
Multi-Level Interaction Reranking with User Behavior History
Yunjia Xi

∗

xiyunjia@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Weiwen Liu
∗

liuweiwen8@huawei.com

Huawei Noah’s Ark Lab

Shenzhen, China

Jieming Zhu

jamie.zhu@huawei.com

Huawei Noah’s Ark Lab

Shenzhen, China

Xilong Zhao

zhaoxilong@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Xinyi Dai

xydai@apex.sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Ruiming Tang

tangruiming@huawei.com

Huawei Noah’s Ark Lab

Shenzhen, China

Weinan Zhang
†

wnzhang@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Rui Zhang

rayteam@yeah.net

ruizhang.info

Yong Yu
†

yyu@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

ABSTRACT
As the final stage of the multi-stage recommender system (MRS),

reranking directly affects users’ experience and satisfaction, thus

playing a critical role in MRS. Despite the improvement achieved

in the existing work, three issues are yet to be solved. First, users’

historical behaviors contain rich preference information, such as

users’ long and short-term interests, but are not fully exploited in

reranking. Previous work typically treats items in history equally

important, neglecting the dynamic interaction between the his-

tory and candidate items. Second, existing reranking models focus

on learning interactions at the item level while ignoring the fine-

grained feature-level interactions. Lastly, estimating the reranking

score on the ordered initial list before reranking may lead to the

early scoring problem, thereby yielding suboptimal reranking per-

formance. To address the above issues, we propose a framework

named Multi-level Interaction Reranking (MIR). MIR combines low-

level cross-item interaction and high-level set-to-list interac-
tion, where we view the candidate items to be reranked as a set
and the users’ behavior history in chronological order as a list. We

design a novel SLAttention structure for modeling the set-to-list

interactions with personalized long-short term interests. Moreover,

feature-level interactions are incorporated to capture the fine-

grained influence among items. We design MIR in such a way that

any permutation of the input items would not change the output

ranking, and we theoretically prove it. Extensive experiments on

three public and proprietary datasets show that MIR significantly

∗
Both authors contributed equally to this research.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00

https://doi.org/10.1145/3477495.3532026

outperforms the state-of-the-art models using various ranking and

utility metrics.
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1 INTRODUCTION
Multi-stage recommender systems (MRS) are widely adopted by

many of today’s large online platforms, such as Google [5], YouTube

[38], LinkedIn [18], and Taobao [31]. These systems generate rec-

ommendations in multiple stages, including matching, ranking, and

reranking. Each stage narrows down the relevant items with a com-

putationally more expensive but more accurate model compared

to the previous stage [20]. Reranking, as the final stage, further

scales down the candidate items, refines the ranking lists from

the previous ranking stage by considering listwise context, and

serves the recommendation results to users. The goal of reranking

is to optimize the total utility (e.g., number of clicks or overall rev-

enue) of the reranked lists. The quality of reranking directly affects

users’ experience and satisfaction, and thus plays a critical role in

MRS. Despite some success achieved in existing reranking research

[3, 30–32, 46], there still exist the following major limitations.

Firstly, in reranking, users’ behavior history (e.g., recent clicks,

purchases, and downloads) contains rich preference information

and helps understand users’ personalized tastes. However, exist-

ing reranking models [14, 15, 31] generally map items from users’

history lists into a low dimensional embedding vector as extra

user features, independent of what the candidates are, as shown in

https://doi.org/10.1145/3477495.3532026
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Figure 1: The usage of users’ history lists. (a) The users’ his-
tory list is independent of the candidate items in the rerank-
ing list. (b) The users’ history list dynamically interacts with
the candidate items.

Figure 1(a). This approach is insufficient to capture personalized

preferences due to the following reasons: (i) The items in the users’

history lists contribute differently when reranking different candi-

date items. For example, in Figure 1(b), a user clicks a recommended

headphone in the reranking list mostly because she bought a laptop

last week, rather than what kind of shoes she purchased in the

past. Simply mapping the historical items to a history embedding

vector and treating each history item equally important does not

reflect users’ dynamic preference with regard to different candidate

items. (ii) Users’ interests are intrinsically dynamic and evolving

over time. In particular, users have both relatively stable long-term

interests that are repetitive in a long time range, and short-term

interests that are frequently changing. Existing reranking models

overlook such long- and short-term chronological patterns.

Secondly, previous reranking models focus on learning interac-

tions between items [3, 30–32, 46] while ignoring the feature-level

interactions within items. Nevertheless, the interactions between

the features of items are also significant. As the example illustrated

in Figure 1(b), the laptop in the history list tends to have a major

effect on the candidate items that have the same Category feature,

i.e., electronics. In addition, when considering the Color feature,
the pink shoes in the history list may also have a positive influence

on the pink headphones in the candidate set, since the user may

favor the pink color more. This motivates us to model the feature

interactions between history items and candidate items so as to

capture the influences between items at a fine-grained level.

Thirdly, many existing methods [3, 5, 31] estimate reranking

scores based only on the context of the input initial ranking. How-

ever, the reranking operation (sorting the items according to the

estimated reranking scores) changes the context of the initial list

to the reranked list, leading to a different distribution of utility

[14, 15, 30, 39]. The reranked list obtained by this strategy is sub-

optimal and does not necessarily bring the maximum utility, which

is what we call the early scoring problem. For example, given an

initial ranking (A, B, C), a reranking model outputs the correspond-

ing scores of (0.46, 0.55, 0.3) based on the context of the initial

ranking, and then sorts the items to get (B, A, C). However, 0.46

represents the score when A is placed at position 1, before B and

C. Once we place A at position 2, its context will change, mak-

ing the previous estimation imprecise and the item arrangements

sub-optimal. Currently, there are two solutions to this problem: a

generator-evaluator approach and a permutation-invariant model-

ing approach. The former [14, 15, 39] employs a generator to output

possible rankings of candidate items and an evaluator to select the

optimal ranking result. The latter [30] is a more computationally

efficient approach, which takes candidate items as an unordered

set and aims to design a permutation-invariant model to find the

best ranking irrespective of the permutation of input.

To address the above issues, we propose a model named Multi-

level Interaction Reranking (MIR). We view the candidate items to

be reranked as an unordered item set and users’ historical behaviors
as a list in chronological order. MIR consists of lower-level cross-
item interactions within the candidate set and within the history

list respectively, as well as higher-level set-to-list interactions
(set2list) between them. We present a unique SLAttention structure

specially designed for capturing the set2list interactions. Two affin-

ity matrices are involved in SLAttention to simultaneously extract

item- and feature-level interactions between candidate items

and historical items, respectively. Moreover, a personalized time

decay factor is further employed to learn long-short term sequential

dependencies. MIR is also designed to be permutation-invariant,

which is insensitive to the permutations of the input. The main

contributions of this paper are summarized as follows:

• We identify the importance of modeling users’ dynamic

and personalized interests from users’ behavior history for

reranking. We propose the MIR model, consisting of low-

level cross-item interaction within candidate set or history

list, and high-level set2list interaction between them.We also

introduce feature-level interactions to model fine-grained

influences between items. To the best of our knowledge, this

is the first work to learn explicit feature-level interactions

in reranking.

• We propose a novel SLAttention structure for set2list inter-

action, which models the long-term and short-term interests

from users’ behavior history and achieves a permutation-

invariant reranking to the candidate set.We also theoretically

analyze the permutation-invariant property.

