
Boosting Moving Object Indexing
through Velocity Partitioning

Thi Nguyen #1, Zhen He #2, Rui Zhang ∗3, Phillip Ward #†4

#Department of Computer Science and Computer Engineering, La Trobe University, Australia
1
nt2nguyen@students.latrobe.edu.au,

2
z.he@latrobe.edu.au

∗Department of Computing and Information Systems, University of Melbourne, Australia
3
rui@csse.unimelb.edu.au

†CSIRO Land and Water, Highett, Victoria, Australia
4
p.ward@csiro.au

ABSTRACT
There have been intense research interests in moving object index-
ing in the past decade. However, existing work did not exploit the
important property of skewed velocity distributions. In many real
world scenarios, objects travel predominantly along only a few di-
rections. Examples include vehicles on road networks, flights, peo-
ple walking on the streets, etc. The search space for a query is heav-
ily dependent on the velocity distribution of the objects grouped in
the nodes of an index tree. Motivated by this observation, we pro-
pose the velocity partitioning (VP) technique, which exploits the
skew in velocity distribution to speed up query processing using
moving object indexes. The VP technique first identifies the “dom-
inant velocity axes (DVAs)” using a combination of principal com-
ponents analysis (PCA) and k-means clustering. Then, a moving
object index (e.g., a TPR-tree) is created based on each DVA, using
the DVA as an axis of the underlying coordinate system. An object
is maintained in the index whose DVA is closest to the object’s cur-
rent moving direction. Thus, all the objects in an index are moving
in a near 1-dimensional space instead of a 2-dimensional space. As
a result, the expansion of the search space with time is greatly re-
duced, from a quadratic function of the maximum speed (of the ob-
jects in the search range) to a near linear function of the maximum
speed. The VP technique can be applied to a wide range of moving
object index structures. We have implemented the VP technique on
two representative ones, the TPR*-tree and the Bx-tree. Extensive
experiments validate that the VP technique consistently improves
the performance of those index structures.

1. INTRODUCTION
GPS enabled mobile devices (phones, car navigators, etc) are

ubiquitous these days and it is common for them to report their lo-
cations to a server in order to get location based services. Such
services involve querying the current or near future locations of
the mobile devices. Many index structures have been proposed to
facilitate efficient query processing on moving objects in the last
decade (e.g., [8, 13, 17, 20, 21, 23, 25]). However, none of these
index structures exploit the important property of skewed velocity
distributions. In most real world scenarios, objects travel predomi-
nantly along only a few directions due to the fixed underlying trav-

elling infrastructure or routes. Examples include vehicles on road
networks, flights, people walking on the streets, etc. Figure 1(a)
shows a portion of the road network of San Francisco, where most
of the roads are along two directions. Figure 1(b) shows a sample
of velocity distribution of the cars travelling on the San Francisco
road network. Every point (2-dimensional vector) in the figure rep-
resents the velocity of a car. It is clear that most of the cars are
travelling along two dominant directions (axes).

(a) San Francisco road network

-100

-50

 0

 50

 100

-100 -50 0 50 100
S

p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

velocities

(b) Velocity distribution of the cars

Figure 1: San Francisco road network and the cars’ velocity
distribution

The velocity distribution of objects in an index has a great impact
on the rate at which the query search space expands. The search
space expansion is either due to the tree nodes’ minimum bound-
ing rectangle (MBR) expansion (e.g., the TPR-tree/TPR*-tree [21,
23]) or query expansion (e.g., the Bx-tree [13]). In either case, the
search space for a tree node is enlarged during the query time inter-
val using the largest speed of the objects grouped in that tree node.
If the velocities of the objects in a node are randomly distributed,
then the search space is enlarged along both the x- and y-axes, and
therefore there is a quadratic function of the maximum speed of the
objects in the node. If the movements of all the objects in a node are
largely along the same direction, then the search space is enlarged
mainly along one axis and hence there is close to a linear function
of the maximum speed of the objects in the node.

Motivated by this observation, we propose the velocity partition-
ing (VP) technique, which exploits the skew in velocity distribution
to speed up query processing using moving object indexes. The
VP technique first identifies the “dominant velocity axes (DVAs)”
using a combination of principal components analysis (PCA) and
k-means clustering. A DVA is an axis, which the velocities of most
of the objects are (almost) parallel to. Then, a moving object index
(e.g., a TPR-tree) is created based on each DVA, using the DVA as
an axis of the underlying coordinate system. Objects are dynami-
cally moved between DVA indexes when their movement directions
change from one DVA to another. Objects with current velocities,

which are far from any DVAs, are put in an outlier index. The out-
lier index uses the regular coordinate system. Thus, except for the
outlier index, the objects in each other index are moving in a near
1-dimensional space instead of a 2-dimensional space. As a result,
the expansion of the search space with time is greatly reduced, from
a quadratic function of the maximum speed (of the objects in the
search range) to a near linear function of the maximum speed.

The VP technique is a generic method and can be applied to a
wide range of moving object index structures. In this paper, we fo-
cus our analysis and implementation of the VP technique on the two
most well recognized and representative moving object indexes of
different styles, the TPR*-tree [23] and the Bx-tree [13]. These two
indexes are the basis for many recent indexing techniques [7, 22,
24, 25]. Our method can be applied to these more recent indexes
in similar ways to how it is applied to those two representative in-
dexes. We perform an extensive set of experiments using various
real and synthetic data sets. The results show that the VP tech-
nique consistently improves the performance of both index struc-
tures. The improvement is up to around 3 times in terms of both
query I/O and query execution time for both index structures.

The contributions of this paper are summarized below:

• We analytically show why a moving object index with VP
outperforms a moving object index without VP.

• We propose the VP technique, which identifies the dominant
velocity axes (DVAs) and maintain the objects in separate
indexes based on the DVAs.

• We analytically show how to choose the value of an impor-
tant parameter that determines which objects belong to the
outlier index.

• We implemented the VP technique on two state-of-the-art
moving object indexes, the TPR*-tree and the Bx-tree. We
have performed an extensive experimental study. The results
validate the effectiveness of our approach across a large num-
ber of real and synthetic data sets.

2. PRELIMINARIES
In this section, we provide some background on moving objects,

and briefly review two techniques used in our approach, principal
components analysis (PCA) and k-means clustering.

2.1 Moving object representation and query
ing

A simple way of tracking the location of moving objects is to
take location samples periodically. However, this approach requires
frequent location updates, which imposes a heavy workload on the
system. A popular method to reduce the reporting rate is to use a
linear function to describe the near future trajectory of moving ob-
jects. The model consists of the initial location of the object and a
velocity vector. An update is issued by the object when its velocity
changes. An object velocity update simply consists of a deletion
followed by an insertion. This linear model based approach is used
by many studies [8, 13, 17, 19, 20, 21, 23, 25, 26, 28] on indexing
and querying moving objects. We also follow this model in this
paper, and the moving objects are modeled as moving points.

We support three different types of range queries: time slice
range query, which reports the objects within the query range at a
particular time stamp; time interval range query, which reports the
objects within the query range within a time range; moving range
query, where the query range itself is moving and the query reports
the objects that intersect the moving range in a time range. For all
three types of range queries, if the query timestamp (or time range)
is in the future, the query range is projected (expanded) to that fu-
ture time to check which objects should be returned.

2.2 Principal components analysis
Principal components analysis (PCA) is a commonly used method

for dimensionality reduction [4, 12] and for finding correlations
among attributes of data [15]. It examines the variance structure
in the data set and determines the directions along which the data

exhibits high variance. In our case, if we map the velocity of ob-
jects into the 2D velocity space as points, then the axis with high
variance is the DVA.

Given a set of k-dimensional data points, PCA finds a ranked set
of orthogonal k-dimensional eigenvectors v1, v2, ..., vk (which we
call principal component vectors) such that:

• Each principal component (PC) vector is a unit vector, i.e.,
√

βi
2
1 + βi

2
2 + ...+ βi

2
k = 1, where βij (i, j = 1,2, ...,k) is

the jth component of the PC vector vi.

• The first PC v1 accounts for most of the variability in the
data, and each succeeding component accounts for as much
of the remaining variability as possible.

2.3 Kmeans clustering
K-means clustering [18] is a method commonly used to auto-

matically partition a data set into k clusters where each data point
belongs to the cluster with the nearest centroid. It starts by assign-
ing each object to one of k clusters either randomly or using some
heuristic method. The centroid of each cluster is computed and
each point is re-assigned to its closest cluster centroid. When all
points have been assigned, the k cluster centroids are recomputed.
The process is repeated until the centroids no longer move.

