Context-Uncertainty-Aware Chatbot Action
Selection via Parameterized Auxiliary
Reinforcement Learning

Chuandong Yin', Rui Zhang!®9 Jianzhong Qi', Yu Sun?, and Tenglun Tan’

L School of CIS, The University of Melbourne, Parkville, Australia
chuandongy@student.unimelb.edu.au,
{rui.zhang, jianzhong.qi}@unimelb.edu.au
2 Twitter, Inc., San Francisco, California, USA
ysun@twitter.com

Abstract. We propose a context-uncertainty-aware chatbot and a rein-
forcement learning (RL) model to train the chatbot. The proposed model
is named Parameterized Auziliary Asynchronous Advantage Actor Critic
(PA4C). We utilize a user simulator to simulate the uncertainty of users’
utterance based on real data. Our PA4C model interacts with simulated
users to gradually adapt to different users’ utterance confidence in a
conversation context. Compared with naive rule-based approaches, our
chatbot trained via the PA4C model avoids hand-crafted action selection
and is more robust to user utterance variance. The PA4C model opti-
mizes conventional RL models with action parameterization and auxil-
iary tasks for chatbot training, which address the problems of a large
action space and zero-reward states. We evaluate the PA4C model over
training a chatbot for calendar event creation tasks. Experimental re-
sults show that our model outperforms the state-of-the-art RL models
in terms of success rate, dialogue length, and episode reward.

1 Introduction

Recently, personal assistants [1-3] become increasingly popular, such as Apple
Siri, which can interact with human and provide with intelligent service. These
personal assistants are also called task-oriented chatbots (“chatbot” for short in
the rest of the paper) that help users complete tasks of certain domains, such as
creating a calendar event. A task may consist of several slots, such as time and
location for a calendar event. A chatbot needs to identify these slots correctly
via a dialogue with a user. Due to the uncertainty of language fluency among
different people, it is not a simple task to identify these slots accurately. This
problem is particularly challenging if the user utterance confidence given by
automatic speech recognition (ASR) and natural language understanding (NLU)
systems is low (e.g., a user is new to the language spoken or has a heavy accent).

A straightforward approach to tackle this problem is to confirm with a user
whenever his or her utterance confidence is lower than a predefined threshold.
However, in a practical scenario, this threshold may vary from person to person,

Table 1: Example dialogues of a rule-based chatbot and a context-uncertainty-aware
chatbot.

Turn |Role |[Rule-based chatbot Context-uncertainty-aware chatbot

1 user inform (title=[(“dinner”, 0.6)], inform (title=[(“dinner”, 0.6)],
invitee=[(“Mike”, 0.6)]) invitee=[(“Mike”, 0.6)])

2 bot confirm (title) confirm (title)

3 user |[|inform (title=[(“dinner”, 0.7)]) inform (title=[(“dinner”, 0.7)])

4 bot confirm (invitee) request (time)

5 user |[inform (invitee=[(“Mike”, 0.7)]) inform (time=[(“6 p.m.”, 0.6)])

6 bot request (time) request (location)

7 user inform (time=[(“6 p.m.”, 0.6)]) gg;ﬁm (location=[(*Korean BBQ",

8 bot confirm (time) complete ()

9 user [|inform (time=[(“6 p.m.”, 0.7)])

10 bot request (location)

11 user ||inform (location=[(“Korean BBQ”, 0.6)])

12 bot confirm (location)

12 user |[|inform (title=[(“Korean BBQ”, 0.7)])

