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ABSTRACT
Multi-layer perceptron (MLP) serves as a core component in many
deep models for click-through rate (CTR) prediction. However,
vanilla MLP networks are inefficient in learning multiplicative fea-
ture interactions, making feature interaction learning an essential
topic for CTR prediction. Existing feature interaction networks are
effective in complementing the learning of MLPs, but they often fall
short of the performance of MLPs when applied alone. Thus, their
integration with MLP networks is necessary to achieve improved
performance. This situation motivates us to explore a better alter-
native to the MLP backbone that could potentially replace MLPs.
Inspired by factorization machines, in this paper, we propose FI-
NAL, a factorized interaction layer that extends the widely-used
linear layer and is capable of learning 2nd-order feature interactions.
Similar to MLPs, multiple FINAL layers can be stacked into a FI-
NAL block, yielding feature interactions with an exponential degree
growth. We unify feature interactions and MLPs into a single FI-
NAL block and empirically show its effectiveness as a replacement
for the MLP block. Furthermore, we explore the ensemble of two
FINAL blocks as an enhanced two-stream CTR model, setting a new
state-of-the-art on open benchmark datasets. FINAL can be easily
adopted as a building block and has achieved business metric gains
in multiple applications at Huawei. Our source code will be made
available at MindSpore/models and FuxiCTR/model_zoo.
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1 INTRODUCTION
Click-through rate (CTR) prediction is an important task in on-
line advertising and recommendation, which aims to estimate the
probability that a user will click on a certain item. Likewise, CTR
prediction models can be applied to predicting users’ like, favorite,
purchase, or download actions. These tasks are usually formulated as
a binary classification problem, which incorporates rich but hetero-
geneous features such as user profiles, item attributes, and session
contexts [3]. As such, feature interaction learning becomes an im-
portant research topic for CTR prediction. Existing methods usually
follow two directions to model feature interactions [10, 19]. The first
one is using multi-layer perceptrons (MLP) to implicitly learn the
hidden relations among features [3, 6, 20]. Although it is proved that
MLPs can theoretically approximate any bounded continuous func-
tions, in practice they are weak in modeling the combinatorial feature
interactions given a limited network size [1, 21]. The second one is
using multiplicative operations between features to explicitly model
their interactions. For example, DCN [24], FM, xDeepFM [13], the
feature combination degree in these methods is usually linearly pro-
portional to the number of stacked layers, thereby a considerably
deep architecture is required to comprehensively cover useful feature
combinations [12, 15, 30]. However, it is difficult to optimize very
deep models due to many extensively documented issues, such as
gradient explosion/vanishment [11] and rank collapse [7, 8]. Thus,
it is quite challenging for existing methods to effectively model
high-order feature interactions.

In this paper, we propose a Factorized Interaction Layer (FI-
NAL) to explicitly learn multiplicative feature interactions, which
can achieve very high combination orders without cumbersome layer
stacking (Fig. 1). Motivated by the fast exponentiation algorithm,
FINAL uses a hierarchical way to raise the feature interaction degree
at an exponential speed. In each hierarchy, the input representations
are multiplied with the representations output by a series of suc-
cessive non-linear layers so that the feature interaction degree is
progressively increased. By processing the feature representations
with multiple hierarchies, the order of feature interactions is further
exponentially increased. Based on the proposed FINAL module,
we design a unified framework that incorporates multiple FINAL
blocks to learn feature interactions in different views [2, 14], and we
conduct self-distillation [9, 31] by using their prediction as common
teachers to exchange the complementary knowledge they encode.

https://gitee.com/mindspore/models/tree/master/research/recommend/final
https://github.com/xue-pai/FuxiCTR
https://doi.org/10.1145/3539618.3591988
https://doi.org/10.1145/3539618.3591988
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Figure 1: Comparison of the highest polynomial degree (in
terms of input 𝑥) with the growth of staking layer depth.

We conduct extensive experiments on four public datasets and the
results validate the superiority of FINAL. It also achieves notable
success in online experiments in multiple commercial scenarios held
by our enterprise. FINAL offers a new and simple option for com-
posing CTR prediction models, which has the potential to empower
various recommendation scenarios.