3. RELATED WORK
In this section, we review existing work on moving object in-

dexes, specifically R-tree [3] based indexes, the Bx-tree [13], and
dual transform based indexes. We also discuss indexing techniques
for handling skewed workloads and for handling moving objects on
road networks.

3.1 Rtree based moving object indexes

−1

1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

b

c

a
d

e
N1 N2

−1

2
1

−1

−1

−1

−1 1

−1

−1

1

y

x

−1

−2

−2 2

(a) MBRs and VBRs at time 0

−1

1 2 3 4 5 6 7 8 9

1

2

3

5

6

7

8

4

1

−1
−1

−2

1−1−1

−1

2

2

1

1

Q

x

a

b

c

e

d

−1

1

N
2

N

y

−1

−1
−2

(b) MBRs and VBRs at time 1

Figure 2: MBRs of a TPR-tree growing with time

An established approach to index moving objects is to use the
R-tree [3] or it’s more optimized variant the R*-tree [11] to index
the extents of objects and their current velocities. These indexes
include the TPR-tree [21] and its variant TPR*-tree [23], which
optimize some operations of the TPR-tree. They work by grouping
object extents at the reference time into minimum bounding rect-
angles (MBRs). Figure 2(a) shows the objects a, b and c grouped
into the same MBR in node N1. Accompanying the MBRs are the
velocity bounding rectangles (VBRs), which represent the expan-
sion of the MBRs with time according to the velocity vectors of
the constituent objects. The rate of expansion in each direction is
equal to the maximum velocity among the constituent objects in the
corresponding direction. A negative velocity value implies that the
velocity is towards the negative direction of the axis. For example,
in Figure 2(a) we can see that the solid arrow on the left of node N1

has a value of -2. This is because the maximum velocity value of
the constituent objects in the left direction is 2. Figure 2(b) shows
the expanded MBRs at time 1.

The MBR and VBR structure described can be extended by re-
placing the constituent object extents with smaller MBRs. This
when recursively applied creates a hierarchical tree structure. The
tree structure is identical to the classic R-tree [11]. The only differ-
ence being the algorithms used to insert, delete and query the tree
also need to take the velocity information into consideration. The

TPR-tree and the TPR*-tree modify the R*-tree’s insertion/deletion
and query algorithms.

The insertion and deletion algorithms of the TPR*-tree use a cost
model proposed by Tao et al. [23] to reduce the expected number
of node accesses for a range query Q. We briefly describe this
cost model below. This cost model is also used by our paper for
analyzing the benefits of a partitioned index in Section 4.

Consider a moving tree node N and a moving range query Q for
the time interval [0,1] as shown in Figure 3(a). The MBR (VBR)
of N is denoted as NR = {NR1−, NR1+, NR2−, NR2+} (NV =
{NV 1−, NV 1+, NV 2−, NV 2+}), where NRi− (NV i−) is the coor-

dinate (velocity) of the lower boundary of N on the ith dimension,
where i ∈ {1, 2}. Similarly, NRi+ (NV i+) refers to the upper
boundary. MBR (VBR) of Q also can be denoted similar to N .

The sweeping regions of N and Q are the regions swept by N
and Q during the time interval [0,1] (the grey regions shown in
Figure 3(a)). To determine whether node N intersects Q, we first

Mbr(N,1)

region of N

sweeping

2

4 6 82
0

10

8

6

4

2
2

2

2

2

y

x10

Mbr(N,0)

Mbr(Q,0)

Mbr(Q,1)

−1

region of Q

−1

sweeping

(a) Moving node N , Q

Mbr(N’,0)

Mbr(N’,1)

y

region of N’

sweeping

3

3

2

2

4 6 82
0

10

8

6

4

2

x10

(b) Transformed node N ′

Figure 3: Sweeping region of moving node

define the transformed node N ′ with respect to Q as follows: the

MBR of N ′ in the ith dimension is 〈NRi− − |QRi|/2, NRi+ +

|QRi|/2〉; the VBR of N ′ in the ith dimension is 〈NV i− −QV i+,
NV i+ − QV i−〉. To check whether node N intersects Q during
the time interval [0,1] is equivalent to checking whether the trans-
formed node N ′ intersects the center of Q (which is a point) during
the time interval [0,1]. Therefore, the probability of N intersecting
Q (which is the probability of node N being accessed by the query
Q) during the time interval [0,1] is the same as the probability of
N ′ intersecting the center of Q during the time interval [0,1], which
equals to the area of the sweeping region of N ′ in the time inter-
val [0,1] (the grey region shown in Figure 3(b)). Assuming that
the MBR of Q uniformly distributes in the data space and the data
space has a unit extent in each dimension. Adding up this proba-
bility for every node of the tree, we obtain the expected number of
node accesses for the range query Q as:

∑
every node N in the tree

VN′ (qT), (1)

where qT is the query time interval; VN′(qT) is the volume of the

sweeping region of N ′ during qT .

3.2 The Bxtree

10

Q’(5)

Q(2)

b*

a*

b

a

1

1

1

1

y

4 6 82
0

10

8

6

4

2

x

Figure 4: Query enlargement in the Bx-tree

The Bx-tree [13] indexes moving objects using the B+-tree. This

is a challenge since the B+-tree indexes 1D space but objects move
in a 2D space with associated velocities as well. The Bx-tree achieves
the challenge by first partitioning the 2D space using a grid, and
then using a space-filing curve (Hilbert-curve or Z-curve) to map
the location of each grid cell to a 1D space where 2D proximity is
approximately preserved. The locations of the moving objects are
indexed relative to a common reference time.

The Bx-tree incorporates the fact that objects are moving by en-
larging the query window according to the maximum velocity of
the objects. If the query time is far in the future, and therefore
very different from the index reference time, then the query may
be enlarged significantly. Figure 4 shows an example of how the
window enlargement works. Supposing that the current time is 0,
we issue a predictive time slice range query Q at time 2 (the solid
rectangle). Considering that moving points a and b (the black dots)
stored in the Bx-tree, are indexed relative to timestamp 5. From
their velocities as shown in Figure 4, we can infer their positions
at timestamp 2, which are a∗ and b∗ (the circles). The window en-
largement technique enlarges the range query Q using the reverse
velocities of a and b to get the query window at timestamp 5 (the
dashed rectangle). In practice, histograms on a grid base are main-
tained for the maximum/minimum velocity of different portions of
the data space and the query window is enlarged according to the
maximum/minimum velocity in the region it covers. Therefore, a
drawback of the Bx-tree is that, if only a few objects have a high
speed, they would make the enlarged query window unnecessarily
large for most of the objects.

To reduce the amount of query window enlargement, the Bx-tree
partitions the index into multiple time buckets, where all objects
indexed within the same time bucket are indexed using the same
reference time. This results in a smaller difference between the
reference time and query time and thus reduces the query window
enlargement. When objects are updated, they are moved from the
time bucket they are currently residing in to the future time bucket.

3.3 Dual transform based moving object in
dexes

The earlier work on dual transform based moving object indexes
[1, 16] was improved upon by more recent indexes such as STRIPES

[20], the Bdual-tree [25] and [17]. They index objects in the dual
space, i.e. a 4-dimensional space consisting of two dimensions for
the location of an object and another two dimensions for the ve-
locity of the object. A consequence of indexing the velocity as
separate dimensions is that the moving objects are effectively in-
dexed as stationary objects. All objects are indexed based on the
same reference time of 0. A drawback of indexing all objects at
the same reference time is that the query search space continues
to grow with time,which is overcome by periodically replacing the
old index with a new index with an updated reference time.

Dual transform based moving object indexes differ from our work
by not exploiting velocity distribution skew to index objects travel-
ing along different dominant velocity axes (DVAs) separately.

3.4 Indexing techniques that handle skewed
workloads

Zhang et al. [27] propose the P+-tree, which efficiently handles
both range and kNN queries for different data distributions includ-
ing skewed distributions. Their work differs from ours in that their
index is designed for stationary objects instead of moving objects.
Tzoumas et al. [24] propose the QU-Trade technique for indexing
moving objects that adapts to varying query versus update distribu-
tions by building an adaptive layer on top of the R-tree or TPR-tree.
Our work differs from this by adapting to velocity distributions in-
stead of query versus update distributions. Chen et al. [7] propose

the ST2B-tree, which improves the Bx-tree by making it adaptive
to data and query distribution. This is done by dynamically ad-
justing the reference points and grid sizes. Our work differs from
this by creating separate indexes according to velocity distributions
instead of adjusting the reference points and grid sizes. Our VP

technique can be applied in a straightforward manner to the QU-

trade technique and ST2B-tree because their underlying structures
are the TPR-tree and the Bx-tree, respectively.

