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LIMTopic: A Framework of Incorporating Link
based Importance into Topic Modeling

Dongsheng Duan, Yuhua Li∗, Ruixuan Li, Member, IEEE, Rui Zhang, Xiwu Gu, and Kunmei Wen

Abstract—Topic modeling has become a widely used tool for document management. However, there are few topic models

distinguishing the importance of documents on different topics. In this paper, we propose a framework LIMTopic to incorporate

link based importance into topic modeling. To instantiate the framework, RankTopic and HITSTopic are proposed by incorporating

topical pagerank and topical HITS into topic modeling respectively. Specifically, ranking methods are first used to compute the topical

importance of documents. Then, a generalized relation is built between link importance and topic modeling. We empirically show that

LIMTopic converges after a small number of iterations in most experimental settings. The necessity of incorporating link importance

into topic modeling is justified based on KL-Divergences between topic distributions converted from topical link importance and those

computed by basic topic models. To investigate the document network summarization performance of topic models, we propose a

novel measure called log-likelihood of ranking-integrated document-word matrix. Extensive experimental results show that LIMTopic

performs better than baseline models in generalization performance, document clustering and classification, topic interpretability and

document network summarization performance. Moreover, RankTopic has comparable performance with relational topic model (RTM)

and HITSTopic performs much better than baseline models in document clustering and classification.

Index Terms—Link Importance; Topic Modeling; Model Framework, Document Network; Log-likelihood of Ranking-integrated

Document-word Matrix
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1 INTRODUCTION

Due to its sound theoretical foundation and promising
application performance, topic modeling has become a
well known text mining method and is widely used in
document navigation, clustering, classification [1] and
information retrieval. Given a set of documents, the goal
of topic modeling is to discover semantically coherent
clusters of correlated words known as topics, which can
be further used to represent and summarize the content
of documents. The most well known topic models in-
clude PLSA (Probabilistic Latent Semantic Analysis) [2]
and LDA (Latent Dirichlet Allocation) [3]. By using topic
modeling, documents can be modeled as multinomial
distributions over topics instead of those over words.
Topics can serve as better features of documents than
words because of its low dimension and good semantic
interpretability.

With the widespread use of online systems, such
as academic search engines [4], documents are often
hyper-linked together to form a document network. A
document network is formally defined as a collection
of documents that are connected by links. In general,

• D. Duan, Y. Li, R. Li, X. Gu and K. Wen are with School of Computer
Science and Technology, Huazhong University of Science and Technology,
China. D. Duan is also with National Computer network Emergency
Response technical Team/Coordination Center of China.
E-mail: duandongsheng@gmail.com, {idcliyuhua, rxli, guxiwu,
kmwen}@hust.edu.cn

• R. Zhang is with Department of Computing and Information Systems,
University of Melbourne, Australia
Email: rui.zhang@unimelb.edu.au

*Corresponding Author

documents can have various kinds of textual contents,
such as research papers, web pages and tweets. Docu-
ments can also be connected via a variety of links. For
example, papers can be connected together via citations,
web pages can be linked by hyper-links, and tweets can
link to one another according to the retweet relationship.

To take advantage of the link structure of a document
network, some link combined topic models, such as
iTopic [5], have been proposed. However, most existing
topic models do not explicitly distinguish the importance
of documents on different topics, while in practical situa-
tions documents have different degrees of importance on
different topics, thus treating them as equally important
may inherently hurt the performance of topic modeling.
To quantify the importance of documents on different
topics, topical ranking methods [6] can be used, which
is extensions of basic ranking algorithms, such as pager-
ank [7] and HITS (Hyperlink-Induced Topic Search) [8].
Although these ranking methods are initially proposed
for the purpose of ranking web pages, it can be also
used to rank other kind of documents, such as research
publications cited by each other, since concepts and
entities in those domains are similar [9]. In this work,
we propose to incorporate link based importance into
topic modeling.

Specifically, topical ranking methods are employed
to compute the importance scores of documents over
topics, which are then leveraged to guide the topic
modeling process. The proposed framework is called
Link Importance Based Topic Model, denoted as LIMTopic
for short. Compared to existing topic models, LIMTopic
distinguishes the importance of documents while per-
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(b) Link structure

Fig. 1. An artificial document network. There are two

topics in these documents, which are represented by gray

and dark bars respectively. Documents are labeled by

corresponding bars beside them.

forming topic modeling. The philosophy behind the
methodology is that the more important documents are
given more weights than the less important ones. To
instantiate the framework, RankTopic and HITSTopic are
proposed based on document’s link importance comput-
ed by topical pagerank and topical HITS (Hyperlink-
Induced Topic Search) respectively.

As a motivating example, let’s see a small artificial net-
work with six documents as Figure 1 shows. The left side
of the figure is the word-document matrix, and the right
side is a fictional link structure among those imaginary
documents. Traditional topic model (i.e. PLSA or LDA)
discovers two topics, which are represented by gray and
dark bars respectively. The two topics can be interpreted
as “image segmentation” and “community detection”
from corresponding words in them. The height of the
bar beside each document indicate the document’s topic
proportion. Since documents 1 and 5 have no words,
both of them are not labeled by any topics.

However, from the link structure, we have reason to
believe that documents 1 and 5 should have been labeled
by some topics because they are cited by documents
with the two topics. As a link combined topic model,
iTopic [5] can alleviate this issue to some degree. Fig-
ure 2(a) illustrates the topic detection result of iTopic,
from which we can see that documents 1 and 5 are
labeled by the two topics but with different proportions.
Document 1 has more proportions on gray topic than on
dark one while document 5 has the same proportion on
them. Notice that document 1 is cited by two gray topics
(documents 3 and 4) and one dark (document 2), while
document 5 is cited by one gray (document 6) and one
dark (document 2). iTopic treats neighboring documents
as equally important such that the topic proportions of
both documents 1 and 5 are computed as averages of
topic proportions of their neighbors.

However, documents can have various importance on
different topics, so treating them as equally important
may obtain inaccurate topics. RankTopic incorporates the
link based importance into topic modeling such that it
can well distinguishes the importance of documents. Fig-
ure 2(b) shows the topic detection result of RankTopic,
from which we can see that document 5 has much more
proportions on gray topic than dark one. The underlying
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(b) RankTopic

Fig. 2. The topic proportions of documents output by

iTopic and RankTopic respectively. Higher bars indicate

more proportions.

reason is that document 6 ranks high on gray topic as it
is cited by two gray topics, while document 2 ranks low
because it is not cited by any documents. There are more
evidence showing that document 5 is more likely about
gray topic than dark one. In the aspect of capturing
such evidence, RankTopic performs reasonably better
than iTopic and other network regularization based topic
models, such as NetPLSA [10], which motivates our
study on RankTopic.

