activities, e.g., apps, venues



Intent and Context Examples

- to check calendar <-->
 Sunday evenings or at office

Exploiting contextual signals to track users' intent

Motivation Problem Definition **Related Work**

∃ ► < ∃ ►</p>

Context and Intent Examples

- E.g., contextual signals and intent data shown below
- Data ~> time series and panels

Example of A Panel

	Time step	11 a.m.	12 p.m.	1 p.m.	2 p.m.	Now
	Chrome	2345	784	0	435	23
	Lync	0	1053	0	0	-
ı 🛍	Starbucks	0	1251	766	0	0
ı 🛍	Fitness First	0	0	0	143	1334
<u> </u>	Dist-to-Home	3.45	5.34	10.3	15.7	-
Ũ	Day-of-Week	5	5	5	5	5
2 A	Taxi intent	1	0	0	1	?
_						

Contextual signals ~> intent

Experiments Conclusion and Future Work Motivation Problem Definition Related Work

< 回 > < 回 > < 回 >

Outline

Motivation and Problem Definition

Motivation

Problem Definition

Related Work

2 KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

3 Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

Motivation Problem Definition

< ロ > < 同 > < 回 > < 回 > < □ > <

Intent Tracking

We formally formulate the intent tracking problem as follows.

Definition (Intent Tracking)

- Given
 - a set of M users,
 - a tracking granularity Δ,
 - a type of intent ζ,
 - and context \mathbf{x}_t^u of user u,
- the intent tracking problem is to determine
 - whether user u has intent ζ ,
 - for every time step t of length Δ

Motivation Problem Definition Related Work

Characteristics of Intent Tracking

Properties

Explanations

- i) predict intent continuously
- ii) co-occurring and sequential correlation
- iii) computing on mobile devices
- iv) personal friends and assistants
- v) common for recommendation

< □ > < 同 > < 回 > < 回 > < 回 >

Notivation Problem Definition

< 回 > < 回 > < 回 >

Outline

Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work

KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

3 Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

ヘロト 人間 ト イヨト イヨト

Related Work

Traditional recommendation models cannot be applied

- assume intent (e.g., to find movies, books) already there
- recommend new items based on similarities

Time-aware recommendation models also cannot be applied

- do not consider other contextual signals besides time
- not suitable for swiftly changing context/intent

Context-aware recommendation models do not work either

- do not take sequential correlation into account
- consider only external context (e.g., time, location)

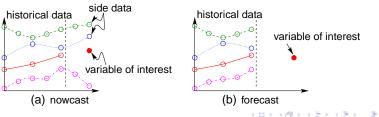
Related Work

Nowcasting for Intent Tracking

Take a nowcasting approach to intent tracking

Nowcasting

- First meteorology, then macroeconomics
- Definition: prediction of current or very near future
- Nowcast v.s. forecast: side data
 - contemporaneous with
 - $\blacktriangleright \mbox{ more frequently available (e.g., industrial output \rightarrow \mbox{GDP})}$



Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald and R. Zhang

Contextual Intent Tracking for Personal Assistants

Experiments Conclusion and Future Work

Data Analysis

Model Formulation Optimization Algorithm

< ロ > < 同 > < 回 > < 回 >

Outline

Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work

2

KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

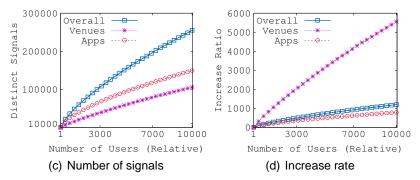
3 Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

Model Formulation Optimization Algorithm

Context Explosion

- First analyze the data (personal assistant usage log)
- A booming number of distinct contextual signals



- Num. of distinct signals increases almost linearly
- Users visit different venues (POIs), use similar apps

Sequential Correlation

Cross-correlation of contextual signals



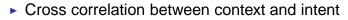
v.s. Use document editor apps

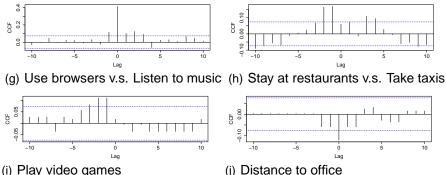
v.s. Visit a shopping mall

< (□)