Dittrich et al. [8] propose a main memory indexing technique
called MOVIES for moving objects. MOVIES assumes that the
whole data set resides in memory and the update rate is very high
(greater than 5,000,000 per second) whereas our technique does not
make such assumptions.

3.5 Indexing techniques for moving objects on
networks

There are many existing papers [2, 5, 9, 10] which model the
movement of objects along any type of network including road net-
works. Our paper does not assume that every object must move in
a road network, in other words, our technique works for generic
scenarios where objects can move freely. Objects moving in road
networks is just one of the motivating examples in which case our
technique brings great performance gain due to the few dominate
directions of object movements.

4. HOW VELOCITY PARTITIONING RE

DUCES SEARCH SPACE EXPANSION
In this section, we analytically show how a velocity partitioned

index can reduce the rate of search space expansion. We focus our
analysis on the Bx-tree and the TPR-tree variants. We first give
an intuitive description of a partitioned index versus unpartitioned
index. Second, we define search space expansion. Third, we ana-
lytically contrast the rate of search space expansion between a un-
partitioned index versus a partitioned index. Finally, we present
preliminary experimental verification of our analysis.

Partitioned index. The main idea of the velocity partitioning (VP)
technique is to index objects moving along different DVAs (direc-
tions) in separate indexes. It is important to note that the VP tech-
nique is not restricted to pairs of DVAs that are perpendicular to
each other, but rather will work for any number of DVAs separated
by any angle. Here we first use a simple example to illustrate the
concept of the VP technique. Later in Section 5, we provide a de-
tailed description of how the VP technique is performed. Figure
5 shows an example of objects indexed by an unpartitioned index
versus the same objects indexed by a partitioned index. In this ex-
ample, objects are moving along two DVAs, the x-axis and the y-
axis. In the unpartitioned index, all objects are indexed by the same
index. In the partitioned index, objects moving along the x-axis are
indexed in a separate index from those moving along the y-axis.

Search space expansion. First, we define what we mean by search
space expansion. The search space for a query describes the data
space that is covered (accessed) when processing the query. The
expansion of the search space is determined by the relative move-
ment between the query and the tree nodes. The size of the search
space is proportional to the number of tree nodes accessed by a
query Q, which can be estimated using a cost model proposed by
Tao et al. [23] for the TPR-tree/TPR*-tree. The cost model was
described in Section 3.1 and given as Equation 1.

Although the cost model was designed for the TPR-tree, it also
applies to the Bx-tree as follows. For the Bx-tree, the query ex-
pands but the tree nodes are stationary, which is a special case of
the analysis used for Equation 1 where both the query and the tree
node are moving and expanding.

The idea behind the cost model of Equation 1 is that we can
always transform a moving/expanding query into a stationary one
by making relative adjustments to tree nodes. For example, an ex-
panding query and a stationary tree node can be transformed into
a stationary query by expanding the tree node by the amount the
query was supposed to expand. Following this line of argument,
we only consider the expansion of the tree node in the following
analysis without loss of generality.

Figure 6 shows an example of the search space of the example
shown in Figure 5. In the example, S is the search space of the un-
partitioned index, S′

X and S′
Y are the search space of a partitioned

index in the x- and y-axes, respectively. We also assume that all
objects are traveling either along the x- or y-axes, as was the case
for Figure 5. The example shows that the search space expands by
a quadratic factor for the unpartitioned index versus a linear factor
for the partitioned index.

Analysis of search space expansion of unpartitioned versus par-
titioned index. We will first analyze a simplified scenario as shown
in Figure 6, and then discuss more general situations in Section 4.1.
In this simplified scenario, we assume that: (i) the velocities of all
the objects are exactly along the standard x- or y-axes; (ii) the ob-
jects travel in the same speed along all directions; (iii) the extent
length of the tree nodes along the x- and y-axes are the same; and
(iv) the initial locations of objects are uniformly distributed in the
2D space. The symbols used in Figure 6 are described as follows.
N ′ is the transformed rectangle of the node N with respect to the
query for the unpartitioned index at the initial time 0; N ′

X and N ′
Y

are the transformed rectangles of the node N for the partitioned in-
dex for the x- and y-axes, respectively; v is the maximum speed for
the objects in S along both the x- and y-axes. The extent length of
all the nodes is d. This assumption is reasonable since we are more
interested in the rate of expansion of the search space rather than
its initial size.

Let S′ denote the combined search space of the partitioned index
in the x-axis, S′

X and the y-axis, S′
Y (as shown in Figures 6(b) and

6(c), respectively). Our aim is to show that the rate at which the
unpartitioned search space, S expands is higher than the rate at
which the partitioned search space S′ expands. We quantify the
search space as the volume created by integrating the search area
from time 0 to the query predictive time th, where query predictive
time refers to the future time of the query. The search area expands
with time, therefore we start by expressing the search area of the
partitioned index N ′ as a function of time t, AN′(t) as follows:

AN′ (t) = (d+ 2vt)(d+ 2vt)

= d2 + 4vtd+ 4v2t2 (2)

We are interested in the total expansion of the search area of
the partitioned indexed including both the x-axis index and y-axis
index. Therefore, let ACN′(t) be the combined area of N ′

X and

N ′
Y as a function of time t. ACN′(t) can be computed as follows:

ACN′ (t) = AN′

X

(t) +AN′

Y

(t)

= (d+ 2vt)d+ d(d+ 2vt)

= 2d2 + 4dvt (3)

We next compute the search volume of S. It is important to
compute the search volume rather than just the expanded search
area since the volume includes the cumulative expansion of the area
from time 0 to th. We compute the search volume VS of S by
integrating the search area AN′ from time 0 to th as follows:

VS(th) =

∫ th

0
AN′ (t) dt

=

∫ th

0
(d2 + 4vtd+ 4v2t2) dt

= d2th + 2dvth
2 +

4

3
v2th

3 (4)

Similarly the search space volume from time 0 to th of S′, VS′

can be computed as follows:

VS′ (th) =

∫ th

0
ACN′ (t) dt

=

∫ th

0
(2d2 + 4dvt) dt

= 2d2th + 2dvth
2 (5)

In order to compare the search space of the partitioned index
versus the unpartitioned index, we compute the difference between
the search space volume of the partitioned search space S′ versus
the unpartitioned search space S as a function of time, ∆V (th) as
follows:

(b) Tree nodes of partitioned index

v v−v

−v

v
v

−v

−v

(a) Tree node of unpartitioned index

Figure 5: Objects indexed by an unpartitioned index versus the same objects indexed by a partitioned index

N’

in both x and y−axis in x−axis
(b) Search space expansion

v

d

d

d

d vv

v

d

d

−v −v

−v

.

N’
X N’

−v

(a) Search space expansion

search space S’
X

search space S’
Y

search space S

(c) Search space expansion
in y−axis

N’ Y

Figure 6: Search space of unpartitioned index, S versus search space of partitioned index, S′
X plus S′

Y

∆V (th) = VS′ (th)− VS(th)

= 2d2th + 2dvth
2
− (d2th + 2dvth

2 +
4

3
v2th

3)

= d2th −
4

3
v2th

3 (6)

From Equation 6 we can see that as time increases the search
volume of the unpartitioned space VS becomes increasingly larger
than the search volume of the partitioned space, VS′ . This can be

seen by the fact ∆V (th) is negative when th is greater than d
√
3

2v
.

Therefore, when time th passes the d
√
3

2v
threshold the search vol-

ume of the unpartitioned search volume VS becomes larger than the
partitioned search volume VS′ .

Next, we analyze the rate of change in the search space, by taking
the derivative of Equation 6. This is stated as follows:

d∆V (th)

dth
= d2 − 4v2th

2 (7)

Equation 7 shows that the search volume of the unpartitioned index
expands at a much faster rate than the partitioned index. This can
be seen by the fact the rate at which the search volume of the un-
partitioned index increases above the partitioned index is a squared

factor of both v and th because
d∆V (th)

dth
is a squared factor of both

v and th.
The above analysis is with respect to a single node. It obviously

applies to any node in the tree and when summing up the search
space for all the tree nodes, we reach the conclusion that the query
search space on a partitioned index grows much slower with time
than the query search space on an unpartitioned index. The follow-
ing experiment on a real data set validates this result.

