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Abstract—We study the problem of finding the shortest route between two locations that includes a stopover of a given type. An example scenario

of this problem is given as follows: “On the way to Bob’s place, Alice searches for a nearby take-away Italian restaurant to buy a pizza.” Assuming

that Alice is interested in minimizing the total trip distance, this scenario can be modelled as a query where the current Alice’s location (start) and

Bob’s place (destination) function as query points. Based on these two query points, we find the minimum detour object (MDO), i.e., a stopover

that minimizes the sum of the distances: (i) from the start to the stopover, and (ii) from the stopover to the destination. In a realistic location-based

application environment, a user can be indecisive about committing to a particular detour option. The user may wish to browse multiple (k) MDOs

before making a decision. Furthermore, when a user moves, the kMDO results at one location may become obsolete. We propose a method

for continuous detour query (CDQ) processing based on incremental construction of a shortest path tree. We conducted experimental studies to

compare the performance of our proposed method against two methods derived from existing k-nearest neighbor querying techniques using real

road-network datasets. Experimental results show that our proposed method significantly outperforms the two competitive techniques.

Index Terms—Continuous queries, spatial network, spatial databases

1 INTRODUCTION

Location-based services allow users to search nearby facilities

and find the shortest route between two locations. In many

cases, a user, who is travelling to a specific destination, may

be interested in finding a stopover that does not introduce

significant costs to the trip. An application scenario can be

given as: “On the way to Bob’s place, Alice searches for

a nearby take-away Italian restaurant to buy a pizza.” One

approach to addressing the problem in this scenario is: (1) to

calculate the shortest path from Alice’s location qs to Bob’s

place qe; (2) to find the restaurant nearest to that path [4], [27].

In Figure 1, the shortest path from qs to qe is highlighted in

grey. Objects a, b, and c represent restaurants that satisfy the

search criteria. The object nearest to the shortest path is b,

which incurs a deviation of 4 units from the shortest path and

an overall trip distance of 21 units. Although this approach is

aimed at finding the object residing closest to the route, we

argue that it does not necessarily produce the overall shortest

path. This is because, this approach uses the deviation from a

precomputed shortest path rather than the overall trip distance.

To address this problem, we formulate a new query type,

called the detour query, which uses the trip distance as

the optimization measure. Given a set D of detour objects

(stopovers), a starting location qs and an end location qe, the

detour query returns a minimum detour object (MDO). An

MDO is an object p in D that minimizes the TRIPDIST (the

sum of: (i) the distance from qs to p, and (ii) the distance

from p to qe). Figure 1 illustrates an example of the detour

query where the user wishes to travel from qs to qe, the MDO

in this scenario is a, which provides the TRIPDIST of 15 units

(6 units shorter than the solution from the previous approach).

Fig. 1. Minimum detour object with respect to a starting

point qs and an end point qe

In order to provide support for realistic location-based

applications, we tackle the aforementioned problem from two

aspects. The first aspect is the ability to browse and to compare

multiple results. By displaying k MDOs at a time, we allow

a user to browse and to select the option with which they

are most satisfied. In Figure 1, for example, the 2 MDOs

with respect to qs and qe are 〈a, b〉. Although a provides

the smallest TRIPDIST, b can be more appealing in terms of

food quality or prices.

The second aspect is continuous monitoring of k MDOs.

Ongoing kMDO monitoring provides users who wish to take

time browsing query results with up-to-date information in

the same manner as other continuous spatial queries [3], [4],

[28]. A user may browse to gather information without an

urgent need to commit to a particular decision [1]. As a result,

browsing users usually take more time to make decisions than

users who are searching for something specific [1], [2], [14],

[25]. An application scenario where browsing applies is given

as “on the way to Bob’s party, Alice is consulting Bob whether
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she should drop by an Italian restaurant and purchase take

away pizzas to bring to the party”. Making a detour decision in

this scenario can be an ongoing process. It involves Alice and

Bob collaboratively browsing possible detour options. Using

CDQ, Alice could obtain results and discuss them with Bob.

CDQ also allows Alice to inform Bob when results change

and ensures that they always have up-to-date information to

help make a detour decision whenever they are happy.

A straightforward approach to solving the continuous detour

query (CDQ) problem is to evaluate the kMDO at each

intersection along the trajectory. Specifically, we may consider

the TRIPDIST, (DIST(qs,p) + DIST(p, qe)), as an aggregate

distance function [19] with two query points qs and qe. Then

we search for k objects with the minimum TRIPDISTs for the

give locations of qs and qe. Since the starting location qs
changes over time, this approach incurs repetitive evaluation

of network distances. We use this method as one of the

comparators in our experiments.

In this paper, we propose a CDQ solution which incre-

mentally evaluates the kMDO results at different intersections

according to the TRIPDIST measure. Consequently, repetitive

distance evaluation is avoided.

The contributions of this paper are summarized as follows.

• We formalize the problem of continuous evaluation of k
MDOs for a moving query and a fixed destination in a

spatial network.

• We propose a novel solution to the CDQ problem that:

(i) is capable of handling multiple MDOs, (ii) does not

require access to all data objects, and (iii) does not incur

repetitive distance evaluation as the query point moves.

• We conduct extensive experiments with a real road

network dataset and realistic application scenarios. Our

experimental results show that our proposed method

significantly outperforms a competitive method derived

from the aggregate k nearest neighbor (AkNN) querying
domain [19], [26].

The rest of the paper is organized as follows. Section 2

presents the problem setting. In Section 3, we discuss related

work, i.e., nearest neighbor (NN) queries in spatial networks

and route planning queries. Section 4 presents background

knowledge on the Dijkstra’s algorithm and Voronoi diagrams

which will be needed for our explanations. In Section 5, we

describe our proposed solution. A competitive solution and

discussion are presented in Sections 6 and 7, respectively.

In Section 8, we report experimental results. This paper is

concluded in Section 9.

2 PROBLEM FORMULATION

A spatial network G(N,E) is represented by a set N of nodes

(intersections) and a set E of edges (road segments). For

any given two points p1 and p2 on G(N,E), the distance

DIST(p1,p2) is the distance via the shortest path from p1 to

p2. For ease of exposition, we use undirected graphs in our

presentation, which means that G(N,E) satisfies symmetry

and triangle inequality among the other metric space condi-

tions.1 Notations frequently used in this paper are summarized

in Table 1.

TABLE 1

Frequently used notations

Notation Meaning

G(N,E) Spatial network.
EDGE(ni,nj ) Edge that connects ni to nj .