14 bot complete ()

and is also related to a specific dialogue context. Meanwhile, users would expect
chatbots not only to complete the tasks required, but also complete in a lim-
ited dialogue length. A fixed threshold cannot adapt to various users’ utterance
confidences and may lead to lengthy dialogues, which might discourage the use
of chatbots. To illustrate the problem, We use Table 1 to show two interaction
sequences between a user and two different chatbots to create a calendar event
for “dinner with Mike at 6 p.m. at Korean BBQ”. The user input in these se-
quences is represented as an “inform” tuple, which contains slots including title,
inwitee, time, and location of the event. These slots are generated by ASR and
NLU systems, which are beyond the scope of our study. Each slot is associated
with a number representing the user utterance confidence proposed by the ASR,
and NLU systems. The “Rule-based chatbot” column showcases how a rule-
based chatbot may interact with the user. In each turn, the rule-based chatbot
takes one of three possible actions as a response to user input: (1) confirm (to
request a confirmation of a slot previously captured from user input with low
confidence), (2) request (to request a new slot from user), and (3) complete (to
set up the calendar event and finish the conversation). The rule-based chatbot
confirms with the user for each slot until its confidence reaches a fixed threshold
0.7. This has resulted in a lengthy dialogue with 14 turns.

We aim to overcome the problem of fixed confidence thresholds as illustrated
above with a chatbot, which can adaptively choose a threshold according to the
user and dialogue context. We call such a chatbot a context-uncertainty-aware
chatbot. The “Context-uncertainty-aware chatbot” column of Table 1 illustrates
how such a chatbot will interact with a user. This chatbot also has a starting
confidence threshold of 0.7, and it needs to confirm with the user for the first
slot (title) that has a confidence below this threshold (Turn 2). Once this is
confirmed, the chatbot learns that only a threshold of 0.6 is sufficient to accept
the input of this user. As a result, the invitee slot (and any slots afterwards)

which also has a confidence of 0.6 does not need a confirmation anymore. This
has shortened the dialogue to 8 turns and improved the user experience.

We take the above issues into account and propose an RL model named
PA/C for chatbot training. This model addresses the following two problems of
existing RL models. The first problem is that, in chatbot training, traditional RL
models often have a large space for action selection, making it difficult to learn
the best action to be selected with a large reward. The output of these models
at a turn of the chatbot is a one-hot vector indicating which action should be
selected. An action of the chatbot consists of two components: a function (the
type of actions) and its parameter (slots). For example, the action request(time)
has a function request and a parameter time. Traditional RL models simply
list all possible combinations of functions and slots. Suppose that there are M
action functions and N slots. Then the number of actions in these models will
be M x N. To reduce the action space and improve the reward, we introduce
the action parameterization to separate the actions into two channels: one for
functions and the other for parameters (cf. Fig 1b). In this way, the action space
can be reduced from quadratic (i.e., M x N) to linear (i.e., M + N).

The second problem addressed is that only a few states in dialogues have
positive rewards. This makes early discovery of states that may lead to large
rewards difficult. RL models thus may encounter a bottleneck due to missing
valuable states. Traditional methods only focus on the target task (e.g., predict
the target action) without explicitly paying attention to estimate the reward of
states. Inspired by [4], we propose to add additional tasks to the chatbot during
training and guide it to discover large-reward states (detailed in Section 5.2). In
particular, we design two auxiliary networks: (1) a reward prediction network for
predicting the reward of dialogue states, and (2) a value function replay network
for helping the RL model estimate the expected state value.

This paper makes the following contributions:

— To the best of our knowledge, we are the first to propose a context-uncertainty-
aware chatbot that is self-adaptive to the uncertainty of users’ utterance
confidence in a dialogue context via reinforcement learning.

— To overcome the quadratic action space problem in chatbot training by rein-
forcement learning, we propose the action parameterization technique which
learns the functions and slots in two separate channels.

— We further propose two auxiliary networks to guide our model to pay ex-
tra attention to valuable states, which is more robust to both short-term
immediate rewards and long-term expected returns.

2 Related Work

Most commercial chatbots are based on hand-crafted rules design for dialogue
state tracking and action selection, which naively choose the action with the
largest NLU confidence [5]. It is non-trivial to create a large set of rules to cover
diverse user utterances. To avoid manually developing rules, machine learning
approaches have been used to build chatbots. Chatbot training has been modeled

as a Markov decision process (MDP) [6] or a partially observable Markov decision
process (POMDP) [7]. It is then formulated as a sequential labeling problem in
The Dialog State Tracking Challenge (DSTC) [5, 8].