• Extensive experiments on three public and proprietary datasets

show that our MIR outperforms the state-of-the-art baselines

in terms of ranking metrics and utility metrics.

2 RELATEDWORK
This section reviews studies on learning to rank and reranking.

2.1 Learning to Rank
In MRS, the reranking stage is built on the initial rankings given

by the prior ranking stage. Learning to rank that applies machine

learning algorithms is one of the most widely used methods in the

ranking stage. According to the loss function, it can be broadly

classified into pointwise [12, 16, 26], pairwise [8, 13, 24, 44], and



listwise [9, 10, 35, 40, 41] methods. The pointwise methods such

as McRank [26] and PRank [12] regard ranking as a classification

or regression problem and predict an item’s relevance score by

taking feature representation of one item at a time. The pairwise

methods usually model two items simultaneously and convert the

ranking to a pairwise classification problem to optimize the relative

positions of two items. SVMRank [24] is one of the most famous

pairwise learning-to-rank methods built upon the SVM algorithm.

The listwise methods directly maximize the ranking metrics of lists.

For example, LambdaMART [9] combines the boost tree model

MART [16, 17] and the LambdaRank [7] to optimize NDCG directly.

The experiment section discusses how different types of learning-

to-rank methods affect the performance of the reranking models.

2.2 Reranking
Compared to ranking methods, reranking methods are mainly mul-

tivariate, taking as inputs the whole lists provided by the initial

ranker and emphasizing the mutual influence between items.

Early reranking models mainly focus on modeling the mutual

influence of items. According to the mechanism they employ, these

methods can be roughly divided into three categories: RNN-based

[3, 5, 14], Transformer-based [30, 31], and GNN-based [28] methods.

For example, DLCM [3] applies GRU to encode the whole ranking

list into the representation of items. Seq2Slate [5] uses the pointer

network with a decoder to generate the reranked list directly. Due

to Transformer’s ability to model the interaction between any two

items, PRM [31] adopts it to encode the mutual influences between

items. PFRN [21] utilizes self-attention to model the context-aware

information and conducts personalized flight itinerary reranking.

PEAR [27] employs contextualized transformer to model the item

contexts from both the initial list and the historical list. The GNN-

based model IRGPR [28] explicitly models item relationships by

aggregating relational information from neighborhoods. Besides,

GSF [32] adopts a DNN architecture to learn multivariate scor-

ing functions by enumerating all feasible permutations of a given

size. MIDNN [46] employs global feature extension and DNN to

incorporate mutual influences into the feature of an item.

Recently, some work [14, 15, 39, 46] realizes that the reranking

operation changes the contexts of each item from the initial list

to the reranked list (i.e., the early scoring problem), and they at-

tempt to find the optimal permutation after reranking. PRS [14]

first generates the feasible candidate lists with beam search, and

then adopts Bi-LSTM to evaluate and select the lists. Reinforcement

learning (RL) methods, like GRN [15] and EG-Rerank+ [22], usually

first train an evaluator to predict rewards, and then employ RL

methods like PPO to optimize the generator, which generates rank-

ings, with feedback from the evaluator. URCM [39] also employs

a generator-evaluator solution, where an evaluator with Bi-LSTM

and graph attention mechanism is incorporated to estimate the

listwise utility via the counterfactual context modeling. Different

from the above generator-evaluator approaches that are usually

of polynomial inference time, SetRank [30] solves this problem by

set modeling. It employs self-attention blocks to get permutation-

equivariant representations of items and sort its output to achieve

permutation invariant. Setrank aims to find the best permutation

directly, considering all items in a ranking list of linear inference

time. With permutation-invariant property, the ordering of the ini-

tial lists would not affect the output and thus solve the early scoring

problem. To avoid complex two-stage (generator-evaluator) solu-

tions, our work takes a similar set modeling approach as SetRank

[30] by permutation-equivariant function. Moreover, our work con-

siders the dynamic interaction between the user history list and the

candidate set, as well as the fine-grained feature-level interaction.

3 PROBLEM FORMULATION
A reranking model generally takes as input ordered initial lists

arranged by the previous ranker and refines the ranking lists by

modeling the mutual influence between items. Given a set of users

U = {1, 2, ..., 𝑁𝑢 }, a set of itemsV = {1, 2, ..., 𝑁𝑣}, a history item

list𝐻𝑢 ∈ Π𝑚 (V) with𝑚 items that the user𝑢 clicked, and an initial

ranking list 𝑅𝑢 ∈ Π𝑛 (V) with 𝑛 items for each user 𝑢 ∈ U, the

reranking model aims to generate a reranking list that maximizes

the overall utility and better meets the user’s needs. The utility of

a list is defined by the expected sum (or weighted sum) of the click

probability of each item in the list, e.g., the total number of clicks

or the total income (click probability weighted by the bid price).

Here, Π𝑛 (V) is the set of all 𝑛-permutation of setV .

4 MODEL FRAMEWORK
In this section, we first introduce the overall framework of our

proposed MIR and then present the details of each component. The

chronological order of user behavior history assists in modeling

users’ long- and short-term interests, hence we regard the user his-

tory as an ordered list. Similar to SetRank [30], MIR formulates the

candidate items as an unordered set to avoid the early-scoring prob-

lem [15, 30, 39]. MIR aims to learn a permutation-invariant model

by providing a permutation-equivariant function. A permutation-

equivariant function permutes the output according to the permu-

tation of the input, and its formal definition is given in Section 4.5.

Therefore, a permutation-invariant ranking model can be achieved

by sorting the output of the permutation-equivariant function.

As depicted in Figure 2, MIR consists of an embedding layer, a

cross-item interaction module, a set2list interaction module, and an

output layer. Firstly, the embedding layer converts categorical fea-

tures to dense embeddings. Then, the cross-item interaction module

introduces intra-set and intra-list interaction to model the mutual

influences within the candidate set and history list, respectively.

Next, in set2list interaction module, SLAttention is designed to

capture the dynamic interaction between the candidate set and the

history list. Finally, the extracted multi-level interaction informa-

tion is integrated by the output layer to obtain the final prediction.

4.1 Embedding Layer
MIR takes the items in the initial ranking list 𝑅𝑢 , the history list

𝐻𝑢 , and the user profile of the user 𝑢 as input. We apply the em-

bedding layer on the corresponding sparse raw features to ob-

tain low-dimensional dense embedding vectors. Specifically, for

an item 𝑣 ∈ 𝑅𝑢 , its raw features are usually composed of several

categorical features (e.g., item_id, category) and dense features

(e.g., price). For the 𝑖-th categorical feature of item 𝑣 , we project it

from a high-dimensional sparse space (one-hot vector) to a lower-

dimensional dense space via a learned projection matrix, and get
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Figure 2: The overall framework of MIR and its sub-modules.

its embedding e𝑣,𝑖 ∈ R𝑑𝑒 of size 𝑑𝑒 . Then, we concatenate all the

embeddings for categorical features, together with dense features

to generate the embedding vector of an item from the candidate

set x𝑣 = [e𝑣,1 ⊕ ... ⊕ e𝑣,𝑘 ⊕ x𝑑𝑣 ] ∈ R𝑑𝑥 , where 𝑘 is the number of

the categorical features, x𝑑𝑣 ∈ R𝑑Δ of size 𝑑Δ contains the dense

features of item 𝑣 , 𝑑𝑥 = 𝑘𝑑𝑒 +𝑑Δ is the size of item embedding, and

⊕ represents the concatenation operation. Similarly, we can derive

the embedding vector h𝑣 ∈ R𝑑𝑥 of size 𝑑𝑥 for each item 𝑣 in history

list 𝐻𝑢 , and the corresponding user embedding vector p𝑢 ∈ R𝑑𝑢 of

size 𝑑𝑢 for user 𝑢. The projection matrix is shared for items from

the candidate set and the history list.

