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The Moving K Diversified Nearest Neighbor
Query
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Abstract—As a major type of continuous spatial queries, the moving k nearest neighbor (kNN) query has been studied extensively.
However, most existing studies have focused on only the query efficiency. In this paper, we consider further the usability of the query
results, in particular the diversification of the returned data points. We thereby formulate a new type of queries named the moving k
diversified nearest neighbor query (M DNN). This type of queries continuously report the k diversified nearest neighbors while the
query object is moving. Here the degree of diversity of the kNN set is defined on the distance between the objects in the kNN set.
Computing the & diversified nearest neighbors is an NP-hard problem. We propose an algorithm to maintain incrementally the &
diversified nearest neighbors to reduce the query processing costs. We further propose two approximate algorithms to obtain even
higher query efficiency with precision bounds. We verify the effectiveness and efficiency of the proposed algorithms both theoretically
and empirically. The results confirm the superiority of the proposed algorithms over the baseline algorithm.

Index Terms—Moving nearest neighbor query, spatial diversity, safe region, approximate algorithm

1 INTRODUCTION

As a major type of moving queries, the moving k nearest
neighbor (MkNN) query has been studied extensively [1], [2],
[3], [4]. This query assumes a moving query object ¢ and a
set of static data objects O. When ¢ is moving, the MENN
query reports its k nearest neighbors (kNN) continuously.
Common applications of this query include finding nearest
petrol stations continuously while one drives on highway, or
nearest points of interest (POI) continuously while a tourist
is walking around the city [4]. However, MKNN queries
tend to return KNNs that cluster together, i.e., data objects
near ¢ tend to be near each other as well. These clustering
kNNs may share common features, e.g., all in a less pleasant
suburb, which make them all unsatisfactory query answers.
To avoid clustering kNNs and to improve result usability,
query result diversification is a popular technique. Originated
from information retrieval [5], [6], [7], this technique tries to
return results as different from each other as possible while
all satisfying the query predicate.

Fig. 1 illustrates how query result diversification may
improve the result of an MENN query. The query user ¢ is
looking for a restaurant for dining as she is on a road trip.
There are 9 restaurants pq, ps, ..., pg to be chosen from. An
M3NN query will return {p1, p2,p3} as the answer since
they are the nearest to q. However, they are all in a busy
area. While it is convenient to shop or to get a cup of
coffee there, the traffic is congested and parking is difficult.
Alternatively, a query result diversification technique may
take the distance between the restaurants themselves into
consideration, and return {ps,ps,p7} as the answer. This
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Fig. 1. An MEDNN query (k = 3)

answer is more preferable. The three restaurants are all
relatively close to the query user. Meanwhile, they are far
away from each other and are distributed in different areas.
The query user can choose the one in her preferred area,
e.g., p4, which is in a nice garden area. The example can
also be thought of as a scenario of tourist hotspot recom-
mendation, where the small squares in the figure represent
the tourist hotspots. The MENN query may return tourist
hotspots clustering together, which the query user may
have all visited already. In this case, the user may prefer
recommendations that are far away from each other. To find
such query answers, we will need a new type of queries that
consider the diversity of the query results.

Efforts [8], [9], [10] have been made to diversify the
results for static ENN queries. However, there is still a lack of
studies to diversify the results for moving queries. We aim
to fill this gap by proposing a new type of queries called
the moving k diversified nearest neighbor (MkDNN) query. As
the query object g is moving, this query continuously returns
k objects that are the nearest to ¢ and are as diversified as
possible. Here, “nearest” is defined on spatial proximity,
while “diversified” is defined on the difference between
the nearest neighbors, which can have different meanings if
viewed from different perspectives. In this study, we define
diversity as the distance between the nearest neighbors, al-
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though we can also use other types of attributes for diversi-
fication (e.g., type of cuisine in the restaurant example). The
MEDNN query is then to find nearest neighbors that are as
far away from each other as possible. This query definition
will help avoid clustering kNNs and find diversified nearest
neighbors as illustrated in Fig. 1.

The safe region technique [3], [4], [11], [12] is commonly
used in processing moving queries. It first treats the query
as a static one and computes the query answer together
with a “safe region”. As long as the query point is still
in this safe region, it is guaranteed that the current query
answer is still valid. The query processing then becomes
continuously checking whether the query point is still in the
safe region. Only when the query point moves out of the safe
region that the static query is computed again and the query
answer as well as the safe region are updated. We follow
this procedure to process the MKDNN query. Every time
the current query answer becomes invalid, we recompute a
static k diversified nearest neighbor (cDNN) query.

As processing a static ' DNN query has been shown to
be NP-hard [13], our initial focus is to reduce the frequency
of recomputing it as much as possible. Existing studies
on moving queries have mostly used Voronoi diagram
based safe regions to reduce the recomputation frequency.
However, these safe regions are defined only on spatial
proximity. They cannot handle diversity. We overcome this
limitation by prefetching top-m EDNN sets instead of only
the top-1 kDNN set when the kDNN query is recomputed,
where m is a system parameter. Intuitively, nearby points
should have similar kDNN sets. The prefetched K DNN sets
will serve as a “cache”. When the query point moves, we
first try to find the new KDNN set from this “cache”. Only
when no prefetched set is valid that a query recomputation
is needed. This reduces the recomputation frequency.

To further reduce the recomputation frequency, we pro-
pose an approximate algorithm that computes only the top-
1 KDNN set, and keeps it as the query answer as long as
it is a p-approximation of the true query answer, where p
is user defined parameter. We derive safe regions based on
spatial proximity as well as diversity to efficiently determine
validity of the current kDNN set.

In addition, we adapt a greedy algorithm to compute
approximate kDNN sets at recomputation, and propose a
strategy to maintain the approximate query answer with
a precision bound. This strategy also uses prefetching. We
design safe regions that can be computed efficiently to guard
the validity of the prefetched candidate query answers. The
resultant algorithm can reduce the cost of recomputation
and the recomputation frequency at the same time, and
hence achieves even higher efficiency.

We make the following contributions in this paper:

o We propose a new query type, the moving k diver-
sified nearest neighbor query (MkDNN), which ads
diversity to the nearest neighbors.

o Since the static kDNN query is NP-hard, we ap-
proach the MEDNN query first by reducing the fre-
quency of recomputing the kDNN queries when the
query point moves. We propose a prefetching-based
precise algorithm as well as a bounded approximate
algorithm to achieve this goal.
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o We further propose an algorithm that computes ap-
proximate EDNN query answers, and hence further
reduces the overall processing costs.

o We analyze the costs of the proposed algorithms and
evaluate the algorithm performance on real data sets.
The result confirms the effectiveness and efficiency of
the proposed algorithms.

The rest of the paper is organized as follows. We discuss
related studies in Section 2. We present the problem setting
in Section 3. We propose three MEDNN query algorithms in
Sections 4 and 5. We study the performance of the proposed
algorithms in Section 6 and conclude the paper in Section 7.

2 RELATED WORK
2.1 Moving k nearest neighbor queries

MENN queries have been studied extensively [2], [3], [14],
[15], [16]. Early studies (e.g., [14]) have used sampling based
approaches. They consider the query object’s trajectory as
formed by discrete points, and process a static kNN query
at each point. Between the discrete points, the query answer
is inaccurate. To obtain more accurate query answer, two
adjacent discrete points have to be very close, and the kNN
query has to be computed frequently, which is less efficient.