Machine learning approaches, however, need a large amount of training data,
and it is labor-intensive to prepare such data. Reinforcement learning (RL) then
is used to reduce the amount of training data needed. A noticeable progress has
been made on training chatbots with RL models [9, 10], which demonstrates the
feasibility of training chatbots via reinforcement learning. However, due to the
“cold-start” problem in reinforcement learning, existing RL approaches have to
use supervised learning as a bootstrap. These approaches may interfere with
the action exploration of reinforcement learning and cause many ceilings on
the success rate, length and episode reward of dialogues. To the best of our
knowledge, no existing studies have tackled the problem of breaking the ceilings
of RL models in chatbot training. Our study aims to address it.

3 Preliminaries

We start with basic concepts in deep reinforcement learning (DRL). A DRL
model is essentially a Markov decision process (MDP). It can be defined as a
tuple (S, A, P,R,v), where S denotes the environment state; A denotes the
action space; P denotes the transition probability P(s;+1|st,a:); R denotes the
expected immediate reward function R(s;, a;); v denotes a discount factor, v €
(0,1] [11]. The goal of a DRL model is to maximize the return (cumulative
expected rewards from the state s;) Gy = > ;o YFrisr, where vy = R(s¢, ay).
To maximize the return, there are two approaches in general: value-based DRL
and policy-based DRL.

3.1 Value-based DRL

Value-based DRL estimates the value of executing different actions in a state,
and selects the action with the largest value. A typical value-based model is
Q-learning, where “Q” represents the action value. Q-learning defines an action-
value function Q™ (s, a), where a is an action, s is a state, and 7 is a policy to be
learned. It aims to find an optimal policy 7w with the maximum @ value according
to Q*(s,a) = max,; E[G¢|s: = s,a: = a,7] and 7*(s) = argmax,Q*(s,a) [12].
Bellman equation [13] is used to search for the optimal policy:

Q*(St, at) = Est+1 |:1”t + 'ymaxQ*(sHh at+1)|st, at] (1)
at41

Here, s¢y1 is the next state and a;41 is any possible actions for s;41.

3.2 Policy-based DRL

Instead of directly optimizing the policy, value-based DRL models estimate a
Q@ value for each action and chooses the action with the maximum @ value.

Table 2: Available actions and slots in the user simulator.

inform(slot), confirm_deny(slot), confirm_accept(slot), complete(), abort(),
dont_care(slot)

System Actions |greeting(), request(slot), confirm(slot), complete(), abort()

Slots title, time, invitee, location

User Actions

Table 3: User intent database: the number in each tuple represents a confidence level,
which is the product of ASR and NLU confidence.

id title time location invitee
T « » (“Korean “M » N e
1 (“dinner”, 0.9) | (“7 p.m.”, 0.95) BBQ”, 0.87) (“Michael”, 0.54), (“Mike”, 0.46)

This approach may cause some biases. For example, assume that there are two
actions a; and ao with @ values 50 and 49, respectively. The action as will not
be selected, although it may have a larger long-term value than that of a;.

Policy-based DRL models are proposed to tackle this problem by directly
optimizing the policy [14]. A typical approach is called policy gradient, which
can define a stochastic policy a = 7(a|s;u), where u is the weight. The total
reward can be computed as:

L(u) = E[r1 + 72 + 7°rs + .7 (- u)] (2)
The gradients can be updated via [14]:

OL(u)
ou

Alogm(als; u)
ou

—E| Q"(s,0)] (3)

4 User Simulator

We construct a user simulator for chatbot training. As an example application,
we focus on training a chatbot for calendar event creation tasks, although the
techniques proposed may be applied to train a chatbot for other tasks. All avail-
able user actions, system actions, and slots are defined in Table 2.