4.2 Cross-item Interaction
After the embedding layer, we utilize cross-item interaction to

model the mutual influence within the history list and candidate

set, and obtain the list embedding and the set embedding, respec-
tively. The mutual influence between items in the ranking list is an

essential factor for the reranking. An item’s utility is not indepen-

dent and varies with different contexts, so items should be aware

of other items inside the candidate set. Moreover, the sequential

dependencies encoded in the history list reflect the characteristics

of the user’s evolving interests as a whole. Therefore, we introduce

intra-set and intra-list interaction before modeling the dynamic

interaction between the candidate set and the history list.

Intra-set Interaction is designed for capturing the cross-item

relationshipwithin the candidate set. Aswe employ the permutation-

equivariant function to achieve permutation-invariance, the intra-

set interaction should preserve the permutation-equivariant prop-

erty to the candidate set. In other words, it should permute its

output according to the permutation of the input. As such, we

adopt the multi-head self-attention mechanism [37] to extract the

intra-set interaction. This mechanism enables us to model mu-

tual influences between any two items directly and is proved to

be permutation-equivalent [30]. We stack all the item embedding

vectors x𝑖 ∈ R𝑑𝑥 , 𝑖 = 1, 2, ..., 𝑛 of the ranking list 𝑅𝑢 and obtain a

matrix V ∈ R𝑛×𝑑𝑥 , where 𝑑𝑥 are the size of item embedding. The

self-attention mechanism is defined as

A𝑐𝑟𝑜𝑠𝑠 = Attention(V) = softmax

(
VV⊤
√
𝑑𝑥

)
V , (1)

where A𝑐𝑟𝑜𝑠𝑠 ∈ R𝑛×𝑑𝑥 is the attended matrix, and

√
𝑑𝑥 is used to

stabilize gradients during training. We denote the 𝑖-th row of matrix

A𝑐𝑟𝑜𝑠𝑠 as a𝑖 , the set embedding for item 𝑖 in ranking list 𝑅𝑢 .

Intra-list Interaction models the mutual influence between

items in the history list. Unlike the candidate set, the history list

carries the temporal pattern of the user’s interests and preferences,

providing important guidance for reranking. To better leverage the

temporal pattern in the history list, We use a Bi-LSTM [33] for mod-

eling users’ evolving interests. Bi-LSTM is a lightweight network

to handle sequence data, commonly used in previous reranking

work [14, 15, 39]. Note that other networks like GRUs [11] or self-

attention with positional embeddings [37] could also be applied.

Let
−→q𝑖 ∈ R𝑑ℎ of size 𝑑ℎ be the forward output state of the 𝑖-

th item in Bi-LSTM. That is
−→q𝑖 =

−−−−→
𝐿𝑆𝑇𝑀 ( [q𝑖−1, h𝑖 , c𝑖−1]), where−−−−→

𝐿𝑆𝑇𝑀 (·), q𝑖−1, h𝑖 , and c𝑖−1 are the forward LSTM unit, the output

of previous item 𝑖 −1, the item embedding of current item 𝑖 , and the

cell vector of item 𝑖−1. Similarly, we can obtain the backward output

state
←−q𝑖 . Then, we concatenate −→q𝑖 and←−q𝑖 to get the list embedding

q𝑖 = [−→q𝑖 ⊕ ←−q𝑖 ] ∈ R2𝑑ℎ of item 𝑖 in the history list 𝐻𝑢 for user 𝑢.

4.3 Set2list Interaction
After the low-level cross-item interaction within the candidate set

(intra-set interaction) and the history list (intra-list interaction),

we can model the high-level dynamic interactions between the

candidate set and the history list (set2list interaction). However,

the interaction is not straightforward since set and list are different

data structures, and the number of items and the dimension of

features may also be different. Therefore, the set2list interaction

should meet several requirements: (i) it must be capable of fusing

information from both sources to extract useful information for

reranking. (ii) When interacting, it has to consider the asymmetric

structure of sets and lists, i.e., it needs to be sensitive to the temporal



order of the history list while keeping permutation-equivariant to

the candidate set. (iii) It is supposed to be user-specific and consider

the personalized impact of the history lists for reranking.

Inspired by co-attention [29] for Visual Question Answering,

we propose a specific attention structure, SLAttention, for set2list

interaction. The original co-attention simply adopts a symmetric

structure to generate spatial maps, highlighting image regions rele-

vant to answering the question. SLAttention further explores how

to deal with the asymmetry between two different data structures

and consider the reranking task’s characteristics. As illustrated in

Figure 2, SLAttention firstly explores both item-level and feature-

level interactions between the candidate set and history list, and

then introduces personalized interest decay to detect the person-

alized influence of the user history on the reranked items. Finally,

an asymmetric attention is utilized to extract information from the

candidate set and history list. The rows and columns of the matrices

in Figure 2 represent items in the candidate set and history list,

respectively.

4.3.1 Affinity Matrix. SLAttention attends to the candidate set

and history list simultaneously. We fuse the information from the

candidate set and history list by calculating the similarity between

any pairs of items in set and list. This similarity, i.e., affinity matrix,

is aggregated from both item-level and feature-level interactions.

Item-level interaction takes as inputs the item feature and the em-

bedding obtained in intra-set and intra-list interaction. We denotes

representation matrix of candidate set as S ∈ R𝑛×(2𝑑𝑥 ) , whose 𝑖-th
row, s𝑖 , is the concatenation of item embedding x𝑖 and set embed-

ding a𝑖 of item 𝑖 in initial ranking list 𝑅𝑢 . For history list, we denote

L ∈ R𝑚×(𝑑𝑥+2𝑑ℎ) as its representation matrix and its 𝑗-th row, l𝑗 , is
the concatenation of item embedding x𝑗 and list embedding q𝑗 of
item 𝑗 in history item list 𝐻𝑢 . Then, the item-level affinity matrix

C𝐼𝐴 ∈ R𝑛×𝑚 in Figure 2 is calculated by

C𝐼𝐴 = tanh (SW𝐼𝐴L𝑇 ) , (2)

where the learnable matrixW𝐼𝐴 ∈ R2𝑑𝑥×(𝑑𝑥+2𝑑ℎ) is the importance

of the association between any pair of items in set and list.

Item-level interaction can leverage the high-order feature in-

teraction between candidate set and history list. However, in rec-

ommender systems, items are usually characterized by categorical

features, e.g., category, price level. Item-level interaction takes each

item as a whole and the category-level semantic information is lost.

The interactions among these fine-grained features can provide

useful information for reranking. Thus, we propose feature-level

interaction to explicitly learn the categorical feature interaction,

which only takes as input the embeddings of the categorical fea-

tures of items. For item 𝑖 in the candidate set, we denote E𝑖
𝑆
∈ R𝑘×𝑑𝑒

as its representation matrix, with the categorical embedding e𝑖,𝑧
as the 𝑧-th row, and 𝑘 is the number of the categorical features.