In the above example, we clearly see that RankTopic
can well incorporate the importance of documents into
topic modeling and addresses the drawbacks of some
existing topic models. The necessity of incorporating
link based importance into topic modeling is empirically
justify based on the KL-Divergence between topic distri-
butions converted from topical ranking and those com-
puted by basic topic model in the experimental section.
We also experimentally demonstrate that RankTopic and
HITSTopic can perform better than some baseline models
in generalization performance, document clustering and
classification performance by setting a proper balancing
parameter. In addition, we find that RankTopic has
comparable performance with one of the state-of-the-art
link based relational topic model (RTM) in the above
measures and HITSTopic performs much better than all
the compared models in terms of document clustering
and classification performance. Moreover, we find topics
detected by LIMTopic are more interpretable than those
detected by some baseline models and still comparable
with RTM, and LIMTopic fits the whole document best
among all the compared topic models in terms of the log-
likelihood of ranking-integrated document-word matrix.

To summarize, compared with existing topic models
LIMTopic has the following distinguished characteristics.

• Existing topic models assume that documents plays
equally important role in topic modeling. In con-
trast, LIMTopic incorporates the importance of doc-
uments into topic modeling and benefit from such
combination.

• Previous works treat topic modeling and link based
importance computing as two independent issues
while LIMTopic puts them together and makes them
mutually enhanced in a unified framework.

• LIMTopic is flexible since ranking and topic model-
ing are orthogonal to each other such that different
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ranking and topic modeling methods can be used
according to specific application requirements.

• LIMTopic outperforms the state-of-the-art topic
models in summarizing the whole document net-
work in terms of a novel measure called the log-
likelihood Lrank of ranking-integrated document-
word matrix.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related works. Section 3 presents
the preliminaries about topic modeling and ranking. We
propose LIMTopic framework and present parameter
learning algorithm for the proposed model in Section 4.
Experimental settings and results are demonstrated in
Section 5 and we conclude this paper in Section 6.

2 RELATED WORK

2.1 Topic Models

Topic models have been widely studied in the text min-
ing community due to its solid theoretical foundation
and promising application performance. PLSA [2] and
LDA [3] are two well known basic topic models. Since
they are proposed, various kinds of extensions have been
proposed by incorporating more contextual information,
such as time [11], [12], [13], [14], authorship [15], and
links [5], [16], [10], [17], [18], [19]. Another kind of exten-
sion is to extract sharing common topics across multiply
text streams [20]. Some others combine other generative
models with topic model. For example, literature [21]
combine community and topic into a unified model.
Wang et al. [22] combine collaborative filtering and LDA
for recommending scientific publications. In [23], senti-
ment and topic is combined in an fully generative model
to detect both of them simultaneously from text. The
present work also incorporates links into topic modeling
but uses different way from previous works. Although
most earlier link combined topic models can capture the
topical correlations between linked documents, there are
few works leveraging the topical ranking of documents
to guide the topic modeling process. The most similar
work to ours may be the TopicFlow model [24]. The
distinguished features of present work from TopicFlow
lie in the following folds. First, LIMTopic provides a
more flexible combination between link importance and
topic modeling while TopicFlow couples flow network
and topic modeling tightly. This feature makes LIMTopic
more extendable. Second, LIMTopic builds a general-
ized relation between link importance and topic mod-
eling rather than a hard relation like TopicFlow. Third,
the topic specific influence of documents computed by
TopicFlow can actually serve as the topical ranking in
LIMTopic.

2.2 Ranking

Our work is also tightly related to ranking technology.
The most well known link based ranking algorithms are
PageRank [7] and HITS [8]. Both algorithms are based

on the phenomenon that rich gets richer. Considering
that the ranking of documents are dependent on their
contents, topic sensitive pagerank [25] is proposed by
biasing the documents on a particular topic. Topical link
analysis [6] extends the algorithms by calculating a vec-
tor of scores to distinguish the importance of documents
on different topics. [26] proposes random walk with
topic nodes and random walk at topical level to further
rank documents over heterogenous network. [27] takes
the dynamic feature of citation network into account and
proposes FurtureRank to compute the expected future
citations of papers and to rank their potential prestige
accordingly. [28] proposes P-Rank to rank the prestige of
papers, authors and journals in a heterogenous scholarly
network. RankClus [29], [30] further extends the method
to heterogenous information networks to rank one kind
of node with respect to another. Compared to RankClus
which performs ranking based on hard clustering, we
incorporate link based importance into topic modeling
which is a soft clustering. Another difference is that
RankClus is a clustering algorithm based on only links
while LIMTopic is a topic modeling framework based on
both links and texts.

2.3 Community Detection

Link based community detection is also relevant to
our study. Community detection is a fundamental link
analysis problem that has been extensively studied [31].
Traditional community detection algorithms partition
the network into groups of nodes such that links a-
mong group members are much denser than those
cross different groups. The state-of-the-art community
detection algorithms include spectral clustering [32] and
modularity optimization approach [33]. However, such
algorithms do not consider text information associated
with each node to help clustering. We would like to
mention PCL-DC [34], which is a community detec-
tion algorithm by combining links and textual contents.
The node popularity introduced in PCL-DC can also
be regarded as link based importance. However, PCL-
DC introduces the popularity variable in the link based
community detection model (PCL) but does not directly
use it in the discriminative content (DC) model, while
LIMTopic explicitly incorporates link importance into the
generative model for textual contents.

3 PRELIMINARIES

3.1 Topic Modeling

Topic modeling aims at extracting conceptually coherent
topics shared by a set of documents. In the following, we
describe topic model PLSA [2] upon which LIMTopic is
built. We choose the most basic topic model PLSA rather
than LDA, because the prior in LDA is noninformative
while LIMTopic can be regarded as PLSA with informa-
tive prior.

Given a collection of N documents D, let V denote the
total number of unique words in the vocabulary and K
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represent the number of topics, the goal of PLSA is to
maximize the likelihood of the collection of documents
with respect to model parameters Θ and B.