D Set of data objects represented as points.
q Moving query point.
qs Start location.
qe End location.

PATH(p1,p2) Shortest path from p1 to p2.
DIST(p1,p2) Length of PATH(p1,p2).

TRIPDIST(qs,p, qe) DIST(qs,p) + DIST(p, qe).
MDO Minimum detour object.
k Number of resultant objects requested.

kMDO List of k MDOs ranked using TRIPDIST.

We first define the detour query as a query that returns the

MDO, and also give the definition of MDO as follows.

Definition 1 (Minimum Detour Object (MDO)): Given a

set D of data objects in a spatial network G(N,E), the MDO

is the object p in D with the smallest TRIPDIST(qs,p, qe),
where qs and qe represent the coordinates of start and end

locations, respectively.

Based on this MDO definition, the kMDO is defined as a

sorted list of k detour objects with the smallest TRIPDISTs.

Second, our proposed query is defined as follows.

Definition 2 (Continuous Detour Query (CDQ)): Given a

set D of data objects, a moving query point q and a destination

qe in G(N,E), the CDQ query continuously finds the kMDO

with respect to a q and qe.

3 RELATED WORK

3.1 NN Queries in Spatial Networks

Papadias et al. [20] introduced two frameworks for the spatial-

network kNN query: the incremental euclidean restriction

(IER) and incremental network expansion (INE). IER applies

the property that the Euclidean distance between any two

network nodes is a lower bound of their network distance

to prune the search space. INE performs network expansion

similar to the Dijkstra’s algorithm [9] from the query point

and examines data objects in the order they are encountered.

They showed that INE performs better than IER in general.

As an optimization of IER, Deng et al. [8] proposed

incremental lower bound constraint (LBC). The LBC method

calculates distance lower bounds of objects for pruning pur-

poses. Hence, the workload from network distance calculation

is greatly reduced.

Kolahdouzan and Shahabi [10] presented a Voronoi-based

network nearest neighbor (VN3) approach to evaluate the kNN
query by decomposing the data space using the first-order

network Voronoi diagram with respect to data objects. Finding

the k NNs of a query point q is done by: (i) identifying the first

1. In the formulation of our algorithms, however, the distance function
DIST(, ), as well as, the notations EDGE(,) and PATH(,) are considered
directional. Our proposed method is therefore applicable to directed graphs,
where the symmetry condition does not hold.
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TABLE 2

Queries and techniques related to the continuous detour query

Technique Optimization Goal Temporality Number of Results Global Access

TPQ [13] Trip Distance Snapshot Multiple No
OSR [23] Trip Distance Snapshot Multiple No

OSR with AWVD [24] Trip Distance Continuous Single Yes
IRNN [27] Deviation Snapshot Multiple No

PNN Monitoring [4] Deviation Continuous Multiple No
Road Network AkNN [26] Trip Distance Snapshot Multiple No

Road Network Group kNN [21] Trip Distance Snapshot Multiple Yes
IkSPT (Proposed) Trip Distance Continuous Multiple No

NN using the Voronoi diagram; (ii) deriving the subsequent

NNs from neighboring Voronoi cells. Other precomputation-

based techniques include kNN algorithms [7], [22] that use

precomputed shortest path information stored in quadtrees and

grid-based data structures.

Next we discuss continuous NN (CNN) problems in spatial

networks. In this paper, we consider the setting of moving

query objects and stationary data objects. We omit discussion

on another class of CNN techniques [7], [15] which address

problems in the setting of moving data objects.

Kolahdouzan and Shahabi [11] proposed the upper bound

algorithm (UBA) for continuous kNN queries in a spatial

network. The algorithm retrieves (k + 1) NNs with respect

to a given location and calculates an upper bound. This

upper bound is used to eliminate kNN computations between

locations that kNN does not change.

Cho and Chung [5] proposed a continuous kNN technique

that performs snapshot kNN queries at the intersections on the

query path. They showed that kNN results between any two

intersections can be inferred from those of the intersections.

They also formulated an algorithm to find points where kNN
changes for a predetermined query trajectory.

Nutanong et al. [16] proposed a technique called the V*-

diagram. In addition to the regular k NNs with respect to a

given query point, their technique retrieves x auxiliary objects.

The value of x is generally in the same order of magnitude

as k. Retrieval of these auxiliary objects provides additional

search scope to allow the query point to move while retaining

enough information to continuously produce kNN results. As

a result, the access cost is reduced.

These NN techniques are aimed at finding an object with

the smallest distance with respect to a single query point.

Using the NN query to solve the detour query problem (by

assigning the starting location to the query point) may result

in an impractical route, especially when the nearest object is

in the opposite direction to the destination. For example, in

Figure 1, the nearest restaurant with respect to qs is c, which

provides the TRIPDIST greater than those of a and b.

3.2 Route Planning Queries

Our kMDO monitoring problem can be categorized as a route

planning problem. Specifically, we use the term route planning

to refer to problems of finding a route through multiple des-

tinations with respect to given routing requirements. Queries

and techniques closely related to our problem are summarized

in Table 2, where each is categorized by: (i) optimization

goal: the distance measure it aims to minimize; (ii) tempo-

rality: whether it produces snapshot or continuous results;

(iii) number of results: the number of resultant objects

produced/monitored; (iv) global access: whether it incurs

access to all objects and nodes in the dataset. For example,

to produce a kMDO result for one location, a global-access

method examines all data objects and network nodes in the

entire network.

The last row displays our proposed technique, incremental

order-k shortest path tree (IkSPT). To illustrate how our

proposed technique fits into the existing literature, the table

also shows the differences between existing techniques and

ours. For example, TPQ [13] and OSR [23] are snapshot

queries, while the continuous OSR monitoring method [24]

can handle a single result at a time and requires access to all

objects to construct a Voronoi diagram. The PNN monitoring

technique [4] aims to minimize the deviation from a dynam-

ically changing path instead of minimizing the TRIPDIST.

In summary, none of these existing techniques can monitor

multiple CDQ results in a spatial network. Detailed discussions

of these queries and techniques are given as follows.

Li et al. [13] proposed the trip planning query (TPQ). Given

a list L of types of objects, the TPQ finds the shortest route

that includes objects of those types in L with respect to given

start and end points. For example, a user can be interested in

visiting a post office and a gas station before going to work.