Similarly, we can obtain the representation matrix E𝑗
𝐿
∈ R𝑘×𝑑𝑒 for

any item 𝑗 in history list 𝐻𝑢 . Then, the feature-level affinity matrix

C𝐹𝐴 ∈ R𝑛×𝑚 in Figure 2 is computed by

F𝑖, 𝑗 = tanh (E𝑖𝑆W𝐹𝐴 (E𝑗𝐿)
𝑇 ) ,

C𝐹𝐴 (𝑖, 𝑗) =
𝑘∑
𝑠=1

𝑘∑
𝑡=1

F𝑖, 𝑗 (𝑠, 𝑡)W𝑐 (𝑠, 𝑡) ,
(3)

where W𝐹𝐴 ∈ R𝑑𝑒×𝑑𝑒 denotes the weights for feature interac-

tion and the weights in W𝑐 ∈ R𝑘×𝑘 represent the importance of

interaction results. We refer C𝐹𝐴 (𝑖, 𝑗) as the element lies in the

𝑖-th row and 𝑗-th column of matrix C𝐹𝐴 . By performing F𝑖, 𝑗 =

tanh (E𝑖
𝑆
W𝐹𝐴 (E𝑗𝐿)

𝑇 ) for any 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚, we get

𝑛𝑚 number of Fs. Then, weights W𝑐 and the summation operation

are applied to map the matrix F𝑖, 𝑗 ∈ R𝑘×𝑘 to a scalar C𝐹𝐴 (𝑖, 𝑗) ∈ R.
This operation can also be interpreted as convolution, as shown in

Figure 2. Finally, we get the final affinity matrix C𝐴 by combining

the feature-level and the item-level affinity matrices,

C𝐴 = C𝐼𝐴 + C𝐹𝐴 . (4)

4.3.2 Personalized Interest Decay. Users’ demands and interests are

reflected in their historical behavior. Nevertheless, they are not set

in stone and may evolve over time. Inspired by the studies in human

behaviors and recommendation [4, 6, 19, 34, 36], we consider two

kinds of time-sensitive interests: long-term interests and short-term

interests. Long-term interests refer to the persistent interests or

demands of similar products or types, e.g., daily necessities and

stable preferences. In comparison, short-term interests are strongly

related to the products browsed or purchased recently, e.g., buying

phone cases after buying a phone. Thus, personalized interest decay

is utilized to capture the complex time-sensitive correlations in

history lists and better detect users’ current demands.

Inspired by [4, 6], we add a multiplicative exponential decay term

to detect how users’ history lists and the time interval impact the

short-time interests. Users’ short-term interests not only depend

on users’ recent behaviors but also on the characteristics of the

users. Different users may have different ranges of interests. For

example, some people’s interests may shift quickly, with a narrow

window ahead in their history lists being their short-term interests.

While others shift their interests very slowly, with a long window

of history lists being their short-term interests. Therefore, we use

user embedding vector p𝑢 to learn personalized interest decay rate

𝜃𝑢 and get the decay vector d by

𝜃𝑢 = 𝑔(p𝑢 ) , d = 𝑒−𝜃𝑢 tu , (5)

where 𝜃𝑢 > 0 and tu ∈ R𝑚 = {𝑡1, 𝑡2, ..., 𝑡𝑚} denotes the time

interval from when the item in history list was clicked by user 𝑢 to

the present. This time interval can be expanded to general temporal

distance measures, like position, to deal with the absence of the

timestamp. We use a two-layer feed-forward neural network for

function 𝑔(·), with the LeakyReLU activation function.

We refer to C𝐴 as the long time interest matrix and multiply it by

the exponential decay vector to get the short time interest matrix.

Notes that the decay vector d ∈ R𝑚 is only applied to the dimension

of history list, so we construct a matrix D ∈ R𝑛×𝑚 in Figure 2 with

each row being d to maintain its permutation-equivariant to the

candidate set. Finally, we have

C = C𝐴 + C𝐴 ⊙ D . (6)

4.3.3 Attention. The personalized affinity matrix C, which com-

bines long-term and short-term correlation between history list

and the candidate set, is utilized to predict the attention weights



via the following steps,

Q𝑆 = tanh (SW𝑠 + C(LW𝑙 )) , Q𝐿 = tanh (SW𝑠C)
A𝑆 = softmax(Q𝑆 ) , A𝐿 = softmax(Q𝐿)

(7)

where W𝑠 ∈ R2𝑑𝑥×𝑛,W𝑙 ∈ R(𝑑𝑥+2𝑑ℎ)×𝑛 are learnable weight ma-

trices. Attention weight matrices A𝑆 ∈ R𝑛×𝑛 and A𝐿 ∈ R𝑛×𝑚 are

the attention probabilities of items in the candidate set and history

list, respectively, which preserve helpful information for rerank-

ing. Since the goal of reranking is to rerank the candidate items,

only the influence from the history list to the candidate set bene-

fits the reranking. Therefore, the calculation of A𝑆 involves both

the candidate set and the history, whereas A𝐿 considers only the

candidate items. Based on the above attention weights, the set and

list attention vectors are acquired as the weighted sum of items in

the candidate set and history list, i.e.,

Ŝ = A𝑆S , L̂ = A𝐿L , (8)

where Ŝ = {ŝ1, ŝ2, ..., ŝ𝑛} and L̂ = {ˆl1, ˆl2, ..., ˆl𝑛} are the interacted
representation matrices containing useful information from both

candidate set and history list.

4.4 Output Layer
As a common and powerful technique in reranking, multi-layer

perception (MLP) is integrated into the output layer. Hence, taking

the concatenation of the user embedding p𝑢 , the item embedding

x𝑣 , the interacted representation ŝ𝑣 , and ˆl𝑣 as input, the predicted
score 𝑦𝑣 for item 𝑣 in ranking list 𝑅𝑢 can be formalized as follows:

𝑦𝑣 = MLP(p𝑢 ⊕ x𝑣 ⊕ ŝ𝑣 ⊕ ˆl𝑣 ;𝚯) , (9)

where LeakyReLU activate function is applied in MLP, 𝚯 denotes

the parameters of MLP, and ⊕ represents the concatenation opera-

tion. The final rankings, thus, can be achieved by sorting the items

according to the predicted scores.

Given the click label y𝑢 = {𝑦1, 𝑦2, ..., 𝑦𝑛} for ranking list 𝑅𝑢 , our

model can be optimized via binary cross-entropy loss function,

which is defined as follows

L =
∑
𝑢∈U

∑
𝑣∈𝑅𝑢

𝑦𝑣 log𝑦𝑣 + (1 − 𝑦𝑣) log(1 − 𝑦𝑣) . (10)

4.5 Theoretical Analysis
In this section, we first discuss the permutation-invariant property

of MIR, followed by the complexity analysis.

Permutation-invariance. Our goal is to construct a permutation-

invariant reranking model, which means that any permutation of

the items would not change the output ranking. In this work, we

rely on a permutation-equivariant function, defined in Definition 1,

to achieve a permutation-invariant model.

Definition 1. Let Π𝑁 be the set of all permutations of indices
{1, 2, ..., 𝑁 }, a function 𝑓 : 𝑋𝑁 → 𝑌𝑁 is permutation equivariant iff
for any permutation 𝜋 ∈ Π𝑁 ,

𝑓 ( [𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑁 ) ]) = [𝑓 (𝑋 ) |𝜋 (1) , . . . , 𝑓 (𝑋 ) |𝜋 (𝑁 ) ] ,

where 𝑋 = [𝑥1, . . . , 𝑥𝑁 ] is a set with the order of {1, . . . , 𝑁 }, and
𝑓 (𝑋 ) |𝜋 (𝑖) is the 𝜋 (𝑖)-th dimension of 𝑓 (𝑋 ).