P (D|Θ, B) =
N∏

i=1

V∏

w=1

(
K∑

z=1

θizβzw

)siw
(1)

where Θ = {θ}N×K is the topic distribution of docu-
ments, B = {β}K×V is the word distribution of topics,
and siw represents the times that word w occurs in
document i.

After the inference of PLSA, each topic is represented
as a distribution over words in which top probability
words form a semantically coherent concept, and each
document can be represented as a distribution over the
discovered topics.

3.2 Topical Link Importance

Link importance is the documents’ global importance
computed based only on the link structure of the doc-
ument network. However, ranking documents by a s-
ingle global importance score may not make much
sense because documents should be ranked sensitive to
their contents. Based on this consideration, topical link
analysis [6], i.e. topical pagerank and topical HITS, are
proposed. In the following, we take topical pagerank as
an example to briefly introduce topical link analysis.

As the input of topical pagerank, each document i
is associated with a topic distribution θi, which can be
obtained via topic modeling methods. Taking the topic
distribution of documents into account, topical pagerank
produces an importance vector for each document, in
which each element represents the importance score
of the document on each topic. Letting γzi denote the
importance of document i on topic z, topical pagerank
is formally expressed as

γ
(t)
zi = λ

∑

j∈Ii

αγ
(t−1)
zj + (1− α)θjzγ

(t−1)
.j

|Oj |
+ (1− λ)

θiz
M

(2)

where α and λ are parameters that control the pro-
cess of prorogating the ranking score, which are both
empirically set to 0.85. γ.j =

∑K
z=1 γzj denotes the

global importance of document j, Ii is the set of in-link
neighbors of document i, |Oj | denotes the number of
out-link neighbors of document j, and θjz is the topic
proportion of document j on topic z and M is the total
number of documents.

The process of topical link analysis is illustrated in
Figure 3 excluding the thick line. It can be seen that top-
ical link analysis first performs topic modeling to obtain
documents’ topic distribution and then performs topi-
cal link analysis to obtain the topicial link importance
of documents, thus it regards link analysis and topic
modeling separately. It is worthy to point out that the
original topical link analysis [6] method uses supervised
learning method based on predefined categories from
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Fig. 3. Mutual enhancement framework between topic

distribution and link based importance

Open Directory Project (ODP) other than topic modeling
methods to obtain the topic distribution of documents.

4 LINK IMPORTANCE BASED TOPIC MODEL-
ING FRAMEWORK

4.1 Relation between link importance and Topic
Modeling

To incorporate the link importance into topic modeling
as the thick line in Figure 3 shows, it is essential to build
the relation between them. However, there is no closed
solution for establishing this relation. Here, we present
a natural way to achieve this end.

Notice that the link importance γzi can be interpreted
as the probability P (i|z) of the node i involved in the
topic z by normalizing the importance vector such that∑M
i=1 P (i|z) = 1, ∀z. By using the sum and product rules

of the Bayesian theorem, the topic proportion P (z|i) can
be expressed in terms of γzi.

θiz = P (z|i) =
P (i|z)p(z)
M∑
i′=1

P (i|z)p(z)

=
γziπz

K∑
z′=1

γz′iπz′

(3)

where πz = P (z) is the prior probability of topic z.
By using the above interpretation, the topic proportion

of a document is decomposed into the multiplication
of topical link importance and the prior distribution of
topics. However, there is still a problem for the above
equation. Topical link importance is computed based
on the link structure of the document network, which
inevitably has noise in practical situations. We observe
some self-references in the ACM digital library, which is
usually caused by some error editing behavior. Inappro-
priate and incomplete references may also exist. There-
fore, equating between the topical link importance γzi
and the conditional probability P (i|z) also bring much
noise into the topic modeling. One possible solution for
this problem is to detect the noise links and remove them
from the document network. However, spam detection
itself is a challenging issue, which is out of the scope of
this paper.

To reduce the effects of noise, we model the degree of
our belief on the link importance instead of removing
the noise links. Specifically, we transform Equation 3 to
a more generalized one by introducing a parameter ξ
ranging from 0 to 1 to indicate our belief on the link
importance as follows.

θiz = P (z|i) ∝ [ξγzi + (1− ξ)φzi]πz (4)
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where φzi = p(i|z) has the same interpretation as γzi, but
it is a hidden variable rather than an observed one.

In Equation 4, if ξ = 0, the topic proportions are
the same as that in PLSA, and if ξ = 1, the topic
proportions are completely dependent on the topical
ranking. Intermediate values of ξ balance between the
above two extreme cases. The larger the value of ξ, the
more information of link importance is incorporated into
the topic modeling. Therefore, Equation 3 is actually a
special case of Equation 4 by setting ξ to 1.

4.2 LIMTopic Framework

Based on the generalized relation between link impor-
tance and topic proportion, we can replace θ in PLSA
with the right side of Equation 4, which results in the
link importance based topic modeling framework LIM-
Topic. Figure 4 shows the graphical representation of the
LIMTopic framework. Different from the traditional topic
models, the probability p(i|z) of a document i involved
in a topic z is governed by the weighted mixture of
topical ranking γzi, and the hidden variable φzi in the
LIMTopic model such that the effects of link importance
on topic modeling is integrated.

To instantiate LIMTopic framework, we incorporate
topical link importance computed by topical pagerank
and topic HITS into topic modeling, results in RankTopic
and HITSTopic respectively. For topical pagerank, the re-
sulting ranking vector is simply taken as the topical link
importance. However, topical HITS computes two rank-
ing vectors for each document rather than one vector
like topical pagerank. Since authority or hubness value
of a document only reflects one kind of importance of
the document in the network, we would like to combine
them together to represent the overall importance of the
document. Specifically, we first compute the sums of
authority and hubness vectors, then normalize them in
the dimension of each topic and regard this result as the
topical link importance of documents.

In LIMPTopic, the topical link importance γ of doc-
uments is labeled as observational variable (shaded in
Figure 4) since it can be obtained by the topical pagerank
or topical HITS algorithm, although in an overall view
topical link importance is in fact unknown. By incorpo-
rating topical link importance γzi into the topic model-
ing, the link information is naturally taken into account
since the topical link analysis process is performed on
the link structure.

In LIMTopic Framework, the likelihood of a collection

of documents D with respect to the model parameters is

P (D|γ, π, φ, β) =
M∏

i=1

V∏

w=1

(
K∑

z=1

[ξγzi + (1− ξ)φzi]πzβzw

)siw

(5)
where the definition of all the notations can be found
in the previous parts of this paper. Next, the maximum
likelihood estimation is adopted to derive the model
parameters involved in LIMTopic.