ъ

Sequential Correlation





v.s. Send messages

v.s. Check calendar

Design the KP2 model with these observations

Experiments Conclusion and Future Work

Data Analysis

Model Formulation Optimization Algorithm

< ロ > < 同 > < 回 > < 回 >

Outline

Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work

2

KP2 Model

Data Analysis

Model Formulation

Optimization Algorithm

3 Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

< ロ > < 同 > < 回 > < 回 > < □ > <

Obtaining Compact Representation

 To avoid estimating a full model, assume X^u driven by a few latent factors (similar to matrix factorization)

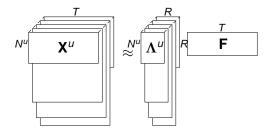
$$\mathbf{X}^{u}pprox \mathbf{\Lambda}^{u}\mathbf{F}^{u}$$

- **X**^{*u*} is the panel matrix
- Λ^u is the loading matrix roughly every row corresponds to a user's usage (venue visit) habits of a certain app. E.g. use of Google Map has 30% probability when eating, 80% when going to work, 5% when sitting in office, etc.
- F^u is the latent factors roughly every row corresponds to the signal of a category of behavior over time. E.g., the likelihood of eating over time.

★ ∃ ► < ∃ ►</p>

Exploit Collaborative Capability

- To exploit the collaborative capabilities, assume that these latent factors are shared by all users
 X^u ≈ Λ^uF for all u = 1, 2, ..., M.
- Same as PARAFAC2 tensor decomposition



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Linear Dynamic System

- To model the dynamics and sequential correlation, assume latent factors follow linear transition
- And latent factors and contextual signals follow the following linear dynamics system

$$\begin{cases} \mathbf{x}_t^u = \mathbf{\Lambda}^u \mathbf{f}_t + \boldsymbol{\xi}_t^u, & t = 1, \dots, T\\ \mathbf{f}_t = \mathbf{A}^u \mathbf{f}_{t-1} + \boldsymbol{\omega}_t^u, & t = 2, \dots, T \end{cases}$$

- $\mathbf{A}^{u} \in \mathbb{R}^{R \times R}$: transition/system matrix
- ξ_t^u and ω_t^u : mutually independent Gaussian r.v. with covariance Ψ^u and \mathbf{Q}^u
- Estimate latent factors and other parameters, and utilize this LDS for efficient intent tracking

PARAFAC2 with Kalman Filter Regularization

- Kalman filter: estimating internal state of LDS
- Jointly optimize PARAFAC2 and LDS
- KP2: use Kalman filter as a regularizer of PARAFAC2

$$\min_{\mathbf{F}, \Lambda^{u}, \mathbf{A}^{u}} \sum_{u=1}^{M} \|\mathbf{X}^{u} - \Lambda^{u} \mathbf{F}\|_{F}^{2} + \frac{\lambda}{2} \left(\|\mathbf{H}^{u} \mathbf{f} - \mathbf{x}^{u}\|_{\Psi_{u}^{-1}}^{2} + \|\mathbf{G}^{u} \mathbf{f} - \mathbf{w}^{u}\|_{\mathbf{Q}_{u}^{-1}}^{2} \right)$$
where $\mathbf{H}^{u} = \operatorname{diag}(\Lambda^{u}, T), \mathbf{f} = \operatorname{vec}(\mathbf{F}), \mathbf{x}^{u} = \operatorname{vec}(\mathbf{X}^{u}),$

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{A}^{u} \mathbf{I} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}^{u} \mathbf{f}_{0} \end{bmatrix}$$

 $\mathbf{G}^{u} = \begin{vmatrix} -\mathbf{A}^{u} & \mathbf{I} & \ddots \\ & \ddots & \mathbf{0} \\ & & \mathbf{A}^{u} & \mathbf{I} \end{vmatrix}, \ \mathbf{w}^{u} = \begin{vmatrix} \mathbf{0} & \mathbf{0} \\ \vdots \\ & \mathbf{0} \end{vmatrix},$

and $\Psi_u = \text{diag}(\Psi^u, T)$, $\mathbf{Q}_u = \text{diag}(\mathbf{Q}^u, T)$, $\|\mathbf{a}\|_{\mathbf{Y}}^2 = \mathbf{a}' \mathbf{Y} \mathbf{a}$.