Note that the parameters in the embedding layer and output

layers are all element-wise, which do not affect the permutation-

equivariant property. Self-attention block, used in intra-set interac-

tion, is proved to be permutation-equivariant in SetRank [30]. We

also show that SLAttention structure presented in Section 4.3 is a

permutation-equivariant function, proved in Appendix A.

Proposition 1. SLAttention structure is permutation-equivariant
to candidate set.

Previous work [43] shows that the composition of permutation-

equivariant functions is also permutation-equivariant. Combining

the above proposition and discussions, we obtain that our designed

network structure is a permutation-equivariant function.

Built upon a permutation-equivariant function, a permutation-

invariantmodel (permutation of the input does not affect the output)

can be directly derived [30]. It is because for different permutations

of the same item set, the output of the permutation-equivariant

function permutes according to the way we permute the input –

meaning the output value (reranking score) for each item remains

the same. Then, sorting the items according to the reranking score

for each item yields the same reranking list. Therefore, we conclude

that MIR is permutation-invariant to the candidate set.

Complexity. We also analyze the efficiency of the MIR model.

Considering that the self-attention used in intra-set interaction can

be reduced to 𝑂 (𝑚), the time complexity of cross-item interaction

is 𝑂 (𝑛 +𝑚), where 𝑛 and 𝑚 are the lengths of the candidate set

and history list, respectively. The set2list interaction involves the

matrix computation between the set and list, and its cost is 𝑂 (𝑚𝑛).
Therefore, the overall time complexity of MIR is 𝑂 (𝑚𝑛).

5 EXPERIMENTS
This section first compares our proposed MIR with the state-of-the-

art reranking algorithms on two public datasets and a proprietary

industrial dataset. Then, we investigate the impact of several vital

components and hyper-parameters, followed by a case study to

show how user history dynamically interacts with candidate items.

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on two public benchmark

datasets, including E-commerce Reranking dataset
1
andAd dataset

2
,

and a proprietary dataset from a real-world App Store.

• PRM Public contains 743,720 users, 7,246,323 items, and

14,350,968 records from a real-world e-commerce RS. Each

record is a recommendation list consisting of 3 user profile

features, 5 categorical, and 19 dense item features. For each

user, we use the last one in her interacted lists for reranking,

and the positively interacted items in previous ones are used

to construct the history lists.

• Ad records 1,140,000 users and 26 million ad display/click

logs, with 9 user profiles (e.g., id, age, and occupation), 6

item features (e.g., id, campaign, and brand), and user shop-

ping history of seven hundred million records. Following

[14, 15], we transform records of each user into ranking

lists according to the timestamp of the user browsing the

1
https://github.com/rank2rec/rerank

2
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56



advertisement. Items that have been interacted within five

minutes are sliced into a list.

• App Store is collected from a mainstream commercial App

Store, from June 2, 2021 to July 1, 2021. The dataset con-

tains 33,646,680 requests and 111,063 Apps. Each App has

32 features, e.g., App developer. Its records are in the form

of reranking lists, and each user has a history of behavior,

like clicks and downloads.

5.1.2 Initial ranker and baselines. We select three widely adopted

ranking algorithms, including DIN, SVMRank, and LambdaMART,

to generate initial lists. Those three algorithms use pointwise, pair-

wise, and listwise loss, respectively. DIN [45] designs a local acti-

vation unit to adaptively learn the representation of user interests

from history lists to help the ranking. SVMRank [24] is a classic

pairwise learning-to-rank model built upon the SVM algorithm.

LambdaMART [9] is a state-of-the-art listwise learning-to-rank

algorithm, which optimizes NDCG directly.

We compare the proposed model with the following state-of-the-

art reranking models, listed as follows
3
.

• MIDNN [46] extracts mutual influence between items in the

input ranking list with global feature extension.

• DLCM [3] first applies GRU to encode and rerank the top

results.

• GSF [32] uses DNN to learn multivariate scoring functions,

where the scores are determined jointly by multiple items in

the list.

• PRM [31] employs self-attention to model the mutual influ-

ence between any pair of items and users’ preferences.

• SetRank [30] learns permutation-equivariant representa-

tions for the inputted items via self-attention.

5.1.3 Evaluation metrics. Our proposed model and baselines are

evaluated by both ranking and utility metrics. For ranking metrics,

we adopt the widely-used MAP@K and NDCG@K [23] following

previous work [14, 15, 31]. Nevertheless,MAP@K and nDCG@K are

computed with click labels in the log data, which may be biased to

certain recommendation scenarios. So we also provide deNDCG@K,
an evaluation metric debiased by inverse propensity score (IPS)

weighting, according to [2]. We estimate the propensity score fol-

lowing [13]. For the utility metrics, the Utility@K for the public

datasets PRM Public and Ad is the debiased expected number of

clicks, which is also debiased by IPS weighting. For the proprietary

dataset App Store, as the objective of the platform is tomaximize the

total revenue, the Utility@K is the expected revenue. The detailed

description can be found in Appendix B.

The PRM Public dataset provides a fixed length of reranking lists

of 30, so we set 𝐾 = 10, 20. For the Ad dataset, we divide the lists by

timestamps, and their lengths are relatively short, so we conduct

reranking only at the top-10 items given by the initial ranker and

3
We did not include the results of the generator-evaluator methods, Eg-rerank+ [22]

and URCM [39], because with their released code and careful parameter tuning, some of

the metrics still worsen than the initial ranking. Possible reasons are: (i) the generator-

evaluator models rely on dense and instant feedback labels for effective training, which

are originally provided by a simulation environment in their work. While our data is

extremely sparse. (ii) the performance of the generator heavily depends on the quality

of the evaluator, while it is hard to measure and select a good evaluator – a minor

change in the evaluator leads to a large performance difference of the generator.

set𝐾 = 5, 10. For the App Store dataset, since the maximum number

of positions is set to 20, we set 𝐾 = 5, 10.

5.1.4 Reproducibility. The implementation of our proposed MIR is

publicly available
4
. We implement our model and baselines with

Adam [25] as optimizer. We use the last 30 items clicked by the user

as their history. According to different scenarios, the maximum

length of initial lists is set to 30, 10, and 20 for PRM Public, Ad,

and App Store, respectively. The learning rate is selected from

{2 × 10
−5, 3 × 10

−5, 1 × 10
−4, 2 × 10

−4} and the parameter of L2-

Regularization from {1 × 10−5, 2 × 10−5, 3 × 10−5, 5 × 10−5}. The
batch size and hidden size are set to 16 and 64. The embedding size

of the categorical feature is set to 16, and the architecture of MLP is

set to [500, 200, 80]. To ensure a fair comparison, we also fine-tune

all baselines to achieve their best performance.

5.2 Overall Performance
5.2.1 Benchmark datasets. The overall performance on the two

benchmark datasets, PRM Public and Ad, is reported in Table 1,

from which we have several important observations.

First, our proposed MIR significantly and consistently outper-

forms the state-of-the-art approaches in all metrics under three ini-

tial rankers on both datasets. As presented in Table 1, MIR performs

best with respect to ranking-based metricsMAP andNDCG, debiasd
metric deNDCG, and utility-based metric Utility. For instance, MIR

surpasses the strongest baseline PRM by 2.02% in MAP@10, 2.47%
in deNDCG@10, and 3.60% in Utility@10 on PRM Public, with DIN

as initial ranker. On Ad dataset, MIR also achieves 0.90%, 0.67%,

and 6.52% improvement over baseline PRM inMAP@5, deNDCG@5,
and Utility@5 with DIN. This demonstrates the effectiveness of

leveraging the interactions between the candidate set and the users’

history with long-short personalized interests in reranking.