2 FINAL MODEL
2.1 Overall Framework
Our FINAL approach offers a universal framework for modeling fea-
ture interactions in CTR prediction. The overall framework is shown
in Fig. 2. It is mainly composed of multiple FINAL blocks in paral-
lel1, which aims to model different feature interaction patterns. Each
FINAL block contains several factorized interaction layers, where
the maximum degree of feature interactions exponentially grows
with the model depth. The prediction scores from different blocks
are combined into a unified one as the final prediction, which is also
served as a virtual teacher to self-teach these blocks to exchange
and fuse their hidden knowledge. In this way, sophisticated feature
interactions can be effectively and comprehensively captured.

2.2 FINAL Block
The basic unit of our approach is FINAL block. It receives a flattened
feature vector x as the input, which may include various fields such
as one-hot features, embedded categorical features, and numerical
features. Due to the variety, complexity, and heterogeneity of crafted
features in industrial scenarios, the interactions among features can
often be complicated and implicit. Thus, modeling high-order inter-
actions is critical for effective feature exploitation. In practice, how
to achieve sufficiently high interaction orders with minimal model
depths matters to both performance and efficiency. Motivated by
the idea of fast exponentiation algorithms, we devise a hierarchical
feature interaction mechanism to achieve exponential degree growth.
In each hierarchy, a factorized interaction layer is used to raise the
feature interaction degrees with several multiplicative operations.
Denote the input of the 𝑙-th factorized interaction layer by x𝑙−1. It is

1We use two FINAL blocks in our approach to trade-off performance and efficiency.

transformed using the following formulas:

h𝑙,1 = W𝑙,1x𝑙−1 + b𝑙,1,

h𝑙,2 = h𝑙,1 ⊙ 𝜎 (W𝑙,2x𝑙−1 + b𝑙,2),
. . .

h𝑙,𝑁 = h𝑙,𝑁−1 ⊙ 𝜎 (W𝑙,𝑁 x𝑙−1 + b𝑙,𝑁 ),

x𝑙 =
𝑁∑︁
𝑖=1

(h𝑙,𝑖 ),

(1)

where x𝑙 is the layer output, W𝑙,𝑖 and b𝑙,𝑖 are the weight and bias
parameters associated the 𝑖-th operation, 𝑁 is the number of mul-
tiplicative interaction steps, and 𝜎 is the activation function. Intu-
itively, the feature interaction degree is proportional to the number
of multiplicative operations. By aggregating the intermediate results
in each step, the output of each layer can include multi-granularity
feature interactions. In a FINAL block, we stack multiple factorized
interaction layers so that the initial feature interaction degree of
each layer has been exponentially amplified by its precursors. In this
way, the highest polynomial degree (in terms of elements in x) for a
𝐾-layer final block with 𝑁 multiplicative operations is 𝑁𝐾 .

2.3 Cross-block Knowledge Transfer
In our approach, we prefer to use multiple FINAL blocks to learn
feature interactions from different views. We first use different linear
projection layers to convert the hidden representations into output
logits. These logits are aggregated by average into a unified one,
which is further normalized by the sigmoid function for model
training (denoted as 𝑦). We use the binary cross-entropy loss to
calculate the CTR prediction loss as follows:

L𝑐 = − 1
𝑆

𝑆∑︁
𝑖=1

[𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )] , (2)

where 𝑦𝑖 and 𝑦𝑖 are the label and predicted score of the 𝑖-th sample,
and 𝑆 is the training data size. To facilitate knowledge sharing among
different FINAL blocks, we perform self-knowledge distillation to
empower them with inter-block knowledge. Concretely, we use the
aggregated score 𝑦 as the teacher, and encourage each block to learn
from this synthesized prediction. Taking a dual-block network as an
example (Fig. 2), we denote the normalized prediction scores of the
two blocks by 𝑦𝑎 and 𝑦𝑏 . Their corresponding knowledge distillation
losses are as follows:

L𝑑 = − 1
𝑆

𝑆∑︁
𝑖=1

[
𝑦𝑖 log

(
𝑦𝑎,𝑖

)
+ (1 − 𝑦𝑖 ) log

(
1 − 𝑦𝑎,𝑖

) ]
,

L′
𝑑
= − 1

𝑆

𝑆∑︁
𝑖=1

[
𝑦𝑖 log

(
𝑦𝑏,𝑖

)
+ (1 − 𝑦𝑖 ) log

(
1 − 𝑦𝑏,𝑖

) ]
,

(3)

where 𝑦𝑎,𝑖 and 𝑦𝑏,𝑖 are the block-specific predictions on the 𝑖-th
sample. We optimize the model with the task loss and knowledge
transfer regularizations, and the overall loss function for model
training is L = L𝑐 + L𝑑 + L′

𝑑
. In this way, each block is aware of

both the task supervision signals and cross-block knowledge, hence
complicated feature interactions can be better covered.
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Figure 2: FINAL Blocks for CTR prediction.