< 回 > < 回 > < 回 >

Outline

Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work

KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

Experiments

- Setup and Results
- If-Do Triggers
- 4 Conclusion and Future Work

Estimating Noise Covariance Matrices

First, estimate Ψ^u and \mathbf{Q}^u following nowcasting practice

• PCA: $\Psi^{u} \approx \text{Diag}(\mathbf{S}^{u} - \mathbf{W}^{u}\Sigma^{u}\mathbf{W}^{u'})$

•
$$\mathbf{S}^u = \frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_t^u \mathbf{x}_t^{u'}$$

- $\Sigma^{u} \in \mathbb{R}^{R \times R}$ consists of the largest *R* eigenvalues of S^{u}
- $\mathbf{W}^{u} \in \mathbb{R}^{N^{u} \times R}$ consists of the corresponding eigenvectors

► VAR:
$$\mathbf{Q}^{u} = \frac{1}{T-1} \sum_{t=2}^{T} \tilde{\mathbf{f}}_{t}^{u} \tilde{\mathbf{f}}_{t}^{u'} - \tilde{\mathbf{A}}^{u} \left(\frac{1}{T-1} \sum_{t=2}^{T} \tilde{\mathbf{f}}_{t-1}^{u} \tilde{\mathbf{f}}_{t-1}^{u'} \right) \tilde{\mathbf{A}}^{u'}$$

• $\tilde{\mathbf{f}}_{t}^{u} = \mathbf{W}^{u'} \mathbf{x}_{t}^{u}$
• $\tilde{\mathbf{A}}^{u} = \sum_{t=2}^{T} \tilde{\mathbf{f}}_{t}^{u} \tilde{\mathbf{f}}_{t-1}^{u'} \left(\sum_{t=2}^{T} \tilde{\mathbf{f}}_{t-1}^{u} \tilde{\mathbf{f}}_{t-1}^{u'} \right)$

Model Formulation Optimization Algorithm

► < E > E

Gradient Computation

Then, use SGD to estimate \mathbf{A}^{u} , Λ^{u} , and \mathbf{F} Gradients are computed as follows. $\frac{\partial J}{\partial \mathbf{A}^{u}} = \lambda \sum_{t=2}^{\prime} (\mathbf{Q}^{u})^{-1} (\mathbf{A}^{u} \mathbf{f}_{t-1} - \mathbf{f}_{t}) \mathbf{f}_{t-1}^{\prime},$ $\frac{\partial J}{\partial \Lambda^{u}} = 2 \sum_{t=1}^{T} (\Lambda^{u} \mathbf{f}_{t} - \mathbf{x}_{t}^{u}) \mathbf{f}_{t}^{\prime} + \lambda \sum_{t=1}^{I} (\Psi^{u})^{-1} (\Lambda^{u} \mathbf{f}_{t} - \mathbf{x}_{t}^{u}) \mathbf{f}_{t}^{\prime},$ $\frac{\partial J}{\partial \mathbf{f}_{T}} = 2\sum_{u=1}^{M} \mathbf{\Lambda}^{u'} (\mathbf{\Lambda}^{u} \mathbf{f}_{T} - \mathbf{x}_{T}^{u}) + \lambda \sum_{u=1}^{M} \mathbf{\Lambda}^{u'} (\Psi^{u})^{-1} (\mathbf{\Lambda}^{u} \mathbf{f}_{T} - \mathbf{x}_{T}^{u}) - \lambda \sum_{u=1}^{M} (\mathbf{Q}^{u})^{-1} (\mathbf{A}^{u} \mathbf{f}_{T-1} - \mathbf{f}_{T}),$ $\frac{\partial J}{\partial \mathbf{f}_t} = 2\sum_{u=1}^M \mathbf{\Lambda}^{u'} (\mathbf{\Lambda}^u \mathbf{f}_t - \mathbf{x}_t^u) + \lambda \sum_{u=1}^M \mathbf{\Lambda}^{u'} (\boldsymbol{\Psi}^u)^{-1} (\mathbf{\Lambda}^u \mathbf{f}_t - \mathbf{x}_t^u) + \lambda \sum_{u=1}^M \mathbf{A}^{u'} (\mathbf{Q}^u)^{-1} (\mathbf{A}^u \mathbf{f}_t - \mathbf{f}_{t+1})$ $-\lambda \sum_{i=1}^{m} (\mathbf{Q}^{u})^{-1} (\mathbf{A}^{u} \mathbf{f}_{t-1} - \mathbf{f}_{t}) \text{ for } t = 1, \dots, T-1.$

