
RankFlow: Joint Optimization of Multi-Stage Cascade Ranking
Systems as Flows

Jiarui Qin
Shanghai Jiao Tong University

qjr1996@sjtu.edu.cn

Jiachen Zhu
Shanghai Jiao Tong University

gebro13@sjtu.edu.cn

Bo Chen
Huawei Noah’s Ark Lab

chenbo116@huawei.com

Zhirong Liu
Huawei Noah’s Ark Lab

liuzhirong@huawei.com

Weiwen Liu
Huawei Noah’s Ark Lab

liuweiwen8@huawei.com

Ruiming Tang
Huawei Noah’s Ark Lab

tangruiming@huawei.com

Rui Zhang
ruizhang.info

rayteam@yeah.net

Yong Yu
Shanghai Jiao Tong University

yyu@sjtu.edu.cn

Weinan Zhang∗

Shanghai Jiao Tong University

wnzhang@sjtu.edu.cn

ABSTRACT

Building a multi-stage cascade ranking system is a commonly used

solution to balance the e�ciency and e�ectiveness in modern in-

formation retrieval (IR) applications, such as recommendation and

web search. Despite the popularity in practice, the literature spe-

ci�c on multi-stage cascade ranking systems is relatively scarce.

The common practice is to train rankers of each stage indepen-

dently using the same user feedback data (a.k.a., impression data),

disregarding the data �ow and the possible interactions between

stages. This straightforward solution could lead to a sub-optimal

system because of the sample selection bias (SSB) issue, which is

especially damaging for cascade rankers due to the negative e�ect

accumulated in the multiple stages. Worse still, the interactions be-

tween the rankers of each stage are not fully exploited. This paper

provides an elaborate analysis of this commonly used solution to

reveal its limitations. By studying the essence of cascade ranking,

we propose a joint training framework named RankFlow to allevi-

ate the SSB issue and exploit the interactions between the cascade

rankers, which is the �rst systematic solution for this topic. We

propose a paradigm of training cascade rankers that emphasizes the

importance of �tting rankers on stage-speci�c data distributions

instead of the uni�ed user feedback distribution. We design the

RankFlow framework based on this paradigm: The training data of

each stage is generated by its preceding stages while the guidance

signals not only come from the logs but its successors. Extensive

experiments are conducted on various IR scenarios, including rec-

ommendation, web search and advertisement. The results verify

the e�cacy and superiority of RankFlow.

∗Weinan Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’22, July 11–15, 2022, Madrid, Spain

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3532050

CCS CONCEPTS

• Information systems → Information retrieval.

KEYWORDS

Cascade Ranking Systems, Recommendation, Information Retrieval

ACM Reference Format:

Jiarui Qin, Jiachen Zhu, Bo Chen, Zhirong Liu, Weiwen Liu, Ruiming Tang,

Rui Zhang, Yong Yu, andWeinan Zhang. 2022. RankFlow: Joint Optimization

of Multi-Stage Cascade Ranking Systems as Flows. In Proceedings of the

45th International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3477495.3532050

1 INTRODUCTION

Balancing the e�ciency and e�ectiveness of ranking models has

always been vital to information retrieval (IR) tasks, such as recom-

mendation or web search. Complex IR models [23, 24] have better

accuracy but usually su�er from low e�ciency, which makes it

di�cult for online deployment because of the latency constraints

[22]. Simple models [16, 27], on the contrary, are limited by their

capacity, but their low time complexity is feasible for scoring a large

number of documents. To balance the trade-o� between e�ciency

and e�ectiveness, a widely used solution in the industry is multi-

stage cascade ranking systems [30]. There are multiple rankers

in the system, from simple models to complex ones. The simple

rankers are deployed in the early stages of the retrieval, aiming to

quickly �lter out the irrelevant documents/items from massive can-

didates w.r.t. the given query, while the complex rankers are usually

placed in the later stages of the retrieval, ranking the documents

more accurately. A typical three-stage cascade ranking system is

illustrated in Figure 1. There are three stages from the bottom to the

top: recall, pre-ranking, and ranking. Each stage is responsible for

selecting the top documents in the list it receives and feeding them

to the next stage. The recall stage selects from the entire document

pool and the selected documents by the ranking stage will be �nally

displayed to the user. The scale of the di�erent stages shrinks from

millions to tens, as shown in Figure 1.

In recent years, various e�ective IR models, mostly designed

for a speci�c stage, have been proposed – including recall mod-

els [6, 16, 40], pre-ranking models [19, 31] and ranking models

https://doi.org/10.1145/3477495.3532050
https://doi.org/10.1145/3477495.3532050

Ranking

Pre-Ranking

Recall

Cascade
Ranking

Tens

Hundreds

Thousands

Tens of Thousands

Millions...

Display

Document/Item Pool

Figure 1: A typical three-stage cascade ranking system.

[2, 12, 13, 20, 21, 38, 39]. Nevertheless, these models only empha-

size the performance of a single-stage without providing particular

discussions or designs on how they will in�uence the performance

of other stages in a cascade system. Compared to the rapid devel-

opment of the single-stage models, little research has been done

for the cascade ranking architecture, although it is widely used in

practice. Early attempts [4, 30, 33, 34] focus on cost-aware learning

to manage the trade-o� between e�ectiveness and e�ciency, where

the cost of computing is introduced to the loss functions. These

early research works are mainly proposed for tree-based [33, 34],

or linear rankers [30], which may not be the mainstream choices

in today’s large-scale IR systems. Other cascade learning methods

such as [11] try to derive the gradients of the cascade ranking pro-

cess by using some approximations and relaxations, which may

lead to sub-optimal results.

However, most existing works (either single-stage models or cas-

cade models), train rankers independently on the same impression

data 1 and thus fail to address the following two challenges. 1) The

�rst one is the sample selection bias (SSB) issue [3], which is

caused by the inconsistency between the training and the infer-

ence data. During training, rankers are trained by the impression

data, which only covers the documents that are exposed to the

users ("Display" part in Figure 1). While at inference, rankers are

required to rank a large amount of unseen data. This means the

data distribution during training is far di�erent from that during

inference, which will result in a sub-optimal system. It is like forc-

ing a student to take an exam beyond the syllabus. 2) The second

challenge is how to exploit the interactions between the rankers.

Most existing training methods treat the rankers independently,

and each ranker is not aware of the existence of others. However,

there could be huge potential if the rankers could interact with

each other and achieve better performance without changing the

model architectures or sacri�cing inference e�ciency.

To address the above challenges, we propose a uni�ed joint train-

ing framework for multi-stage cascade ranking systems named

RankFlow. The major paradigm of RankFlow is �tting each ranker

towards its own stage-speci�c data distribution, with the help of other

stages. In RankFlow, the training data for each ranker is stage-

speci�c, which contributes to re�ecting and adapting to its own

scoring scope. This idea �ts the essence of cascade ranking systems:

each stage should select a better set of relevant documents from

the set it receives. Speci�cally, the training data of each stage is

1Impressionmeans page view or display, indicating a user has seen the query-document
pair and gives feedback.

generated by the preceding stages. The scale of training documents

should be close to the scale of documents at inference time. It helps

alleviate the SSB issue because the generated data is not limited to

the impression data but covers the exact scale of documents of that

stage. Apart from getting training data from the preceding stages,

the rankers are further correlated with each other by learning from

the succeeding rankers. Normally the rankers of succeeding stages

are more complex and capable, which makes them suitable to be

teachers. Learning from a teacher could improve the student’s ca-

pability. RankFlow explores optimizing a ranker by exploiting the

interactions with the other rankers in the cascade system. The inter-

actions between rankers include data generation and supervision

signals. These interactions among the stages help to solve the two

challenges mentioned above.