Later studies [3], [16] use safe regions to reduce the query
recomputation frequency. The safe region is a region where
the query object can move freely without causing the current
kNN answer to change. This allows only recomputing the
kNN answer when the query object leaves the current safe
region. Voronoi diagrams are commonly used to construct
safe regions. In an order-k Voronoi diagram [17], each cell
is a safe region. As long as the query object is in an
order-k Voronoi cell, the k& data points forming this cell
are the kNN answer. By definition, the order-k Voronoi
cell is the largest possible safe region. However, this cell is
expensive to compute. The Retrieve-Influence-Set kNN (RIS-
kNN) algorithm [16] computes an order-k Voronoi cell by
a few (six on average) time-parameterized KNN queries
(which are still quite expensive) when the kNN answer
becomes invalid. The V*-Diagram approach [3] sacrifices the
size of the safe region for higher efficiency of safe region
computation. It approximates an order-k Voronoi cell with
the integrated safe region, which is more efficient to compute
but smaller, and hence the query recomputation frequency is
higher. The influential neighbor set approach [4] is the state-of-
the-art MENN algorithm. This approach uses safe guarding
objects rather than safe regions, which are a small set of
data points surrounding the current kNN set. Conceptually,
the safe guarding objects still define a safe region, which
has been shown to be equivalent to an order-k Voronoi
cell. Meanwhile, the safe guarding objects are much more
efficient to compute. Therefore, the influential neighbor set
approach achieves high overall query efficiency.

Other MENN query studies (e.g., [15]) assume prede-
fined linear query trajectories. The safe regions are then
reduced to line segments on the trajectories. These studies
have focused on the efficiency aspect of query processing.
They cannot compute k diversified nearest neighbors and
hence are not applicable to our MEDNN queries.
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2.2 Query result diversification

Originated from information retrieval, studies [5], [6], [7],
[18] on query result diversification try to return results as
different from each other as possible while all satisfying the
query predicate, to improve query result usability.

Diversification has been considered static spatial queries
such as the kNN query. For example, Lee et al. [8] find the
nearest objects surrounding a static query point. Kreveld et
al. [19] consider diversification in ranking spatial objects.
They rank all objects in the database for every query, which
has high costs. Zhang et al. [9] study the problem of diversi-
fied spatial keyword search on road networks. Their query
result diversity is also defined on the distance between
the objects. A signature-based inverted index is proposed
to solve their problem, which utilizes both keyword-based
and diversity-based pruning techniques to reduce the search
space. Abbar et al. [20] find the k-diverse near neighbors
within a given circle around the query object. They use the
distance between the objects to define diversity as well,
but their solution is based on Hamming space which is
not applicable under our problem settings. Haritsa [21]
finds the k nearest objects that satisfy a diversity con-
straint defined based on the Gower coefficient [22]. Kucuktunc
and Ferhatosmanoglu [10] investigate the diversified kNN
problem based on the angular similarity. They propose a
Gabriel graph-based method to solve the problem, which
scales well with dimensionality. Ference et al. [23] also study
query result diversification based on angular similarity.
They propose a dynamic programming algorithm to find
the optimal kDNNs and two heuristic algorithms, Distance-
based Browsing (DistBrow) and Diversity-based Browsing
(DivBrow), to explore the search space prioritized on spatial
proximity and spatial diversity, respectively.

All these studies targeted diversifying a single (static)
query, while we aim to diversify the kNN query continu-
ously. Thus, the existing approaches do not apply.

3 PRELIMINARIES

We assume two dimensional point data. A query point ¢
moves in an Euclidean space where there is a set of n static
data points P. Given a query parameter k, the goal is to
report a size-k subset S of P, such that among all the size-k
subsets of P, S contains the data points that are the nearest
to ¢ and are the most diversified. Note that the set S may
change over time as ¢ moves. We write the optimization goal
as a function f,(S):

£.(8) = A x DIS(S,q) + (1 — \) x DIV(S).

Here, DIS(S,q) is a function that returns the distance
between ¢ and the data points in S; DIV (S) is a function
that computes the degree of diversity among the data points in
S; AM(A € ]0,1]) is a user-defined parameter that represents
the preference on spatial proximity over diversity:

DIS(S,q) = 7 3 (1- 220
pi€S m
B 2 div(pi, pj)
biv(s) = k(k—1) 2 divy,
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Fig. 2. A 3DNN query (A = 0.5)

In these two functions, dis(p;, ¢) and div(p;, p;) compute
the distance and the degree of diversity between two points.
We use dis,, and div,, to denote the maximum distance and
the maximum degree of diversity, respectively. These two
maximum values help normalize the two function values
into the range [0, 1]. We compute the average (1, ﬁ) of
these function values to convert them into a similar scale.
The full function f,(S) can be written as follows.

_ A _ dis(pi, q)
O Pk

2(1— \)
e(k—1)

div(pi, pj)
div,,
)
In this paper we focus on spatial diversity. We define the
degree of diversity between two data points p; and p; as the
spatial distance between p; and p;, i.e.,

>

PiP;ES

div(ps, pj) = dis(ps, p;).

The function dis(p;, p;) returns the Euclidean distance be-
tween p; and p;. As a result, we have div,, = disp,.
Equation 1 can then be rewritten as follows.

(A2 — dis(q’Pi)eriS(Q»pj)) 42

dism,

1—X) 5.
- G2ldis(pi, py))
PiPj

fq(S) -

k(k—1)
@)
Now we can define the k diversified nearest neighbor query
and the moving k diversified nearest neighbor query.

Definition 1 (K diversified nearest neighbor (<DNN) query).
Given a set of static data objects P, a query point ¢, a
query parameter k, and a user preference parameter ),
the £ diversified nearest neighbor query returns a size-k
set S C P, for any size-k set " C P, f,(S) > f,(5").

Fig. 2 is an example, where dis(q, p1) = 30, dis(¢q,p2) =
40, dis(q,p3) = 50, dis(q,ps) = 60, dis(q,ps) = 170,
dis(q,ps) = 80. Assuming k = 3 and A = 0.5, then
the KDNN set of ¢ should be {ps3,ps4,ps} instead of
any other subsets of P. For example, f,({ps,ps,p5}) =
0.6438 > f,({p1,p2, p3}) = 0.5822. Intuitively, even though
{p1,p2,p3} is slightly nearer to ¢, {ps, p4, ps } is more diver-
sified (the points are farther away from each other). Overall,
{ps,p4,ps} has a higher optimization function value.

When the query point ¢ is moving, i.e., ¢ may be at dif-
ferent locations at different timestamps, the query becomes
a moving k diversified nearest neighbor query.

Definition 2 (Moving k diversified mnearest neighbor

(MEDNN) query). Given a set of static data objects P,

a moving query point g, a query parameter k, and a

user preference parameter ), the moving k diversified
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nearest neighbor query returns the KDNN set of ¢ for
every timestamp.

Following existing studies on moving AENN queries
(e.g., [3], [4], [16]), we consider the general scenario where
there is no constraint on the moving pattern of the query
point g, i.e.,, ¢ can move towards any direction with any
speed at any time. When an MADNN query is issued, we
first compute a static k\DNN query at ¢, and then continu-
ously validate the kDNN set as ¢ is moving. We recompute
the kDNN set when it becomes invalid. We present both
precise and approximate algorithms for kDNN computation
and validation in the following sections.

4 MiDNN ALGORITHMS BASED ON PRECISE
KDNN COMPUTATION

Computing the kDNN query is essentially to solve the Max-
imum Dispersion problem, which is NP-hard [13]. In this
section we assume that there exists an algorithm! to com-
pute the kDNN query, and focus on optimizing the kDNN
validation phrase. The goal is to reduce the frequency of
recomputing the kDNN to reduce the overall query costs.