Use the learned LDS to track each user's real-time intent

Experiments Conclusion and Future Work

Setup and Results

If-Do Triggers

< /₽ ▶

Outline

1 Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work
- 2 KP2 Model
 - Data Analysis
 - Model Formulation
 - Optimization Algorithm
- 3 Experiments
 - Setup and Results
 - If-Do Triggers
 - 4 Conclusion and Future Work

Setup

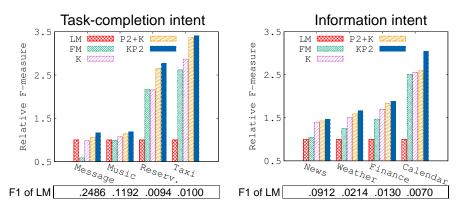
Log from a commercial personal assistant for evaluation

Types of Intent	Types of Log Data	Time	Intent
Task-completion intent	App-launch log	11/02/2015- 11/30/2015	➡ send messages, ➡ listen to music, ★ make reservations, ➡ get taxis
Information intent	Proactive- card log	08/15/2015- 09/10/2015	 ♥ news, △ weather, ✓ finance, ➡ calendar

- ► Contextual signals: □ used apps, visited venues, distances to home & office, ③ time of day & day of week
- Other configurations
 - $\Delta = 1$, i.e., one hour as the tracking granularity
 - · First 3 weeks for training, and then 1 week for testing
 - Mini-batch SGD with a batch size of 30
 - An initial learning rate of 10⁻⁴ with bold driver adaption

If-Do Triggers

Comparison across Models on F-measure



- LM (LambdaMart) is a baseline method
- KP2 (dark blue bin) outperforms several strong methods

Comparison across Models on Hit-ratio

 Hit-ratio: percentage of users who have at least one accurate prediction in one week

Model Reservation Taxi Message Music I M .6633 .4685 .0104 .0186 FM .7381 .5925 .1354 .1398 Κ .9698 .9331 .4896 .4565 P2+K .9741 .9547 .4583 .5013 KP2 .5409 .9799 .9764 .5625

Table : Hit-ratio for task-completion intent

Table : Hit-ratio for information intent

 KP2 also outperforms compared methods

Model	Calendar	Weather	Finance	News
LM	.0056	.0457	.0193	.3748
FM	.0970	.1615	.1273	.6070
K	.4100	.6884	.4790	.9641
P2+K	.4127	.7210	.4874	.9853
KP2	.4183	.7357	.5462	.9857

< /₽ ▶

Outline

1 Motivation and Problem Definition

- Motivation
- Problem Definition
- Related Work

2 KP2 Model

- Data Analysis
- Model Formulation
- Optimization Algorithm

3 Experiments

- Setup and Results
- If-Do Triggers
- Conclusion and Future Work

If-Do Triggers Generation

- Investigate the rationale of KP2
- Uncompress latent factors with a decision tree, and generate if-do triggers for some randomly sample users.

	Intent	Triggers
Þ	Message	Between 5:30 p.m. and 7:30 p.m., weekday, arriving at a food and drink venue
=J (=	Music Taxi	Later than 6:30 p.m., using browsers Later than 8:30 p.m., weekday, distance to office > 8 km, leaving a supermarket
×	Reserva- tion	Earlier than 6:30 p.m., Sunday, playing computer games for a long time
S	News	Between 6:00 a.m. and 10:00 a.m., Friday, or weekends, distance to office > 10km

If-do triggers can be easily deployed and computed

Conclusion

Intent Tracking

- Tracking users' intent is important for intelligent personal assistants
 - understand what users intend to know/do
 - provide effective proactive experiences

KP2 Model

 Following the nowcasting framework, the proposed KP2 model outperforms many state-of-the-art methods for contextual intent tracking.