4.1 Data Preparation

We collect 300 calendar events from volunteers through a data collector website,
including 300 titles, 300 time, 113 invitees and 173 locations. Since the uncer-
tainty produced by ASR and NLU may cause a user’s real intent to be distorted,
such as “Mike” being misunderstood into “Michael”, we construct a database
IntentDB to store these intents with probabilities as shown in Table 3. In ad-
dition, we calculate the mean p and the standard deviation o of the ASR &
NLU uncertainty for each dialogue in The Dialogue State Tracking Challenge 2
(DSTC2) dataset (in the domain of restaurant booking) [5]. We save the pairs
of p and o into a NoiseDB. At each step of a dialogue simulation, a Gaussian
noise with p and o will be introduced to augment the collected data (detailed
in Section 4.2). In this way, we can simulate millions of dialogues by adding
different noises to the 300 events collected from volunteers.

Algorithm 1 User simulation

1: Initialize:

2 T + 0, complete < False, terminal + False

3 Q < RandomSelect(IntentD B) // user intent (a distribution)

4 w Sample(2) // user real goal

5: w' <« {} // chatbot recorded goal

6: z < RandomSelect(NoiseDB) // noise, a pair of (u, o)

7: Auyser < null // user action

8: Aot < Action.greeting // chatbot action

9: repeat

10: Ayser < UserRespond(Apot, 2,) // randomly selected with Ay, 2, 2
11: Apot + ChatbotRespond(Ayser) // ouputted by RL model

12: T+ T+2

13: w' W’ + ParseEntity(Apot)

14: if T > Thax or Apor == Action.complete then
15: terminal < True

16: reward < R(terminal, complete, T')

17: until terminal

18: if w == w’ then complete + True

19: reward < R(terminal, complete, T)

4.2 Dialogue Simulation

The simulation is based on the fact that a user’s intent is known by himself (i.e.,
user simulator) but unknown by the chatbot. A step of a simulation includes
two parts: (1) the chatbot asks the user a question, and (2) the user answers
the question honestly. Each step will be assigned with a scalar reward according
to the reward function R(terminal,complete, T) defined in the Eq. 4. The goal
of a chatbot is to learn to ask a user questions which can maximize the total
reward of a dialogue. The intuition of R is to give a higher reward to states that
lead to a short dialogue that completes a user task successfully.

—0.1, if not terminal
. T7nam =T . .
R(terminal, complete, T) = ¢ 2.0 X —p if terminal and complete (4)
max
—1.0, if terminal and not complete

Here, terminal indicates whether the simulation finishes, complete indicates
whether the chatbot completes the task, T represents the length of the current
dialogue, and T;,,, represents the predefined maximum length of a dialogue.
A simulation terminates once T,.. steps are executed regardless whether the
user task has been completed. The reward function is Markovian because it only
depends on the current dialogue state (i.e. terminal, complete, and T'). At the
end of each simulation, we compare the user’s real goal w (i.e., the ground truth)
with the entities w’ captured by the chatbot. If w is equal to w’, it means that
the chatbot completes the user’s task. Otherwise, the task fails. Algorithm 1
shows the detail of a simulation.

5 Proposed Model

As mentioned in Section 2, existing works usually use supervised learning as
bootstrap before training with RL models. This approach may interfere with the

Actor Critic Actor (;:Ita
(—Jﬁ
ccecee 80
ST LSTM LSTM LSTM
! ! ! !
(a) Vanilla A3C (b) Parameterized A3C (C) RP Task (d) VR Task

Fig.1: Model structure: (a) Vanilla A3C model. (b) Parameterized A3C model. (c)
Reward prediction sub-model. (d) Value function replay sub-model.

action exploration and cause a ceiling on RL models because the data collected
may produce some biases. In this paper, we propose a model named parame-
terized auziliary asynchronous advantage actor-critic (PA4C) based on the A3C
model [15]. Our PA4C model consists of two parts: (1) Parameterized A3C
(PA3C), which solves the huge action space problem in traditional RL models
for chatbot training; (2) Auxiliary tasks, which helps model discover the states
with large rewards and enhances model robustness [4].