2.4 Discussion
Finally, we present some brief discussions on model complexity and
compatibility. Assuming the number of parallel blocks and hidden
dimensions are constants, then the theoretical complexity of our
framework is 𝑂 (𝑁𝐾). To achieve the same feature interaction de-
gree, the required computational complexity of vanilla layer-stacking
methods is usually𝑂 (𝑁𝐾 ). Thus, our approach has comparable effi-
ciency with existing methods when 𝑁 and 𝐾 are small, and may have
a substantial efficiency advantage when modeling extremely high-
order feature interactions. Moreover, FINAL block is a plug-and-play
module that can be directly inserted into existing architectures or re-
place their MLP-based feature interaction modules. Thus, FINAL is
compatible with various CTR prediction methods and can empower
them with light effort.

3 EXPERIMENTS
3.1 Experimental Settings
3.1.1 Datasets and Evaluation Metrics. We use four open
benchmark datasets for experimental evaluation, including Criteo,
Avazu, MovieLens, and Frappe. For fair comparison, we reuse the
preprocessed datasets released by [4] and follow the same split-
ting and preprocessing procedures. To evaluate the performance, we
leverage the widely used Area Under the ROC Curve (AUC) metric
for offline evaluation.

3.1.2 Compared Baselines. To comprehensively verify the ef-
fectiveness of our model, we compare it with four classes of existing
models, categorized by the degree of feature interactions: (1) First-
Order (only uses individual features): Logistic Regression (LR);
(2) Second-Order (modeling pair-wise feature interactions): Fac-
torized Machine (FM) and AFM [28]; (3) Third-order (modeling
triple-wise feature interactions): CrossNet (two-layer) [24], Cross-
NetV2 (two-layer) [25], and CIN (two-layer) [13]; (4) High-order

(modeling interactions among more features): DCN, DCNV2 [25],
DeepFM [10], AutoInt [22], xDeepFM [13], and SAM [5].

3.1.3 Implementation Details. We implement all the studied
models based on FuxiCTR, an open-source CTR prediction library2.
We follow the same experimental settings in [4] for fair comparisons.
All baselines are trained with the Adam optimizer, where the learning
rate is 0.001, the batch size is 4096, the embedding dimension is
10, and the numbers of MLP hidden units are [400, 400, 400].
We adopt two FINAL blocks with two factorized interaction layers
(𝐾 = 2, 𝑁 = 2). The source code of our model will be released
publicly after acceptance.

3.2 Performance Comparison
Table 1 presents the evaluation results on four datasets, from which
we have the following findings. First, LR performs the worst perfor-
mance on all datasets, which shows the necessity of feature interac-
tion modeling in CTR prediction. Second, methods that can model
higher-order feature interactions tend to achieve better performance,
which is intuitive because more complicated feature relatedness can
be considered. Since FINAL is especially strong in modeling high-
order feature interactions, it achieves the best performance on all
datasets and its advantage is significant (𝑝 < 0.05 in t-test). This val-
idates the effectiveness of FINAL in capturing sophisticated feature
relations. Third, a dual-block FINAL model slightly outperforms a
single-block one. This is probably because using multiple blocks
helps learn diverse feature interaction information with different
structures and initialized parameters. Fourth, self-knowledge distil-
lation can further improve the performance of multi-block FINAL
model. This further shows the complementarity of knowledge en-
coded in different blocks and using knowledge distillation to fuse
them can better guide FINAL block learning.

2https://fuxictr.github.io



Table 1: Performance of different models.