Figure 8: Chicago road network

Experimental verification of the analysis. Figure 7 shows the
results of an experiment, which illustrates the 2D search space ex-
pansion for an unpartitioned TPR*-tree and an unpartitioned Bx-
tree versus a near 1D search space expansion for their partitioned
counterparts. The indexes are partitioned using our VP technique
(detailed in Section 5). The experiment uses data generated from a
portion of the road network of Chicago shown in Figure 8.The ex-
periment involved 100,000 moving objects, with maximum speed
of 100 meters per time stamp, with a query predictive time of 60
time stamps. Details of other parameters of the experiment are the
default parameters described in the experimental study (Section 6).

Figures 7(a) and 7(b) show the velocity expansion rate of the leaf
MBRs for the unpartitioned TPR*-tree and partitioned TPR*-tree,
respectively. The results show that the leaf nodes of the unpar-
titioned TPR*-tree expand in a 2D space whereas the partitioned
TPR*-tree expand in a near 1D space. Similarly, Figures 7(c) and
7(d) show the query expansion rate of the unpartitioned Bx-tree
and partitioned Bx-tree, respectively. Again, the query of the un-
partitioned Bx-tree expands in a 2D space, whereas the partitioned
Bx-tree expands in a near 1D space.

4.1 Discussion of general cases
In the analysis of the simplified scenario, we have made several

assumptions. To lift the first assumption, when the velocities of
objects are not exactly along the standard x- or y-axes, as long as
their directions are close to the standard x- or y-axes, the previous
analysis still holds since a small deviation from the dominant ve-
locity axis (DVA) incurs a small search space expansion. However,
if some objects’ directions are not close to any of the DVAs, we
will put these objects into an outlier partition. Details of the outlier
partition will be discussed in Section 5.2.

An implicit assumption we also made in the previous analysis is
that there are two DVAs, one is vertical and the other is horizontal.
This assumption may not hold in practice. Therefore, in our VP
technique, we first find out the actual DVAs (through a combination
of PCA and k-means clustering). Then, the previous analysis still
holds when we replace the x- and y-axes with the actual DVAs.
Details of how to find the DVAs will be discussed in Section 5.1.

5. THE VELOCITY PARTITIONING TECH

NIQUE
We present our VP technique in this section. Figure 9 shows the

system architecture for the VP technique. The system has two main
components, a velocity analyzer and an index manager. The veloc-
ity analyzer partitions a sample of the velocity of objects from the
current workload in order to find the DVAs and an outlier threshold

 0

 50

 100

 150

 200

 0 50 100 150 200

L
e

a
f

M
B

R
 e

x
p

a
n

s
io

n
 r

a
te

 i
n

 y
-a

x
is

Leaf MBR expansion rate in x-axis

TPR*

(a) Unpartitioned TPR*-tree

 0

 50

 100

 150

 200

 0 50 100 150 200L
e

a
f

M
B

R
 e

x
p

a
n

s
io

n
 r

a
te

 i
n

 o
rt

h
o

g
o

n
a

l
to

 D
V

A

Leaf MBR expansion rate in DVA

TPR* partition 0
TPR* partition 1

(b) Partitioned TPR*-tree

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
u

e
ry

 e
x
p

a
n

s
io

n
 r

a
te

 i
n

 y
-a

x
is

Query expansion rate in x-axis

B
x

(c) Unpartitioned Bx-tree

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
u

e
ry

 e
x
p

a
n

s
io

n
 r

a
te

 i
n

 o
rt

h
o

g
o

n
a

l
to

 D
V

A

Query expansion rate in DVA

B
x
 partition 0

B
x
 partition 1

(d) Partitioned Bx-tree

Figure 7: Search space expansion of the unpartitioned versus partitioned Bx-tree and TPR*-tree on the Chicago data set

(used to determine which objects belong to the outlier partition).
Velocity is a 2D point in the velocity space, so we refer to the ve-
locity of an object as a velocity point. The index manager takes
the output of the velocity analyzer to transform the query, insertion
and deletion operations to operate on the DVA indexes and outlier
index. A DVA index is the same as a traditional moving object in-
dex such as the TPR-tree or the Bx-tree except objects are indexed
using a transformed coordinate space according to the DVA. The
index manager inserts an object into the closest DVA index unless
it is far from all DVAs, in which case, the object is inserted into
the outlier index. If an object update causes its direction of travel
to change sufficiently, it may be moved from one index to another.
Processing a query involves transforming the query into the coor-
dinate space of each index, and then querying all the indexes and
combining the results.

Query/Insertion/Deletion

DVADVA Outlier

DVAs +

Outlier
Threshold

Index Manager

Transformed Query/Insertion/Deletion

Index 1 Index 2 Index k Index
......

Velocity
Analyzer

Sample Velocity Points

DVA

Figure 9: The system architecture of the VP technique

We provide a more detailed description of the velocity analyzer
in this section since it is the key component of the system. The ve-
locity analyzer analyzes the sample of velocity points to determine
the partition boundaries for future object insertions and querying.
The partition boundaries are determined by the DVAs in the data set
and an outlier threshold τ . We observe that when there are multiple
DVAs in the data set, using only PCA may not be able to identify
the DVAs correctly. Therefore, we propose to use a combination of
PCA and k-means clustering on the sample velocity points to deter-
mine the DVAs. Here k is an input value given by the user based on
observation of the data set or experience. For example, most road
networks have two dominant traffic directions and we can set k to
2. Once the DVAs are determined, the objects can be partitioned
based on the closeness of their velocity directions to the directions
of the DVAs. However, some velocity points may not be close to
any DVA. Those objects are placed in an outlier partition. We de-
termine the boundary of the outlier partition using a threshold τ ,
which defines an upper bound on what a DVA partition will accept.
We choose the τ value for every partition by analyzing the sample
data set using a search space-based cost function.

Algorithm 1 summarizes the VP algorithm used by the velocity
analyzer. It starts by finding the DVAs using a combination of PCA
and k-means clustering on the representative sample data (Line 2).
Specifically, we integrate PCA into the clustering process itself by
using PCA to guide the formation and refinement of clusters. At
the end of the clustering process, each cluster contains the velocity
points that form one DVA partition. The 1st PC of each partition is
the DVA for the partition. The partitioning algorithm minimizes the

perpendicular distance from each velocity point to the DVAs. The
reason we minimize the perpendicular distance is that if all velocity
points within one partition have a small perpendicular distance to
the DVA, then those velocity points occupy a near 1D space.

We define a threshold τ for every DVA to determine whether an
object can be accepted to its partition (Line 4). We determine the
optimal τ by minimizing the combined rate of search area expan-
sion of the DVA partition and the outlier partition. Objects whose
perpendicular velocity is not within the threshold, τ , of any DVA,
are placed in the outlier partition (Line 5). Once all the outlier ve-
locity points have been removed from the DVA partition we recom-
pute the DVA using the remaining velocity points (Line 6). This
updated DVA will be a more precise representation of the veloc-
ity points now remaining in the DVA partition. The final DVAs
and their associated τ thresholds are used by the index manager for
future insertions and query processing.

Algorithm 1: VelocityPartitioning(A,k)

Input: A: sample set of velocity points, k: number of DVA partitions
Output: D: set of DVAs with associated outlier thresholds τ

1 let P be the set of k DVA partitions with their associated DVAs
2 P = Find DVAs(A, k) // See Algorithm 2
3 for each p ∈ P do
4 compute the maximum perpendicular distance threshold τ for p

according to Section 5.2
5 move the velocity points from p whose perpendicular distance is

greater than τ from the DVA of p into the outlier partition
6 recompute the DVA for the remaining velocity points in p

7 let D be the set of DVAs and associated τ thresholds of P
8 return D

In Section 5.1, we describe how our velocity analyzer finds DVAs.
In Section 5.2, we describe how our velocity analyzer determines
the threshold τ to decide which objects should be placed in the
outlier partition. In Section 5.3, we show how our index manager
handles insertion, deletion and update operations. In Section 5.4,
we show how our index manager performs the range query. Finally
in Section 5.5, we discuss the issue of changing velocity distribu-
tions.

5.1 Velocity analyzer: finding dominant ve
locity axes (DVAs)

In this subsection, we will first examine two naı̈ve approaches to
finding DVAs, and then present our approach for finding DVAs.

Naı̈ve approach I: PCA. The first naı̈ve approach is to apply PCA
on a sample set of velocity points to find the DVAs. Using PCA
to find DVAs is intuitive, since the 1st PC (as described in Section
2.2) represents the principal axis along which the data points lay.
In our case, the data points are velocity points, therefore, the 1st PC
represents the principal axis along which objects travel. However,
this approach effectively combines the multiple DVAs in the data
set into one average velocity axis, which does not represent any
of the individual DVAs. PCA is only useful for finding the DVA
when there is only one DVA in the data set. Figure 10(a) shows
the result of applying PCA on a sample of 10,000 velocity points

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

partition 1
partition 0

partition 0 1st PC
partition 1 1st PC

(a) Partitions after initial random
cluster assignment of points, and
the 1st PC of each cluster.