4.1 A Precise Algorithm for x\DNN Maintenance

We first reduce the KDNN computation frequency by
prefetching the top-m kDNN sets, where m is a system
parameter and will be chosen empirically. Here, the intu-
ition is that two nearby locations !; and [, should share
similar kDNN sets. It is likely that the top-1 KDNN set of
l; is also among the top m KDNN sets of 5. As such, the
prefetched the top-m KDNN sets would serve as a “cache”
for the MEDNN query. Only when none of the prefetched
kDNN sets is still valid that the KDNN sets need to be
recomputed. Note that if the enumeration based algorithm
is used to compute the kDNN set, then the prefetching
requires maintaining a size-m priority queue, although this
would have very little overhead when m is small.

We use a priority queue denoted by () to store the m
kEDNN sets prioritized by their f,() function values. When
the query point ¢ moves, we first try to find the new kDNN
set from (. If found, then we return it, and update @
according to the new f,() function values of the kDNN sets.
Otherwise, we compute the new top-m KDNN sets, store
them in (), and return the top one as the query answer.

Next we detail how to maintain () and compute the new
kDNN set from it.

4.1.1

Safe radius. We introduce the safe radius to help maintain Q).
This concept defines a region to guarantee that a size-k set
S; C P is “nearer” to ¢ than another size-k set S; C P.

Definition 3 (Safe radius). Let S;, S; be two size-k subsets of
P satisfying f,(S;) > f4(S;). The safe radius for S; and
S;, denoted by r; ;, is defined to guarantee fy/(S;) >
fq (S;) for the query point to move from ¢ to any new
location ¢’ as long as dis(q,q') < 1 ;.

Incremental k DNN Maintenance

1. A straightforward enumeration based algorithm can enumerate all
Ck combinations of the n data points to find the optimal kDNN set
with O(n*) time.

S1:{p3,p4,p5} -
Sa2:{p1,ps,pe}

Ss:{p2,ps,pe}

=234
54:{p3rp5'p6} 116 he =188 *
R — e =1

Ss:{pa,ps,pe}

r,s =045
} I, =0.24

JapJo Suipuadsap ayj ul (S)by Aq pawios

Se:{p1,p2,Ps}

Fig. 3. Top-m kDNN sets and safe radius

We derive a mathematical definition for 7; ;. The goal is
to find r; ; such that fg/ (S;) > f4/(S;), where

fq/(Si): isla! iste!
Z ()\(2 _ ZS(q 7pmd)i“|s‘m18(q 7py)) + 2;18—7;\) dls(pmypy))
Pm7py€5i
k(k—1)
fq/(Sj) = oy oy
S (M2 - SRty 205N dis(p,, p, )
pzvpyesj
k(k—1)

According to triangle inequality, Vp € P:

dis(q,p) + dis(q,q') > dis(¢, p)
dis(q,p) — dis(q,q") < dis(¢’,p).

We replace dis(¢',p;) and dis(¢’,py) in fy(S;) by
dis(q, pe)+dis(q,q") and dis(q, py)+dis(q, q'), respectively:

SN2 - dis(q,pz)+di8(q,q’)+di8(q,py)+di8(q,q’))

disy,

T eS?

Fo(Si) = 7
k(k—1
2(17)\)d- ( )
> dism Zs(pmvpy) . ,

+pz»pyesi o f (S) . )\dls(q,q)

k(k—1) IR disy

Similarly, we replace dis(q’, p,) and dis(q’, py) in fo/(S;)
by dis(q,p.) — dis(q,q') and dis(q, py) — dis(q, q'):
SN2 - dis(qmz)—diS(q7q')+diS(q7py)—diS(q,q’))

diSyy,
, ) < pampyesj'
far(S5) < T
202 dis (pa, p
e, T Oy Mita
k(k— 1) = FalSy) + =g =
To let f,/(Si) > fy/(S;), we need:
| Adis(a,q) L, Mis(q.q)
FuS1) = g > TS+ T 2
2Mdis(q,q")
fq(Si) - fq(‘sj) > W =
dis(q,q') < (fq(S3) *gg\(sj»dwm N
T (f4(Si) — f4(S5))dism
e 2

Fig. 3 shows an example of the priority queue () and the
safe radius, where m = 6. We denote the kKDNN sets in )
by S1,52, ..., Sm, according to their ranks in (). The kDNN
set S1 = {p3,p1,ps} has the largest f,() function value,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fig. 4. Queue valid region

and hence it the top item in ). We compute the safe radius
T1m,T2,ms s Tm—1,m between the last item in the queue,
Sm, and each of the other sets 51, Ss, ..., Sm—1, respectively.

Safe regions. The safe radius helps define two circular
safe regions centered at g. The first safe region has a radius
of r1 o (cf. the smaller circle centered at ¢ in Fig. 4), which
guarantees that the kDNN set stays unchanged as long as
the query point stays in this region. We call this region the
answer valid region (AVR).

The second safe region guarantees that the new KDNN
set is still among the m EKDNN sets in (), which means that
Q is still valid. We call this region the queue valid region
(QVR). As shown by the larger circle centered at ¢ in Fig. 4,
the radius of QVR is 7y ,,. Assume that the query point
has moved to ¢'. Then as long as dis(q,q¢') < T1m, by
the definition of the safe radius, f,(S1) > fy/(S;) for any
S; ¢ Q. This means that any S; ¢ () cannot be the top
kDNN set. Thus, the top kDNN set must still be in Q).

Query updates. Next we derive two properties of the
safe radius as specified by the following two theorems. They
support our query update algorithm.

Theorem 1. Assume that all size-k subsets of P are sorted
in the descending order of their f,() function values,
denoted by S, Sa, ... S, ., Scﬁ. Then, given three
integers ¢, j, and pt:

1) Ifl1<i<j<pt<CFthenr;p > 1y
2) Ifl<pt<i<yj< C,’j, then rpe i < rpej-

Proof 1. See Appendix A.

Suppose that we have computed the KDNN sets and
obtained the queue () at ¢. When the query point moves
to ¢/, we can compare dis(q’,q) with the safe radius of
all the kDNN sets in ). For a kDNN set S;, if its safe
radius value 7;,,(1 < j < m) satisfies r;,, > dis(¢,q),
then f,/(S;) > f;(Sy) still holds and S; should still be
a top-m kDNN set. We put all the kDNN sets satisfying
this condition into a new queue Q' prioritized by their fy/()
function values. We denote the last entry in Q" by S|,,,. For
each remaining kDNN set S, € Q, we compute f, (S,), and
compare it with fo (/o). If for(Sz) > fq(Sg)), we also
insert S, into )'. Otherwise we simply omit S, since we
can no longer guarantee it to be a top KDNN set.

The queue Q' will then become the new () in the query
maintenance, with the top entry S| being the new top
kEDNN set at ¢, as guaranteed by the following theorem.

Fig. 5. Query update processing

Theorem 2. Let S\/Q’I be the last entry in @', i.e., fy (SI/Q’\) is
the smallest among the entries in Q'. Then VS ¢ ' that
is a size-k subset of P: fy (S/q/) > fq(5).

Proof 2. See Appendix A.

According to this theorem, when the query point moves,
we can keep updating @ to @’ and use @’ as the new Q.
Note that every time () is updated, we might remove some
entries from it, and hence @ will shrink. When ) becomes
empty, we need to recompute the top-m kDNN sets.