Class Model Criteo Avazu MovieLens Frappe
First-Order LR 78.86 75.16 93.42 93.56

Second-
Order

FM 80.22 76.13 94.34 96.71
AFM 80.44 75.74 94.72 96.97

Third-
Order

CrossNet 79.47 75.45 93.85 94.19
CrossNetV2 81.10 76.05 95.83 97.16
CIN 80.96 76.26 96.02 97.76

High-
Order

DCN 81.39 76.47 96.87 98.39
DCNV2 81.42 76.54 96.91 98.45
DeepFM 81.38 76.48 96.85 98.42
AutoInt 81.40 76.50 96.93 98.49
xDeepFM 81.39 76.49 96.97 98.45
SAM 81.31 76.32 96.31 98.01

Ours
FINALsingle 81.44 76.61 97.06 98.52
FINALdual 81.45 76.64 97.11 98.83
FINAL(2B)+KD 81.56 76.67 97.20 98.95

3.3 Compatibility Analysis
Our FINAL block is a plug-and-play module that can boost the
performance of various deep CTR models. To demonstrate the com-
patibility of FINAL block, we introduce it as a drop-in replacement
of the MLP block in four popular deep CTR models (i.e., MLP,
DeepFM, xDeepFM, and DCN), and the results are shown in Ta-
ble 2. We observe that FINAL block improves popular deep CTR
models consistently. This verifies that FINAL indeed captures useful
clues that are neglected by these models. Since FINAL is indepen-
dent of backbone architecture, it is a flexible component used to
empower various CTR prediction models in real-world systems.

Table 2: Compatibility study of FINAL block.

Model Criteo Avazu MovieLens Frappe
MLP 81.36 76.30 96.78 98.33
MLP+FINAL 81.47 76.60 97.09 98.50
DeepFM 81.38 76.48 96.85 98.42
DeepFM+FINAL 81.43 76.57 97.12 98.53
xDeepFM 81.39 76.49 96.97 98.45
xDeepFM+FINAL 81.43 76.56 97.11 98.51
DCN 81.39 76.47 96.87 98.39
DCN+FINAL 81.48 76.58 96.94 98.48

3.4 Online Evaluation
We have deployed FINAL in multiple commercial scenarios held by
our enterprise, driven by its significant performance improvement
and low latency overhead. In this section, we take two representative
scenes to show its superiority.

3.4.1 News feed recommendation. we perform online eval-
uation in our commercial news recommendation scenario where
millions of daily active users consume digital news articles. The
online A/B test lasts for a month from September 25th to October
25th, 2022. For online serving, we split 5% of the whole traffic
as the experimental group, which includes over 300k active users.
We compare our method against a well-crafted baseline model. The
online results in 30 consecutive days are summarized in Fig. 3. Our
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Figure 3: Improvements in one month online A/B testing.

model shows consistent online CTR improvements during the eval-
uation period, where the average CTR improvement is 3.17%. The
additional online inference latency is increased by 22.22%, which is
acceptable in our system. The experimental results demonstrate the
effectiveness of FINAL in feed recommendation.

3.4.2 Online advertisement display. Online advertising needs
to predict CTR and Post-click conversion rate (CVR) simultane-
ously [18, 27]. In our ad display scenarios, the conversion corre-
sponds to the events, such as installing apps, submitting registration
information, user retention, etc. Multi-task learning (MTL) is a
common solution for joint CTR and CVR estimation [16, 29]. In
general, MTL adopts a model with shared-bottom structures, where
the parameters of the bottom embedding layers are shared across
tasks [17, 23, 26]. Then, an MLP module is applied to learn feature
interactions from the shared bottom and make predictions for spe-
cific tasks. We use FINAL to replace MLP in this MTL framework
for comparison. For online serving, we randomly select 5% of users
as the experimental group, which receives ad recommendations by
the FINAL-enhanced model. The control group with other 5% of
users is served by the baseline MTL model. The online A/B test
results of 7 consecutive days show a 5.52% overall CVR gain. The
results validate the effectiveness of FINAL in online advertisement.

4 CONCLUSION
In this paper, we propose a universal architecture for high-order
feature interaction modeling, named FINAL. It can achieve ultra-
high feature interaction degrees at an exponential speed without
conventional layer stacking by using a hierarchical structure to sim-
ulate the fast computation process of exponentiation. In addition,
we propose to use multiple FINAL blocks to capture diverse feature
interaction patterns, and we use self-distillation to exchange and
fuse their inter-block knowledge to improve the overall prediction
performance. Extensive experiments on four benchmark datasets
and multiple online products show the effectiveness and generality
of our FINAL method.
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