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(b) Partitions after the first itera-
tion of clustering based on the dis-
tance to the 1st PC a cluster.

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(c) Partitions and their 1st PCs af-
ter the entire clustering process fin-
ishes.

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(d) Final partitions and DVAs

Figure 11: Our partitioning algorithm being applied to the San Francisco data set shown in Figure 1

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

velocities 1st PC

(a) Apply PCA to all data

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

partition 0
partition 1

partition 0 1st PC
partition 1 1st PC

(b) Apply k-means (based on dis-
tance to centroid) to find clusters

Figure 10: Result of applying the two naı̈ve approaches to find-
ing the DVAs for the San Francisco data set

of cars traveling on San Francisco network (shown in Figure 1). In
this case, the data set has two DVAs but the 1st PC is the average
of the two, instead of the two individual DVAs. The 1st PC is far
from either of the DVAs. The 2nd PC is orthogonal to the 1st PC
and also does not correspond to any of the DVAs.

Speed on x−axis

B

C
C

1
2

A

S
p

ee
d

 o
n

 y
−

ax
is

(a) Clustering using naı̈ve
approach II

S
p
ee

d
 o

n
 y

−
ax

is

B

PC

PC

1

2

A

Speed on x−axis

(b) Clustering using our ap-
proach

Figure 12: Naı̈ve approach II versus our approach

Naı̈ve approach II: k-means clustering based on distance to
centroid followed by PCA on each cluster. The second naı̈ve
approach applies k-means clustering to the velocity points based
on distance to a cluster centroid and then use PCA on each resul-
tant cluster to create one DVA per cluster. This does not work well
since it groups objects based on their closeness to a point (cluster
centroid) rather than closeness to an axis (dominant axis). Figure
12(a) shows an example of clustering based on distance to cen-
troid. In the example there are two cluster centroids C1 and C2 and
two objects A and B. The direction of travel of object B is more
aligned to C1 than C2, however the clustering algorithm groups ob-
ject B with C2 since B is closer to C2. Similar observations can
be made for object A. Figure 10(b) shows the resultant clusters
and corresponding DVAs found on the San Francisco dataset when
using k-means clustering where distance to centroid is used as the
distance measure. Note that the two DVAs found (two parallel lines

in Figure 10(b) labeled as 1st PC of partition 0 and 1) by this tech-
nique do not resemble the two dominant axes (two axes with the
highest concentration of data points) of the data set. The reason
is the clusters created center around the cluster centroids shown in
Figure 10(b) instead of the dominant axes.

Our approach: k-means clustering based on distance to the 1st
PC of each cluster. In our approach, we use k-means clustering on
the velocity points, like the naı̈ve approach II, but we use the per-
pendicular distance to the 1st PC of each cluster (partition) as the
distance measure, instead of distance to a centroid. This allows ob-
jects to be clustered based on their direction of travel. Figure 12(b)
shows an example of using our clustering approach, where there are
two clusters with their 1st PCs being PC1 and PC2, respectively.
Our algorithm allocates object A to the cluster corresponding to
PC2 because A has a shorter perpendicular distance to PC2. Sim-
ilarly, object B is placed in the cluster corresponding to PC1. This
assignment of objects to clusters make sense since the direction of
travel for object A is more aligned to PC2 than PC1, similarly for
object B.

Algorithm 2: FindDVAs(A, k)

Input: A: set of velocity points, k: number of partitions
Output: P : set of partitions with associated 1st PC

1 let P be the set of k partitions
2 initialize each partition p ∈ P to be empty
3 for each velocity point a ∈ A do
4 randomly assign a into a partition p ∈ P

5 while at least one velocity point has moved into a different partition do
6 compute the 1st PC for each partition in P using PCA
7 for each velocity point a ∈ A do
8 if a is not currently in the partition whose 1st PC has the

shortest distance from a then
9 move a into partition whose 1st PC has the shortest

distance from a

10 return P and associated 1st PC as the DVA partitions and their

associated DVAs

Algorithm 2 shows precisely how our k-means clustering algo-
rithm based on distance to the 1st PC is used to find DVAs.

Figure 11 shows an example of applying the FindDVAs algo-
rithm with k = 2 to the San Francisco data set of Figure 1. Figure
11(a) shows the initial random partitions and their corresponding
1st PCs (Lines 3-4 and 6). Note that although the two initial par-
titions are randomly created, their two 1st PCs are slightly apart.
Next, Figure 11(b) shows the partitions created after reassigning
velocity points to their closest 1st PCs. Note that after just this 1st
reassignment iteration the partitions already closely resemble the
final partitions shown in Figure 11(d). The reason for this is the
reassignment of points amplifies the difference between the two 1st
PCs by putting points that are slightly closer to one of the 1st PCs
in the partition of that 1st PC. Figure 11(c) shows the updated 1st

PC of the partitions after reassigning velocity points (Line 6). The
algorithm continues refining velocity points until they converge to
the final partitions with their corresponding 1st PC (DVAs) shown
in Figure 11(d).

5.2 Velocity analyzer: the outlier partition

-100

-50

 0

 50

 100

-100 -50 0 50 100

S
p
e
e
d
 o

n
 y

-a
x
is

(m
/t
s
)

Speed on x-axis(m/ts)

transformed DVA partition 0

(a) Transformed DVA partition 0

-100

-50

-15

 0

 15

 50

 100

-100 -50 0 50 100

S
p

e
e

d
 o

n
 y

-a
x
is

(m
/t

s
)

Speed on x-axis(m/ts)

Final DVA partition 0

(b) Final DVA partition 0 after re-
moving the outliers

Figure 13: The transformed DVA partition 0 and its final DVA
partition after removing outliers

Our aim is to have all objects within each partition travelling
in a near 1D space. However, from Figure 13(a) we can see that
the data points when transformed into the coordinate space formed
by DVA 0 of Figure 11 do not travel in a near 1D space, due to
the presence of outlier objects. To moderate the influence of these
objects, we place those data points with a perpendicular distance
above a threshold τ from their DVAs into the outlier partition. A
cost analysis is performed upon each DVA partition separately to
assign individual τ values to each DVA partition. The outlier parti-
tion is indexed in the standard coordinate system since the objects
in it have little correlation with any DVAs.

We determine the optimal τ value using a slightly simplified ver-
sion of the search space metric defined at the beginning of Section
4. More specifically we use the minimum total rate of expansion of
the area of the transformed leaf nodes AN′

d
and AN′

o
of the DVA

and outlier partitions, respectively. We use the same process as that
shown at the beginning of Section 4 to transform the velocities of
the queries into the tree nodes. This minimization metric captures
the change in the search area as a function of time. We focus our
analysis on leaf nodes since non-leaf nodes are typically cached in
the RAM buffer, the majority of RAM buffer misses are due to leaf
node accesses.

For a given DVA partition and an outlier partition, we define the
total rate of expansion of the area of the transformed leaf nodes of
the two partitions as follows:

TA(t, nd) = LdAN′

d

(t) + LoAN′

o
(t)

=
nd

nl

(d+ 2vxmaxt)(d+ 2vyd (nd)t)

+
(n− nd)

nl

(d+ 2vxmaxt)(d+ 2vymaxt) (8)

where Ld and Lo are the number of leaf nodes in the DVA and
outlier partitions, respectively, n is the total number of objects in
both partitions, nd is the number of objects in the DVA partition
and nl is the average number of objects per leaf node. Figure 14
illustrates the other terms used on the equation diagrammatically.
The most important term is vyd(nd), since this is the term that cor-
responds to the threshold value τ . vyd(nd) is the maximum speed
along the y-axis in the DVA partition. vyd(nd) is a function of
nd as we adjust vyd(nd) by removing from the DVA partition the
objects whose y component speed is the highest. The remaining
terms are described as follows. d is the length along both the x- and
y-axes of both N ′

d and N ′
o. We use the same d for all side lengths

because we assume uniform distribution of object locations. vxmax

and vymax are the maximum speed of N ′
o along the x- and y-axes,

respectively. For simplicity, we also suppose that the maximum
speed of N ′

d along the x-axis is also vxmax. This approximation

is reasonable since we partition solely based on the y-axis maxi-
mum speed and therefore we assume that the maximum speed of
object movements along the x-axis is approximately the same for
all partitions.