Fig. 5 shows an example. When the query point moves to
q', 1,6, 72,6, and 73 g are greater than dis(¢’, ¢). We insert Sy,
S, and S5 into a new queue (', prioritized by fy/(S;),7 =
1,2,3. We then compare f(S;),z = 4, 5,6 with fq/(s\/Q’l)'
and only keep the ones with fo/(5z2) > fo (S/g))-

4.1.2 The PCPM Algorithm

Algorithm 1 summarizes the query processing procedure.
This algorithm provides precise query answers, and we
call it the Precise Computation and Precise Maintenance
(PCPM) algorithm. When a query comes, we first perform
a kDNN computation, obtain () and the valid regions, and
return the first entry of () as the answer (lines 1 to 3). Then
we start query maintenance (lines 4 to 24). When the query
point moves to a new location ¢, we first test whether ¢’
is still in the AVR. If yes then the query answer has not
changed and no further processing is needed (lines 6 to 8).
Otherwise we further test whether ¢’ is in the QVR. If not
then () has become invalid and we need to recompute the
top-m kDNN sets (lines 9 to 13). If ¢ is still in the QVR,
then @ is still valid, i.e., the new kDNN set is still in Q.
We update @) with an auxiliary queue @’ to locate the new
kEDNN set. We dequeue entries from Q. If an entry S;’s safe
radius 7, is greater than dis(¢’, ¢), it is still valid and we
re-insert it back to )" prioritized by the new function value
fq (S;) (lines 14 to 18). Otherwise we only re-inserted it into
Q' if for (S;) > fy (S\/Q’I) (lines 19 to 21). When this is done
we replace Q and ¢ by Q" and ¢/, respectively, update the
valid regions, and return S; in the new @ (lines 22 to 24).

Complexity. The main cost in the above algorithm lies in
kdnnSearch(), which is a function that computes the top-m
kEDNN sets and it takes O(n* logm) time. Next we derive
how frequent this function is computed.

Assume that the query point moves at a constant
speed v. In the worst cast, the query point keeps moving
away from the last point ¢ where kdnnSearch() is called.
When the query point reaches a new location ¢’ where
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Algorithm 1: PCPM

Input : ¢: query location
Output: S;: kDNN set

1 Q < kdnnSearch()

2 AV R < circle(q,m1,2), QV R « circle(q,r1,0|)
3 reportResult(S1)

4 while guery continues do

5 q <+ query point’s new location

6 if ¢ € AVR then

7 reportResult(St)

8 continue

9 if ¢ ¢ QVR then

10 q <+ q,Q < kdnnSearch()

11 AV R  circle(q,71,2), QVR <« circle(q,r1,q|)
12 reportResult(S1)

13 continue

14 Q' .clear()

15 while not Q.empty() do

16 S; < Q.dequeue()

17 if 70| > dis(¢', q) then

18 | Q".enqueue(S;)

19 else

20 L if f,/(S;) > fy(S|q/|) then

21 | Q'.enqueue(S;)

2 | Q«Q,q<d

23 AV R  circle(q,71,2), QVR < circle(q,r1,q|)
24 reportResult(S1)

dis(¢’,q) > 71,m, the queue ) becomes invalid. This takes
",m (f4(51) = f4(Sm))dism

at least t; = = 20N
the query pointvreaches ¢, Qis still valid. Updating @ at
every timestamp takes a traversal on the queue (O(m)),
recomputing the optimization function value for each entry
(O(k?)), and (possible) re-insertion of the entry into a new
queue (O(logm)). This takes O(mk?logm) time.
Therefore, in a period of t; timestamps, the worst
case computation cost is O((t; — 1)mk? logm + n¥ logm).
The amortized computation cost per timestamp is

_ 2 k . .
O((tl Lmk kfm+n logm), which is:

time. Before

((£4(S1) = f4(Sm))disy, — 2vA)mk? logm + 2vAn* logm
(fq(81) = f4(Sm))dism .

Note that compared with n* logm, (t; — 1)mk?logm is

negligible when k > 2. Therefor, the amortized computation
20\n* log m

(fa(S1) = fq(Sm))disym

The I/O cost of computing the top-m EDNN sets by
enumeration depends on the size of the main memory and
the data set. If the whole data set can fit in the memory,
then the I/O cost is just to load the whole data set into
memory, the cost of which is O(%), where n denotes the
size of the data set and B denotes the number of data

points per disk page. The amortized I/O cost per timestamp
2vAn

part of the data set, we need a disk-based algorithm for the
enumeration, which is beyond the scope of this paper and
will not be discussed further.

cost can be simplified to be

is ( . If the memory can only hold

Safe Region C(q,S)

Safe Region R(q,S)
Fig. 6. Safe regions for p-approximation

The algorithm requires the whole data set to be stored
in the memory to compute the kDNN sets, plus two circles
(safe regions) and a queue that “caches” mk data points.
Thus, the space complexity of the algorithm is O(n + mk).

Assuming a client-server based system, we analyze the
communication cost. In ¢; timestamps, there will be only
one time that m kKDNN sets are sent from the query server to

the client. Thus, the communication cost is O(mk), and the
2vAmk

(fo(S1) = fq(Sm))dism

amortized communication cost is

4.2 A p-Approximate Algorithm for x\DNN Maintenance

In this subsection we propose an approximate algorithm to
further reduce the frequency of kDNN recomputation. This
algorithm does not prefetch the top-m EDNN sets. Instead,
it just computes the top-1 kDNN set. When the query point
moves, this algorithm keeps checking whether the previ-
ously computed KDNN set is still a “good” approximation
of the true kDNN set. If yes then the previously computed
kDNN set will be returned as the query answer. Otherwise
the kDNN set is recomputed. Here, we use p (p > 1) to
denote the approximation ratio bound that defines a “good”
approximation. We allow query users to set this bound.

4.2.1 Safe Regions for p-Approximation

Let the kDNN set computed at g be S, and the kDNN set
when the query point has moved to ¢’ be Sy,¢,. Then as long
as fo (Snew) < p- fyr(S), S is a p-approximation of Syeq.
According to Section 4.1.1,

Adis(g,q') Adis(q,q')
’ < - K PR S
fq (Snew) < fq(Snew) + dis,, = fq(S) + dis,,
Adis(g,q')
! > —_— — .
£4(8) 2 £,(5) - 2L
Thus, if f,(S) + 220 < p(f,(S) — AL0)) then
for (Snew) < p- for(S) will hold. This means:
dis(q/,q) < P;lm ®3)

p+1 A

This inequality defines a circular safe region centered at
g with a radius of % M. We denote this safe region
by C(g,S), as shown in Fig. 6. When the query point is in
this region, S is a p-approximate query answer.

When C(q, S) is derived, we have relaxed both sides of

the inequality fo/ (Snew) < p- fo (S). We can derive a stricter
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safe region by only relaxing fo/(Snew) to fq(S) + %‘Zf,),
which means f,(S) + %ﬁlq/) <p-fg(S):
. ~f (S) = fo(S))disp,
d ! < (p fq ( q 4
is(q',q) < 5 4

This inequality defines a stricter safe region denoted by
R(q, S). As Fig. 6 shows, R(q,S) is a region with an irreg-
ular shape. This safe region is more expensive to compute
compared with C(g, S) because it requires f,/(S), which is
changing as the query point moves.

Fig. 6 shows how the two safe regions are used in
query processing. When the query point moves, we first test
whether it is still in C(q, S) or R(q, S). If it is in either safe
region (e.g., at ¢’ or ¢), then there is no further computation.
Only when the query point has moved out of both safe
regions (e.g., at ¢*) that we need to recompute the top kA DNN
set and the corresponding safe regions.

4.2.2 The PCpAM Algorithm

Algorithm 2 summarizes the above procedure, where
topKdnnSearch() is a function that computes the top-1
kDNN set (not top-m). Since it maintains answers with an
approximation ratio of p, we call it the Precise Computation
and p-Approximate Maintenance (PCpAM) algorithm.

Algorithm 2: PCpAM
Input : ¢: query location, p: approximation ratio
Output: S: kDNN set

1 S« topKdnnSearch()

2 while query continues do

3 q' + query point’s new location
4

5

if ¢ € C(q,9) orq¢ € R(q, S) then
| reportResult(S)

else

6
7 g+

8 S <« topKdnnSearch()
9 reportResult(S)

Complexity. Similar to the cost of the PCPM al-
gorithm, the main cost in the above algorithm is in
topK dnnSearch(), which takes O(n*) time.