5.1 Parameterized A3C

PA3C is built on the vanilla A3C model, which is a hybrid value-based and
policy-based DRL model. It can be expressed by two separate networks with
shared weights (cf. Fig 1la): (1) Actor network outputs the policy m(as|st;u);
(2) Critic network estimates a state value function V(s¢;v) [15], where u and v
denotes the weights of the actor and critic network, respectively.

V(st;0) = E[resr 4 7otz + 7 rers + -oofsi (5)

A function A(ss, as;v,u) is defined in Eq 6 to estimate the advantage of executing
a; on s; over the state value V(sy;v):

k—1
A(se, a3u,0) = > Yo + 7"V (s1430) = V(si50) (6)
1=0

Therefore, the weights u of actor network can be updated as follow:

OL(u) _ Ologm(ai|se;u) .
5y = 5u A(st, ag; u,v) (7)

The critic network can be optimized by minimizing the MSE loss [15]:
L('U) = (A(St7at;u7 U))2 (8)

Like other RL models, vanilla A3C still cannot avoid the large action space
problem. For example, assume that there are a set of M functions {f1, fa, ..., far}
and N parameters {p1, p2, ..., pn } available (functions and parameters are system

actions and slots respectively in the user simulator). For vanilla A3C, the number
of actions is M x N, because its actor network simply outputs all combinations
of functions and parameters (cf. Fig 1a).

To address this problem, we propose PA3C by introducing action param-
eterization into the vanilla A3C model. Rather than listing all combinations,
our model will split the policy 7 of vanilla A3C into two sub-policies 7y and
7p, which directly learns functions and parameters, respectively (cf. Fig 1b). In
this manner, the number of actions in our model can be reduced from M x N
(quadratic) to M 4+ N (linear). Correspondingly, the loss of actor network in
PA3C has a slight difference. We modify the loss defined in Eq. 7 to Eq. 9,
where us and u, denote the weights of 7 and 7, respectively, and A is a mask
vector for indicating whether the function f,, has a parameter.

OL(u) _ OL(uy) JrA(?L(up)
ou Ouf Ouyp (9)
_ (Ologmy(filsi; uy) Ologmy (pt|st; up)
=(+A
Ouy Oup

)A(siy ftapi;ufvulhv)

5.2 Auxiliary Tasks

A recent DRL model named UNsupervised REinforcement and Auziliary Learning
(UNREAL) [4] suggests that incorporating reasonable auxiliary tasks can improve the
model robustness and performance. In chatbot training, the rewards are usually sparse.
Only a few states can provide immediate rewards (e.g., large negative or positive re-
wards only occurs when the chatbot finishes the task). The rewards of most states
during a conversation are zeros or very small numbers, making it difficult to learn the
values of these states. This may cause many ceilings on RL models used in chatbot
training, such as low success rate and lengthy dialogues. To address this problem, we
design two auxiliary networks to assist the PA3C sub-model to take into account both
short-term immediate rewards and long-term expected returns.

Reward Prediction (RP) is an auxiliary network to predict the immediate re-
ward of the next unseen state given a historical context. It helps PA3C sub-model
better evaluate the value of dialogue states, To train this task network, we sample a
historical sequence Sy = (S¢—k, St—k+1, .., St—1) from a replay buffer and predict the
reward 7 of the state s;. Here, we focus on whether the state is valuable rather than
the specific reward. Instead of estimating the real value of 7, RP only predicts the sign
of 7 in three classes: positive, negative and zero (cf. Fig 1c).

Value function Replay (VR) is an auxiliary network to enhance the state-value
function V(s¢;v) (Eq. 5) of the critic network in the PA3C sub-model. The function
V(s¢;v) is designed to estimate the long-term expected return of the current state s:.
Therefore, VR shares weights with the critic network in PA3C. The only difference
is that the critic network is trained with on-policy, while VR can be trained with off-
policy. It will sample a state sequence as input from a replay buffer like the RP network
(cf. Fig 1d). In this way, V (s¢; v) combines the strength of both on-policy and off-policy
training, which is more robust when estimating the expected return.