V

N’
d

N’
o

V

xmax

−Vymax

xmaxxmax

−Vyd

d

d

d

d

−V

d

−V

(n)

xmaxV

Vyd d
(n) ymax

Figure 14: Diagram used to illustrate the terms used in Equa-
tion 8

Next, we take the derivative of TA(t, nd) with respect to t to
quantify the rate of expansion of TA(t, nd):

d TA(t, nd)

dt
=

2nd

nl

((vyd (nd)− vymax)(d+ 4vxmaxt))

+
2n

nl

(dvymax + vxmax(d+ 4vymaxt)) (9)

We need to minimize Equation 9 in order to minimize the rate
of TA(t, nd) expansion. The only components of the equation that
are not constant are nd and vyd(nd). Therefore, minimizing Equa-
tion 9 is same as minimizing the following expression:

nd(vyd (nd)− vymax) (10)

Algorithm for determining optimal τ value. To find the nd value
that minimizes Equation 10 analytically, we would need to have an
equation describing vyd(nd). However, it is hard to find a general
form for the vyd(nd) equation because it is data distribution de-
pendent. Therefore, we use an equal width cumulative frequency
histogram, per DVA partition, to capture the data distribution of
vyd(nd). Each bucket of the histogram stores the number of veloc-
ity points in the DVA whose maximum y speed is the corresponding
y speed of the bucket.

Our algorithm finds the τ threshold, for each DVA partition, by
taking an uniform sample of vyd(nd) values and computing the
corresponding Equation 10 value. The vyd(nd) value giving the
minimum value for Equation 10 is used as τ . This approach incurs
a small computational cost since Equation 10 is simple and can
be computed cheaply. Figure 13(b) shows the final DVA partition
0 after removing outliers from the transformed partition shown in
Figure 13(a).

Our experimental study (Section 6.1) shows that the algorithm
proposed above is able to find a close to optimal perpendicular dis-
tance τ value for both the Bx-tree and the TPR*-tree.

5.3 Index manager: insertion, deletion and
update

The insertion algorithm is relatively straightforward. First, the
algorithm finds the DVA index imin whose perpendicular distance
from the object o is the smallest. Then, if the perpendicular distance
of o to imin is larger than τ , then o is inserted into the outlier index
otherwise o is inserted into imin. Before an object is inserted into
imin, o is first transformed into the coordinate space of imin using
imin’s 1st PC. The transformation process involves a simple matrix
multiplication between the coordinates of o and the 1st PC of imin.

When performing deletion, the algorithm first finds the partition
object o resides in via a simple lookup table, and then use the base
index structure’s deletion algorithm to delete the object from its
partition. When an object changes it’s velocity, an update is per-
formed on the index.

An update simply consists of a deletion followed by an inser-
tion. The updated object will be inserted into the closest DVA index
which may be different from its original DVA index. If an update
involves moving an object from one DVA index to another then
both indexes need to be locked at the beginning of the update to en-
sure a concurrent query on the destination index does not miss the
inserted object. This may slightly increase the locking overhead.

5.4 Index manager: range queries

Algorithm 3: RangeQuery(I , q)

Input: I: set of all indexes including both DVA indexes and the
outlier index, q: range query

Output: RS: result set
1 for each index i ∈ I do
2 if i is a DVA index then
3 transform the range of q to the coordinate space of index i

using the 1st PC of i

4 create transformed query q′ consisting of a rectangular
axis-aligned MBR of the transformed range of q

5 else
6 q′ = q // index i is the outlier index

7 execute range query q′ on index i and store results in URS
8 filter out the objects in URS, which are not contained in q and

add the remaining objects into RS

9 return RS

In this subsection, we present the range query algorithm, which
can be used for both circular and rectangular range queries. Algo-
rithm 3 details the steps the index manager uses to execute the range
query. The index manager needs to query each of the indexes sep-
arately and merge the results as the query region may encompass
objects from different indexes. Before querying each DVA index,
we need to first transform the query range into the coordinate space
of the DVA index using the 1st PCs of the DVA index (Line 3).
The transformation process involves simple matrix multiplication
between the coordinates of the query range and that of the 1st PCs.
The transformed ranges are bounded by a rectangular minimum
bounding region (MBR), which is axis aligned with the coordinate
space of the DVA indexes (Line 4). The transformed query is then
executed on the indexes using the query algorithm of the underly-
ing index, such as the Bx-tree and the TPR*-tree (Line 7). Finally,
the objects in the result are filtered to remove any objects, which
are in the MBR of the transformed query but not be in the original
query region (Line 8). Note that when querying the outlier index,
there is no query transformation needed since the outlier index uses
the standard coordinate system (Line 6).

Figure 15(a) shows an example of a circular range query q with
radius r before transforming into the coordinate space of a DVA
index. It also represents the first and the 2nd PCs of the DVA index.
Figure 15(b) shows the transformed query q′, which is bounded by
an axis aligned MBR in the coordinate space of the DVA index
formed by the 1st PCs.

r

1st PC vector

2nd PC vector

.

y

x

q

(a) Before transformation

x

r

q’

.

y

(b) After transformation

Figure 15: Circular range query before and after transforming
into a DVA index’s coordinate space

Our system supports all three query types described in Section
2.1, namely the time slice range query, time interval range query,
and moving range query. We discuss the moving range query since
it is the most general form of the three query types. After trans-
forming the range query into the transformed coordinate system
and applying the filtering step (Line 9 of Algorithm 3), the same
object containment relationship with the original query is retained.
The query velocity can also be transformed into the new coordi-
nate system and the query can be executed in the standard way.
Thus, our system supports the same query types as the underlying
indexes (the Bx-tree/the TPR*-tree) including the three query types
discussed in Section 2.1.

5.5 Handling changing velocity distributions
In theory, if the dominant direction of object travel changes sig-

nificantly we would need to rerun the velocity analyzer to deter-
mine new DVAs, and then readjust the indexes to align with the
new DVAs. However, we find in real life, the direction compo-
nent of the velocity distribution changes little since the routes of
the moving objects are usually fixed. This is intuitive as velocity
distributions are usually dictated by rarely changing environmental
factors, such as road networks, flight paths and shipping lanes, etc.
Therefore, the dominant direction of object travel is likely to be sta-
ble. However, the speed component of the velocity distribution is
likely to change with time. For example, during the morning rush
hour there will be many cars travelling into the city, resulting in
reducing speed. In contrast, during this time, there will be few cars
moving out of the city and they will be moving fast. The opposite
is true during afternoon rush hour. The speed distribution has no
effect on the coordinate system of the DVA indexes since the cars
still travel along the same DVA. However, it does affect the value
of the threshold τ , since τ is determined by the y-axis speed distri-
bution of objects moving in the transformed coordinate system of
the DVA indexes. We handle this situation by continuous updating
the histogram used to determine τ , and then periodically comput-
ing an updated τ . Computing τ incurs only a small computational
overhead because the equation used to derive it is simple.

6. EXPERIMENTAL STUDY
In this section, we report the results of experiments illustrating

the performance of our VP technique applied to the Bx-tree [13]
and the TPR*-tree [23] against their unpartitioned counterparts. We
firstly evaluate the ability of our algorithm to find the optimal τ
threshold value. Second, we measure the overhead incurred by the
velocity analyzer. Third, we compare both the query and update
performance of the algorithms across various data sets. Fourth, we
compare the query performance of the algorithms for varying data
sizes. Fifth, we measure the effect of varying the maximum speed
of object movement. Sixth, we compare the query performance of
the algorithms for varying query predictive time. Finally, we show
representative results for the rectangular range query.

The experiments were conducted based on the benchmark de-
fined in Chen et al. [6] for evaluating moving object indexes. The
road network and synthetic (uniform) data sets used in the exper-
iments were generated using the benchmark’s data generator pro-
vided by Chen et al. [6]. To generate the road network data sets
we fed the road network nodes and edges into the benchmark gen-
erator. The road network nodes and edges were all generated us-
ing the XML map data from the OpenStreetMap web site (Open-
StreetMap.org). We generated four road network data sets. Their
characteristics can be summarized as follows:

• The New York (NY) and the Melbourne CBD (MEL) road
networks contain the largest number of nodes and edges, and
hence average the length of each edge. Therefore, both road
networks have the highest update frequency.

• Both the Chicago (CH) and the San Francisco (SA) road net-
works contain less number of nodes and edges and hence
both have smaller number of updates compared to the MEL
and the NY networks.

• The CH road network’s velocity distribution is the most skew-
ed, followed by the SA, the MEL and the NY road networks.