4.3 Derivation of LIMTopic

To obtain the (local) maximum of the likelihood in Equa-
tion 5, the expectation maximization (EM) algorithm is
employed. Detailed derivation of the EM updating rules
is as follows.

The logarithm of the likelihood function is

L = logP (D|γ, π, φ, β)

=

M∑

i=1

V∑

w=1

siw log

K∑

z=1

βzw [ξγzi + (1− ξ)φzi]πz (6)

In the E-step, the posterior distribution P (z|i, w) of
topics conditioned on each document-word pair (i, w) is
computed by Equation 7.

ψ
(t)
iwz = P (t)(z|i, w) ∝ β(t)

zw

[
ξγzi + (1− ξ)φ

(t)
zi

]
π(t)
z (7)

Then, the lower bound of L can be derived by using
Jensen inequality twice as following,

L =

M∑

i=1

V∑

w=1

siw log

K∑

z=1

ψ
(t)
iwz

βzw [ξγzi + (1 − ξ)φzi]πz

ψ
(t)
iwz

≥

M∑

i=1

V∑

w=1

siw

K∑

z=1

ψ
(t)
iwz

log βzw [ξγzi + (1 − ξ)φzi]πz

−

M∑

i=1

V∑

w=1

siw

K∑

z=1

ψ
(t)
iwz

logψ
(t)
iwz

≥

M∑

i=1

V∑

w=1

siw

K∑

z=1

[ξψ
(t)
iwz

log βzwγziπz

+(1 − ξ)ψ
(t)
iwz

log βzwφziπz ] −

M∑

i=1

V∑

w=1

siw

K∑

z=1

ψ
(t)
iwz

logψ
(t)
iwz

In the M-step, the lower bound of L is maximized
under the constraints

∑V
w=1 βzw = 1 ,

∑K
z=1 πz = 1 and∑M

i=1 φzi = 1. Through introducing Lagrange multiplier-
s, the constrained maximization problem is converted to
the following one.

max
θ,π

M
∑

i=1

V
∑

w=1

siw

K
∑

z=1

[

ξψ
(t)
iwz log βzwγziπz + (1− ξ)ψ

(t)
iwz log βzwφziπz

]

+
K
∑

z=1

λz

(

V
∑

w=1

βzw − 1

)

+ λ

(

K
∑

z=1

πz − 1

)

+
K
∑

z=1

λ′z

(

M
∑

i=1

φzi − 1

)

The above maximization problem has a closed form
solution as follows, which gives out the update rules
that monotonically increase L.

β(t+1)
zw ∝

∑M

i=1
siwψ

(t)
iwz (8)

π(t+1)
z ∝

∑M

i=1

∑V

w=1
siwψ

(t)
iwz (9)
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φ
(t+1)
zi ∝

∑V

w=1
siwψ

(t)
iwz (10)

As the parameter updating process converges, the
topic proportion θ can be computed by using Equation 4.

4.4 The Learning Algorithm of LIMTopic

With LIMTopic, we can build a mutual enhancement
framework by organizing topic modeling and link im-
portance into an alternative process illustrated in Fig-
ure 3. By introducing LIMTopic as the thick line shows,
the sequential framework from topic modeling to link
importance is transformed to a mutual enhancement
framework.

From the implementation view, we provide the ma-
trix form of the parameter estimation equations. The
parameters involved in the overall framework include
topic-word distributions B = {β}K×V , hidden variable
Φ = {φ}K×N , topic prior distributions Π = {π}K , and
topical ranking Γ = {γ}K×N . Let S = {s}N×V denote the
document-word matrix in which siw represents the time
word w occurs in document i. Let L = {l}N×N denote
the link structure among those documents in which
lij = 1 represents that there is a link from document
i to document j and lij = 0 represents there is not.

It can be proved that Equation 8, 9, 10 and 2 have the
following four matrix forms respectively.

B = B. ∗
(
Y(S./(YTB))

)
(11)

where Y = (ξΓ+ (1− ξ)Φ). ∗
[
Π · · · Π

]
, and .∗ and

./ represent element wise multiplication and division
operation between two matrices respectively.

Π = diag{Y(S./(YTB))BT} (12)

where diag{·} returns the main diagonal of a matrix.

Φ = Y. ∗
(
B
(
S./(YTB)

)T)
(13)

Γ = λ (αΓ + (1− α)X) L̂ +
1− λ

M
ΘT (14)

where X = ΘT. ∗ [ sum(Γ) · · · sum(Γ) ]T, sum(·) re-

turns sums along the columns of a matrix, and L̂ is the
row normalization matrix of link structure L.

According to the mutual enhancement framework and
matrix forms of the updating rules presented above,
the learning algorithm of LIMTopic is summarized in
Algorithm 1. In the following, we present the three
termination conditions in the algorithm.

Condition 1: This condition is to test whether the
topical ranking Γ converges. We compute the differences
between the topical ranking of the current iteration and
the previous one, and sum these differences over all
the cells. If the difference is lower than a predefined
small value (1e-2 in our experiments), this condition is
satisfied.

Condition 2: This condition is to test whether the rank-
ing based topic modeling process converges. For each
iteration, we compute the log-likelihood of the observed

Algorithm 1: The learning algorithm of LIMTopic

Input: A document network L with M documents including totally V
unique words, and the expected number K of topics and
parameter ξ.

Output: Topic-word distributions B, Document-topic distributions Θ.
initialization: Perform PLSA to obtain B and Θ;
repeat

repeat

Γ = λ (αΓ + (1 − α)X) L̂ + 1−λ

M
ΘT;

Normalize Γ such that ∀z, i,
K∑

z=1

N∑
i=1

γzi = 1;

until Satisfying condition 1;
repeat

B = B. ∗
(
Y(S./(YTB))

)
;

Normalize B such that ∀z,
V∑

w=1
βzw = 1;

Π = diag{Y(S./(YTB))BT};

Normalize Π such that
K∑

z=1
πz = 1;

Φ = Y. ∗

(
B
(
S./(YTB)

)T
)

;

Normalize Φ such that ∀z,
N∑

i=1

φzi = 1;

until Satisfying condition 2;

Θ = (ξΓ + (1 − ξ)Φ)T. ∗
[

Π · · · Π
]T;

Normalize Θ such that ∀i,
K∑

z=1
θiz = 1;

until Satisfying condition 3;
return B Θ;

documents with respect to the current parameters B, Γ,
Φ and Π via Equation 6, and then compute the relative
change of the log-likelihood between two continuous
iterations as the fraction of the difference between the
two log-likelihoods to the average value of them. If the
relative change is lower than a predefined small value
(1e-4 in our experiments), this condition is satisfied.