Assume that the query point moves at a constant speed
v. In the worst cast, the query point keeps moving away
from the last point ¢ where topK dnnSearch() is computed.
When the query point reaches a new location ¢’ where

dis(¢',q) > (p'fq/(s)_{"(s))dism, the safe regions become

invalid. This takes ¢, (p- fq/(S) — fq(S))dzsm time

VA
Before the query point reaches ¢/, testing whether it is still in
the safe regions requires computing f,/(S) with O(k?) time.
Therefore, in a period of t, timestamps, the worst case

computation cost is O((t, — 1)k? + n*). The amortized
((tp—l)k2+nk)
tP

computation cost per timestamp is O , e,

((p- fi(S) — £u(8))dis — DNR? + vAnk
(p- fq’(S) - fq(S))diSm
Compared with n*, (¢, — 1)k? is negligible when k > 2.
Therefor, the amortized computation cost can be simplified
nFo
(p- fqr (S) = f4(S))dism

to be

7

The 1/0 cost of computing the top-1 KDNN sets by
enumeration, assuming that the whole data set can fit in
the main memory, is O(%), where n denotes the size of
the data set and B denotes the number of data points
per disk pagf. The amortized 1/O cost per timestamp is

vAn
(0 fo () = fo(:9)) Bdlisy

The algorithm requires the whole data set to be stored in
the memory to compute the kDNN sets, plus the current
top kDNN set and two circles (safe regions). The space
complexity is O(n + k).

If a client-server based system is used, in ¢, timestamps,
the kDNN set only needs to be sent to the client for once.
The communication cost iskO )(\k) and the amortized commu-

v

(- fr(S) = fo(9))dism’

nication cost is

5 MELZDNN ALGORITHM BASED ON APPROXIMATE
KDNN COMPUTATION

5.1 The MaxSumbDispersion Algorithm

As the cost analysis above shows, even with approximate
maintenance the overall cost is still quite high due to the
enumeration cost O(n*) in kDNN recomputation. In this
section we further propose an algorithm to avoid this high
recomputation cost by approximation.

We first revisit the kDNN query. Similar to [9], [23], we
define 6,(p;, p;) to be a function of two points p; and p;:

2(1— A)

3 dis(q,p;) + dis(q,p;) n
diSy,

0q(pispj) = A(2 dis,

dis(pi, p;)-

We rewrite Equation 2 with 6,(p;, p;) which is the optimiza-
tion function of the kDNN query. The equation becomes:

Z 04(pisps) ®)

1
fa(5) = m Pisp; €S

This rewritten equation is very similar to the optimiza-
tion function of the Maximum Dispersion problem [13]. The
Maximum Dispersion problem finds a size-k subset S of P
to maximize the following optimization function f(S):

15)= 1y 2 0ap) ©

pPi,P;ES

Equations 5 and 6 only differ in that 6(p;, p;) in Equa-
tion 6 involves two points p; and p;, while 6,(p;,p;) in
Equation 5 involves a third point g.

The Maximum Dispersion problem has been shown to be
NP-hard [13], and a 2-approximate algorithm named Max-
SumDispersion [24] has been proposed to solve the problem.

As summarized in Algorithm 3, the MaxSumDispersion
algorithm simply generates all pairs of data points in P, and
insert the pairs (the two data points) into .S according to
their () function values in the descending order (lines 2 to
4). Whenever a pair (pg, py) is chosen for the insertion, any
remaining pairs formed by either p, or p, will be discarded
from further consideration (line 5). This procedure ends
when LgJ pairs have been chosen, and S will then contain
2| %] elements. If k is odd, 2| 4] = k — 1. In this case, a
random data point from P is added to .S (lines 6 and 7).
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Algorithm 3: MaxSumDispersion

Algorithm 4: MaxSumDispersion-MkDNN

Input : P: data set, k: query parameter
Output: S: a size-k subset of P that maximizes f(S)
S0
fori=1to |£] do
L find (pz,py) = argmazy, p;erd(pi, p;)
S S U{pe,py}
P P\ {ps,py}

6 if k is an odd number then
7 | S« SU{arandom point in P}

8 return S

U oR WN =

To process a kDNN query, we just need to replace
8(pi,p;) in the algorithm with 6,(p;,p;). When k is odd,
instead of adding a random data point, we add the one from
P that is the nearest to the query point ¢. Since these modi-
fications are straightforward, we omit the pseudo-code due
to the space limit. For simplicity, in the following discussion,
we still call this modified algorithm the MaxSumDispersion
algorithm as long as the context is clear.

Next we prove that this algorithm is a 2-approximation
algorithm for the kDNN query, following a similar proce-
dure that the original MaxSumDispersion algorithm was
proven to be 2-approximate [13].

Theorem 3. The MaxSumbDispersion algorithm is a 2-
approximation algorithm for the k\DNN query.

Proof 3. See Appendix A.

Next we discuss how to process the MEKDNN query with
the MaxSumDispersion algorithm.

5.2 A 2-Approximate Algorithm for x\DNN Maintenance

We use prefetching to maintain the kDNN set computed by
the MaxSumDispersion algorithm. In particular, when the
MaxSumDispersion algorithm is called, we use a priority
queue @ to store not only the |%| pairs found by the
algorithm but also a few extra point pairs as a “cache”
for query updates. Let p; be a data point in the LgJ
pairs, and (plgh’p[%h) be the |4 pair. Then Q also
stores a point pair (py,p,) if the pair contains p; and
04(pssDy) > QQ(pLng’pLng)' Further, we store m more
pairs that have the largest 6,() function values smaller than

Hq(p%h,pgh). These extra point pairs are stored in @

together with the top |%4| point pairs in the descending
order of their ,() function values. We will study the impact
of the value of m in the experimental section.

We modify the MaxSumDispersion algorithm to obtain
@ as shown in Algorithm 4. The modified algorithm only
contains a few addition lines (lines 7 to 10) to collect the
point pairs and store them into Q). It does not change the
data points to be added to the kDNN set .S, and hence is
still a 2-approximate algorithm.

After this algorithm is called we can return the kDNN
set S. When the query point moves, we keep finding the
new kKDNN set from the point pairs in () until they cannot
guarantee a 2-approximation, i.e., () becomes invalid.

Safe region. Next we define a safe region to guarantee
the validity of () with the safe radius for the data point pairs.

Input : P: data set, ¢: query location, k: query parameter

Output: S: a size-k subset of P that maximizes f(5), Q: a
priority queue to store the point pairs for query
maintenance

S+0,Q«0,i+1

while i < [%] do

find (pa,py) = argmaxyp; p; GP,(Pq‘,ij)gng (pi,pi)
if pz,py ¢ S then

L S« SU{px’py}

S Ul R W N =

i++
7 | Q<+ QU{(Wpxpry)}
8 fori=1tomdo

9 find (pz,py) = argmay, p; EP,(pi,pj)ﬁéQeq(pivpj)
0 | Q<+ QU{(papy)}

if k is an odd number then
| S« S{U{the point nearest to ¢ in P\ S}

3 return S, Q

-
R R

=

Definition 4 (Safe radius for two data point pairs). Let the
query point be at g. Two pairs of data points (p;,,p;,)
and (p;,,pj,) satisfy 04(pi,, pi,) > 04(pj,,pjs). The safe
radius for this two pairs, denoted by rp; ;, is defined to
guarantee 6y (p;,, pi,) > 04 (pjy, pj,) for the query point
to move to a new location ¢’ as long as dis(q, ¢') < rp; ;.