We focus our experimental study on the circular time slice range
query, with a future predictive time ranging from 0 to 120 time
stamps as described in Table 1. We focus on the circular query be-
cause it resembles many real world occurrences and is also used
in the filter step of the k Nearest Neighbor query. The circular
range query specifies a range, which is a certain distance from a
point. For example, a taxi driver is interested in potential passen-
gers within 200 meters of itself, or a tank wants to know if there are
any other tanks within one kilometer of itself. We use the circular
range query as the default query. We have performed the same set
of experiments for the rectangular range query and the results are

(a) Melbourne CBD (b) New York CBD

Figure 16: Other tested road networks

Parameter Setting

Space domain (m2) 100,000x100,000
Cardinality of objects 100K, ..., 500K
Max. object speed (m/ts) 20, ..., 100, ..., 200
Max update interval (ts) 120
Range query radius (m) 100,..., 500,...,1000
Query predictive time (ts) 0, 10, ..., 60, ..., 120
Time duration (ts) 240, 600
RAM buffer size (pages) 50
Disk page size 4KB
Data distribution CH, MEL, SA, NY, uniform

Table 1: Parameters and their settings

similar to those for the circular range query. We show representa-
tive results for the rectangular range quer in Section 6.8.

The parameters used in the experiments are summarized in table
1, where values in bold denote the default values used.

We compare our VP technique applied on top of two state-of-the-
art moving object indexes of contrasting styles: the Bx-tree [13]
and the TPR*-tree [23] with their unpartitioned counterparts (in-
dexes that has not been velocity partitioned). We used the source
code for the TPR*-tree and the Bx-tree provided by Chen et al. [6].
All code was implemented in C++ under Microsoft Visual C++
2008 running on Microsoft Windows 7 Professional SP1. The al-
gorithms compared are described as follows:

• Bx-tree. The Bx-tree [13] has two time buckets and uses the
Hilbert curve for space partitioning. We use the improved
iterative expanding query algorithm [14] to reduce query en-
largement. The histogram used contains 1000x1000 cells.

• TPR*-tree. The TPR*-tree [23] is optimized for query size

of 1000x1000m2.

• Bx(VP)-tree and TPR*(VP)-tree. The VP technique ap-
plied to the Bx-tree and the TPR*-tree denoted as Bx(VP)-
tree and TPR*(VP)-tree, respectively. Both trees use a ve-
locity histogram containing 100 buckets for determining τ
value. We set the number of DVA indexes to 2 because we
found that in almost all road network data sets, the roads
were aligned to two main axes. The settings for the un-
derlying Bx-tree and TPR*-tree are the same as above. The
velocity analyzer used for both indexes used 10,000 sample
velocity points.

Our experiments measure the following metrics: average I/O per
query; average I/O per update; average execution time per query;
and average execution time per update. The execution time results
include both CPU and I/O time. The update metric results are only
reported for one experiment because this paper is focused on im-
proving query performance.

All experiments were conducted on a PC powered by Intel Core
i7 CPU 2.8GHz with 8GB DDR3 main memory.

6.1 Finding optimal τ threshold
In this experiment, we examine the effectiveness of our algo-

rithm (see Subsection 5.2) at finding the optimal τ threshold for

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 5 10 15 20 40 60

Q
u

e
ry

 I
/O

τ threshold

B
x
(VP)

TPR*(VP)
B

x
(VP) w fixed τ

TPR*(VP) w fixed τ

(a) CH road network

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 1 2 5 10 15 20 40 60

Q
u

e
ry

 I
/O

τ threshold

B
x
(VP)

TPR*(VP)
B

x
(VP) w fixed τ

TPR*(VP) w fixed τ

(b) SA road network

Figure 17: τ algorithm versus varying fixed τ threshold

each index. As mentioned before τ is used to determine which
objects should be placed in the outlier index. We compared the
Bx(VP)-tree and the TPR*(VP)-tree using different fixed τ thresh-
olds against the the Bx(VP)-tree and the TPR*(VP)-tree automati-
cally finding the optimal threshold value according to the algorithm
of Section 5.2. We used both the CH and SA road network data sets
for this experiment. The results are shown in Figure 17. In Figure
17, the straight lines represent the Bx(VP)-tree and the TPR*(VP)-
tree using the automatic algorithm for determining τ and the curves
represent the Bx(VP)-tree and the TPR*(VP)-tree using different
fixed τ thresholds. The results show that the VP technique is able
to automatically compute a near optimal τ threshold for both real
data sets and moving object indexes.

6.2 Velocity analyzer overhead

 0

 20

 40

 60

 80

 100

CH SA MEL NY uniform

V
e

lo
c
it
y
 a

n
a

ly
z
e

r
ru

n
 t

im
e

(m
s
)

Data set

VP

Figure 18: Overhead of velocity analyzer

In this experiment, we measure the overhead of running our ve-
locity analyzer as described in Sections 5.1 and 5.2. The velocity
analyzer partitions the sample velocity points using a combination
of PCA and k-means clustering to arrive at the DVA index bound-
aries. We performed this experiment across the four road networks,
CH, SA, MEL, NY and the uniform synthetic data set. We have run
each data set five times and reported the average execution time.
The results are shown in Figure 18. The results show that the over-
head of the velocity analyzer over all tested data sets is low, taking
between 50 milliseconds and 97 milliseconds.

6.3 Effect of varying data sets
In this experiment, we compare the algorithms across the four

road networks CH, SA, MEL, NY and the uniform synthetic data
set. The query I/O and execution time results are shown in Figures
19(a) and 19(b), respectively. The results show that the Bx(VP)-
tree and the TPR*(VP)-tree consistently outperform their unpar-
titioned counterparts for road network data sets. The query I/O
performance improvement ranges from 280% for the Bx-tree on
the CH data set to 20% improvement for the TPR*-tree on the NY
data set. The performance improvement is due to the fact the VP
technique is able to exploit the presence of DVAs in these data sets.

In general, the VP technique is able to improve the query perfor-
mance of the Bx-tree more than the TPR*-tree because the Bx-tree
does not attempt to group objects travelling in similar directions at
all. In contrast, the insertion algorithm of the TPR*-tree attempts
to group objects travelling in the same direction into the same tree
node, albeit in a locally optimized way instead of the globally opti-
mized way of the VP technique. Therefore, for the TPR*-tree, the
performance advantage of using the VP technique is diminished.

 0

 20

 40

 60

 80

 100

CH SA MEL NY uniform

Q
u

e
ry

 I
/O

Data set

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

CH SA MEL NY uniform

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Data set

B
x

B
x
(VP)

TPR*
TPR*(VP)

(b) Query execution time

 0

 2

 4

 6

 8

 10

CH SA MEL NY uniform

U
p

d
a

te
 I

/O

Data set

B
x

B
x
(VP)

TPR*
TPR*(VP)

(c) Update I/O

 0

 10

 20

 30

 40

 50

CH SA MEL NY uniform

U
p

d
a

te
 e

x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Data set

B
x

B
x
(VP)

TPR*
TPR*(VP)

(d) Update execution time

Figure 19: Effect of varying data sets

The results for the uniform data set show that the performance
advantage of the Bx(VP)-tree and the TPR*(VP)-tree over their
unpartitioned counterparts is removed. This is because in the uni-
form data set there are no DVAs, and therefore nothing can be
gained from partitioning the index by velocity distributions. In
some cases, the Bx(VP)-tree performs slightly worse than the un-
partitioned counterparts because of the overhead of maintaining
multiple indexes and frequently computing an updated τ threshold.

The update I/O and execution time results for this experiment are
shown in Figures 19(c) and 19(d), respectively. The TPR*(VP)-
tree outperforms the TPR*-tree by up to a factor of 1.7 for aver-
age update I/O cost and up to a factor of 1.9 for average execution
time. This is because both the deletion and insertion algorithms
of the TPR*-tree involve traversing the tree in a similar fashion
to the query. Our algorithm is better at querying than the unpar-
titioned TPR*-tree. This fact combined with the fact each of the
partitioned indexes is smaller than the single unpartitioned TPR*-
tree, explains the reason for the faster update performance of the
TPR*(VP)-tree compared to the unpartitioned TPR*-tree. How-
ever, the update performance of the Bx(VP)-tree and the unparti-
tioned Bx-tree are similar. This is because for the Bx-tree the up-
date performance is directly proportional to the height of the tree.
The height of the Bx(VP)-tree and the unpartitioned Bx-tree are the
same in our experiments. In fact, the Bx(VP)-tree is slightly worse
than the Bx-tree for update performance due to the fact buffering is
more effective when there are less trees and the Bx(VP)-tree needs
to frequently compute an updated τ threshold.

For the remaining experiments, we only report query cost results
and omit the update results because the technique proposed in this
paper is mainly aimed at improving the query performance and also
we have tight space limitations.