Condition 3: This condition is to test whether the
whole process reaches a (local) optimal solution. For each
iteration, we propose to compute a novel measure called
log-likelihood of the ranking-integrated document-word
matrix with respect to the current parameters B and Θ.

The ranking-integrated document-word matrix is com-
puted by using topical pagerank on the link structure
and original document-word matrix. Specifically, the
ranking-integrated document-word matrix R is comput-
ed by iteratively performing Equation 15.

R
(t)
wi = λ

∑

j∈Ii

αR
(t−1)
wj + (1− α)ŜjwR

(t−1)
.j

|Oj |
+ (1− λ)

Ŝiw
M

(15)
where Ŝ is the row normalized matrix of original
document-word matrix S. Equation 15 is essentially the
same as Equation 2 by replacing γ and θ with R and
Ŝ respectively. The ranking-integrated document-word
matrix is actually an imaginary document-word matrix
which encodes the observational information from both
documents and links.

The log-likelihood Lrank of the ranking-integrated
document-word matrix conditioned on the parameters
B and Θ is computed as Equation 16.

Lrank = P (R|B,Θ) = sum(sum(ln(B ∗Θ). ∗ R)) (16)
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where sum(sum(·)) returns the sum of all the elements
in a matrix. Higher value of Lrank indicates better fit
to the ranking-integrated document-word matrix. Since
LIMTopic takes the link importance into account, the
log-likelihood of the ranking-integrated document-word
matrix can be a better evaluation measure than that of
the original document-word matrix. If the incremental
quantity of the log-likelihood is lower than a predefined
threshold (1e-3 in our experiments), condition 3 is satis-
fied.

The time complexity of Algorithm 1 is analyzed as
follows. The complexity of computing matrix X is O(K×
N), and that of computing αΓ+(1−α)X is also O(K×N).
The most time consuming part of topical ranking (i.e. the
first loop) is to compute the product between a K × N

matrix (i.e. αΓ+(1−α)X) and a N×N matrix L̂ with com-
plexity O(K×N×N), which can be reduced to O(K×E)
in sparse networks where E is the number of links in the
network. Let T1 be the maximum number of iterations,
then the complexity of topical ranking is O(T1×K×E).
For the second loop, the most time consuming part is
to compute the product between a N × K matrix and
K × V matrix, whose time complexity is O(N ×K × V ).
Assuming the second loop need T2 iterations, then its
complexity is O(T2×N×K×V ). Finally, we assume the
third loop need T3 iterations, then the complexity of the
overall process is T3 × (T1 ×K × E + T2 ×N ×K × V ).
If we further assume that the iteration numbers T1, T2,
T3 and the number of topics K are all constants, then
the time complexity of the overall process turns out to
be O(E +N × V ), which is linear in the total number of
links and words in the observed document network.

5 EXPERIMENTS

In this section, we conduct experimental studies of
LIMTopic based models, RankTopic and HITSTopic, in
various aspects, and compare it with some state-of-the-
art topic models, namely PLSA, LDA, iTopic and RTM
(Relational Topic Model) [18]. In the experiments, we use
two genres of data sets, i.e. three public paper citation
data sets and one twitter data set.

ArnetMiner: This is a subset of the Citation-network
V1 (http://www.arnetminer.org/citation) released by
ArnetMiner [4]. After some preprocessing, there are
6,562 papers and 8,331 citations left and 8,815 unique
words in the vocabulary.

Citeseer: This data set consists of 3,312 scientific pub-
lications and 4,715 links. The dictionary consists of 3,703
unique words. These publications have been categorized
into 6 classes according to their research directions in
advance.

Cora: There are 2,708 papers, and 5,429 citations in this
subset of publications. The dictionary consists of 1433
unique words. These publications have been labeled as
one of 7 categories in advance.

Twitter: The twitter data we used is released by [35],
which can be downloaded from http://arnetminer.org/

heterinf. In this data set, users associated with their
published tweets are regarded as documents and the ‘@’
relationship among users as links. After some prepro-
cessing like stop word removing, we obtain 814 users in
total and 5,316 unique words in the vocabulary. There
are 4,206 ‘@’ relationships between those users.

Both Citeseer and Cora data sets used in our experi-
ments is the same as that used in [34].

5.1 Convergence Discussion

Although both ranking and topic modeling converge, it
is hard to prove whether LIMTopic with nonzero ξ con-
verges or not in theory. The alternative iteration process
is complex in general due to the orthogonal relation be-
tween ranking and topic modeling, and different ranking
algorithms or different values of ξ may have varying
convergence performance. The above characteristics lead
to the difficulty of strict convergence analysis for the
whole process, which is left as an open problem for
future research.

Instead, we explore the convergence of LIMTopic by
plotting the L (i.e. Equation 6) curves with the iterations.
Figure 5 shows some of the experimental results, and
similar results are obtained from the left experiments.
From the results, we can see that L curves do not always
monotonically increase or decrease with the iterations.
However, the L curves converge to fixed values under
most ξ settings, indirectly reflecting that model parame-
ters keep almost the same after enough iterations. From
the results, we can also see that most L curves become
flat after only a small number of iterations, i.e. less than
20 iterations.

5.2 Empirical Justification

In this subsection, we would like to empirically justify
the necessity of integrating the link importance into topic
modeling.

The difference between the results of link importance
and traditional topic modeling is evaluated to justify the
necessity of combining both of them. By normalizing the
topical ranking vectors of each document to one, topical
link importance can be converted to topic distributions
of the documents. Formally, normalizing topical link
importance Γ by column and transposing it, we get
converted topic distributions Θ̃ of documents.

For each data set, we compute the KL-divergence

between the topic distribution θ̃i converted from topical
link importance and the original one θi for each docu-
ment i. Some statistics of the results are shown in Table 1.
From the statistics, we can see that there are significant
differences between the converted and original topic
distributions in all the four data sets. The divergences
reach maximum value 13.33 and on average 1.02 in
ArnetMiner data. The second largest average divergence
occurs in Twitter data where the ratio of documents with
non-zero divergence achieves 100%.
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Fig. 5. L curves of LIMTopic with the iterations

TABLE 1

Statistics of the KL-Divergences between the converted

topic distribution and the original topic distribution for all

the documents.