The TPQ finds the shortest route to work that includes a post

office and a gas station. A similar query, called the optimal

sequenced route (OSR) query, was proposed by Sharifzadeh

et al. [23]. Given a point q and a sequence S of object types,

the OSR query finds the route that starts at q that orderly

passes through object types in S, and minimizes the travelling

distance. The main difference between OSR and TPQ is that

OSR is ordered, while TPQ is not.

Sharifzadeh and Shahabi [24] presented a safe region-based

solution to the OSR query using the additively weighted

Voronoi diagrams (AWVD). In an AWVD, each generator

point pi is the location of the first visited object of each

possible route Ri and the associated weight wi is calculated

from the travelling distance between the first and the last

objects. The boundary between the AWVD cells of two routes

R1 : (p1, w1) and R2 : (p2, w2) is a hyperbolic curve,

‖v 2 p1‖ + w1 = ‖v 2 p2‖ + w2. That is, R1 and R2

provides the same total travelling distance with respect to

the starting location. Since associated weights wi can be any
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positive value, this technique can also be applied to TPQ.

Yoo and Shekhar [27] proposed the in-route nearest neigh-

bor (IRNN) query. The IRNN query finds a stopover that min-

imizes a deviation from a given path. Since a user can deviate

from the path via only a node, this becomes a closest pair

problem [6] between two sets of locations: the set of possible

stopovers, and the set of nodes along the preferred path.

Chen et al. [4] studied the problem of path nearest neighbor

(PNN) for a moving query point q. Their studies include

algorithms to maintain the shortest path from q to a fixed

destination; and to monitor k PNNs, i.e., the k objects with

the minimum deviations from the shortest path.

Based on the INE and IER frameworks [20], Yiu et al. [26]

proposed a spatial-network variant of the aggregate kNN
(AkNN) query [19]. The AkNN query retrieves k objects with

the smallest aggregate distances to a set of query points.

Given a start qs and destination qe in an undirected graph,

the aggregate distance is equivalent to TRIPDIST when the

aggregate function is SUM and the query set is {qs, qe}. We

adopt the principle of AkNN querying and the INE framework

to formulate a comparator (in Section 6).

Safar [21] proposed an algorithm to find group k nearest

neighbors in a spatial network. That is, a set of k objects that

minimize the sum distances from a given query set. Similar

to the VN3 approach [10], the algorithm utilizes the network

Voronoi diagram and precomputed distances.

4 PRELIMINARIES

4.1 Network Distance Calculation

This subsection provides background understanding of net-

work distance calculations. Given two points x and y in

a network/graph, Dijkstra [9] introduced an algorithm to

calculate the shortest path from x to y based on the concept

of best-first graph traversal. Specifically, to find the shortest

path PATH(x,y), the algorithm uses y as a reference point and

incrementally examines surrounding nodes until x is covered,

or vice versa. This algorithm is also known as “distance scan”

since all nodes with distances smaller than that of x have to

be visited. In addition, one may resume the computation from

where it is terminated to obtain the shortest path from y to

any node farther than x.

In our problem setting, since we have to compute the dis-

tances from multiple detour objects to a single destination qe,

we further explain the Dijkstra’s algorithm using Figure 2. To

calculate PATH(n3, q), the algorithm incrementally discovers

surrounding nodes according to their distances to q. In this

example, n5 is discovered first with a distance of 1 unit. Next,

n4, n1 and n8 are discovered with distances of 7 (via n5),

8 (via q) and 8 units (via n5), respectively. The search halts

when n3 is discovered.

Figure 2 also shows that each of the nodes involved in the

search is associated with a label (q, d,nh) where q denotes

the reference point, d denotes the shortest distance, and nh

denotes the node from which the shortest distance is derived.

The shortest path from n3 to q can be obtained by recursively

traversing the next hop nh in the label (q, d,nh) until q is

reached. In this case, we obtain 〈n3,n4,n5, q〉 as the shortest

path. As displayed in Figure 2, a shortest path tree (where the

reference point q is the root) is formed by linking the next

hop nh of all nodes involved in the calculation.

Fig. 2. End product of the Dijkstra’s algorithm where each

node contains a label (q, d,nh) denoting the reference

point q, the distance d to q, and the node nh from which

the distance d is derived, respectively.

4.2 Voronoi Diagrams

This subsection provides discussion on variants of the Voronoi

diagram as background knowledge for our proposed method.

The most basic form of Voronoi diagrams [17] is the Voronoi

diagram (VD) in Euclidean space with the order value of

1. Figure 3 shows the VD of 6 data objects as generators

in Euclidean space (the underlying network connectivity is

ignored). Each generator is associated with a cell in which the

generator dominates. For example, the Voronoi cell VC(f ) is a

region containing points v such that the distance from v to f

is not greater than the distance from v to any other generator.

The boundary between two Voronoi cells pi and pj is defined

by the bisector BT(pi,pj), i.e., a set of locations equidistant

to pi and pj . For example, the boundary of VC(f ) consists

of the bisectors BT(f ,a), BT(f , c), BT(f ,d) and BT(f , e).
This technique allows the NN problem to be treated in the

same manner as a point-location problem. That is, locating

the Voronoi cell in which the query point belongs.

Fig. 3. Voronoi diagram in Euclidean space

Figure 4 displays a technique to construct a network2 VD,

where three boundaries (bisectors) of a sample cell VC(f ) are

marked as crosses. A network VD can be constructed using

2. The qualifier “network” is omitted when context is clear.
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the shortest path tree (SPT) technique [18]. The technique

is based on the best-first search principles similar to that of

the Dijkstra’s algorithm [9]. Specifically, by replacing a single

reference point with the objects (generators), we can use the

Dijkstra’s algorithm explained in Section 4.1 to compute SPTs

of multiple objects. An end product is a set of SPTs where each

is associated with its nearest generator. Boundaries of Voronoi

cells are obtained using the distance information embedded in

each node to find points equidistant to two generators.

Figure 4 shows a forest of shortest path trees constructed

based on the generators {a, ...,f}. We consider this forest

as a single tree when each branch is associated with its

nearest generator and each generator is tied to a root. For

example, the branch of generator a has {n4, ...,n7}. The

boundary between VC(a) and VC(f ) on EDGE(n5,n8) is

calculated based on DIST(n5,a) and DIST(n8,f), which are

7 and 8 respectively. Therefore, the point on EDGE(n5,n8)

that makes a equidistant to f is PNT(n5,n8,2), the point 2

units into EDGE(n5,n8) (measured from n5). This point is

shown as the cross on EDGE(n5,n8). A Voronoi cell can

be obtained by applying this calculation to edges adjacent

to its generator and the surrounding generators. For example

VC(f ) (the region enclosed by dotted lines) is bounded by the

boundaries between f and its three neighboring generators a,

c and e. This technique can be used to provide answers for

NN queries in a spatial network. For example, given a VD and

an SPT for restaurants in a road network, the nearest restaurant

can be obtained by locating the Voronoi cell that contains the

user’s location, while the SPT provides the shortest route to

that restaurant.