5.3 PA4C model

Our full PA4C model integrates the PA3C sub-model and auxiliary networks. The
full model is illustrated in Fig 2. Firstly, the PA3C sub-model interacts with the user

save dialogues

r
jeeeeennaed confirm| invitee |10 request| time |12 + = 10 12
Q@}‘D 6@\?}@ (? (? sample sample @ @
«— —
g LSTM LSTM LSTM >/ LSTM LSTM >/ LsTM
T T buffer T T
5> St St+1 St St41
. st 5t+1 (2.1) RP 2.2) VR
User Simulator (1) PA3C (2) Auxiliary Tasks

Fig.2: Full PA4C model consists of (1) PA3C and (2) Auxiliary Tasks (RP and VR
networks). All LSTM layers share the same weights.

simulator, which generates a dialogue. The dialogue will be saved into a small replay
buffer, where RP and VR can sample historical sequences to update their weights. The
final loss of PA4C is the combination of PA3C, RP, and VR networks [4]:

Lpasc = Lpazc + ArpLrp + AvrLvR (10)

where Arp and Ay g are the weight factors of the RP and VR networks respectively;
Lpasc is the loss of the PA3C network defined in Eq. 9; Lrp is the cross entropy loss
of the RP network; Ly g is the MSE loss (cf. Eq. 8) of the VR network.

Our PA4C model also extends the asynchronous training from vanilla A3C via mul-
tiple threads. First, PA3C will create a global network in the main thread and multiple
local networks in several independent threads. The global network is responsible for
dispatching gradients to each local network, which will run a user simulator to compute
the local gradients. At the end of each simulation, the gradients of local networks will
be aggregated back to the global network.

6 Experiments

In this section, we compare the performance of chatbots trained with our PA4C model
and with baseline models in six metrics: success rate (SR), dialogue length (DL), episode
reward (ER), and their standard deviations (“std” for short in the rest of the paper)
over 10 runs, i.e., std SR, std DL, and std ER [16,17]. All the DRL models are trained
on 180 dialogues with noises and evaluated on 120 dialogues. The result shows that our
model outperforms the state-of-the-art models in these metrics for training a chatbot
in the calendar event creation task.

6.1 Baseline Models and Hyperparameters
We implement 4 baselines, including a rule-based model and 3 existing DRL models:

— Rule-based We implement a rule-based chatbot by if-else triggers. If a slot is
informed by a user and its confidence is larger than a predefined threshold 0.724
(the average confidence of the collected events), the chatbot will request the next
slot; Otherwise, the chatbots will confirm it with the user. When all slots are
obtained, the chatbot will finish a simulation.

10

— DQN We stack two consecutive states as the input s; at step t, and use two fully-
connected layers with 256 and 64 hidden units, respectively. The replay buffer size
is 10° and batch size is 128. In the first 10° step, we use the epsilon-greedy policy
to explore actions, with € annealing from 1.0 to 0.1.

— DRQN We only feed one single state into DRQN at step ¢. Unlike DQN, the replay
buffer for DRQN stores the full episode of a dialogue. The timestep of LSTM is
set to 10. The remaining hyperparameters are the same as those in DQN.

— A3C We use LSTM in A3C, and update the gradients in local networks per episode
rather than a fixed step in vanilla A3C [15]. We also set the regularization of policy
entropy 8 = 0.1 to encourage action exploration and train with 16 threads.

— A4C We only add auxiliary networks into A3C. Both Arp and Ay r in Eq. 10 are
set to 1.0. The replay buffer for auxiliary networks is 2000. When training the RP
network, we clip the rewards whose absolute value is smaller than 0.1 to 0 to get
their sign (i.e., positive, negative, zero). We assume these small rewards cannot
guide to discover valuable states. Other settings are identical to those in A3C.