Second, the performance of MIR is stable with respect to different

initial rankers on PRM Public dataset. Because the PRM Public

dataset provides a fixed length of reranking lists of 30, we do not

need padding or cutting the lists to the same length. This indicates

that the candidate items are the same under the three initial rankers.

MIR achieves a similar performance on the three initial rankings,

showing the permutation-invariance property of MIR. For the Ad

dataset, we divide the lists by timestamps and their lengths span a

wide range, so we conduct reranking only at the top items given

by the initial ranker. In other words, the candidate sets produced

by different initial rankers are different, leading to the different

performance of MIR. We observe that given better candidate sets,

the performance ofMIR is generally better. Likewise, SetRank shows

a similar trend as MIR since it is also insensitive to permutations.

Third, there exists a trade-off between ranking-based and utility-

based metrics. Considering the initial ranker, LambdaMART outper-

forms SVMRank in the ranking-based metrics, yet underperforms

SVMRank in the utility-based metric on most occasions. This is

also the case for most of the reranking methods. For example, PRM

excels in ranking-based metrics, whereas SetRank is superior in

boosting utility. Even for the same model, SetRank, it has the op-

posite performance on Utility and MAP on Ad under the various

4
Our code is available at https://github.com/YunjiaXi/Multi-Level-Interaction-

Reranking



Table 1: Overall performance on benchmark datasets.

Ranker Reranker

PRM Public Ad

@10 @20 @5 @10

MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility

DIN

initial 0.1929 0.2290 0.2298 1.2289 0.1976 0.3318 0.3324 1.7986 0.5930 0.6660 0.6654 2.2416 0.6028 0.6941 0.6940 2.3574

MIDNN 0.2986 0.3399 0.3124 1.3267 0.2907 0.4200 0.3965 1.8418 0.5991 0.6705 0.6710 2.2174 0.6093 0.6990 0.6994 2.3345

DLCM 0.3002 0.3422 0.3146 1.3431 0.2919 0.4227 0.3991 1.8426 0.5998 0.6715 0.6715 2.3126 0.6094 0.6992 0.6995 2.4257

GSF 0.2989 0.3402 0.3127 1.3283 0.2909 0.4199 0.3964 1.8418 0.5995 0.6710 0.6713 2.2341 0.6097 0.6993 0.6996 2.3516

PRM 0.3026 0.3446 0.3161 1.3423 0.2940 0.4252 0.4011 1.8653 0.6014 0.6722 0.6725 2.2350 0.6117 0.7006 0.7011 2.3493

SetRank 0.3003 0.3413 0.3118 1.3192 0.2919 0.4207 0.3951 1.8320 0.6007 0.6718 0.6719 2.2457 0.6101 0.6995 0.6997 2.3624

MIR 0.3087* 0.3511* 0.3239* 1.3906* 0.2989* 0.4310* 0.4078* 1.9064* 0.6068* 0.6768* 0.6771* 2.3807* 0.6164* 0.7044 0.7048* 2.4918*

SVMRank

initial 0.1746 0.2057 0.2093 1.1572 0.1815 0.3079 0.3110 1.7176 0.5864 0.6607 0.6603 2.1978 0.5964 0.6889 0.6888 2.3142

MIDNN 0.2982 0.3394 0.3113 1.3276 0.2905 0.4193 0.3948 1.8409 0.5975 0.6694 0.6697 2.2192 0.6074 0.6972 0.6975 2.3353

DLCM 0.2975 0.3383 0.3094 1.3120 0.2896 0.4185 0.3933 1.8293 0.5991 0.6708 0.6712 2.3236 0.6090 0.6983 0.6987 2.4157

GSF 0.2990 0.3404 0.3120 1.3287 0.2910 0.4200 0.3952 1.8417 0.5987 0.6702 0.6704 2.2354 0.6085 0.6980 0.6983 2.3486

PRM 0.3005 0.3414 0.3116 1.3175 0.2919 0.4210 0.3951 1.8328 0.5997 0.6705 0.6705 2.1679 0.6098 0.6988 0.6990 2.2842

SetRank 0.3002 0.3418 0.3120 1.3211 0.2920 0.4209 0.3949 1.8320 0.5980 0.6698 0.6701 2.3118 0.6079 0.6975 0.6979 2.4237

MIR 0.3084* 0.3514* 0.3230* 1.3866* 0.2993* 0.4308* 0.4059* 1.8989* 0.6056* 0.6760* 0.6765* 2.3683* 0.6151* 0.7029 0.7033* 2.4776*

LambdaMART

initial 0.1820 0.2139 0.2158 1.1569 0.1879 0.3155 0.3174 1.7188 0.5897 0.6633 0.6629 2.1783 0.5997 0.6915 0.6915 2.2948

MIDNN 0.2984 0.3396 0.3127 1.3269 0.2906 0.4196 0.3967 1.8427 0.5979 0.6697 0.6704 2.2329 0.6077 0.6975 0.6980 2.3481

DLCM 0.2984 0.3394 0.3118 1.3149 0.2906 0.4190 0.3954 1.8295 0.5995 0.6710 0.6712 2.2801 0.6093 0.6988 0.6990 2.3739

GSF 0.2988 0.3400 0.3130 1.3293 0.2909 0.4200 0.3969 1.8441 0.5991 0.6706 0.6710 2.2735 0.6092 0.6986 0.6990 2.3873

PRM 0.3002 0.3415 0.3129 1.3156 0.2919 0.4210 0.3966 1.8299 0.6004 0.6714 0.6712 2.2171 0.6107 0.6996 0.6997 2.3327

SetRank 0.2999 0.3413 0.3132 1.3210 0.2917 0.4206 0.3966 1.8333 0.6001 0.6716 0.6715 2.2789 0.6098 0.6991 0.6993 2.3923

MIR 0.3083* 0.3511* 0.3247* 1.3907* 0.2991* 0.4301* 0.4073* 1.8998* 0.6060* 0.6762* 0.6765* 2.3685* 0.6157* 0.7037 0.7042* 2.4799*

∗ denotes statistically significant improvement (measured by t-test with 𝑝-value < 0.05) over the best baseline.

Table 2: Overall performance on App Store datasets.

Model

@5 @10

MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility

init 0.1855 0.3549 0.3474 2.4671 0.1809 0.4260 0.4200 3.3646

MIDNN 0.2352 0.4349 0.4340 3.5379 0.2293 0.5014 0.5008 4.6408

DLCM 0.3205 0.5074 0.5112 3.9615 0.3145 0.5588 0.5623 4.8690

GSF 0.2271 0.4253 0.4249 3.4690 0.2213 0.4941 0.4942 4.6046

PRM 0.3281 0.5132 0.5166 3.9945 0.3222 0.5662 0.5685 4.9185

SetRank 0.2591 0.4537 0.4569 3.6234 0.2533 0.5168 0.5194 4.6845

MIR 0.3449* 0.5301* 0.5337* 4.0964* 0.3396* 0.5815* 0.5838* 5.0014*

∗ denotes statistically significant improvement (measured by t-test with 𝑝-value <

0.05) over the best baseline.

initial rankers. Nevertheless, our proposed MIR reaches a balance

and delivers better performance in all types of metrics.