Following the same procedure in Section 4.1.1
but replacing f4(S;), f¢Sj, fo(Si), and [y (S;) with
eq(pi17pi2)7aq(pjlvpjz)veq’(pimpiz)/ and HQ'(pjupjz)/
we can derive that if 0,(p;,,pi,) > 04(pj,,Ppj,), then
Og (i, pis) > 0q(pji,p;,) as long as dis(q,q') <

(0q(piy, pin) — 04(Dj1> 1)) diSm, .
4\ 7
— (Hq(pil ’pi’-’) — Hq(pjl 7pj2))di5m
S I '

We omit the detailed derivation as it is straightforward.

Similar to Theorem 1, we can derive the following prop-
erty of rp; ;.
Theorem 4. Assume that all point pairs of P are sorted in the
descending order of their 6,() function values, denoted

bY (plluplz)r (p217p22)/ ey (pC%l?pC?m)' Then, giVeH
three integers ¢, j, and pt:

1) H1<i<j<pt<C? thenrp;p > rpjpr
2) Ifl1<pt<i<j<CZthenrpy; < Tpp;-

Proof 4. See Appendix A.

Let (p;,, pi,) be a point pair in @ where both p;, and p;,
are in the current kDNN set S. Then 7p; ;41 < rp; j, V] >
i + 1. When the query point moves from ¢ to ¢/,

dis(q,q") < rpiiy1 = dis(q,q') <rpi;,Vj>i+ 1

This means that the point pair (p;, , p;,) is still safe, and that
no point pairs after (p;,,pi,) will be chosen over (p;,, pi,)
by the MaxSumDispersion algorithm.

Further, if this holds for every point pair in () where both
points are in the current kDNN set S, then .S’ (and hence Q)
is still valid, i.e.,

dis(q,q") < min{rp; i11|pi,,pi, € S}.
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We denote min {rp; i+1|pi,, Pi, € S} by Dmin and fur-
ther refine 7p,,;, as follows.

o If piyyDiy, P(it1),5 Piv1), are all in S, then rp; ;i1
can be excluded from 7py,,, since swapping (pi, , Pi,)
and (p(i41), > P(i+1),) Will not change S.

o If either p(i;1), or p(it1), is in S, then rp; ;41 can
be excluded from rp,,;, as well. This is because
according to the MaxSumDispersion algorithm, the
pair (p(i+1),; P(i+1),) Will not be added to S.

The refined rp,,, defines the safe region to guard S and Q.

Computing the new kDNN set from (). When the query
point has moved out of the safe region defined by rpmin, S
becomes invalid. We first attempt to compute the new set of
S from the data pairs in Q). We divide @ into three parts:

o The last point pair of Q, i.e., (p|g,,P|Ql,)-

e Sub-queue (); that contains every point pair
(piy, piy) satisfying dist(q,q") < rp; g, ie, Q1 =
{(Pirs pix)|dist(q,q") < Tpi |}

e Sub-queue () that contains the rest of the point pairs
of @, ie., Q2 = {(pi,,pi,)|dist(q.q') = piq}-

The point pairs in @; still have larger 6,() function
values than that of any pair not in @), as formalized by the
following theorem.

Theorem 5. V(p71 apiz) € Qla (p_h 7pj2) ¢ Ql when the query
point has moved from ¢ to a new location ¢/, we have
911' (pil 7pi2) > eq' (pjl 7pj2)-

Proof 5. See Appendix A.

We compute 6, () for the point pairs in @, and insert
them into a new priority queue @’ in the descending order
of the new function values. The last point pair (p|q/|,, |Q’|,)
in Q' has the smallest 6, () value, which is still larger than
that of any point pair not in @), according to Theorem 5.

We add a point pair from Q- into Q' as well if its 6, ()
function value is larger than or equal to 04/ (P, ||, )-

Then we run the modified MaxSumDispersion algorithm
on ' and try to find | £ | point pairs to form the new S and
Q. If successful then the new sets will be returned. Based
on Theorem 5, the new set S is still a 2-approximate answer
set. If less than | % | valid point pairs can be found from @’,
then a full query recomputation is needed. The modified
MaxSumDispersion algorithm will run on the full data set

to compute the new sets of S and ) again.

5.2.1 The 2AC2AM Algorithm

Algorithm 5 summarizes the above procedure. Since this
algorithm computes and maintains 2-approximate query
answers, we call it the 2-Approximate Computation and
2-Approximate Maintenance (2AC2AM) algorithm. At start,
this algorithm computes an approximate KDNN set .S and
the priority queue () using the MaxSumDispersion-MkDNN
algorithm (line 1). Then query maintenance begins. When
the query point moves from ¢ to a new location ¢/, if
dist(q,q') < rpmin, the query result stays unchanged and
no further processing is needed (lines 4 to 8). Otherwise,
the algorithm first updates the ranking of the point pairs in
Q (line 9). Then it tries to find L%j pairs from the updated
queue @’ that can contribute to the new kDNN set S (line
11). If successful then Q' becomes the new @ and the new set

9

S is returned as the query result (lines 12 to 14). If not then
the MaxSumDispersion-MkDNN algorithm is called again
to obtain the new S and @ (line 16). This process repeats
and updated query answers will be produced continuously.

Algorithm 5: 2AC2AM

Input : P: data set, ¢: query location, k: query parameter
Output: S: kDNN set

S, Q < MaxSumDispersion-MkDNN(P, q, k)

reportResult(S)

while query continues do

¢ + query point’s new location

Pmin < min{rpiit1|pi,, pi, € S}

if dist(q’, q) < rpmin then
reportResult(S)

L continue

@ 9 S Ul R W N =

9 Q' + update Q

10 g+ dq

11 compute S from Q’

12 if | S| = k then

13 Q<+ Q'

14 L reportResult(S)

15 else

16 S, Q <+ MaxSumDispersion-MkDNN(P, g, k)
17 L reportResult(S)

Complexity. Storing the whole data set in the memory
takes O(n) space. In addition, the algorithm will cache
every point pair (p,,p,) if p, € S and p, ¢ S, and that
04(pz,py) > 04(pi, pj) where both p;,p; € S. In the worst
case, this will result in (k—2)(n—1) pairs being cached. This
occurs when there are two points (p},p3) in S that form
a pair with an extremely small §,() function value, which
leads to every point p, € S,p; # pi,ps (a total of k — 2
points) to bring a point pair into the cache with every point
in the data set (except for p, itself, a total of n — 1 pairs).
The algorithm further caches another m pairs (pq, p») where
Das Db ¢ S. Also, it will need to store the current top kDNN
set. Therefore, the overall worst case space complexity is
On+2(k—2)(n—1)+2m+k) = O(kn—k+m). However,
this extreme case rarely occurs in reality. For all the data sets
tested in our experiments, the cache size is reasonably small
that incurs little extra time to maintain.

MaxSumDispersion-MkDNN takes O((kn — k +
m)n?log(kn — k + m)) time to generate the cached pairs.
Assume that the query point moves at a constant speed
v. In the worst cast, the query point keeps moving away
from the last point ¢ where the approximate kDNN set S
is computed. When the query point reaches a new location
q/ where dZS(q/,q) > TPmin = min {T'pi,i+1|pi17pi2 € S}f

the set S becomes invalid. This takes at least t5 = min
v
time. Before the query point reaches ¢’, computing rpyn

for testing whether dis(¢’, ¢) < rpmin takes O(k) time.
Therefore, in a period of ¢, timestamps, the worst case
computation cost is O((t2 — 1)k + (k + m)n?logn). The

to—1)k+(k+m)n?logn
ta

amortized computation cost is O( ( ), ie.,

(Tpmin - U)k + 'U(k + m)n2 logn

TPmin
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Compared with v(k +m)n? logn, (rpmi, —v)k is negligible.
Therefor, the amortized computation cost can be simplified

2
to be v(k +m)n 1ogn.