— PA3C We only add action parameterization into A3C. The number of actions now
becomes to 8. Other settings are identical to those in A3C.

— PA4C In our full PA4C model, we integrate PA3C with A4C sub-models. The
hyperparameters of these two sub-models are the same as those in A4C and PA3C.

The input feature is composed of a 52-dimensional vector provided by the user
simulator, including the last system action, the current user action, and the current
dialogue length. All LSTM layers have 256 hidden units, followed by an ReLU activation
function. The discounted factor of reward ~y is 0.99 for all models. We use the RMSProp
optimizer for gradients computing with learning rate 7 = 0.001 and weight decay
a = 0.99. The maximum dialogue length T}, is set to 20. The action greeting() is
removed from the set of actions because greeting() is always called firstly by the chatbot.
The number of actions for non-parameterized models and parameterized models are
My x N+ Mpp =2x4+2=10and M + N = 4+ 4 = 8, respectively, where M,
denotes the number of functions with parameters, i.e., {request(slot), confirm(slot)};
M, denotes the number of functions without parameters, i.e., {complete(), abort()};
N denotes the number of slots, i.e., {title, time, location, invitee}; M = M, + M.

6.2 Results

In the section, we compare the performance of the PA4C model with baselines.

Comparison with the Rule-based Model: The result in Table 4 shows that
PA4C outperforms the rule-based model in all metrics: 47% in success rate (SR), 52%
in std SR, 42% in dialogue length (DL), 62% in std DL, 35% in episode reward (ER)
and 54% in std ER. In particular, PA4C can achieve over 0.93 in SR, with less than 7.6
turns to complete the task. In contrast, the rule-based model just reaches 0.63 in SR
while it takes more than 12 turns. This shows that PA4C can adapt to the utterance
uncertainty according to the dialogue context. It can produce a high success rate and
a short dialogue.

Comparison with RL Models: Table 4 also shows that PA4C outperforms exist-
ing RL models, with 14%, 19%, and 12% improvement in SR, DL, and ER, respectively,
compared with the most recent RL model A3C. We further illustrate the learning curves
of SR, DL, and ER in Fig 3. As the figure shows, although DQN has shorter dialogues,
it sacrifices the success rate. It often fails when interacting with low-confidence users,
while our PA4C model is more robust to these users.

11

Table 4: Performance comparison. Larger success rate (SR) and episode reward (ER)
indicate better performance. Smaller dialogue length (DL), std SR, std DL and std ER
indicate better performance. The number in the parenthesis shows the improvement
over the rule-based model. When computing the improvement, we scale the value of

ER to [0, +00] because of negative rewards. The results are averaged over 10 runs.

Model[[SR std SR DL std DL ER std ER
RULE 0.634 0.052 12.925 5.769 -0.286 1.018
DQN 0.794(4+25%) | 0.041(—21%) | 7.075(—45%) | 1.889(—67%) | 0.443(+29%) | 0.651(—36%)
DRQN || 0.691(4+09%) | 0.046(—12%) |10.925(—15%)| 2.429(—58%) |-0.194(+04%) | 0.999 (—02%)
A3C 0.843(4+33%) | 0.037(—29%) | 9.889(—23%) | 3.075(—47%) | 0.302(+23%) | 0.560(—45%)
A4C 0.854(4+35%) | 0.034(—35%) [10.402(—20%)| 3.675(—36%) | 0.261(+22%) | 0.669(—34%)
PA3C 0.900(4+42%) | 0.029(—44%) | 8.382(—35%) | 2.894(—50%) | 0.519(+32%) | 0.492(—52%)
PA4C ||0.932(+47%) | 0.025(—52%) | 7.558(—42%) | 2.216(—62%) | 0.585(+35%) | 0.469(—54%)
100 Success Rate % 18 Dialogue Length 1.0 Episode Reward
90 Model
16 s DON 0.5
80 14 s DRON
70 + A3C 0.0
12 e PA4C
60 -0.5
50 Model 10 Model
40 = DON -1.0 s DON
30 a DRQN 1 a DRQN
* A3C -1.5 * A3C
20 e PA4C 6 e PA4C
100 2 4 6 8 10 12 40 2 4 6 8 10 12 _2'00 2 4 6 8 10 12

Training Hours Training Hours Training Hours

Fig.3: Performance comparison with RL models: DQN, DRQN, A3C, and PA4C.
Each figure is averaged over 10 runs.