Fig. 4. Shortest path trees and a Voronoi cell

In the previous example, we assume that the preference for

a particular restaurant is decided by the distance solely. The

additively-weighted VD (AWVD) [18] is devised to address NN

problems with an offset measure. For example, restaurants can

be offset by their food prices to increase the desirability of

cheaper restaurants. In the CDQ problem, each data object

is associated with an offset derived from the distance to

one common destination. However, the AWVD construction

technique [18] is inapplicable to the CDQ problem because

it only handles a single resultant object, and requires global

access to network nodes and data objects. This technique forms

the basis to describe our proposed method in the next section.

Figure 5 provides an example of the SPT technique using

the additive weight concept. Figure 5(a) presents the order

in which the nodes are included in the SPT. The x-axis
represents the TRIPDIST measure. The SPT has 6 branches,

where each branch corresponds to each of the six generators

a to f . The initial position along the x-axis of an SPT branch

corresponds to the additive weight (the distance from qe) of

the corresponding generator. For example, the additive weight

of a is 13 units so its initial position is 13. The first node to be

included in SPT is n6 providing the TRIPDIST of 14. The SPT

incrementally expands according to the additively weighted

distance to the generators. The process stops when all nodes

are labelled. In this example, the last node labelled is n19.

(a) Shortest path tree with additive weights

(b) Additively weighted VD

Fig. 5. Construction of an AWVD using the SPT tech-

nique

After the SPT is constructed, the boundaries between

Voronoi cells are calculated by finding edges EDGE(ni,nj)

where ni and nj belong to two different generators.

In Figure 5(b), the boundary between VC(b) and VC(d)

on EDGE(n1,n2) is the point location vbd such that

TRIPDIST(vbd, b, qe) is equal to TRIPDIST(vbd,d, qe). In

this case, vbd is PNT(n1,n2,12). This boundary is also shown

as the extension to n2 on the branch of b and the extension

to n1 on the branch of d in Figure 5(a).
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5 PROPOSED SOLUTION

In this section, we present our proposed solution, incremental

order k shortest path tree (IkSPT) in the following steps. First,

we generalize the SPT technique to the order-k SPT (kSPT).
Second, we show how kSPT construction can be done in an

incremental manner. Finally, we present a method to compute

the kMDO of any point in the network from a kSPT.

5.1 Order-k Shortest Path Tree

In this subsection, we present a method to construct a kSPT
by introducing overlaps between SPT branches. The kSPT
branches are overlapped in such a way that each node appears

in the tree exactly k times in k different branches. We

first define the network data structure used by our proposed

method. A network/graph is represented using the adjacency-

list format, i.e., a list of nodes where each node entry contains

information regarding its adjacent nodes. A data structure

“Node” is defined as follows.

Definition 3 (Node structure): The structure of a node ni

contains the following attributes:

• ID: the node identification.

• Adjacency list (AdjList): a list of edges to/from imme-

diate neighbors and associated weights. (For a directed

graph, an adjacency list may comprise three edge types:

incoming, outgoing and bidirectional.)

• Label list (LabelList): a list of (at most) k labels. For

each label (p, d,nh) in the label list of ni,

– p represents a detour object,

– d represents TRIPDIST(ni,p, qe), and
– nh represents the next hop in order to get to p.

• Type: a node type is “Labelable” by default and becomes

“Permanent” upon completion of k labels.

Figure 6 shows a 2SPT of the network in Figure 5(b). The

figure also shows the order in which nodes are processed

according to the TRIPDIST measure. Each node in the 2SPT

consists of two labels: first and second. For example, n6

appears twice in the 2SPT in the branches of generators a

and f , respectively. The first label of n6 corresponds to the

generator a and TRIPDIST(n6,a, qe) of 14 units. The second

label of n6 corresponds to f and the TRIPDIST of 20 units.

Note that the portion containing the first labels (highlighted in

grey) is identical to the order-1 SPT shown in Figure 5(a).

We describe kSPT construction steps in Algorithm 1. The

algorithm accepts a set D of objects, a value of k, a graph

G(N,E) and a destination qe as input. The output kSPT
is provided as G(N,E) with kMDO information embedded.

Specifically, we introduce k labels for each ni in N . The

initialization (Lines 1 to 10) includes the following steps.

• First, a priority queue PQ is initialized. A priority-queue

entry is a tuple (n,p, d,nh), where n is the node to

which the entry corresponds, and the other three elements

p, d, and nh form a labelling candidate for an entry in

n.LabelList. Entries in PQ are ranked according to the

labelling distance d.
• Second, for each object p, we create a node entry np

and insert it into G(N,E) where affected edges in E are

accordingly modified (Lines 3 and 4). We create a priority

Fig. 6. Order-k SPT with k of 2

queue entry for np with the associated detour object p

and the labelling distance d of DIST(np, qe). The next

hop nh (shown as a dash “2” sign) is inapplicable in this

case since np is already at p. The entry (np,p, d,2) is
inserted in to PQ (Line 7).

• Third, for each network node, we create an empty label

list and set the node type to “Labelable” (Lines 8 to 10).

Best-first search is handled by the while loop (Lines 11

to 20). The first step of each iteration is to dequeue the

head entry (n,p, d,nh) from PQ (Line 12). Since we are

interested in only the first k labels of each node, the entry

is ignored if the node’s label list already contains k labels,

i.e., the node is “Permanent”. In addition, to ensure that each

node is associated with k unique MDOs, the entry is also

ignored if there exists an entry with Object p as the associated

detour object in the label list. Otherwise, a label (p, d,nh)
is added to the node’s label list (Line 14). The node type

becomes permanent if this label is the k-th entry in the label

list (Lines 15 and 16). In Lines 17 to 20, for each node na

such that there exists an edge that connects na to n, we create

a PQ entry ea, (na,p, d+ ω,n), where

• na is the node to which this entry corresponds;

• p is the associated detour object;

• (d+ω) is the labelling distance calculated by adding the

current labelling distance d to the weight of EDGE(na,n);

• n is the node from which the labelling distance is derived.