5.2.2 Proprietary dataset. We further conduct experiments on a

mainstream industrial app store and evaluate MIR directly by real-

world click-through ranking lists. As presented in Table 2, similar

observations as on the public datasets can be observed for the App

Store dataset. The improvement of MIR on App Store dataset is

more significant than that on public datasets. For example, MIR

surpasses the strongest baseline PRM by 5.12% in MAP@5, 3.29%
in NDCG@5, 3.31% in deNDCG@5, and 2.55% in Utility@5. Such
greater improvements may result from the higher quality of the

history list, which is collected in real-time. This also demonstrates

the effectiveness of MIR and the importance of introducing dynamic

interaction between the history list and the candidate set.

5.3 In-depth Analysis
5.3.1 Ablation study. Several variants of MIR are designed to

investigate the effectiveness of the components in MIR, and we

conduct a series of experiments on PRM Public and Ad datasets.

Firstly, we remove two kinds of cross-item interactions.MIR-lst

removes intra-list interaction.MIR-set removes intra-set interac-

tion. Then, we remove key components from SLAttention. MIR-fi
removes feature-level interaction.MIR-ii removes item-level inter-

action.MIR-dcy removes personalized interest decay.MIR-SLA
replaces SLAttention with a simple variant of self-attention [42],

where the candidate items serve as keys and values and items in

user history act as queries. Lastly, the SLAttention structure relies

on user history, but there are cases where the user has no history,

such as lost or cold start. We also devise a variant to handle these

situations.MIR-hst replaces the original history with the history

of a similar user at the inference stage. The similarity is computed

by the distance between the user profiles.

The comparison of the above variants and original MIR on PRM

Public and Ad datasets is shown in Table 3. After removing each

component, the performance has declined to a certain extent w.r.t.

all metrics, which demonstrates the effectiveness of each compo-

nent. Compared to the other variants, the performance of the MIR-

SLA drops and is even worse than that of PRM in Table 1. This

shows that the simple employment of self-attention is insufficient

to explore the impacts of history on reranking, illustrating the ne-

cessity of devising a specific structure for set2list interaction in

reranking. MIR-dcy has roughly the second-worst performance,

which reveals the importance of personalized interest decay. The

results of MIR-set and MIR-lst illustrate the effectiveness of cross-

item interaction before set2list interaction. MIR-hst achieves much

better results than baselines on both datasets. This indicates that

even when cold-start users exist, good results can still be achieved

if similar users’ history is available.

The difference in datasets leads to slightly different performances

for these variants on the two datasets. Item-level interaction uses

the whole item feature and embedding obtained cross-item interac-

tion, while feature-level interaction only covers categorical features.



Table 3: Comparison of MIR and its variants on two benchmark datasets.

Model

PRM Public Ad

@10 @20 @5 @10

MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility MAP NDCG deNDCG Utility

MIR-fi 0.3072 0.3503 0.3228 1.3836 0.2983 0.4304 0.4069 1.9011 0.6030 0.6737 0.6738 2.2957 0.6127 0.7015 0.7019 2.4099

MIR-ii 0.3067 0.3500 0.3226 1.3834 0.2975 0.4295 0.4062 1.8978 0.6040 0.6745 0.6748 2.3181 0.6136 0.7022 0.7026 2.4307

MIR-dcy 0.3060 0.3490 0.3213 1.3733 0.2970 0.4285 0.4049 1.8878 0.6029 0.6734 0.6739 2.2831 0.6128 0.7016 0.7021 2.3976

MIR-SLA 0.3026 0.3447 0.3162 1.3406 0.2945 0.4246 0.4002 1.8553 0.6009 0.6721 0.6726 2.2713 0.6106 0.7000 0.7005 2.3854

MIR-set 0.3071 0.3497 0.3224 1.3828 0.2979 0.4294 0.4061 1.8968 0.6034 0.6742 0.6745 2.3231 0.6130 0.7018 0.7021 2.4351

MIR-lst 0.3073 0.3508 0.3236 1.3879 0.2985 0.4304 0.4072 1.9020 0.6038 0.6744 0.6745 2.3486 0.6136 0.7022 0.7026 2.4601

MIR-hst 0.3054 0.3487 0.3221 1.3879 0.2967 0.4283 0.4056 1.9000 0.6044 0.6749 0.6754 2.3783 0.6143 0.7028 0.7033 2.4885

MIR 0.3087 0.3511 0.3239 1.3906 0.2989 0.4310 0.4078 1.9064 0.6068 0.6768 0.6771 2.3807 0.6164 0.7044 0.7048 2.4918

Therefore, for the PRM Public dataset containing many dense fea-

tures, removing item-level interaction, e.g., MIR-ii, depresses the

performance more, compared with removing feature-level interac-

tion. In contrast, the Ad dataset only has categorical features and

thus relies more on feature-level interaction, yielding the opposite

trend. The difference between the performance of MIR-hst on the

two datasets is also caused by datasets. We use the similarity of user

profiles to choose a similar user. There are 3 and 9 features for user

profiles on PRM Public and Ad datasets, respectively. Therefore, the

user history lists selected on Ad are closer to that of the original

user, so that MIR-hist shows better performance on Ad.
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Figure 3: The impact of the length of the user history.

5.3.2 Hyper-parameter Study. Since we focus on leveraging his-

tory to support reranking, the length of history is an important

hyper-parameter that influences the final results. Thus, we conduct

grid-search experiments on public datasets to get a comprehensive

understanding of how the length of history affects MIR’s perfor-

mance. With DIN as the initial ranker, We fix all the other hyper-

parameters and tune the length of history. Then, we visualize the

change of a ranking-based metricMAP@10 and a utility-based met-

ric Utility@10 in Figure 3. We observe bothMAP@10 and Utility@10
improve sharply from 10 to 30 and then become stable from 30 to 40

on PRM Public and Ad datasets. Although a 40-length history may

bring some improvement, it is not cost-effective compared to the

additional training time and space required, so we set the length to

30 in our experiments.

5.3.3 Case study. To show how SLAttention structure extracts

information from the set2list interactions, we visualize the attention

coefficients 𝐴𝑆 and 𝐴𝐿 obtained in Eq. (7). We select a record on

PRM Public dataset and take the top five items from the candidate

set and history list, respectively. Then, we plot the heatmaps in

Figure 4, with each row being the attention weights of an item on

the horizontal axis items. Since the PRM does not provide a specific

name for each category, we use symbols to replace the category

IDs in horizontal and vertical axes.

In Figure 4(a), most of the items have lower attention weights

for the diamond-shaped items, suggesting that the other items

in the candidate set possibly depend less on the diamond item for

reranking. The weights of the same type of items are similar in most

cases, such as triangular and star-shaped items. From Figure 4(b) we

can see a consistent dependency relationship with (a). The diamond-

shaped item shows a similar tendency to be more dependent on

the triangular items in history. Items in the candidate set generally

have lower weights for heart-shaped items and higher weights for

triangular-shaped items. The weights for items of the same type

are also more consistent but not identical. This is because we have

only used the category here, but other features in the dataset may

cause differences. In summary, the SLAttention structure is capable

of extracting informative patterns in the set2list interaction.
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Figure 4: Visualization of the weights of SLAttention.