The joint training procedure of RankFlow could be summarized

in two steps: data generation step and learning step. The data gen-

eration process prepares training data for each stage based on the

preceding rankers. The learning step of a ranker could be divided

into two sub-processes: self-learning and tutor-learning. For self-

learning, the ranker is trained using the labels from the impression

logs and regards the undisplayed samples as negative. It is actually

learning to discriminate the documents given by its predecessor. For

tutor-learning, the ranker learns the relevance estimations given

by its successor. The successor acts like a teacher. Thus the two

processes of each stage could form a self-learning �ow and a tutor-

learning �ow. By conducting both �ows iteratively, the rankers of

the cascade system are trained jointly.

The contributions of our paper are summarized as follows:

• We are the �rst to propose the paradigm of �tting each ranker

on its own stage-speci�c data distribution with the help of

other stages for training cascade rankers.

• We propose the RankFlow joint training framework, in which

the training data of each stage is generated by its preceding

stages while the guidance signals come from not only the logs

but also the succeeding ranker. RankFlow does not require new

data sources or increase inference complexity to improve the

overall performance.

• We provide a detailed analysis on the limitations of training cas-

cade rankers independently on impression data. To our knowl-

edge, it is the �rst time that the limitations are discussed for-

mally in the research of cascade ranking.

Extensive experiments are conducted based on three real-world

datasets, covering the major information retrieval scenarios, includ-

ing recommendation, web search, and advertising. The improve-

ments of using RankFlow are signi�cant, verifying its e�cacy.

2 BACKGROUND

This section will introduce the preliminaries and the basics of a

multi-stage cascade ranking system as background knowledge.

2.1 Preliminaries

The goal of a ranking system is to produce a high-quality ranked

list of documents corresponding to a given query. We denote a

query as @ ∈ Q and a document 3 ∈ D, where Q and D are the

given query and document set, respectively. The quality of a ranked

list is determined by the documents’ relevance to the query, which

is denoted by ~ ∈ Y. For explicit feedback problems, Y usually

consists of multiple ratings, while for implicit feedback problems,

Y is usually binary.

Supervised learning is the most widely used technique to train

a ranking model. As a supervised learning model, the feature is

query-document pair G = ï@, 3ð and label ~ is used as a supervision

signal. The feature space is represented as X = Q × D. A ranking

model parameterized by \ is denoted as '\ (' for short). Given

a query-document pair G , a ranking model outputs the predicted

relevance label as

~̂ (G) = '\ (G). (1)

In the probabilistic perspective, a query-document pair G and

the corresponding relevance label ~ could be regarded as a value of

random variables - and . . The joint probabilistic distribution of -

and . is denoted as) (-,.). Thus the learning of a ranking model

could be conducted by minimizing the expected risk as

min
\

Risk\ (~̂), where Risk\ (~̂) =

+
ℓ (~, ~̂ (G))3) (G,~), (2)

in which ℓ (~, ~̂ (G)) could be point-wise, pair-wise or list-wise loss

functions. And (G,~) is sampled from the distribution) (-,.).

2.2 Multi-Stage Cascade Ranking System

Multi-stage cascade ranking systems are widely used in real-world

IR applications such as recommendation and web search. A typical

structure consists of three stages: recall, pre-ranking, and ranking.

Formally speaking, a multi-stage cascade ranking system consists

of multiple rankers, which work in a cascade way. Assume for

an (-stage system, we have (rankers: {'\1 , '\2 , . . . , '\ď }, each of

which might has di�erent parameters and architectures. We use '8
to denote a ranker in stage 8 for simplicity if there is no ambiguity.

The ranking task is selecting the best matched documents w.r.t. the

given query. Thus the working procedure of stage 8 is obtaining

the documents with top scores and feeding them to the next stage,

which is formulated as,

D
@
8+1 ={3 9 }

 ğ

9=1, '8 (ï@, 3 9 ð) g Top- 8 (H8),

H8 = {'8 (ï@, 3ð)},∀3 ∈ D
@
8 ,

(3)

whereD
@
8+1 is the resulted document list given by '8 to the succeed-

ing stage 8 + 1 for the given query @. D
@
8 is the received document

list from the preceding stage 8 − 1, 8 is the truncated length of

the ranking list for stage 8 . H8 represents the set of ranking scores

on all the query-document pairs of stage 8 and Top- 8 represents

the 8 -th largest score. '8 (ï@, 3ð) is the ranking score of @ and 3 .

D
@
1
= D is the whole document set, and D

@
(+1

is the �nal ranking

list that will be displayed to the user.

In a more general view, Eq. (3) could be written as

X8+1 = Rule\ğ , ğ
(X8), (4)

where X8 = {ï@, 3ð,∀@ ∈ Q, 3 ∈ D
@
8 }, meaning the data received

by the stage 8 . The scoring and ranking process to get the top

documents could be regarded as a selection rule determined by the

ranker’s parameters \8 and the system truncation parameter 8 .

Then we could have that X8+1 ¢ X8 , indicating the cascade ranking

is a data selection process. The involving data for each stage is

shrinking. As the input data size (i.e., number of documents) shrinks,

the early stages usually utilize rankers with simpler architectures

and fewer parameters, while more complex rankers are deployed

for the later stages. For the early stages stages like recall, the dot

product model is often used [6, 16] as the maximum inner product

search (MIPS) could be conducted very quickly. As for later stages

like ranking, complex models [25, 38, 39] are deployed to output a

more sophisticated ranking list.

3 METHODOLOGY

In this section, we �rst introduce our paradigm of training a multi-

stage cascade ranking system. Then the detailed design of RankFlow

is presented. Finally, we discuss the limitations of the widely used

training procedure in the view of RankFlow.

3.1 The Paradigm of Training Cascade Rankers

We propose that the paradigm of training cascade rankers is to �t

the stage-speci�c data distributions for di�erent stages accordingly,

with the help of other stages. To reveal the paradigm, we could start

with the ideal situation.

3.1.1 Ideal Situation. In the ideal case, the optimization object for

ranker '8 at stage 8 is

min
\ğ

Risk\ğ (~̂), where Risk\ğ (~̂) =

+
ℓ (~, ~̂ (G))3) (G,~). (5)

In Eq. (5), (G,~) ∼) (-,.).) (-,.) is the distribution to generate

the query-document pair G and the corresponding relevance label

~ 2. For the ideal case, (G,~) ∼) (-,.) = Pr(-,.), where Pr(-,.)

is the underlying ground-truth distribution of data.

However, the ideal case is hard to ful�ll because of the following

two reasons: 1) The ground-truth data distribution Pr(-,.) is hard

to depict because the entire feature space X is huge, and . |- is

unknown in most of the cases (the data that is not displayed to

the users). 2) It is challenging for a ranker to �t the entire data

distribution.

As the essence of a cascade ranking system is selecting a better

set of relevant documents from the set each ranker receives, which

is shown in Eq. (3), the scoring scope of each stage is nested with

each other (Eq. (4)). Thus, we argue that ranker '8 of stage 8 does

not necessarily need to �t the entire Pr(-,.) distribution very

well. Instead it could focus on �tting the data that is �ltered by

the preceding stages. As shown in Figure 2, each stage 8 could

only focus on the data distribution Pr8 (-,.) of its own, instead of

targeting all the stages to the same data distribution. The current

training method is �tting each stage to Pr(-,.,O = 1), where O

represents whether the data is displayed to the users and has the

ground-truth relevance. The limitations of the widely used method

are discussed in detail in Section 3.5.