6.4 Effect of data size on range query

 10
 20

 50

 100

 150

 200

 250

 300

 100 200 300 400 500

Q
u

e
ry

 I
/O

Number of objects(K)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Number of objects(K)

B
x

B
x
(VP)

TPR*
B

x
(VP)

(b) Query execution time

Figure 20: Effect of data size on range query

In this experiment, we examine the query performance of each
index while varying the number of objects. As the data size grows,
Figure 20 shows that the query performance increases approxi-
mately linearly across all indexes. We observed that the Bx-tree
has the worst query performance and scales poorly with increasing
number of objects. The results show that the Bx(VP)-tree is ef-
fective at improving the performance of the unpartitioned Bx-tree
by up to as much as a factor of 3.4 for I/O and a factor of 2.8 for
execution time. The performance improvement of TPR*(VP)-tree
over the unpartitioned TPR*-tree is more modest at up to a factor
of 1.8 for I/O and 1.9 for execution time. The reason for this is
the same as explained in the previous section, namely the TPR*-
tree already attempts to group objects moving in the same direction
into the same tree node, whereas the Bx-tree does not.

6.5 Effect of maximum object speed on range
query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120 140 160 180 200

Q
u

e
ry

 I
/O

Maximum speed(m/ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120 140 160 180 200

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Maximum speed(m/ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(b) Query execution time

Figure 21: Effect of maximum object speed on range query

In this experiment, we study the effect of varying the maximum
object speed on the query performance among all the indexes. Fig-
ure 21 shows that the Bx-tree suffers the most from increases in the
maximum object speed and exhibits the steepest increase in both
query I/O and query execution time. The reason is that it uses the
maximum velocity when expanding queries.

The results show that the VP technique is able to improve the
performance of the unpartitioned indexes by an increasing margin
as the maximum object speeds increases. This matches the analysis
of Section 4.

The Bx(VP)-tree outperforms the Bx-tree by up to a factor of 3.4
for average query I/O and up to a factor of 2.8 for query execution
time. The TPR*(VP)-tree outperforms the TPR*-tree by up to a
factor of 2 for average query I/O and up to a factor of 2.1 for query
execution time.

6.6 Effect of range query size on range query

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

Q
u

e
ry

 I
/O

Query radius(m)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700 800 900 1000

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Query radius(m)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(b) Query execution time

Figure 22: Effect of range query size on range query

In this experiment, we vary the radius of the range query. Re-
sults in Figure 22 again show that the VP technique is more ef-
fective at improving the performance of the Bx-tree compared to
the TPR*-tree. However, the relative performance difference be-
tween the Bx(VP)-tree and the TPR*(VP)-tree and their unparti-
tioned counterparts become relatively smaller in percentage terms.
The reason for this is that as the query window gets larger the extent
size of the query dominates over the query expansion due to the ob-
ject velocities. The VP technique only reduces query expansion by
partitioning the index according to object velocities and does not
reduce the query extent size.

More specifically the results show that for a small query size
(radius = 100m) the Bx(VP)-tree outperforms the Bx-tree by up to
a factor of 3.5 for query I/O and 2.8 for query execution time and
the TPR*(VP)-tree outperforms the TPR*-tree by up to a factor of
3.6 for query I/O and 3.8 for query execution time.

6.7 Effect of query predictive time on range
query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120

Q
u

e
ry

 I
/O

Query predictive time(ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Query predictive time(ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(b) Query execution time

Figure 23: Effect of query predictive time on range query

In this experiment, we vary the query predictive time from 20
to 120 time stamps. This experiment is important since it demon-
strates how well we can restrict the expansion of the search space
as we query further into the future. The results in Figure 23 again
show that the query performance of the Bx-tree degrades much
faster with increasing query predictive time than the other algo-
rithms. Again the VP technique is able to make a large impact on
improving the performance of the Bx-tree compared to the TPR*-
tree. The reasons are similar to the previous experiment, namely
the Bx-tree expands the query too much but this time due to a larger
time value rather than velocity value.

6.8 Effect of query predictive time on rectan
gular range query

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20 40 60 80 100 120

Q
u

e
ry

 I
/O

Query predictive time(ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(a) Query I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

Query predictive time(ts)

B
x

B
x
(VP)

TPR*
TPR*(VP)

(b) Query execution time

Figure 24: Effect of query predictive time on the rectangular
range query

As mentioned earlier, we have conducted the same set of exper-
iments for the rectangular range query as the circular range query
and the results were similar. However, due to space limitations we
only show representative results for the rectangular range query.
We choose the vary query predictive time experiment because it
tests the ability of the algorithms to handle varying rates of query
search space expansion.

In this experiment, the rectangular range queries have side lengths

of 1000x1000m2. The results are almost the same as the results for
the circular range query.

7. CONCLUSION
We have proposed the VP technique, a novel method that im-

proves the moving object index performance by exploiting the skew
of velocity distribution. The main idea is to partition objects based
on their moving directions, and then use separate indexes to index
the objects moving along different dominate velocity axes sepa-
rately. We first provided analysis to show why this idea should
work. Then, we proposed several algorithms to achieve effective
velocity partitioning. The VP technique can be applied to most
moving object index structures. Finally, we implemented it on two
representative index structures, the TPR*-tree and the Bx-tree and

performed extensive experiments on both real and synthetic data
sets. The results show that these index structures equipped with the
VP technique outperform their original versions consistently.

Acknowledgment
This work is supported under the Australian Research Coun-

cil’s Discovery funding scheme (project numbers DP0985451 and
DP0880250).

8. REFERENCES
[1] P. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In

PODS, 2000.

[2] V. Almeida. Indexing the trajectories of moving objects in networks.
Geoinformatica, 9(1):33–60, 2005.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. In SIGMOD, 1990.

[4] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: a
new approach to indexing high dimensional spaces. In VLDB, 2000.

[5] J. Chen and X. Meng. Update-efficient indexing of moving objects in
road networks. Geoinformatica, 13(4):397–424, 2009.

[6] S. Chen, C. S. Jensen, and D. Lin. A benchmark for evaluating
moving object indexes. PVLDB, 1(2):1574–1585, 2008.

[7] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento. ST2B-tree: A
self-tunable spatio-temporal B+-tree index for moving objects. In
SIGMOD, 2008.

[8] J. Dittrich, L. Blunschi, M. Antonio, and V. Salles. Indexing moving
objects using short-lived throwaway indexes. In SSTD, 2009.

[9] E. Frentzos. Indexing objects moving on fixed networks. In SSTD,
2003.

[10] R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and querying
moving objects in networks. VLDB Journal, 15(2):165–190, 2006.

[11] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, 1984.

[12] J. Hui, B. Ooi, H. Shen, and C. Yu. An adaptive and efficient
dimensionality reduction algorithm for high-dimensional indexing.
In ICDE, 2003.

[13] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient
B+-tree based indexing of moving objects. In VLDB, 2004.

[14] C. S. Jensen, D. Tiesyte, and N. Tradisauskas. Robust B+-tree-based
indexing of moving objects. In MDM, 2006.

[15] I. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[16] D. Kollios, G.and Gunopulos and V. Tsotras. On indexing mobile
objects. In PODS, 1999.

[17] G. Kollios, D. Papadopoulos, D. Gunopulos, and J. Tsotras. Indexing
mobile objects using dual transformations. VLDB Journal,
14(2):238–256, 2005.

[18] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. In Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[19] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-diagram: A
query dependent approach to moving kNN queries. PVLDB,
1(1):1095–1106, 2008.

[20] J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: an efficient index
for predicted trajectories. In SIGMOD, 2004.

[21] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexing the
positions of continuously moving objects. In SIGMOD, 2000.

[22] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and
indexing of moving objects with unknown motion patterns. In
SIGMOD, 2004.

[23] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: an optimized
spatio-temporal access method for predictive queries. In VLDB, 2003.

[24] K. Tzoumas, M. L. Yiu, and C. S. Jensen. Workload-aware indexing
of continuously moving objects. PVLDB, 2(1):1186–1197, 2009.

[25] M. Yiu, Y. Tao, and N. Mamoulis. The Bdual-tree: Indexing moving
objects by space filling curves in the dual space. VLDB Journal,
17(3):379–400, 2008.

[26] R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao.
Optimized algorithms for predictive range and kNN queries on
moving objects. Information Systems, 35(8):911–932, 2010.

[27] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the pyramid technique
robust to query types and workloads. In ICDE, 2004.

[28] R. Zhang, J. Qi, D. Lin, W. Wang, and R. C.-W. Wong. A highly
optimized algorithm for continuous intersection join queries over
moving objects. To appear in VLDB Journal.