6 CONCLUSION
In this work, we address the limitations of previous work in rerank-

ing, especially neglecting users’ dynamic and personalized interests

from users’ history. Thus, we propose a novel end-to-end model,

MIR, where the candidate items to be reranked and users’ behavior

history are formulated as a set and a list, respectively. MIR consists

of lower-level cross-item interaction within the candidate set or



the history list, and higher-level set2list interaction between them.

Moreover, feature-level interactions are incorporated to capture the

fine-grained influence. Specifically, we design a SLAttention struc-

ture for capturing the set2list interactions, and theoretically analyze

its permutation-equivariant property. Extensive experiments show

that MIR significantly outperforms the state-of-the-art baselines

regarding ranking and utility metrics.
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A PROOF OF PROPOSITION 1
SLAttention is composed of the affinity matrix, the personalized

interest decay, and the final attention, so we prove the permutation-

equivariance of these parts in turn. To start with, let 𝐼𝐴(·) be the
item-level interaction function defined in Eq.(2), and with any per-

mutation 𝜋 ∈ Π𝑛 applying to input S = {s1, s2, ..., s𝑛}, we get
𝐼𝐴(𝜋S) = 𝐼𝐴( [s𝜋 (𝑖) ]𝜋 (𝑖) ) = [s𝜋 (𝑖)𝑊𝐼𝐴𝐿]𝜋 (𝑖) = 𝜋𝐼𝐴(S) , (11)

where 𝜋 (𝑖) is the 𝑖-th element in permutation 𝜋 and [s𝜋 (𝑖) ]𝜋 (𝑖)
is a permutation of S ordered by 𝜋 (𝑖), 𝑖 = 1, . . . , 𝑛. Let 𝐹𝐴(·) be
the feature-level interaction function in Eq. (3). Since this interac-

tion only involves feature interaction between items and does not

change the original order of items, we can obtain

𝐹𝐴(𝜋S) + 𝐼𝐴(𝜋S) = 𝜋 (𝐹𝐴(S) + 𝐼𝐴(S)) . (12)

As for personalized interest decay, the decay matrix 𝐷 ∈ R𝑛×𝑚
in Eq. (5) consists of 𝑛 identical vectors d = {𝑑1, 𝑑2, ...𝑑𝑚} where
𝑑𝑖 denotes the decay weight for the 𝑖-th items in the history list.

Thus, the decay is distinct for items in the history list and identical

for items in the candidate set. Let 𝑃𝐷 (·) and C𝐴 = {c𝑎
1
, c𝑎

2
, ..., c𝑎𝑛}

be the process of personalized interest decay and its input, thus

𝑃𝐷 (𝜋C𝐴) = 𝑃𝐷 ( [c𝑎𝜋 (𝑖) ]𝜋 (𝑖) ) = [c
𝑎
𝜋 (𝑖) ]𝜋 (𝑖) ⊙ (E + D)

= [c𝑎
𝜋 (𝑖) ⊙ (e + d)]𝜋 (𝑖) = 𝜋𝑃𝐷 (C𝐴) = 𝜋C ,

(13)

where E ∈ R𝑛×𝑚 and e ∈ R1×𝑚 denote the unit matrix and its

corresponding uint vector. ThematrixC is the result of personalized

interest decay obtained in Eq (6).

For the final attention part in Eq. (7), the attention coefficient

A𝑆 for the candidate set can be written as follows,

A𝑆 = softmax

(
SW𝑆 + C(LW𝐿)

)
= softmax

(
[s𝑖W𝑆 + c𝑖 (LW𝐿)]𝑖

)
=
[
softmax(s𝑖W𝑆 + c𝑖 (LW𝐿))

]
𝑖
.

(14)

Thus, with𝜋 applied to S andC, we can get𝜋A𝑆 . Then, the permutation-

equivariance of the output Ŝ in Eq. (8) can be proved by

(𝜋A𝑆 ) (𝜋S) =
[∑

𝑗
A𝑆 (𝜋 (𝑖), 𝜋 ( 𝑗))S𝜋 ( 𝑗)

]
𝜋 (𝑖)

=

[∑
𝑗
A𝑆 (𝜋 (𝑖), 𝑗)S𝑗

]
𝜋 (𝑖)

= 𝜋 (A𝑆S) = 𝜋 Ŝ .
(15)

The attention coefficient A𝐿 can be written as

A𝐿 = softmax(SW𝑆C) = softmax

( [∑
𝑗
s𝑖w𝑠𝑗 · c𝑗

]
𝑖

)
=

[
softmax(

∑
𝑗
s𝑖w𝑠𝑗 · c𝑗 )

]
𝑖
.

(16)

Similar to Eq. (15), we have 𝜋A𝐿 with 𝜋 applied to S and C. Since L
has nothing to dowith candidate set, it does not harm the permutation-

equivariance to multiply A𝐿 and L in Eq. (8).

Combining all we proved above, we can conclude that SLAtten-

tion structure is permutation-equivariant to the candidate set.

B DETAILS OF METRICS
According to [2], for linearly decomposable ranking metrics like

DCG, an unbiased estimation can be obtained via IPS weighting:

𝛿 (𝜋 |𝑢) =
∑
𝑣∈𝜋

𝜆(𝑝𝑜𝑠 (𝑣 |𝜋))𝑦𝑣
𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣) = 1|𝑢, 𝑣, 𝜋ℎ)

(17)

where 𝜋 and 𝜋ℎ denote the current top-𝐾 ranking and the rank-

ing in the log data, and 𝜆(·) can be any weighting function that

depends on the position 𝑝𝑜𝑠 (𝑣 |𝜋) of item 𝑣 in ranking 𝜋 . The la-

bel 𝑦𝑣 denotes whether the user 𝑢 clicked item 𝑣 in the log data.

𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣) = 1|𝑢, 𝑣, 𝜋ℎ) describes the propensity of user 𝑢 observ-

ing item 𝑣 in historical ranking 𝜋ℎ . Here, following [13], we adopt

category-wise propensity estimation as a coarse approximation

of the groundtruth propensity 𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣) = 1|𝑢, 𝑣, 𝜋ℎ). We count

the number of clicks on each category at each position and then

normalize them via the number of clicks on the first position to

obtain the category-wise propensity 𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣) = 1|cate𝑣, pos𝑣),
where cate𝑣 and pos𝑣 are the category and position of item 𝑣 . With

𝜆(𝑝𝑜𝑠 (𝑣 |𝜋)) = 1

log
2
(𝑝𝑜𝑠 (𝑣 |𝜋 )+1) , we have the unbiased DCG, which

is normalized by the ideal unbiased DCG to obtain deNDCG@K.
we also use IPS weighting to debias the utility metrics. On public

datasets,𝑈𝑡𝑖𝑙𝑖𝑡𝑦@𝐾 is computed by

∑𝐾
𝑣=1

𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣)=1 |cate𝑣 ,pos𝑣 )
𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣)=1 |cate𝑣 ,posℎ𝑣 )

𝑦𝑣 ,

following [13], where pos
ℎ
𝑣 and𝑦𝑣 denote the position of item 𝑣 and

whether it was clicked in log data. On App Store dataset,𝑈𝑡𝑖𝑙𝑖𝑡𝑦@𝐾

is calculated by

∑𝐾
𝑣=1

𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣)=1 |cate𝑣 ,pos𝑣 )
𝑃𝑟𝑜𝑝 (𝑜𝑢 (𝑣)=1 |cate𝑣 ,posℎ𝑣 )

𝑦𝑣𝛾𝑣 , where 𝛾𝑣 is the

given bid price for item 𝑣 .
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