The Paradigm. The paradigm of RankFlow is to �t each ranker '8
of stage 8 to its own data distribution Pr8 (-,.), which is consistent

with its inference scope. As the scope of Pr8 (-,.) could be much

smaller than that of the entire data distribution, this paradigm has

two good properties: 1) Pr8 (-,.) is easier to depict. 2) It is easier

for a ranker '8 to �t Pr8 (-,.) than Pr(-,.).

2In this paper, we may regard click to represent relevant, and non-click to represent
irrelevant. The bias between relevance and click is not in the scope of this paper.

............

Figure 2: Illustration of the training paradigm of RankFlow:

ranker '8 should be trained on Pr8 (-,.).

We use an analogy to make our points clearer: Suppose we have

multiple students who are going to take exams of di�erent subjects

or di�erent syllabuses. The current solution is to prepare a uni�ed

cheat sheet that cannot cover the syllabuses well. RankFlow, on

the contrary, will prepare each student a suitable cheat sheet w.r.t.

her own syllabus. The "student" is a ranker, the "syllabus" is the

scale of documents in inference, and the "cheat sheet" represents

the training data distribution.

3.2 Approximating Stage-Speci�c Data
Distributions

The stage-speci�c data distribution Pr8 (-,.) could be approxi-

mated using two components: Pr8 (-) and Pr8 (. | -) as

Pr8 (-,.) = Pr8 (. | -) Pr8 (-)

= (Pr8 (. | -,O = 1) + Pr8 (. | -,O = 0)) · Pr8 (-),
(6)

where O represents whether the query-doc pair G is displayed to

the users. Thus, to generate data (G,~) from Pr8 (-,.) could be

regarded as two following steps: generating G using Pr8 (-), and

generating ~ from Pr8 (. | -).

3.2.1 Pr8 (-) Approximation. To approximate the - distribution

for stage 8 , the most straightforward way is to use the preceding

stages to generate the data that are closest to the data scale of

inference. In other words, Pr8 (-) is determined by stages 1, . . . , (8−

1). The preceding stages perform as a data selector to'8 . To generate

data with proper scales w.r.t. di�erent stages, we just need to follow

the cascade ranking procedure from the bottom to the top.

3.2.2 Pr8 (. | -) Approximation. As for Pr8 (. | -,O = :) we have

two ways to estimate. The �rst one uses the real relevant label for

the impression data (: = 1) and the negative relevance label for

the unseen data (: = 0). The second way is to utilize the model of

the succeeding stage. The succeeding stage 8 + 1 generally has a

more advanced yet complex model with better capacity. Thus the

succeeding stage 8 + 1 could act as a "teacher," and its prediction on

the query-doc pair G could be utilized as a supervision signal. So

the relevance distribution Pr8 (. | -,O = :) could be regarded as

determined by the succeeding stage. Using the succeeding stage as a

teacher could provide the unseen data with an estimated relevance

and help the ranker in the current stage 8 learn better.

In our method, each stage gets its own training data from its

preceding stages. Moreover, the supervision signal not only comes

from the user feedback logs but also from the succeeding stage with

better modeling capacity.

3.3 RankFlow: Overall Framework

The overall framework of RankFlow is shown in Figure 3. The

entire procedure of RankFlow could be divided into two phases:

independent training and joint training.

3.3.1 Independent Training. In independent training phase, each

stage 8 is trained on the impression dataset �8<? using ordinary

loss functions such as binary cross entropy loss. This dataset could

be regard as sampled from the distribution Pr(-,.,O = 1). For

the recall stage, speci�cally, we use the impression data with the

random negative samples. The independent training process works

as a warmup phase essentially. As the joint training process de-

scribed in Section 3.2 requires other stages to helpwith the currently

trained stage, they should have basic ranking abilities. As shown

in Figure 3, after the independent training, the initial ranker '8=8C8
becomes 'F0A<8 .

3.3.2 Joint Training. In the joint training phase, the �rst step is to

generate the stage-speci�c data for each stage using Eq. (3). After

we get the dataset X8 generated by preceding stages, obtaining

the corresponding label Y8 is the key point. According to di�erent

sources of the labels, joint training is conducted iteratively on two

�ows: self-learning �ow and tutor-learning �ow. We incorporate

the labels from the impression logs for the self-learning �ow. For

the observed query-doc pair G , we use its accurate label while di-

rectly using negative (zero) labels for the unobserved ones. The

self-learning of '8 is essentially learning to discriminate the doc-

uments generated by its predecessors. As shown in Figure 3, for

the tutor-learning �ow, the supervision signals come from the suc-

ceeding ranker '8+1. In this setting, the ranker '8 is the student and

'8+1 becomes a teacher. The training process lets the student learn

to rank the documents like its teacher. In this way, the teacher’s

capacity will be transferred to the student without changing the

student’s architecture. For each stage 8 , the ranker '8 has these two

tasks: self-learning and tutor-learning. These two tasks form the

corresponding �ows, which are conducted iteratively.

3.4 RankFlow: Training Details

In this part, we describe the detailed training method of a stage 8 in

RankFlow framework, which is illustrated in the right plot (Phase

II(8)) of Figure 3.

3.4.1 Data Generation. The �rst step of training ranker '8 is to

obtain its training set 3, which is generated by the preceding stage

8 − 1. Following Eq. (3) and Eq. (4) we get the training data X8
for '8 . They could be regarded as sampled from Pr8 (-) as G 9 ∼

Pr8 (-), ∀G 9 ∈ X8 , where Pr8 (-) is determined by the preceding

stages. The top 8 documents from'8−1 will form the training set for

'8 . The exception is '1 (recall model) because it has no preceding

stage. So we use the impression data with the random negative

samples as the training data for it to cover more documents.

3.4.2 Self-Learning Flow. We use the relevance label from the im-

pression logs for the self-learning �ow. As illustrated in Figure 3,

the Pr8 (. | -) distribution is determined by the impression logs

and the negative assumption for the undisplayed data. Speci�cally,

3The training dataset here only contains the G part, ~ is generated using two di�erent

ways, which will be discussed in the following sections.

warmup

warmup

warmup

......
......

Phase I : Independent Training

Tutor-Learning
of Stage i+1

Phase I I : Joint Training

Self-Learning Flow

Tutor-Learning Flow

Phase I I (i): Joint Training of Stage iDeploy Online

scor ing

sor ting

scor ing

......

......
......

Labels for Self-Learning Labels for Tutor-Learning

Self-Learning of Stage i Tutor-Learning of Stage i

Tutor-Learning
of Stage i

Tutor-Learning
of Stage i-1

Self-Learning of
Stage i+1

Self-Learning of
Stage i

Self-Learning of
Stage i-1

Figure 3: Overall illustration of the RankFlow. Phase I is independent training which acts as a warmup phase. Phase II is the

major joint training process. Each ranker has two learning tasks: self-learning and tutor-learning. The two tasks form the

corresponding �ows. In each �ow, the stages are trained bottom-up and the two �ows are conducted iteratively. The details

of self-learning and tutor-learning for stage 8 is shown in Phase II(8).

for an observed query-doc pair G Ġ , the accurate relevance label is

used. For an unobserved query-doc pair G Ġ , ~ Ġ is set to be negative.