TPmin
Assuming that the whole data set can fit in the main
memory, the I/O cost of the MaxSumDispersion-MADNN
algorithm is O( %), where n denotes the size of the data set
and B denotes the number of data point%} per disk page. The

amortized I/0 cost per timestamp is ———.
. _ TPminB

If a client-server based system is used, in ¢, timestamps,
the kDNN set only needs to be sent for once. The commu-

).

nication cost is O(k) and is amortized to be O(
TPmin

6 EXPERIMENTS

TABLE 1

Experiment parameters
Parameter Default  Values
m for PCPM 40 5, 10, 20, 30, 40, 50, 60, 70
m for 2AC2AM 30 5, 10, 20, 30, 40, 50, 60, 70
k 6 3,6,12,24,48
A 0.5 0.1,0.3,0.5,0.7,09
trajectory interval 900 100, 300, 900, 2700, 8100
p 1.5 1.1,12,..,20
data set LA LA, NY
data set size 500 500, 1000, 10000, 50000, 500000

query trajectory directional directional, random

6.1 Settings

We empirically compare the three proposed algorithms,
PCPM (Section 4.1), PCpAM (Section 4.2), and 2AC2AM
(Section 5) with a sampling-based algorithm denoted by
BASE, which computes a kDNN query at every timestamp.

The algorithms are implemented in Java, and ran on a
desktop computer with a 3.40GHz Intel Core i7-2600 CPU,
8GB memory, and 64-bit Windows operating system.

We use two real data sets. The first data set con-
tains 501,841 Twitter check-in locations in Los Angeles and
nearby regions extracted based on coordinates from the
data set used in [25]. The second data set contains 40,629
Foursquare check-in venues in New York City and nearby
suburbs extracted based on coordinates from the data set
used in [26]. We denote the two data sets by “LA” and “NY”,
respectively. Fig. 7 visualizes the two sets. We see that NY
contains fewer data points overall and is more skewed. To
test the effect of data density and distribution, we generate
more data sets by randomly sampling data points from
these two data sets (i.e., varying density), and by taking
data points from different partitions of the data space (i.e.,
varying distribution). By default the LA data set is used.

We generate two types of trajectories for the query point,
“random” and “directional”. In the random trajectories, the
query point starts at a random point in the data space,
and moves towards a randomly chosen new direction at
every timestamp. In the directional trajectories, the query
point also starts at a random point and chooses a random
direction, but it then keeps moving towards this direction
until reaching the boundary of the space, where a new
direction towards within the space is chosen. By default,
between two timestamps (i.e., two query computations) the
query point moves for a distance interval that is randomly
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Fig. 7. The data sets

generated between 1 and 900 meters. We did not use a
smaller distance interval for the following reason. The data
points are distributed in a large space. A smaller distance
interval will result in highly stable MKDNN query answers
and large safe regions, which benefits the proposed algo-
rithms but not the BASE algorithm.

We generate 20 trajectories (100 timestamps each) for
each set of experiments. We report the average CPU time
per timestamp, the average total I/O cost (number of page
accesses assuming a page size of 1KB and 50 data points
per page) for processing each query, and the average total
number of times the KDNN set is recomputed for each
query. Here, this number of recomputation would represent
the communication cost if a client-server based system were
used. Further, to verify the effectiveness of the proposed
approximation algorithms we report the precision of the
q

fa(Sx)
kDNN set returned by the aqpproximation algorithms and

S, denotes the true KDNN set.

We vary the query parameter k, queue size m, opti-
mization weight parameter )\, approximation ratio p, query
computation distance interval, and data set cardinality in
the experiments. The value ranges and default values of
these parameters are summarized in Table 1. Due to the in-
herently high computation complexity of the precise k{DNN
sets in PCPM and PCpAM, we use a data set of 500 data
points and k£ = 6 by default so that we can test PCPM and
PCpAM together with 2AC2AM under different settings of
other parameters. We argue that this is not an unreasonable
setting. In real applications such as restaurant or tourist
hotspot finding, while the total number of restaurants or
tourist hotspots may be large, we can request for additional
keywords or categories (e.g., “pizza” or “museum”) to re-
duce the number of possible candidates to a few hundred. In
addition, as the query user is moving it is difficult to browse
through a large number of answers, especially when using
a mobile device. Therefore, a small k& value such as 6 is not
unreasonable. In such scenarios, both PCPM and PCpAM
may be used. When the data set or £ is larger 2AC2AM may
be used to provide approximate results.

algorithms computed by , where S denotes the

6.2 Results

Effect of prefetching. PCPM and 2AC2AM both use
prefetching to reduce kDNN recomputation. In particular,
PCPM prefetches top-m kDNN sets; 2AC2AM prefetches m
extra data pairs. We test the effect of m and aim to find its
optimal value to be used in the rest of the experiments.
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(d) Precision

As Fig. 8 shows, the CPU time, the number of kDNN
recomputation, and the I/O cost of both algorithms drop
initially as m increases, which is expected because a larger
“cache” reduces the frequency of KDNN recomputation.
However, when m continues to increase, the benefit of
“caching” increases little and higher queue maintenance
cost is required. As such, the algorithm costs rise back. We
observe that: PCPM shows the best performance at m = 40
on the LA data set and m = 60 on the NY data set; 2AC2AM
shows the best performance at m = 30 on the LA data
set and m = 50 on the NY data set. The larger optimal
values of m on a more skewed data set (i.e., the NY data
set) can be explained by that, on a more skewed data set,
the query answer becomes invalid more frequently in the
denser area. It requires a larger prefetched queue to reduce
the recomputation frequency. In the rest of the experiments,
we use these optimal values as the default values.

Fig. 8 (d) shows the precision of the two algorithms.
As we can see, PCPM provides accurate query answers
all the time (precision = 1), while 2AC2AM provides 2-
approximation results (precision > 0.5). Note that as m in-
creases, the accuracy of 2AC2AM decreases. This is because
a large “cache” discourages kDNN recomputation as long as
the current answer is still a 2-approximation, which means
that the precision tends to stay at 0.5.

Effect of query computation distance interval. In Fig. 9,
we compare the three proposed algorithms with the BASE
algorithm on the LA data set using directional query tra-
jectories, where the query computation distance interval is
varied from 100 to 8100 meters. Note that, for every interval
value used (e.g., 900), the query point speed is not fixed
at the interval value per timestamp (e.g., 900 meters per
timestamp). Instead, the query point speed is randomly
chosen between 1 and the interval value at every timestamp.
When the distance interval increases, the CPU cost, the
number of kDNN recomputation, and the I/O cost increase
for the three proposed algorithms while those of BASE stay
stable. This is because BASE simply recomputes KDNN at
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Fig. 9. Effect of query computation distance interval (directional)

every timestamp, which is not affected by the computation
interval; the proposed algorithms rely on safe regions to
reduce the recomputation frequency, which become invalid
more frequently as the query distance interval increases.
However, the three proposed algorithms outperform BASE
consistently, which validates the effectiveness of our pro-
posed techniques to reduce the recomputation frequency. In
particular, 2AC2AM has the lowest CPU cost (Fig. 9 (a)),
because it uses an approximate kDNN algorithm with a low
complexity. Meanwhile, PCpAM has the lowest recomputa-
tion cost (Fig. 9 (b)). This is because of the strict bounds used
by PCpAM that define large safe regions. Correspondingly,
PCpAM also has the lowest I/O cost. In Fig. 9 (d), both BASE
and PCPM show constant precision values of 1 since they
are both precise algorithms. The two approximate algorithm
2AC2AM and PCpAM (p=1.5) show precision values that
are no less than 0.5 and 0.66, respectively. These confirm the
effectiveness of the proposed algorithms.