The entry ea is then inserted into PQ. The while loop

continues until PQ is exhausted, i.e., every node is labelled k
times. Finally, the graph G(N,E) with k labels on each node

is returned as output (Line 21).
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Algorithm 1: Construct-kSPT(D, k, G(N,E), qe)

input : Dataset D, k, Graph G(N,E), Destination qe

output: Labelled Graph G(N,E)

Initialize Priority Queue PQ;1

for each (object p in D) do2

Node np ± Create a network node from p;3

G(N,E).Insert(np);4

Distance d ± DIST(np, qe);5

PQEntry e ± Tuple (np,p, d,2);6

PQ.Insert(e);7

for each (n in G(N,E)) do8

n.LabelList ± Create an empty list of labels;9

n.Type ± Labelable;10

while PQ is not empty do11

PQEntry (n,p, d,nh) ± PQ.DequeueHead();12

if n.Type is Labelable and no existing label with p then13

n.LabelList.Add((p, d,nh));14

if n.LabelList.Length is k then15

n.Type ± Permanent;16

for each Node na in n.AdjList that can immediately17

reach n and na is Labelable do
Distance ω ± EDGE(na,n).Weight;18

PQEntry ea ± Tuple (na,p, d+ ω,n);19

PQ.Insert(ea);20

return G(N,E);21

Let us now consider the first few steps of the algorithm, in

the context of the example in Figure 6. After the initialization

steps, the priority queue PQ has the following initial entries:

〈(a,a, 13,2), (f ,f , 15,2), (d,d, 16,2),

(e, e, 26,2), (c, c, 27,2), (b, b, 32,2)〉.

The first entry retrieved from PQ is (a,a, 13,2). As a

result, Node a is labelled with a itself as the associated detour

object and the labelling distance of 13. Next, from the two

nodes adjacent to a, n6 and n7, two entries (n6,a, 14,a)
and (n7,a, 18,a) are created, respectively. These entries are

inserted into PQ resulting in the following objects in PQ:

〈(n6,a, 14,a), (f ,f , 15,2), (d,d, 16,2),

(n7,a, 18,a), ..., (b, b, 32,2)〉.

The second retrieved entry (n6,a, 14,a) has n6 as the

corresponding node, hence we apply the label (a, 14,a) to

n6. The same process continues until PQ is exhausted. The

algorithm returns G(N,E) with k labels associated to each

node as displayed in Table 3.

The drawback of Algorithm 1 is that it requires access

to all data objects and nodes in the data space. This global

access requirement can be disadvantageous especially in a

large network. In the next subsection, we show how this draw-

back can be mitigated. To better illustrate this drawback in

comparison to non-global access methods, we use Algorithm 1

as a competitor in the experimental studies.

TABLE 3

First and second labels of network nodes (with some

entries omitted)

Node First Label Second Label

a (a, 13,−) (f , 21,n9)
b (b, 32,−) (a, 34,n1)
c (c, 27,−) (f , 39,n17)
d (d, 16,−) (a, 36,n2)
e (e, 26,−) (d, 38,n20)
f (f , 15,−) (a, 19,n6)

..
.

..
.

..
.

n6 (a, 14,a) (f , 20,n9)

..
.

..
.

..
.

n19 (c, 37,n17) (f , 39,n17)
n20 (d, 29,d) (e, 35, e)

5.2 Incremental kSPT Construction

We now present our CDQ solution which incrementally re-

trieves data objects and computes node labels as the monitor-

ing process progresses. The computation cost of a kSPT can be

greatly reduced by exploiting the fact that the offset assigned

to each object p is the distance from p to the destination

qe. Hence, objects that are far away from qe are likely to be

involved in the computation later than objects nearer to qe. For

example, in Figure 6, when applying the first label (a, 14,a)
to n6, Objects b, c and e cannot affect the results since

their distances to qe are greater than the labelling distance

of 14. Based on this property, we devise a mechanism which

is incremental in two aspects:

• Object retrieval: through monitoring of the labelling

distance and incremental retrieval of data objects;

• Node labelling: through an incremental labelling process,

which halts when a desired label list is obtained and

resumes when more label lists are required.

As a result, we eliminate the global access requirement in

terms of both data objects and network nodes.

We revisit the running example in Figures 5 and 6 to

elaborate the concept of incremental kSPT construction. As

shown in Figure 7, the query point q is initially at n10 (and

is travelling towards n7). The kMDO results of this initial

location of q can be obtained from the label list of n10.

Fig. 7. Starting location of the query point q

We now describe how the label list of n10 can be obtained.

As the labelling process progresses, detour objects are incre-

mentally retrieved according to their distances to qe. The scope

of this object retrieval (the distance from the farthest retrieved

object to qe) is denoted as a search radius r. The value of

r indicates whether a node is safe to label or more detour
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(a) r=DIST(a, qe) (b) r=DIST(f , qe) (c) r=DIST(d, qe) (d) r=DIST(e, qe)

Fig. 8. Incremental kSPT construction with k of 2

objects are needed. Figure 8 presents a stepped explanation to

how the k labels of n10 can be computed though incremental

object retrieval and incremental node labelling.

• In Figure 8(a), the first retrieved object (the object nearest

to qe) is a. The search radius r is set to DIST(a, qe). The
only one node that can be labelled with this r value is

Node a itself. After the labelling, we move on to consider

the next object.

• In Figure 8(b), the next object nearest to qe is f . The

search radius r is updated to DIST(f , qe), which allows

labelling of n6 and Node f itself, respectively.

• In Figure 8(c), d is retrieved and the value of r is updated
DIST(d, qe). Node d is the only labelled node under this

r value.

• In Figure 8(d), e is retrieved. The value of r is updated to

DIST(e, qe), which allows the nodes in the grey region to

be labelled. The labelling process halts upon completion

of the second label of n10. The figure also shows that

n10 appears first in the branch of f and again in the

branch of a. We can therefore infer that the kMDO list

of n10 is 〈f ,a〉.
Next, we show how a subsequent label list can be obtained

as the query point moves away from the initial location in

Figure 7. Assume that now the query point is at a location

on EDGE(n10,n7). In order to produce the kMDO results for

this location, we need the label list of n7 in addition to that

of n10. Figure 9 shows that the second label of n7 can be

obtained by resuming the labelling process halted after the

completion of the second label of n10. The figure also shows

that we are only required to label n13 and n7 in order to

obtain the second label of n7.