The loss function here could be the widely used learning to rank

loss. Here we use the point-wise loss as

L
(ĩěĢ Ĝ)
ğ =

1

|Xğ |

|Xğ |∑

Ġ=1

−~ Ġ log('ğ (G Ġ)) − (1−~ Ġ) log(1−'ğ (G Ġ)). (7)

The self-learning �ow consists of all the training process from stage

1 to stage (by solving argminĉğ L
(ĩěĢ Ĝ)
ğ , ∀8 ∈ {1, . . . , (}.

In the self-learning �ow, the information �ows bottom-up be-

cause the preceding stage tells the current stage what data it should

learn to discriminate. From [9, 15] we can �nd that the negative

samples are vital for training an accurate ranker. The procedure

of the self-learning �ow actually regards the preceding stage as a

data generator. This generator will provide high-quality negative

samples with a proper scale.

3.4.3 Tutor-learning Flow. For the tutor-learning task, the ranker

'ğ aims to learn the scores given by its successor 'ğ+1. The loss

function L
(ĪīĪĥĨ)
ğ for stage 8 is

L
(ĪīĪĥĨ)
ğ = U · ℓranking + (1 − U) · ℓmse .

ℓranking = −
1

|Q|

∑

ħ

log

(

f

(∑

ĚĦ 'ğ (ï@, 3Ħ ð)

 ğ
−

∑

ĚĤ 'ğ (ï@, 3Ĥð)

(ğ−1 − ğ)

))

,

ℓmse =
1

|Xğ |

|Xğ |∑

Ġ=1

('ğ+1 (G Ġ) − 'ğ (G Ġ))
2,

(8)

where ℓranking is the ranking loss and ℓmse is the mean squared error.

They are combined by the weight parameter U . f (C) = 1
1+exp(−Ī)

is the sigmoid function. The ℓmse is utilized to learn the teacher’s

ranking score in a point-wise manner. Training dataset Xğ could be

divided into the query part and the document part. For each query @

in Q, in stage 8 , it has a document list whose length is ğ−1, and we

use !ğħ to denote the list. To learn the ranking of the teacher model

'ğ+1, we rank the documents in !ğħ according to the scores given by

'ğ+1. 3Ħ in Eq. (8) represents the document that is among the top- ğ
choices by 'ğ+1, and 3Ĥ represents the document that is not. The

ranking loss is essentially the "pair-wise" loss between the average

score of the top- ğ documents and the rest of the documents in !ğħ .

By incorporating the ℓranking term, the student model 'ğ is learning

the order of the documents given by its teacher 'ğ+1 or, equivalently

speaking, learning to generate a better top- ğ list for 'ğ+1.

The exception for tutor-learning �ow is the �nal stage (because

it does not have a succeeding ranker as the teacher. Thus the tutor-

learning �ow is conducted from '1 to 'ď−1.

The entire RankFlow training procedure is summarized in the

Algorithm 1. The key point of RankFlow is generating data for each

stage (line 4 and 6) and conducting the self-learning �ow (line 5)

and the tutor-learning �ow (line 7) iteratively until the performance

of the �nal stage converges. The rankers after the joint training

'
ĠĥğĤĪ
ğ are ready to be deployed.

3.5 Discussions on Existing Training Methods

This section discusses the limitations of the current existing training

methods for multi-stage cascade ranking systems.

3.5.1 Independent Training on Impression Data. Because the im-

pression data is easy to collect (users feedback logs). The existing

widely used solution is to use the impression data, i.e., (G,~) ∼

Pr(-,.,O = 1), where O represents if the data is displayed to the

user. This solution implicitly assumes that

Pr(-,.) ∝ Pr(-,.,O = 1), (9)

and uses Pr(-,.,O = 1) to replace Pr(-,.). But it does not hold

for most of the cases [35]. We �rstly express both sides in Eq. (9)

Algorithm 1 Training procedure of RankFlow

Require: Impression dataset �ğģĦ , (rankers 'ğĤğĪğ , 8 = 1, . . . , (.

Cascade length for each stage 1, . . . , ď .

Ensure: The rankers that are trained by RankFlow as '
ĠĥğĤĪ
ğ , 8 =

1, . . . , (.

1: Initialize the parameters of all the rankers 'ğĤğĪ1 , . . . , 'ğĤğĪ
ď

.

2: Conduct the independent training process as described in Sec-

tion 3.3.1 and get the warmed-up rankers 'ĭėĨģ
ğ .

3: repeat

4: Generate the training set Xğ for all the stages using Eq. (3).

5: For every stage 1,. . . ,(, conduct self-learning using Eq. (7).

6: Re-generate the training setXğ for all the stages using Eq. (3)

as the rankers are updated.

7: For stage 1, . . . , (− 1, conduct tutor-learning using Eq. (8).

8: until performance of the �nal stage coverges

respectively as

Pr(-,.) = Pr(. | -) Pr(-)

Pr(-,.,O = 1) = Pr(. | -,O = 1) Pr(-,O = 1).
(10)

As the relevance . is solely dependent on query-doc feature - and

impression does not a�ect it, we could have Pr(. | -,O = 1) =

Pr(. | -). Furthermore, Pr(-,O = 1) = Pr(-) Pr(O = 1 | -).

The correctness of Eq. (9) is based on whether Pr(O = 1 | -) is a

constant as

Pr(O = 1 | -) = Uniform(-) . (11)

However, Eq. (11) does not hold except for a random display

strategy. In most cases, the probability of a document being dis-

played to a user is relevant to the query-doc feature - . Thus the

existing solution has inherent limitations. To be speci�c, using data

(G,~) ∼ Pr(-,.,O = 1) to train each stage will su�er from sample

selection bias (SSB) [3]. The impression data distribution is in-

consistent with the inference data distribution because impression

data only covers a limited part of documents.

3.5.2 Practical Improvements. Some improvements are common

in real-world applications to alleviate the SSB issue. A widely used

improvement for training a better recall model is to generate un-

observed samples via random negative sampling [15]. These unob-

served negative samples are combined with the observed samples

to form a training set. We could have that

Pr(-,.) = Pr(-,.,O = 1) + Pr(-,.,O = 0), (12)

where

Pr(-,.,O = 0) = Pr(. |-,O = 0)
︸ ︷︷ ︸

ĕalways negative

Pr(-,O = 0)
︸ ︷︷ ︸

random sampling

(13)

The random negative sampling is essentially approximating the

unobserved distribution Pr(-,.,O = 0) by setting the rules that

query-doc pair data- is sampled from uniform distribution and the

relevance label . is always negative. This approach is an e�ective

solution to boost the performance of the recall stage, but it is not a

systematic solution for all the stages in a cascade ranking system.

RankFlow, on the contrary, uses stage-speci�c data distribution to

provide (negative) samples, which is more suitable for each stage

itself. Furthermore, the succeeding ranker is utilized as another

source of supervision signal.

4 EXPERIMENTS

In this section, we present the details of the experiments with the

corresponding analysis. The implementation code of RankFlow is

available 4. Four research questions (RQs) lead our discussions:

• RQ1: Is the overall performance of RankFlow superior to the

baselines?

• RQ2: Are the self-learning and tutor-learning both e�ective

and essential? What if we replace a simple ranking model to a

complex one instead of using RankFlow?

• RQ3:What is the in�uence of some crucial hyperparameters?

• RQ4:What is the training e�ciency of RankFlow?

4.1 Experimental Settings

4.1.1 Datasets. To verify the e�ectiveness of RankFlow, we con-

duct experiments on three widely used datasets from recommenda-

tion and web search scenarios: MovieLens-1M (ML-1M), TianGong-

ST, and Tmall. Besides, we also have done simulation experiments of

the advertising task (ranking with bid price) based on the datasets.