< ロ > < 同 > < 回 > < 回 > < □ > <

Future Work

We Plan

- to investigate non-linear transition between latent factors with extended Kalman filter or particle filters,
- to investigate more on the underlying rationale of the KP2 model, and explain the model.

Demo Video

An introductory video can be found at https://www.youtube.com/watch?v=WaZ0EL3E7XY

ヘロト 人間 ト イヨト イヨト

Questions?

Appendix A: Using LDS for Intent Tracking

First, predict latent factors for next time step

$$\mathbf{f}_t = \mathbf{A}^u \mathbf{f}_{t-1} + \boldsymbol{\omega}_t^u$$

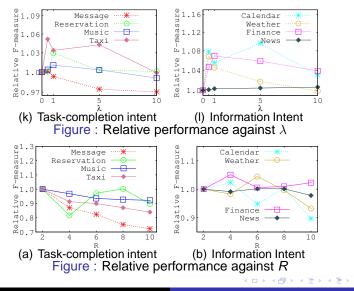
- Correct predicted latent factors with continuously arrived contextual signals using Kalman filter
- Relationship between latent factors and intent is a simple linear function

Intent likelyhood = $\alpha^{u} + \beta^{u'} \mathbf{f}_{t}$

ヘロト 人間 ト イヨト イヨト

• Parameters α^u and β^u can be estimated by regression

Appendix B: Effect of Parameters



Appendix C: Why Nowcasting?

UW Molecular Eng. Bldg: Waterproofing went on one day¹

¹Picture from: Cliff Mass, Uni. of Washington, 2011

Motivation and Problem Definition Experiments KP2 Model Conclusion and Future Work

Appendix C: Why Nowcasting?

Washed off a few hours later¹

¹Picture from: Cliff Mass, Uni. of Washington, 2011

Appendix C: Why Nowcasting?

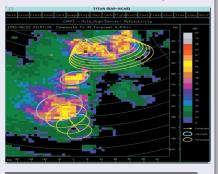
Reapplied the next day. Waste lots of money every year.1

¹Picture from: Cliff Mass, Uni. of Washington, 2011

Appx C: Nowc. in Meteorology and Macroeconomics

Thunderstorm Nowcasting

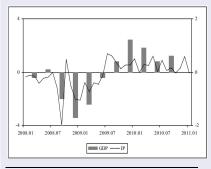
Extrapolating more frequently available atmospheric signals^a



^aPicture from J. Wilson et al. *Nowcasting Thunder*storms: A Status Report, 1998

GDP Nowcasting

Utilizing more frequently available economic signals^b



^bDiagram from M. Camacho et al. Short-Term Forecasting for Empirical Economists: A Survey of the Recently Proposed Algorithms, 2013

Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald and R. Zhang

Contextual Intent Tracking for Personal Assistants

Appendix C: Side-Data Used in Nowcasting

In meteorology: nowcasting weather

- atmospheric conditions from aircraft
- water vapor distributions from GPS receivers
- social media data from Facebook, Twitter, etc.

In macroeconomics: nowcasting GDP

- personal consumption, industrial production
- surveys, financial variables (e.g., interest rates, CPI)
- Google trend data

In data mining: nowcasting rainfall, illness rates

- search engine query log (e.g., Google trend)
- posts in social media (e.g., Twitter)

< □ > < 同 > < 回 > < 回 > < 回 >

Appx C: Existing Nowcasting Methods Cannot Apply

Thunderstorm: linear regression with exponential smoothing

variable of interest quite different from intent

GDP nowcasting: dynamic factor model

- granularity much larger than hours
- macroeconomic variables are non-personalized

Rainfall nowcasting: Bootstrapped LASSO + regression

- cannot address the personalized scenario
- hard to obtain textual features for personalized intent

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・