Algorithm 2 provides detailed steps of how the label list

of a node ni is obtained. The first step is to check whether

the k labels of ni already exist, in which case the labels are

returned right away (Line 1 to 3). For example, after obtaining

the label list of n7 in Figure 9, the label lists of nodes n6, n9,

n10 and n12 can be obtained without further graph traversal.

If the requested label list is otherwise incomplete, we proceed

to the main while loop (Lines 4 to 26). The main while loop

Fig. 9. Incremental kSPT construction with k of 2 (cont.)

in Algorithm 2 is similar to that in Algorithm 1. The following

modifications are applied to make Algorithm 2 incremental.

• The first modification is the search radius check (Lines

6 to 12), which ensures that the value of r is not

smaller than the labelling distance d. Specifically, until
r is greater than or equal to d, the following steps

are repeated:

(i) retrieving the next NN with respect to qe (Line 7)3;

(ii) performing graph modification and priority queue

insertion (Lines 8 to 12) similar to Algorithm 1;

(iii) setting the search radius r to the distance from that

object to qe (Line 12).

• The second modification is deferral of node initialization

(Lines 15 to 17).

• The final modification is a halt to the node la-

belling process after the requested node has k labels

(Lines 25 and 26).

3. We omit presentation of a marginal case where the dataset is exhausted,
in which case we set r to infinity and break the loop.
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Algorithm 2: GetLabelList(NodeID)

environment: Dataset D, k, Graph G(N,E), PQ, r
input : NodeID
output : LabelList 〈l1, ..., lk〉

n ± GetNode(NodeID, G(N,E));1

if n has been initialized and n.Type is Permanent then2

return n.LabelList;3

while PQ is not empty do4

PQEntry (n,p, d,nh) ± PQ.Head();5

while r < d do6

Object p ± GetNextNN(qe,D);7

Node np ± Create a network node from p;8

G(N,E).Insert(np);9

PQEntry e ± Tuple (np,p,DIST(p, qe),2);10

PQ.Insert(e);11

r ± DIST(p, qe)12

PQEntry (n,p, d,nh) ± PQ.DequeueHead();13

if n.Type is Labelable and no existing label with p then14

if n is not initialized then15

n.LabelList ± Create an empty list of labels;16

n.Type ± Labelable;17

n.LabelList.Add((p, d,nh));18

for each Node na in n.AdjList that can immediately19

reach n and na is Labelable do
Distance ω ± EDGE(na,n).Weight;20

PQEntry ea ± Tuple (na,p, d+ ω,nh);21

PQ.Insert(ea);22

if n.LabelList.Length is k then23

n.Type ± Permanent;24

if n.ID = NodeID then25

return n.〈L1, ..., Lk〉;26

Algorithm 3: IkSPT-CDQ (D, k, G(N,E), qe)

environment: Trajectory T containing locations (ni,nj , α)
input : D, k, G(N,E), qe

output : Reporting kMDO results at each location

Initialize Priority Queue PQ;1

p ± GetNN(qe,D);2

r ± DIST(p, qe);3

Node np ± Create a network node from p;4

G(N,E).Insert(np);5

PQEntry e ± Tuple (np,p,DIST(np, qe),2);6

PQ.Insert(e);7

while More Location (ni,nj , α) in T do8

LabelList Li ± GetLabelList(ni.ID);9

LabelList Lj ± GetLabelList(nj .ID);10

Results A ± GetResults(EDGE(ni,nj), Li, Lj , α);11

Report(A);12

Algorithm 3 provides detailed steps of how kMDO monitor-

ing can be conducted using Algorithm 2. Algorithm 3 has the

following parameters: a dataset D, a k value, a road-network

graph G(N,E), and a destination qe. The initialization steps

(Lines 1 to 9) include:

• initializing the priority queue PQ;

• retrieving the nearest object to qe as the initial object p,

and inserting it into G(N,E) and PQ;

• setting the search radius r to DIST(p, qe);

The kMDO monitoring process is conducted in the while

loop (Lines 9 to 12). In the context of our running example,

Algorithm 3 uses Algorithm 2 to produce the label lists

of n10 and n7: 〈(f , 19,f), (a, 21,n7)〉 and 〈(a, 18,a),
(f , 22,n10)〉, respectively. These label lists are then used to

produce the kMDO results for the current location of the query

point (Line 11). These results are then reported to the user

(Line 12). In the next subsection, we show how the kMDO of

any location in G(N,E) can be derived from such label lists.

5.3 Derivation of kMDO from Node Labels

In the previous subsection, we have shown that the kMDO

of any node in the network can be incrementally obtained

using Algorithm 2. We now present a method to calculate the

kMDO list of any location on an edge. For a query point q on

a bidirectional edge EDGE(ni,nj), the kMDO list of q may

comprise objects from the lists of both end. (For a directional

edge EDGE(ni,nj), the kMDO list of q is the same as that of

ni if and only if q is exactly at ni. Otherwise, the kMDO list

is the same as that of nj , since q cannot leave EDGE(ni,nj)

without passing nj .
4)

We use Figure 10 to illustrate how the kMDO list can be

obtained in such a case. Let ω denote the edge’s weight and

α denote the distance from ni to the query point q along the

edge. In this example, the query point q is on EDGE(n10,n7)

with α of 0.5 units and ω of 3.0 units. The (order sensitive)

kMDO lists of n10 and n7 are 〈f ,a〉 and 〈a,f〉, respectively.
For each unique object p in those lists, TRIPDIST(q,p, qe)
can be obtained by comparing the distance via n10 and the

distance via n7. Specifically, we select the node that provides

the minimum distance of (TRIPDIST(n10,p, qe) + α) and

(TRIPDIST(n7,p, qe) + ω 2 α). Applying this principle to

a and f , we can see that:

• n10 provides the minimum distance of 19.5 units for f ;

• n7 provides the minimum distance of 20.5 units for a.