Recommendation and advertising tasks can be regarded as a

generalized information retrieval problem, where the query is the

user pro�le/representation, and the documents are items. For the

advertising task, the �nal list is ranked based on the combination

of estimated relevance and bid price as 'ď (Gğ) × bid(Gğ), which is

a common form [18]. As the public datasets normally do not have

the impression-level bid price, we generate the bid prices from a

log-normal distribution [7]. The charging policy is the widely-used

generalized second price (GSP) mechanism [8] on Cost-Per-Click

(CPC) advertisement.

• ML-1M 5 contains users ratings on movies with 6,040 users

and 3,706 items. As the implicit feedback is more common in

practice, we set ratings no less than four as positive relevance

and others as negative.

• TianGong-ST 6 is a dataset that contains searching logs of

clicking records on each given query, which has 40,596 queries

and 314,459 documents.

• Tmall 7 is provided by Alibaba Group, which contains user

behavior history on Tmall e-commerce platform from May

2015 to November 2015. It contains 424,170 users and 1,090,390

items.

All the above datasets are split into train, validation, and test sets

using timestamps [24, 25].

4.1.2 Compared Methods. We compare RankFlow with two di�er-

ent training procedures:

• Independent represents training the rankers of each stage

independently on the impression dataset. For the recall stage,

we use random negative sampling to enhance the coverage of

documents as described in Section 3.5.2.

4https://github.com/qinjr/RankFlow
5https://grouplens.org/datasets/movielens/1m/
6http://www.thuir.cn/tiangong-st/
7https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

• ICC [11] is the most recently proposed joint training method

of cascade ranking. The score for a query-document pair in-

volves all the stages, but the training data is still based on the

impression logs. We choose the "ICC" mode of the framework

because that is consistent with our cascade setting.

As for the speci�c rankers, we choose DSSM [16], and YoutubeDNN

[6] for recall stage as they are both dual-tower models [36] which

outputs query and document vector representations. At the infer-

ence time, we use maximum inner product search to accomplish the

recall stage using FAISS 8. For other stages, we utilize well-known

models including FM [27], DeepFM [12], COLD [31], WDL [5], PNN

[26], DIN [39] and DIEN [38].

4.1.3 Evaluation Metrics. Precision@ (P@), recall@ (R@),

and F1@ are used to measure the recall models’ performance.

Because for the recall stage, we care more about the number of

relevant documents returned than the detailed ranking orders. Hit

ratio (HR@), normalized discounted cumulative gain (NDCG@),

and mean average precision (MAP@) are used to measure the

ranking performance of other stages. The calculation of the above

metrics can be found in [17]. Furthermore, we use e�ective cost per

mile (eCPM) to measure the advertising income performance [29].

4.2 Performance and Analysis (RQ1)

4.2.1 On Recommendation and Web Search Datasets. The overall

performances on three datasets are shown in Table 1, 2 and 3. For

each dataset, we conduct experiments for two groups of di�erent

ranking systems to verify the compatibility of RankFlow as a frame-

work. The main results of each group of experiments are shown in

the "Cascade List Generation" column because it is the actual infer-

ence process for a multi-stage cascade ranking system: generating

the ranking list for each query bottom-up. The "Impression Data"

column is the testing results of a single model on the impression

dataset after the independent training. This column is used to re-

�ect that the later stage models usually have better performance

due to the more complex structures.

The blue shaded area represents the �nal performance of the en-

tire cascade system because the document lists given by the ranking

stage will be displayed to the users. We could verify that RankFlow

signi�cantly improves ranking performance to a large extent on all

three datasets. As for the gray shaded area is the performance of

other stages (recall & pre-ranking). If the system is trained in the

RankFlow framework, the performances of all the stages increase

a lot compared to the independent training procedure, and ICC

training. From the tables, we could verify that RankFlow could

improve the performance apparently, and the improvements are

maintained when the datasets or the rankers in the cascade systems

are changed.

4.2.2 On Advertising Datasets. The results of the advertising ex-

periments are shown in Table 4, 5 and 6 to simulate paid web search

and paid recommendation. In the simulation experiment, the �-

nal display list is jointly determined by the model predictions and

bid prices [18]. From the tables, we could �nd the performances

of RankFlow still exceed the baselines signi�cantly, which means

more relevant documents are displayed to users (only the clicked

8https://faiss.ai

documents will be charged because we use the Cost-Per-Click (CPC)

mode. This group of experiments on the advertising task demon-

strates the robustness of RankFlow. Although the �nal ranking is

a�ected by bid prices and the training framework has no sense

of it, the ranking performance, in terms of both clicking metrics

(NDCG, MAP, CTR) and pro�t metrics (eCPM), still outperforms

the baselines. Signi�cant tests are conducted for the all the results

in Section 4.2.

4.3 Ablation Study (RQ2)

In this section, we investigate the e�ectiveness of di�erent compo-

nents of RankFlow.

4.3.1 Removing the Flows. We test the ranking performance with-

out the tutor-learning (w/o Tutor-L) and without the self-learning

�ow (w/o Self-L). As the scales of di�erent metrics vary a lot, we

choose to plot the relative performance gain of the two ablation

models compared to the full framework, as shown in Figure 4.

The �gure shows that the ranking performance decreases by 11%

to 75% compared to the full framework if the self-learning �ow is

removed. If the tutor-learning �ow is removed, the performance

drops by 10% to 13% on three datasets.

HR@10 NDCG@10 MAP@10
metrics

216

214

212

210

28

26

24

22

0

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

ML-1M

w/o Self-L
w/o Tutor-L

HR@10 NDCG@10 MAP@10
metrics

280

260

240

220

0

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

TianGong-ST

w/o Self-L
w/o Tutor-L

HR@10 NDCG@10 MAP@10
metrics

225

220

215

210

25

0

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

Tmall

w/o Self-L
w/o Tutor-L

Figure 4: Ablation study of tutor-learning and self-learning.

The ranker groups are the same with the "Ranking System

1" of each datasets as in Table 1,2 and 3.

These results have shown two facts: (1) Both components are

important to RankFlow. The ranking quality will drop if any of

the �ows are removed. (2) Among the two �ows, self-learning �ow

is more important to the performance because the metrics drop

more if it is removed compared to the tutor-leaning �ow. This

fact demonstrates that learning to discriminate the data from the

preceding stage is more important than satisfying the succeeding

stage by learning the teacher’s relevance estimations.

4.3.2 Replacing a Ranker to a More Complex One. We further

investigate what will happen if we deploy the rankers of a suc-

ceeding stage directly into the preceding stage. For instance, we

change a cascade system that contains DSSM+FM+DeepFM to

DSSM+DeepFM+DeepFM, which means the pre-ranking model

is updated to a more advanced one. We compare the new system

with the original one (DSSM+FM+DeepFM) that is trained with or

without RankFlow. The results are shown in Figure 5, which are

of the pre-ranking stage. We show the relative performance gain

w.r.t. the original ranker trained independently. "Rank as Pre-Rank"

means that the pre-ranking model is replaced by the ranking model

(as our examples above). The �gure shows that deploying a more

complex ranking stage model into the pre-ranking stage could ben-

e�t its performance. However, the performance gain is even larger

Table 1: Performance on ML-1M.