KL-Divergence SUM AVG MAX NZRate1

ArnetMiner 6721.19 1.02 13.33 0.58
Citeseer 962.57 0.29 7.11 0.57

Cora 1666.80 0.62 12.95 0.58
Twitter 744.80 0.91 12.04 1.00

1 NZRate represents the fraction of documents having
non-zero KL-Divergence between their converted and
original topic distributions.

The converted topic distribution is computed from the
link structure while the original one is computed from
the textual content of documents, i.e. they reflect dif-
ferent aspects of the document network. The significant
inconsistency or divergence between them empirically
indicates it is necessary to combine them together for
better exploring the whole document network.

In the following subsections, we further investigate
the practical performance of LIMTopic based models by
using some well recognized measures and applications.

5.3 Generalization Performance

Perplexity [36] is a widely used measure for evaluating
the generalization performance of a probabilistic model.
Lower perplexity indicates better generalization perfor-
mance.

In our experiments, we perform 10-fold cross valida-
tion. Before comparing RankTopic and HITSTopic with
other topic models, we first study how the value of
parameter ξ affects the generalization performance of
RankTopic. Figure 6 shows parameter study results for
some typical values of ξ on ArnetMiner and Twitter data.
From the results, we observe the following phenomenon-
s.

Both the results on ArnetMiner and Twitter data sets
consistently show that RankTopic could obtain lower
perplexity than the special case when ξ equals 0.0,
which actually degenerates to PLSA but with additional
termination condition for outside loop (see condition 3 in
section 4.4). These results show that link based ranking
can indeed be used to improve the generalization perfor-
mance of basic topic models. However, we also observe
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Fig. 6. Perplexity results of RankTopic on ArnetMiner

and Twitter data sets by setting some typical values of

parameter ξ and K (number of topics) in RankTopic. All

these results are average values computed under 10-fold

cross validation.

different effects of ξ on RankTopic’s generalization per-
formance for different data sets. For ArnetMiner data,
the lower the value of ξ, the better RankTopic’s general-
ization performance except for ξ = 0.0. For Twitter data,
the best generalization performance is obtained when
ξ = 0.9 and perplexity is less sensitive to ξ except for the
special case of ξ = 0.0. Whether RankTopic is sensitive to
ξ may significantly depend on the consistency between
links and texts and the noises in them. Nevertheless,
we provide a tuning way for adapting RankTopic into
practical senecios. For HITSTopic, we conduct the same
experiments, and show the results in Figure 7. Due to the
large difference between perplexity of ξ = 1.0 and those
of other ξ values, the results of ξ = 0.1 is now shown
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Fig. 7. Perplexity results of HITSTopic on ArnetMiner

and Twitter data sets by setting some typical values of

parameter ξ and K (number of topics) in HITSTopic. All

these results are average values computed under 10-fold

cross validation.

for ArnetMiner data in this figure. From this figure, we
can also see that HITSTopic has better generalization
performance than the case when ξ = 0.0.

Figure 8 illustrates the perplexity results of the com-
pared topic models. Results show that RankTopic with
appropriately set ξ performs best among all the com-
pared models, which indicates its superior generaliza-
tion performance over the baseline topic models. The un-
derlying reasons for the results are analyzed as follows.
By introducing Dirichlet prior, LDA performs better
than PLSA when K value increases. However, the prior
adopted by LDA is non-informative. RankTopic can also
be regarded as incorporating prior into PLSA, but topical
ranking is more informative than Dirichlet prior. Both
RTM and iTopic incorporate link structure into topic
modeling. However, iTopic assumes that the neighbors
of a node play equally important role in affecting the
topics of that node, which is usually not the truth in
practical document networks. The topics detected by
RTM are governed by both link regression process and
the document contents, but RTM does not model the
weights of the two parts such that its generalization per-
formance depends on the accuracy of links and contents.
In contrast, RankTopic provides a turning weight of the
incorporation of ranking such that it is more flexible than
RTM. Notice that the generalization performance of HIT-
STopic is worse than that of RankTopic. The underline
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Fig. 8. Perplexity results of RankTopic and some baseline

topic models on ArnetMiner and Twitter data sets by

setting various numbers of topics (K). All these results

are averages computed under 10-fold cross validation.

For RankTopic, the results of ξ = 0.1 and ξ = 0.5 are

shown for comparison purpose. For HITSTopic, the result

of ξ = 0.1 is shown.

reason may be that topical pagerank may better serve
as the conditional probability of a document on a topic
than the sum of topical authority and topical hubness.

5.4 Document Clustering

Besides the generalization performance, topic models
can also be evaluated by using their application perfor-
mance. The most widely used applications of topic mod-
els include document clustering and classification. In this
and subsequent subsection, we study the performance
of LIMTopic based models on document clustering and
classification respectively.

By using topic models, documents can be represented
as topic proportion vectors, upon which document clus-
tering can be performed. Specifically, we adopt k-means
as the clustering algorithm. For a network, normalized
cut (Ncut) [37], modularity (Modu) [38], are two well
known measures for evaluating the clustering results.
Lower normalized cut and higher modularity indicates
better clustering result. When the background label in-
formation is known for documents, normalized mutual
information (NMI) [39] can also be used to evaluate the
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clustering result. The higher the NMI, the better the
clustering quality. In these experiments, the number of
clusters and topics are set to 6 for the Citeseer data, 7 for
the Cora data, and 10 for twitter data. Both the numbers
of clusters in Citeseer and Cora data are specified to be
the known numbers of categories in them (see the data
set part at the beginning of the experimental section),
while that of the twitter data is set empirically. Although
some parameter-free methods can be used to alleviate
the cluster number setting issue, it is still a challenge
to set an accurate number of clusters for an unexplored
data set. In the experiments of Arnetminer data set, we
find that both the normalized cut and modularity of
all the compared models are not so significant, reflect-
ing that Arnetminer data has no significant community
structure in terms of citation network. The underlying
reason is that we extract a subset of Arnetminer data
in our experiments and this subset has no significantly
dense parts in terms of link structure.

We first study the effect of parameter ξ. Figure 9
shows the results. For both Ncut and Modu, RankTopic
with ξ = 0.9 performs best on Citeseer data. For NMI,
RankTopic with ξ = 0.3 performs best on Citeseer data.
Overall, RankTopic with ξ = 0.5 compromises among
the three evaluation measures. We obtain similar results
on Cora and Twitter data.