Fig. 10. Derivation of kMDO results from two label lists

Algorithm 4 provides a formal description of the result

derivation process. The input parameters are (i) the edge

EDGE(ni,nj) on which the query point resides, (ii) the two

labels Li and Lj of the end nodes, and (iii) the distance

offset α indicating the location of the query point relative

to ni. Lines 7 to 21 handle the case where EDGE(ni,nj)

is bidirectional. (In Line 1, we check whether the edge is

directional. If so, we return Li if the query point is right on

ni. Otherwise, Lj is returned, since ni is reachable only via

nj in this case.) For each unique object p from Li and Lj , we

compare the distance di via ni and the distance dj via nj . If

4. Assume no objects on EDGE(ni,nj ).
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there is no entry with p in Li, the distance di is infinity (i.e.,

ignored). This is because in such a case, the actual di cannot
affect the kMDO list of q. The same logic also applies to dj .
The minimum of di and dj forms TRIPDIST(q,p, qe). Next,
a label is created with the MDO of p, the labelling distance

of TRIPDIST(q,p, qe). The label is inserted into the list A.

After the TRIPDISTs of all unique objects are calculated, the

top k resultant labels in A are returned.

Algorithm 4: GetResults(EDGE(ni,nj), Li, Lj , α)

input : EDGE(ni,nj), LabelList Li, LabelList Lj ,
Distance α

output : LabelList 〈l1, ..., lk〉

if EDGE(ni,nj) is directional then1

if α = 0 then2

return Li3

else4

return Lj5

else6

Initialize a list A of resultant labels;7

for each unique object p from Li and Lj do8

Initialize di and dj to infinity;9

if there exists a label with p in Li then10

(p, d,nh) ± Label with p in Li;11

di ± d+ α;12

if there exists a label with p in Lj then13

(p, d,nh) ± Label with p in Lj ;14

dj ± d+ EDGE(ni,nj).Weight 2α;15

if di f dj then16

A.Insert(p, di, ni);17

else18

A.Insert(p, dj , nj);19

Sort(A);20

return Head(k, A)21

The correctness of Algorithm 4 is guaranteed by Lemma 1.

Specifically, the lemma states that the kMDO of a location

between two nodes of a bidirectional edge can be obtained

from the information given by the labels of those two nodes.

Lemma 1: Given an edge EDGE(ni,nj) and a common

destination qe, let Ai and Aj be the kMDO lists of ni and

nj , respectively. If an object p is one of the kMDOs of any

point v on EDGE(ni,nj), then p is a member of Ai and/or Aj .

Proof: We prove this lemma by showing that for any

object p that is neither a member of Ai nor Aj , there are at

least k objects r in Ai or Aj such that

TRIPDIST(v,p, qe) g TRIPDIST(v, r, qe).

For any point v on EDGE(ni,nj), TRIPDIST(v,p, qe) is

the minimum between (DIST(v,ni) + TRIPDIST(ni,p, qe))
and (DIST(v,nj)+TRIPDIST(nj ,p, qe)). We therefore split

derivation of TRIPDIST(v,p, qe) into two cases. First, if ni

provides a TRIPDIST less than or equal to that of nj , then

TRIPDIST(v,p, qe) = DIST(v,ni) + TRIPDIST(ni,p, qe).

Let pi be any object in Ai. If p is not in Ai, then

TRIPDIST(ni,p, qe) g TRIPDIST(ni,pi, qe).

This inequality implies that TRIPDIST(v,p, qe) must be

greater than or equal to that of any of the k objects in Ai.

Second, when nj provides a smaller TRIPDIST, the same

principle can be applied to show that TRIPDIST(v,p, qe) is

not less than that of any of the k objects in Aj .

These two cases imply that for any given point v on

EDGE(ni,nj), there must be at least k detour objects from

either Ai or Aj that provide TRIPDISTs smaller than or equal

to TRIPDIST(v,p, qe), and hence p can be safely ignored as

a query result at v.

Note that by considering data objects as network nodes, the

kMDO results of any location on EDGE(ni,nj) can be derived

from those of ni and nj . However, in a setting where such

graph modification is inapplicable, the same principle can still

be applied. In this case, to produce the k MDOs of any location

q on EDGE(ni,nj), we need to also consider detour objects

along EDGE(ni,nj) in addition to the kMDO results at the

end nodes.

We can observe that the kMDO of any location on an edge

EDGE(ni,nj) can be efficiently computed by comparing the

distances of entries in the label lists of ni and nj . Alterna-

tively, one may apply a kNN monitoring algorithm (e.g., the

split point calculation algorithm [5] or the incremental rank

update algorithm [12]) to identify points along EDGE(ni,nj)

where the kMDO changes. Using these split points, an edge

can be decomposed into intervals where each corresponds to

a particular kMDO. Consequently, we can replace repetitive

distance comparison and sorting operations by boundary check

and incremental update operations, respectively. Implementa-

tion of these techniques is independent of the proposed IkSPT
construction algorithm.

6 COMPETITIVE METHOD: INCREMENTAL

NETWORK EXPANSION

In this section, we formulate a competitive method based

on the existing concept of AkNN querying [19], [26]. In

this method, we apply the multiple query method [19] to

retrieve k MDOs with respect to a starting location qs and

a destination qe. We call this method INE-CDQ, since we use

the incremental network expansion (INE) principle to retrieve

(i) NNs from qs (objects p that minimize DIST(qs,p));
(ii) NNs to qe (objects p that minimize DIST(p, qe)).

The order in which these objects are retrieved depends on the

search coverage Cs with respect to qs and the search coverage

Ce with respect to qe. That is, the next NN with respect to

qs is retrieved if Cs is smaller than Ce and vice versa. Based

on these coverages, each retrieved object p is categorized into

two types.

• Candidate: p is discovered via both qs and qe.

• Pre-candidate: p is discovered via either qs or qe only.

The TRIPDIST of each candidate p is the sum of DIST(qs,p)
and DIST(p, qe), while a lower bound is used to represent the

smallest possible TRIPDIST produced by all pre-candidates.

Let ps and pe be the nearest pre-candidates discovered by

qs and qe respectively. A TRIPDIST lower bound L of all pre-

candidates is calculated by substituting the search coverages
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Cs and Ce for the unknown distances, i.e.,

L = MIN{DIST(qs,p) + Ce, Cs + DIST(p, qe)}.

Assume that all candidates p are maintained in a prior-

ity queue PQc, where entries are organized according to

TRIPDIST(qs,p, qe). The head entry of PQc is the next MDO

with respect to qs and qe if its TRIPDIST is smaller than the

lower bound L. Otherwise, the next NN has to be retrieved

in order to determine the next MDO. The process continues

until k MDOs are discovered.

Since this method constructs kMDO results based on a

specific query location, the results have to be reevaluated as

the query point qs encounters an unvisited node. However, we

can exploit the fact that qe is a fixed destination and reuse the

network expansion result for subsequent kMDO evaluations.