Group Ranking System 1: DSSM+FM+DeepFM Ranking System 2: DSSM+WDL+PNN

Stage Model Impression Data Cascade List Generation Model Impression Data Cascade List Generation

AUC LogLoss Method P@100 R@100 F1@100 AUC LogLoss Method P@100 R@100 F1@100

Independent 0.0224 0.3224 0.0418 Independent 0.0224 0.3224 0.0418

ICC 0.0224 0.3226 0.0419 ICC 0.0224 0.3227 0.0419
Recall DSSM

0.7564 0.3908

RankFlow 0.0226 0.3256 0.0423

DSSM
0.7564 0.3908

RankFlow 0.0226 0.3258 0.0423

AUC LogLoss Method HR@50 NDCG@50 MAP@50 AUC LogLoss Method HR@50 NDCG@50 MAP@50

Independent 0.0271 0.2191 0.0897 Independent 0.0253 0.2097 0.0861

ICC 0.0274 0.2203 0.0897 ICC 0.0252 0.2093 0.0858
Pre-Ranking FM

0.7753 0.3972

RankFlow 0.0313 0.2634 0.1236

WDL
0.7646 0.3962

RankFlow 0.0308 0.2537 0.1142

AUC LogLoss Method HR@10 NDCG@10 MAP@10 AUC LogLoss Method HR@10 NDCG@10 MAP@10

Independent 0.0421 0.1606 0.1066 Independent 0.0472 0.1798 0.1208

ICC 0.0423 0.1611 0.1066 ICC 0.0472 0.1799 0.1209
Ranking DeepFM

0.7815 0.3883

RankFlow 0.0473 0.1845 0.1269

PNN
0.7719 0.4612

RankFlow 0.0489 0.1848 0.1236

Table 2: Performance on TianGong-ST.

Group Ranking System 1: DSSM+FM+DeepFM Ranking System 2: DSSM+DeepFM+PNN

Stage Model Impression Data Cascade List Generation Model Impression Data Cascade List Generation

AUC LogLoss Method P@100 R@100 F1@100 AUC LogLoss Method P@100 R@100 F1@100

Independent 0.0012 0.0359 0.0022 Independent 0.0012 0.0359 0.0022

ICC 0.0012 0.0363 0.0023 ICC 0.0011 0.0343 0.0021
Recall DSSM

0.6785 1.1909

RankFlow 0.0015 0.0460 0.0029

DSSM
0.6785 1.1909

RankFlow 0.0015 0.0466 0.0029

AUC LogLoss Method HR@50 NDCG@50 MAP@50 AUC LogLoss Method HR@50 NDCG@50 MAP@50

Independent 0.0010 0.0113 0.0030 Independent 0.0010 0.0122 0.0037

ICC 0.0010 0.0119 0.0032 ICC 0.0010 0.0118 0.0036
Pre-Ranking FM

0.7183 0.6017

RankFlow 0.0014 0.0179 0.0065

DeepFM
0.7286 0.5807

RankFlow 0.0022 0.0423 0.0289

AUC LogLoss Method HR@10 NDCG@10 MAP@10 AUC LogLoss Method HR@10 NDCG@10 MAP@10

Independent 0.0007 0.0033 0.0021 Independent 0.0011 0.0036 0.0015

ICC 0.0008 0.0034 0.0021 ICC 0.0010 0.0033 0.0014
Ranking DeepFM

0.7286 0.5807

RankFlow 0.0025 0.0117 0.0080

PNN
0.7347 0.5337

RankFlow 0.0016 0.0063 0.0037

Table 3: Performance on Tmall.

Group Ranking System 1: DSSM+DeepFM+DIN Ranking System 2: YoutubeDNN+COLD+DIEN

Stage Model Impression Data Cascade List Generation Model Impression Data Cascade List Generation

AUC LogLoss Method P@200 R@200 F1@200 AUC LogLoss Method P@200 R@200 F1@200

Independent 0.0036 0.0371 0.0066 Independent 0.0046 0.0465 0.0084

ICC 0.0031 0.0306 0.0056 ICC 0.0046 0.0457 0.0083
Recall DSSM

0.8776 0.5142

RankFlow 0.0039 0.0392 0.0071

YoutubeDNN
0.884 0.4991

RankFlow 0.0048 0.0469 0.0087

AUC LogLoss Method HR@50 NDCG@50 MAP@50 AUC LogLoss Method HR@50 NDCG@50 MAP@50

Independent 0.0072 0.0766 0.0334 Independent 0.0085 0.0914 0.0429

ICC 0.0055 0.0599 0.0259 ICC 0.0073 0.0690 0.0269
Pre-Ranking DeepFM

0.8961 0.5028

RankFlow 0.0081 0.0892 0.0428

COLD
0.8885 0.4993

RankFlow 0.0093 0.0948 0.0457

AUC LogLoss Method HR@10 NDCG@10 MAP@10 AUC LogLoss Method HR@10 NDCG@10 MAP@10

Independent 0.0147 0.0607 0.0432 Independent 0.0162 0.0658 0.0466

ICC 0.0102 0.0422 0.0292 ICC 0.0138 0.0549 0.0377
Ranking DIN

0.8987 0.467

RankFlow 0.0156 0.0718 0.0489

DIEN
0.8973 0.4547

RankFlow 0.0189 0.0757 0.0501

Table 4: Ads Performance on ML-1M (w/ Bid).

Group Ranking System 1: DSSM+FM+DeepFM Ranking System 2: DSSM+WDL+PNN

Method NDCG@10 MAP@10 CTR eCPM NDCG@10 MAP@10 CTR eCPM

Independent 0.1148 0.0747 0.0298 622.0 0.1027 0.0670 0.0259 524.3

ICC 0.1169 0.0769 0.0299 622.7 0.1035 0.0678 0.0258 536.2

RankFlow 0.1612 0.1082 0.0466 883.6 0.1562 0.1054 0.0398 824.6

Table 5: Ads Performance on TianGong-ST (w/ Bid).

Group Ranking System 1: DSSM+FM+DeepFM Ranking System 2: DSSM+DeepFM+PNN

Method NDCG@10 MAP@10 CTR eCPM NDCG@10 MAP@10 CTR eCPM

Independent 0.0039 0.0024 0.0009 17.34 0.0051 0.0030 0.0012 23.33

ICC 0.0042 0.0026 0.0010 17.67 0.0044 0.0027 0.0010 24.60

RankFlow 0.0076 0.0046 0.0018 32.79 0.0061 0.0035 0.0015 28.55

if the original pre-ranking model could be trained under the Rank-

Flow framework. Not only would the performance be better, but

the inference complexity is unharmed. Thus training in RankFlow

is more feasible for online deployment than directly changing the

Table 6: Ads Performance on Tmall (w/ Bid).

Group Ranking System 1: DSSM+DeepFM+DIN Ranking System 2: YoutubeDNN+COLD+DIEN

Method NDCG@10 MAP@10 CTR eCPM NDCG@10 MAP@10 CTR eCPM

Independent 0.0317 0.0207 0.0075 156.98 0.0366 0.0238 0.0089 184.13

ICC 0.0237 0.0152 0.0057 117.29 0.0308 0.0200 0.0074 153.15

RankFlow 0.0391 0.0266 0.0094 198.72 0.0402 0.0294 0.0102 201.34

model to a complex one if the online computation power restriction

is tight.

4.4 Hyperparameters Study (RQ3)

We study the in�uence of some crucial hyperparameters in this

section.