We then compare the clustering performance of Rank-
Topic and HITSTopic with the baseline models. Table 2
reports our experimental results. For the purpose of com-
parison, results of RankTopic with ξ = 0.5 are selected to
be shown. From the results, we can see that RankTopic
performs better than PLSA, LDA, iTopic, topical ranking
(TR) and is comparable with RTM. More importantly,
RankTopic outperforms both of its ingredients, i.e. PLSA
and topical ranking, which indicates that combining
PLSA and ranking has much better clustering perfor-
mance than each of them. Overall, the link combined
topic models have better clustering performance than
link ignored ones. NMI is not shown for Twitter since
there is no background labels for users in that data.

TABLE 2

Clustering performance of different models on Citeseer

and Cora data sets. For Ncut, the lower the better. For

both Modu and NMI, the higher the better. For

RankTopic, ξ = 0.5. For HITSTopic, ξ = 0.3. TR

represents the topical ranking model.

Models
Citeseer Cora Twitter

Ncut Modu NMI Ncut Modu NMI Ncut Modu
PLSA 2.92 0.35 0.14 4.85 0.16 0.11 5.88 0.35
LDA 2.68 0.38 0.21 4.30 0.24 0.19 4.76 0.37
iTopic 2.09 0.48 0.26 4.01 0.29 0.21 4.60 0.45
TR 1.99 0.50 0.17 4.74 0.18 0.14 5.37 0.38
RTM 1.63 0.54 0.31 2.98 0.47 0.32 4.24 0.47
RankTopic 1.60 0.55 0.28 3.01 0.47 0.30 2.77 0.53
HITSTopic 0.52 0.68 0.32 1.66 0.61 0.48 2.72 0.60

(a) iTopic (b) RankTopic (c) HITSTopic

Fig. 10. Clustering results of iTopic and RankTopic with

ξ = 0.5 and HITSTopic with ξ = 0.3 on Citeseer data. The

more a matrix looks like a block diagonal matrix, the better

the clustering result summarizes the links.

From the results, we also see that HITSTopic performs
significantly better than all the other models. The under-
lying reason is that the summation of topical authority
and hubness of documents serves as more discriminated
feature for clustering purpose than topical pagerank
only.

We finally study the clustering results qualitatively
in a visualized way. Since link structure can reflect the
clusters of documents to some degree, the adjacency
matrix of document network is taken for visualization.
For example, clustering results of iTopic, RankTopic and
HITSTopic on Citeseer data are illustrated in Figure 10.
The clustering results for RankTopic with ξ = 0.5 and
HITSTopic with ξ = 0.3 are shown for comparison. The
documents clustered in the same class are arranged to
be adjacent to each other in the visualized matrixes. The
more a matrix looks like a block diagonal matrix, the
better the clustering result summarizes the link structure.
The results of PLSA and LDA look even worse than that
for iTopic and that of RTM looks more or less the same as
RankTopic. The visualization results are consistent with
the quantitative results in Table 2.

However, there are large volume of community de-
tection algorithms, such as spectral clustering [40] and
PCL-DC [34], which aims at partitioning a network into
clusters according to the links only. We do not compare
RankTopic with them because the community detection
algorithms directly perform clustering on links by op-
timizing measures like normalized cut and modularity.
One drawback of those community detection algorithms
is that they can only describe the community structure of
the observational data but can not generalize the results
to unseen data, which actually can be done by topic
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modeling methods. In this sense, it is not fair to compare
topic modeling methods with the community detection
algorithms.

5.5 Document Classification

In this subsection, we study the performance of LIM-
Topic based models on document classification. We
use an open source package, MATLABArsenal (http:
//finalfantasyxi.inf.cs.cmu.edu/), to conduct the follow-
ing experiments. Due to the superior classification per-
formance of SVM (Supporter Vector Machine), we se-
lect SVM LIGHT with RBF kernel as the classification
method, and set kernel parameter as 0.01 and cost factor
as 3. However, classification method is not the main
focus of this paper, and we just want to see how well d-
ifferent topic modeling results can serve as classification
features. Recall that label information for publications in
Citeseer and Cora data sets are known in advance, it
is natural to choose the two data sets for classification
purpose.

Similarly, we first study the effect of parameter ξ by
empirically setting them to some typical values. Fig-
ure 11 shows the results on Citeseer Data. From the
results, we see that RankTopic with ξ = 0.3 perform best
in terms of classification accuracy. Overall, RankTopic
performs well when ξ is at the middle of the range [0,1]
and performs bad when ξ is close or equal to either
0 or 1. We obtain similar results on Cora data. Based
on the results, we also compare RankTopic with the
baseline models. Figure 12 shows the comparison results.
It can be seen that the classification results built on topic
features extracted by RankTopic are better than all the
baseline topic models except RTM on Citeseer data set.
Similar with the clustering results, the classification per-
formance of RankTopic is comparable with RTM, which
is one of competitive link combined topic models. From
the classification results, we also see that HITSTopic are
much better than RankTopic, from which we can further
conclude that the summation of topical authority and
hubness of documents are more discriminated than top-
ical pagerank in machine learning tasks like classification
and clustering.

Accuracy may not be a proper metric to evaluate a
classifier when the class distributions are skewed over
documents. In the following, we use some other well-
known measures to compare diffident classifiers, namely
Precision, Recall, F1 measure, Receiver Operation Curve
(ROC) and Area Under the Curve (AUC). Since there are
more than two classes in our problem, we compute the
above measures except ROC for each class and average
them as the overall performance of different classifiers.
Table 3 shows the experimental results on Citeseer data.
The ROC of different topic models for the 1st class of
Citeseer data is shown in Figure 13, and we obtain
similar results for other classes. From the experimental
results, we can clear see that LIMTopic framework based
models outperform the base line models in terms of
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all the above mentioned metrics. Similar results are
obtained for Cora data.