Comparison within Sub-models: To verify the effect of action parameterization
and auxiliary tasks, we compare A3C, A4C, PA3C, and PA4C. Table 4 shows that
PA4C outperforms sub-models in all metrics. Using action parameterization achieves
9% improvement in SR, 12% in DL, 9% in ER over A3C. Although only adding auxiliary
tasks to A3C (i.e., A4C) does not have such significant effect, the auxiliary tasks do help
boost the model performance when integrated together with action parameterization
to A3C (i.e., PA4C).

7 Conclusion

We presented a context-uncertainty-aware chatbot trained via reinforcement learning.
A user simulator is designed to simulate the uncertainty of different users’ utterance
confidence. Our chatbot trained with this simulator can adapt to different users’ utter-
ance confidence based on the dialogue context. We proposed a reinforcement learning
model named PA4C to optimize chatbot training, which can avoid a large action selec-
tion space via action parameterization and can discover valuable states via auxiliary
tasks. We evaluate our model by training a chatbot for the calendar events creation
task. Experimental results show that our PA4C model outperforms the state-of-the-art
models in the metrics of success rate, dialogue length, and episode reward.

12

8

Acknowledgements

This work is supported by Australian Research Council (ARC) Future Fellowships
Project FT120100832 and Discovery Project DP180102050.

References

10.

11.

12.

13.

14.

15.

16.

17.

Sun, Y., Yuan, N.J., Xie, X., McDonald, K., Zhang, R.: Collaborative nowcasting
for contextual recommendation. In: WWW. (2016)

Sun, Y., Yuan, N.J., Wang, Y., Xie, X., McDonald, K., Zhang, R.: Contextual
intent tracking for personal assistants. In: SIGKDD. (2016)

Sun, Y., Yuan, N.J., Xie, X., McDonald, K., Zhang, R.: Collaborative intent
prediction with real-time contextual data. ACM TOIS (2017)

Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. ICLR
(2017)

Williams, J., Raux, A., Ramachandran, D., Black, A.: The dialog state tracking
challenge. In: SIGDIAL. (2013)

Levin, E., Pieraccini, R., Eckert, W.: Learning dialogue strategies within the
markov decision process framework. In: Automatic Speech Recognition and Un-
derstanding, IEEE. (1997)

Williams, J.D., Young, S.: Partially observable markov decision processes for spo-
ken dialog systems. Computer Speech & Language (2007)

Henderson, M., Thomson, B., Young, S.: Deep neural network approach for the
dialog state tracking challenge. In: SIGDIAL. (2013)

Williams, J.D., Zweig, G.: End-to-end lstm-based dialog control optimized with
supervised and reinforcement learning. arXiv preprint arXiv:1606.01269 (2016)
Li, X., Chen, Y.N., Li, L., Gao, J.: End-to-end task-completion neural dialogue
systems. arXiv preprint arXiv:1703.01008 (2017)

Zhao, T., Eskénazi, M.: Towards end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In: SIGDIAL. (2016)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature (2015)

Watkins, C.J., Dayan, P.: Q-learning. Machine learning (1992)

Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: NIPS. (2000)

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
ICML. (2016)

Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A survey of statisti-
cal user simulation techniques for reinforcement-learning of dialogue management
strategies. The knowledge engineering review (2006)

Pietquin, O., Hastie, H.: A survey on metrics for the evaluation of user simulations.
The knowledge engineering review (2013)