4.4.1 Number of stages. In the previous experiments, the total

number of stages are all three: recall, pre-ranking, and ranking. To

verify the robustness of RankFlow w.r.t. the number of stages, we

HR@50 NDCG@50 MAP@50
metrics

0

5

10

15

20

25

30

35

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

ML-1M

Rank as Pre-Rank
RankFlow

HR@50 NDCG@50 MAP@50
metrics

0

20

40

60

80

100

120

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

TianGong-ST

Rank as Pre-Rank
RankFlow

HR@50 NDCG@50 MAP@50
metrics

0

5

10

15

20

25

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

Tmall

Rank as Pre-Rank
RankFlow

Figure 5: Relative performance gain against the original pre-

ranking model. "Rank as Pre-Rank": use the model of rank-

ing stage in pre-ranking stage. "RankFlow": original pre-

ranking model that is trained in RankFlow. The result is of

the pre-ranking stage.

conduct extensive experiments of two and four stages on ML-1M.

The results are shown in Table 7 and Table 8.

We use DSSM and DeepFM in recall and ranking stages for the

two-stage experiment, respectively. For the four-stage experiment,

we have the recall, pre-ranking, ranking, and re-ranking stages. As

for the re-ranking stage, for simplicity, we do not use the ordinary

re-ranking models, which will take the initial ranking list as input.

DeepFM still uses the point-wise scoring function because this

section is only used to verify the robustness of RankFlow. The

results demonstrate that RankFlow will steadily outperform the

baselines regardless of the di�erent cascade ranking structures.

Table 7: Two-Stage Performance on ML-1M.

Stage Model Cascade List Generation

Method P@100 R@100 F1@100

Independent 0.0224 0.3224 0.0418

ICC 0.0224 0.3227 0.0419
Recall DSSM

RankFlow 0.0226 0.3257 0.0423

Method HR@10 NDCG@10 MAP@10

Independent 0.0421 0.1606 0.1066

ICC 0.0424 0.1611 0.1065
Ranking DeepFM

RankFlow 0.0446 0.1711 0.1154

Table 8: Four-Stage Performance on ML-1M.

Stage Model Cascade List Generation

Method P@100 R@100 F1@100

Independent 0.0224 0.3224 0.0418

ICC 0.0224 0.3226 0.0419
Recall DSSM

RankFlow 0.0226 0.3257 0.0423

Method HR@50 NDCG@50 MAP@50

Independent 0.0253 0.2097 0.0860

ICC 0.0252 0.2093 0.0859
Pre-Ranking WDL

RankFlow 0.0308 0.2544 0.1146

Method HR@20 NDCG@20 MAP@20

Independent 0.0404 0.2140 0.1203

ICC 0.0404 0.2141 0.1203
Ranking PNN

RankFlow 0.0405 0.2177 0.1229

Method HR@10 NDCG@10 MAP@10

Independent 0.0447 0.1682 0.1113

ICC 0.0447 0.1684 0.1115
Re-Ranking DeepFM

RankFlow 0.0449 0.1689 0.1124

4.4.2 Loss weight U . The in�uence of the loss weight U in Eq. (8)

is also investigated in this section. For the three datasets, we test

the �nal ranking quality of RankFlow using di�erent Us from the

set {0, 0.25, 0.5, 0.75, 1}.

As shown in Figure 6, we can �nd that there exists �uctuation

in the values of HR, NDCG, and MAP of di�erent U choices. The

metrics �rst rise and then fall, showing there is an optimal selection

of U . Recall that U is the weight of the ranking loss function, the

results indicate that there is a balance of the ranking loss and the

point-wise MSE loss.

0.0 0.2 0.4 0.6 0.8 1.0
³

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
et

ric
 v

al
ue

ML-1M

HR@10
NDCG@10
MAP@10

0.0 0.2 0.4 0.6 0.8 1.0
³

0.002

0.004

0.006

0.008

0.010

0.012

M
et

ric
 v

al
ue

TianGong-ST

HR@10
NDCG@10
MAP@10

0.0 0.2 0.4 0.6 0.8 1.0
³

0.02

0.03

0.04

0.05

0.06

0.07

M
et

ric
 v

al
ue

Tmall

HR@10
NDCG@10
MAP@10

Figure 6: Performance on di�erent U values of Eq. (8).

4.5 Training E�ciency (RQ4)

In this section, we present the wall time comparison between the

independent training and RankFlow training. The experiments are

conducted based on the same hardware settings with an NVIDIA

GeForce GTX 1080Ti GPU processor and 128GB memory. The re-

sults are shown in Table 9, the training time of the three datasets

are corresponding to the "Ranking System 1" in Table 1,2 and 3,

respectively. The "Independent" column is the total independent

training time of all three stages for each dataset. As the independent

training is the �rst phase of RankFlow, we compare it with the joint

training phase, which is the actual addition of time consumption

introduced by RankFlow. From Table 9 we observe that the time

consumption caused by the joint training phase of RankFlow is

acceptable because it is in the same order of magnitudes as the inde-

pendent training. Although the time consumption is increased, the

training e�ciency could be improved by some techniques such as

distributed training. The inference time, which is the key factor of

a real-world application, is not changed as the model architectures

remain the same. And the performance gain is signi�cant as shown

in Section 4.2.

Table 9: Wall Time of RankFlow Training (in minutes). "∼"

means approximation. Rel.Inc: relative increment of time.

Dataset Independent RankFlow (Phase II) Rel.Inc

ML-1M ∼8 ∼12 150%

TianGong-ST ∼29 ∼31 107%

Tmall ∼550 ∼244 44%

5 RELATED WORKS

Cascade ranking. The idea of multi-stage cascade ranking is pro-

posed in [30] which is an excellent solution to balance the e�ciency

and e�ectiveness of a ranking system. Early-day research on cas-

cade ranking systems is mainly about assigning di�erent rankers

to each stage to achieve the desired trade-o� collectively. Modeling

the cost of each ranker in a cascade system is a major research direc-

tion, Wang et al. [30] propose to generalize the AdaRank algorithm

by incorporating a cost model to construct a cascade where each

weak learner becomes a single stage within the system. Chen et al.

[4] use normalization loss functions to represent the cost of each

stage and optimizes the ranker performance under the restrictions

of computational cost. Other cost-aware methods includes [33, 34].

In recent years, cascade ranking models based on deep learning

have been proposed. Gallagher et al. [11] try to derive the gradients

of the cascade rankers and use an end-to-end method to optimize

them directly, Fan et al. [9] propose to unify the multiple stages to

one single stage with hard negative sampling. Fei et al. [10] pro-

pose to share features across di�erent stages. [14] is proposed to

jointly utilize multiple models for the recall stage and learning to

aggregate the recalled items from di�erent recall channels. These

cascade ranking methods mainly use the impression data thus will

still su�er from the sample selection bias. Furthermore, in the re-

search of cascade rankers, no previous work speci�cally discusses

or analyzes the limitations of the current independent training

frameworks. Our work propose to train rankers on their speci�c

data distributions which could alleviates the SSB issue and further

exploits the interactions between each stage.

Other techniques for cascade ranking. Some practical tech-

niques are used to train some stages in cascade rankers. Random

negative sampling and hard negative sampling are used to optimize

the performance of the recall stage [15]. Using random negative

samples could alleviate the SSB issue because the model is trained

in a broader range of data. Knowledge distillation is well-studied

for ranking model [28, 32, 41], and there are also methods using it

to optimize the candidate generation (a.k.a., recall) stage [37].