From both the document classification and document
clustering results, we conclude that topics detected by
LIMTopic based models especially HITSTopic indeed
serve as better features for documents than those de-
tected by some baseline topic models, while RankTopic
are comparable with one of the state-of-the-art link com-
bined topic models RTM in both document clustering
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TABLE 3

Average classification precision, recall, F1 and AUC of

different topic models on Citeseer data

Models Precision Recall F1 AUC
PLSA 0.3502 0.5133 0.4160 0.7366
LDA 0.4351 0.5806 0.4950 0.8213

iTopic 0.4555 0.6244 0.5250 0.8235
TR 0.3916 0.5713 0.4640 0.7842

RTM 0.4950 0.6516 0.5617 0.8401
RankTopic(0.3) 0.4884 0.6304 0.5478 0.8299
HITSTopic(0.1) 0.5450 0.6783 0.6030 0.8789
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Citeseer data

and classification. Of course, to achieve the best perfor-
mance, parameter ξ should be set properly, empirically
ξ can be set to values close to 0.5.

5.6 Topic Interpretability

Topics detected by topic models are represented as a
distribution over words in the vocabulary. The detected
topics can be interpreted as high level concepts from
their top probability words. The more easier the topics
can be interpreted as meaningful concepts, the better the
detected topics. We define the degree of how easy a topic
can be interpreted as a semantically meaningful concepts
as topic interpretability.

However, the interpreting process of a topic can
be rather complicated, which depends on the domain
knowledge and comprehensive ability of an interpreter.
Nevertheless, there exist some methods that try to eval-
uate the topic interpretability in a quantitative way. One
such method is to use point-wise mutual information
(PMI) [41] between pairs of words to evaluate the topic
coherence. Higher PMI reflects better topic interpretabil-
ity. In our experiments, we represent each topic by using
their top 10 words and compute PMI between those
words. The PMI of a topic is computed as the average
PMI of all pairs of top probability words of that topic.

From the parameter study, we find that when ξ is set
to relatively low values, such as 0.1 and 0.3, the topic
interpretability archives the best, while when ξ is set to
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Fig. 14. The average and median PMI values of topics

detected by different topic models. The lower the bar, the

better topic interpretability. For RankTopic and HITSTopic,

PMI for ξ = 0.1 is only shown.

0, the topic interpretability becomes worse. The results
are consistent with those of generalization performance,
which suggests that there are correlation between the
generalization performance and topic interpretability of
topic models. To compare the topic interpretability of
different topic models, we compute the average and
median of PMI values of topics detected by the baseline
models. Figure 14 presents the comparison results, from
which we can see that both RankTopic and HITSTopic
performs better than some baseline topic models and are
slightly worse than RTM in topic interpretability. Besides
the quantitative evaluation of topic interpretability, we
also compare the topics detected by RankTopic and one
of the baseline models LDA in a manual way.

For example, Figure 15 shows one topic detected by
LDA and two topics detected by RankTopic in Arnet-
Miner data. The titles for the topics are manually given
out according to the semantic of the top 10 words. Topic
4 detected by LDA is interpreted as Language by us.
However, this topic is actually a mixture of two con-
cepts. One is programming language, which is indicated
by bold words. Another is natural language, which is
indicated by underlined words. The two concepts are
well distinguished by RankTopic as two topics, Topic 3
(Programming) and Topic 10 (Semantic). From the exper-
iments, we also find out that RankTopic clearly discrim-
inates topic Architecture detected by LDA as Computer
Architecture and Service Oriented Architecture. Overall,
all the 10 topics detected by RankTopic are easy to be
interpreted to meaningfull research directions from the
top probability words while some topics detected by
LDA are difficult to be interpreted.

5.7 Document Network Summarization Performance

We would like to further empirically justify the prospect
of integrating link based importance into topic model-
ing. Specifically, we see if LIMTopic can summarize the
document network better than previous models.

We use the log-likelihood Lrank of ranking-integrated
document-word matrix (see Equation ??) as the fitness
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Fig. 15. Example topics detected by LDA and RankTopic

in ArnetMiner data set.
TABLE 4

Log-likelihoods of ranking-integrated document-word

matrix with respect to different topic models.

log-likelihood ArnetMiner Citeseer Cora Twitter
PLSA -88687 -31660 -11503 -45880
LDA -85159 -31388 -10835 -45776

iTopic -95815 -32860 -11758 -44999
RTM -103837 -34268 -12960 -53072

HITSTopic -85204 -30962 -10780 -44184
RankTopic -83566 -30746 -10693 -44191

measure of a model for summarizing the whole docu-
ment network. Notice that a document network include
both the link structure and the document contents. Lrank

is one of the unified ways to represent the whole docu-
ment network. Therefore, it can be thought that higher
Lrank value indicates that a model better fits to the
document network.

Table 4 shows Lrank values of different topic models
on our selected data sets. For RankTopic and HITSTopic,
we choose the Lrank of ξ = 0.7 to illustrate, other ξ
values except 0 produce more or less the same values.
The comparison results show that LIMTopic based topic
model outperforms almost all baseline models on all our
selected data sets in Lrank value, reflecting that LIMTopic
framework fits the ranking-integrated document-word
matrix best among all the compared models. From the
empirical results, LIMTopic reveals promising better per-
formance for summarizing the whole document network
than some state-of-the-art topic models in terms of Lrank

measure.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a framework LIMTopic to
incorporate link based importance into topic modeling.
As the instances of LIMTopic, RankTopic and HITSTopic
is presented. To validate the effectiveness of LIMTopic
based models, we have studied the performance of
RankTopic and HITSTopic in various aspects, including
generalization performance, document clustering and
classification, topic interpretability, and document net-
work summarization performance, and have compared
LIMTopic with traditional topic models, PLSA and L-
DA, and link combined topic models, iTopic and RTM.
Especially, we have investigated the model on a wide

range of typical balancing parameter values and find
out that LIMTopic is sensitive to that parameter and
it is indeed necessary to introduce such parameter to
combat link noises. Extensive experiments show that
when properly setting balancing parameter ξ LIMTopic
based model performs consistently better than all the
baseline models in the above mentioned aspects on three
public paper citation data sets and one twitter data
set. Empirical results of KL-Divergences between topic
distributions converted from topical link importance and
those computed by basic topic model show that it is
necessary to combine link based importance and topic
modeling for better exploring document network, and
we further show LIMTopic can better summarize the
whole document network than other counterpart models
in terms of a novel measure called Lrank. Moreover, we
empirically show that LIMTopic’s parameters tend to
keep almost the same after enough iterations.

As future works, we will study how LIMTopic can
benefit other applications, such as document retrieval
and recommendation. Furthermore, we will implement
LIMTopic framework in a distributed computing envi-
ronment to make it scale up to large data sets. Moreover,
we show the convergence of LIMTopic empirically, while
leave the theoretical proof as an open problem for future
research.
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