We have also tested the algorithms on random query
trajectories. The comparative performance of the algorithms
is similar to that shown in Fig. 9. To keep the paper concise
we have put the figure in Appendix B. In the following
experiments we omit the figures on random query tra-
jectories. A further observation is that the costs for the
proposed algorithms are generally lower on random query
trajectories. This is because when the query point moves
randomly instead of directionally, its probability of staying
in the current safe region is higher and hence the kKDNN
recomputation frequency is lower.

On the NY data set, the comparative performance of the
algorithms also show a similar pattern, we omit the figures
due to space limit (same in the following experiments).

Effect of data set size. Next we vary the data set size.
In Fig. 10 we randomly sample data points from the LA
data set to obtain data set of different sizes. As Fig. 10 (a)
shows, computing a single kDNN query takes more than
20 seconds for the BASE algorithm on 500 data points. This
is because the MKDNN query is inherently complex. The
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two proposed algorithms PCPM and PCpAM have lower
average running time (around 1 second) per timestamp, but
at timestamps where kDNN recomputation is needed, they
would also need to run for more than 20 seconds. Only
2AC2AM can process the query in time for the larger data
sets, which demonstrates the scalability of this algorithm.

The costs are even higher when larger data sets are
used, since the safe regions will become smaller and kDNN
set recomputation will become more frequent. Note that
in Fig. 10 (a) we have omitted the points beyond 10000
seconds, as they are too high to be practical.

Fig. 11 shows the algorithm performance on data sets
obtained by partitioning the NY data set. In particular, we
partition the space by a 3 x 3 regular grid. As a result we ob-
tain 9 blocks denoted by by, b1, ..., bg, each with 26207, 7342,
2926, 1674, 1144, 1023, 163, 150, 0 data points, respectively.
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Note that bg is the top left block which does not contain
any data points and hence no experiment is performed on
it. As the figure shows, in by, only 2AC2AM can produce
the query answers. All the other algorithms rely on precise
kDNN computation, and cannot produce query answers in
time on such dense and skewed data set. In the other blocks,
the algorithms’ costs drop as the data points become fewer
and the distribution becomes more even. The proposed
algorithms again show better performance consistently.
Effect of k. Fig. 12 shows the results when we vary
k from 3 to 48. Note that BASE, PCPM, and PCpAM all
involve computing precise kDNN answers, which is NP-
hard. As k increases their computational costs increase
dramatically. In Fig. 12 (a) we have also omitted the points
beyond 10000 seconds. Meanwhile, 2AC2AM uses an ap-
proximation algorithm for kDNN recomputation with much
lower complexity. It scales much better with larger k values.
Effect of ). In the optimization function we use a
parameter A to allow query users to set the preference on
spatial proximity over diversity. Fig. 13 shows the impact
of A\. Again the proposed algorithms outperform BASE. An
observation is that the costs of the proposed algorithms
increase as A increases. This can be explained by that a
larger A value will lead to smaller safe regions, as shown by
the safe region definition equations. This will lead to higher
kDNN recomputation frequency and hence higher costs.
Effect of p. In PCpAM, we use a parameter p to allow a
query user to set the required approximation ratio. Fig. 14
shows the impact of p. We see that a larger value of p
can reduce the costs, because the required precision drops
and less frequent kDNN recomputation is needed. Note
that the precision value is still bounded by X in all cases
shown in Fig. 14 (d). This confirms the effectiveness of
PCpAM. When p = 1, PCpAM produces precise query
answers at every timestamp, which are the same as those
produced by PCPM. However, its performance is worse
because it does not “cache” any kDNN candidates, while
PCPM has a queue () to serve as a “cache”. When p = 2,
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PCpAM produces approximate query answers similar to
those produced by 2AC2AM. Its query answer precision is
slightly lower as shown in Fig. 14 (d) (although still above
0.5). This is because PCpAM uses a larger safe region than
that of 2AC2AM and tends to update the query answer less
frequently. As a result, the recomputation frequency and
I/0 costs of PCpAM are both lower than those of 2AC2AM.
However, PCpAM has a much higher kDNN computation
cost because its precise kDNN computation has a high
time complexity. As a result, its running time is till higher.
Therefore, in summary, in application scenarios where p is
fixed at 1 or 2, PCPM and 2AC2AM should be used. In other
scenarios, PCpAM may be used for its flexibility in obtaining
query answers of varying approximation ratios.

ENN vs. kDNN. We further validate the effectiveness
of the MEKDNN query by evaluating the similarity between
the kNN sets and the kDNN sets computed under the same
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default query settings.

We first obtain the kNN sets by setting the distance-
diversity trade-off parameter A to be 1 in PCPM (PCPM-
A = 1). This way the optimization function is only deter-
mined by the spatial distance of the data points to the query
point, not the diversity, and hence the algorithm will pro-
duce the ENN sets, not kDNN sets. We use these kNN sets
as the benchmark for comparing the similarity between the
different query answer sets. We then run PCPM at A = 0.5 to
produce precise EDNN sets (PCPM-A = 0.5). Similarly, we
run PCpAM at A = 1,0.5 (PCpAM-A = 1, PCpAM-A = 0.5),
and vary p from 1 to 2 (the precision is therefore varied
from 1 to 0.5). Now the algorithm will produce approximate
kNN and £DNN sets. We do the same for 2AC2AM as well
(RQAC2AM-) =1, 2AC2AM-) = 0.5). Its precision cannot be
varied, however, because it is designed to return kKDNN sets
with an approximation ratio of 0.5.

We record the average Jaccard similarity between the
actual ENN set and the sets obtained as above. Here, the
Jaccard similarity between two sets S; and S5 is defined as:
. ‘Sl n SQ|

|S1 U Ss

Fig. 15 shows the result. Specifically, PCPM-)\ = 1 are the
precise kNN sets. The similarity value is 1. PCPM-\ = 0.5
are the precise kDNN sets. The similarity to the kNN sets
is just 0.4. For PCpAM, its similarity value drops as p
increases (i.e., less precise answer sets are produced). When
A = 0.5 the kDNN sets computed are very different from the
kNN sets. The similarity values are below 0.4 for all cases
tested. In comparison the approximate kNN sets produced
by PCpAM at A = 1 are more similar to the actual kNN sets
(similarity values above 0.5). These approximate kNN sets
are still significantly different from the approximate kDNN
sets produced by PCpAM at A = 0.5. Similar difference
is observed on the approximate kDNN sets produced by
2AC2AM-) = 0.5, except that the set similarity is unaffected
by p (note when A = 1, 2AC2AM will compute precise
kNN sets according to the MaxSumDispersion algorithm).
Therefore, we can see that the kDNN sets are significantly
different from the kNN sets, which confirms that effective-
ness of the MEDNN query to diversity the query result.

similarity(S1, Sa)

7 CONCLUSION

We formulated the MkDNN query and conducted a compre-
hensive study. We first proposed two algorithms to reduce
the query recomputation frequency, using the prefetching
technique and the safe region technique, respectively. Our
experiments show that they both can process the MKDNN
query effectively. However, due to the high cost of query
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recomputation, they still lacked computation efficiency. To
overcome this limitation, we further proposed an algorithm
that computes approximate kDNN sets at recomputation,
which successfully reduces the recomputation cost and
hence the overall query costs. We conducted a detailed cost
analysis for the three proposed algorithms and extensive
experiments to evaluate their performance. The results con-
firmed our cost analysis and the advantages of the proposed
algorithms over the baseline algorithm.
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