6 CONCLUSIONS

This paper proposes RankFlow as a general joint training frame-

work of multi-stage cascade ranking systems for information re-

trieval. In RankFlow, each stage is trained on the speci�c dataset

produced by its predecessors. While training, each stage has to

conduct two sub-tasks: self-learning based on the labels from logs

and tutor-learning by regarding the succeeding ranker as a teacher.

The proposed method signi�cantly outperforms baselines while

the time complexity of the inference is not compromised. Further-

more, we thoroughly analyze and discuss the limitations of current

training methods of cascade rankers from the data perspective. We

plan to give a more in-depth theoretical analysis on the properties

of cascade ranking systems in the future work, and try to deploy

the RankFlow framework online to serve the real-world tra�c.

ACKNOWLEDGEMENT

The SJTU team is supported by “New Generation of AI 2030” Major

Project (2018AAA0100900) and National Natural Science Founda-

tion of China (62177033). The work is also sponsored by Huawei

Innovation Research Program. The author Jiarui Qin is supported

by Wu Wen Jun Honorary Doctoral Scholarship, AI Institute, SJTU.

We thank MindSpore [1] for the partial support of this work, which

is a new deep learning computing framework.

REFERENCES
[1] 2020. MindSpore. https://www.mindspore.cn/
[2] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.
[3] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2020. Bias and debias in recommender system: A survey and future directions.
arXiv preprint arXiv:2010.03240 (2020).

[4] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J Shane Culpepper. 2017.
E�cient cost-aware cascade ranking in multi-stage retrieval. In SIGIR. 445–454.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In DLRS. 7–10.

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[7] Ying Cui, Ruofei Zhang, Wei Li, and Jianchang Mao. 2011. Bid landscape fore-
casting in online ad exchange marketplace. In KDD.

[8] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet
advertising and the generalized second-price auction: Selling billions of dollars
worth of keywords. American economic review 97, 1 (2007), 242–259.

[9] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li.
2019. MOBIUS: towards the next generation of query-ad matching in baidu’s
sponsored search. In SIGKDD. 2509–2517.

[10] Hongliang Fei, Jingyuan Zhang, Xingxuan Zhou, Junhao Zhao, Xinyang Qi,
and Ping Li. 2021. GemNN: Gating-enhanced Multi-task Neural Networks with
Feature Interaction Learning for CTR Prediction. In SIGIR. 2166–2171.

[11] Luke Gallagher, Ruey-Cheng Chen, Roi Blanco, and J Shane Culpepper. 2019.
Joint optimization of cascade ranking models. In WSDM. 15–23.

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
Deepfm: a factorization-machine based neural network for ctr prediction. In
IJCAI.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In ICLR.

[14] Jiri Hron, Karl Krauth, Michael Jordan, and Niki Kilbertus. 2021. On component
interactions in two-stage recommender systems. Advances in Neural Information
Processing Systems 34 (2021).

[15] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[16] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333–2338.

[17] Tie-Yan Liu. 2011. Learning to rank for information retrieval. (2011).
[18] Xiangyu Liu, Chuan Yu, Zhilin Zhang, Zhenzhe Zheng, Yu Rong, Hongtao Lv, Da

Huo, Yiqing Wang, Dagui Chen, Jian Xu, et al. 2021. Neural Auction: End-to-End
Learning of Auction Mechanisms for E-Commerce Advertising. arXiv preprint
arXiv:2106.03593 (2021).

[19] Xu Ma, Pengjie Wang, Hui Zhao, Shaoguo Liu, Chuhan Zhao, Wei Lin, Kuang-
Chih Lee, Jian Xu, and Bo Zheng. 2021. Towards a Better Tradeo� between
E�ectiveness and E�ciency in Pre-Ranking: A Learnable Feature Selection based
Approach. arXiv preprint arXiv:2105.07706 (2021).

[20] Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
2020. Setrank: Learning a permutation-invariant ranking model for informa-
tion retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 499–508.

[21] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking for
recommendation. In Proceedings of the 13th ACM Conference on Recommender
Systems. 3–11.

[22] Qi Pi, Weijie Bian, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Practice
on long sequential user behavior modeling for click-through rate prediction. In
KDD. 2671–2679.

[23] Pi Qi, Xiaoqiang Zhu, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying
Fan, and Kun Gai. 2020. Search-based User Interest Modeling with Lifelong
Sequential Behavior Data for Click-Through Rate Prediction. In CIKM.

[24] Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Weiwen Liu, Ruiming Tang,
Xiuqiang He, and Yong Yu. 2021. Retrieval & Interaction Machine for Tabular
Data Prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 1379–1389.

[25] Jiarui Qin, W. Zhang, Xin Wu, Jiarui Jin, Yuchen Fang, and Y. Yu. 2020. User
Behavior Retrieval for Click-Through Rate Prediction. In SIGIR.

[26] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In ICDM.

[27] Ste�en Rendle. 2010. Factorization machines. In ICDM.
[28] Jiaxi Tang and Ke Wang. 2018. Ranking distillation: Learning compact ranking

models with high performance for recommender system. In Proceedings of the 24th

https://www.mindspore.cn/

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2289–2298.

[29] Jun Wang and Shuai Yuan. 2013. Real-time bidding: A new frontier of computa-
tional advertising research. In CIKM Tutorial.

[30] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model
for e�cient ranked retrieval. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. 105–114.

[31] Zhe Wang, Liqin Zhao, Biye Jiang, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai.
2020. Cold: Towards the next generation of pre-ranking system. arXiv preprint
arXiv:2007.16122 (2020).

[32] Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong Yang, Changhua Pei, Fei
Sun, Jian Wu, Hanxiao Sun, and Wenwu Ou. 2020. Privileged features distillation
at Taobao recommendations. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2590–2598.

[33] Zhixiang Xu, Matt Kusner, Kilian Weinberger, and Minmin Chen. 2013. Cost-
sensitive tree of classi�ers. In International conference on machine learning. PMLR,
133–141.

[34] Zhixiang Xu, Matt J Kusner, Kilian Q Weinberger, Minmin Chen, and Olivier
Chapelle. 2014. Classi�er cascades and trees for minimizing feature evaluation
cost. The Journal of Machine Learning Research 15, 1 (2014), 2113–2144.

[35] Bowen Yuan, Jui-Yang Hsia, Meng-Yuan Yang, Hong Zhu, Chih-Yao Chang, Zhen-
hua Dong, and Chih-Jen Lin. 2019. Improving ad click prediction by considering
non-displayed events. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 329–338.

[36] Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang He. 2021. Deep
Learning for Click-Through Rate Estimation. In IJCAI.

[37] Zhong Zhao, Yanmei Fu, Hanming Liang, Li Ma, Guangyao Zhao, and Hongwei
Jiang. 2021. Distillation based Multi-task Learning: A Candidate Generation
Model for Improving Reading Duration. arXiv preprint arXiv:2102.07142 (2021).

[38] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In AAAI, Vol. 33. 5941–5948.

[39] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In KDD.

[40] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning Tree-based Deep Model for Recommender Systems. In KDD.

[41] Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang Chen, and
Zibin Zheng. 2020. Ensembled CTR Prediction via Knowledge Distillation. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2941–2958.

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Multi-Stage Cascade Ranking System

	3 Methodology
	3.1 The Paradigm of Training Cascade Rankers
	3.2 Approximating Stage-Specific Data Distributions
	3.3 RankFlow: Overall Framework
	3.4 RankFlow: Training Details
	3.5 Discussions on Existing Training Methods

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance and Analysis (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Hyperparameters Study (RQ3)
	4.5 Training Efficiency (RQ4)

	5 Related Works
	6 Conclusions
	References