That is, all objects discovered via qe are cached and the SPT

with respect to qe is incrementally expanded per demand. As

a result, each node is visited by the network expansion with

respect to qe at most once.

Note that one can also modify TPQ and OSR to find k

MDOs with respect to a query location qs and a destination

qe by limiting the sequence length to 2, where (i) the first

element is a detour object p, and (ii) the second element is a

fixed destination qe. We can then find objects p that minimize

the total sequence length of (DIST(qs,p) + DIST(p, qe)). This
modification results with an approach comparable to AkNN.

7 DISCUSSION ON PROPOSED AND COMPETI-
TIVE METHODS

In this section, we discuss the advantages and drawbacks of

our proposed method IkSPT-CDQ (Algorithm 3), in compar-

ison to the following two competitive techniques.

• INE-CDQ: incremental network expansion around qs and

qe (as described in Section 6.)

• kSPT-CDQ: construction of an entire order-k shortest

path tree (as shown in Algorithm 1.)

INE-CDQ applies the incremental network expansion prin-

ciple to retrieve kMDO with respect to the current location

of the query point qs. Since such an expansion is query-

centered, the distances from qs to its surrounding nodes has

to be reevaluated from scratch when qs moves. As shown in

Algorithm 1 (kSPT-CDQ), we can avoid repetitive distance

evaluation by applying network expansion in a data-centered

manner. Specifically, network distances to a set D of data

objects are calculated by using each detour object p in D as

a center of expansion (where p is weighted by DIST(p, qe)).
Algorithm 1 terminates only when each node n is associated

with k detour objects p with the smallest TRIPDIST(n,p, qe).
As a result, kSPT-CDQ is disadvantageous to INE-CDQ when

the query locations are close to the destination in relative to

the size of the network.

In our proposed method, IkSPT-CDQ, we exploit a special

property of the CDQ problem where data objects are additively

weighted based on their distances to the destination qe. As

a result, the order in which nodes are visited by network

expansion is skewed towards qe. Based on this knowledge,

IkSPT-CDQ is formulated by allowing the labelling process

to halt when the requested node is complete and to resume

when more kMDO results are required. Therefore, the query

processing cost depends on the distance from the query

location qs to the destination qe. In this respect, IkSPT-CDQ
has a similar behavior to INE-CDQ. This is because, in order

to retrieve the first MDO with respect to given locations of

qs and qe, INE-CDQ has to consider at least objects in the

search space of

{v : DIST(qs,v) < d/2} * {v : DIST(v, qe) < d/2},

where d denotes DIST(qs, qe). However, IkSPT-CDQ does not

suffer from repetitive result evaluation, since kMDO results of

each node are obtained via data-centric expansion. To provide

a more comprehensive cost comparison between the three

methods, experimental results are reported in the next section.

8 EXPERIMENTS

This section presents experimental studies on the two com-

petitors, INE-CDQ and kSPT-CDQ, and our proposed method,

IkSPT-CDQ. Our experiments are conducted on a 2.66-GHz

Intel Core 2 Duo machine with 4.0 GB of main memory. All

algorithms are implemented in Java. As displayed in Figure 11,

we use a large road network representing main roads in and

around San Francisco. The network consists of 174,956 nodes

and has a network diameter of 16,824 units.

Fig. 11. Main roads around the San Francisco bay area

8.1 Experimental Setup

Our experimental setup is based on an application scenario

where a user at the starting location qs wishes to travel to a

location qe. The user also would like to monitor a list of k
MDOs within a set D of detour objects. After travelling for

l units, the user selects a detour object and stops monitoring

the k MDOs. Therefore, no further monitoring is needed and

the query can terminate.

We use two performance measures: (i) the total execution

time; (ii) the graph traversal cost. The total execution time is

measured as the amount of time a technique uses to process

one trajectory. The graph traversal cost is measured as the

number of times network nodes are accessed through kSPT
construction and network distance calculations.
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Our experimental studies include the following parameters:

• the monitoring distance l along the query trajectory,

• the distance d from the original query location of qs and

the destination qe,

• the number k of requested MDOs, and

• the relative density ρ of nodes with respect to objects.

Table 4 provides the details of these parameters. The default

values and ranges of these experimental parameters are derived

from the aforementioned application scenario. We assume that

a user (while moving) is capable of paying attention to only

a small number of MDOs so the range of k is set to [2, 10].

The range of ρ is set to [100, 500] to emulate the number

of nodes per point of interest (e.g., a restaurant or a hotel)

that matches the user’s preference. That is, in a network with

174,956 nodes, the number of objects is ranged from 350 to

1750 objects. We use a high number of nodes per object, since

data objects that match user’s preference are more realistically

represented this way. For example, there maybe hundreds of

restaurants of a particular cuisine and price range, although in

total there maybe thousands of restaurant in one city. 5

The range of d is set to [800, 4000] to represent typical

travelling distances in one city, e.g., 5% to 25% of the diameter

of the San Francisco network. The default kMDO monitoring

distance l and the default value of the distance d from the

origin to the destination are selected to emulate a user making

their detour decision early in their trip. That is, the l value

of 400 units and the distance d from qs to qe of 2,400

units correspond to the user making their detour decision after

travelling 1/6 of the distance to the destination qe. Assume that

the user intends to drive to a destination 30 miles away from

the origin and is travelling at a constant speed of 45 mph. The

detour decision is made within the first 6-7 minutes of the trip.

TABLE 4

Experimental parameters

Parameter Default Min Max Increment

l 400 0 800 200
k 6 2 10 2
d 2,400 800 2,400 800
ρ 300 100 500 100

We use two types of trajectories: directional and random.

For each type, we generate 10 instances as a query set.

Experimental results are reported as the average of results from

these trajectories. We used the same set of starting locations

qs for both types. A directional trajectory was generated as

the shortest path PATH(qs,qe) with a starting point qs. The

trajectory is terminated at the location v on PATH(qs,qe)

such that DIST(qs,v) is equal to l. A random trajectory was

generated as a sequence of sub-trajectories (where the end of

one sub-trajectory is the starting location of the next one).

Each sub-trajectory is a shortest path to a random destination

(independent of qe) and has a length of 100 units. The

5. Objects that do not match the user’s preference can be pruned during
data retrieval (Line 7 of Algorithm 2 and Line 2 of Algorithm 3). Hence, they
are not involved in kMDO labelling of nodes.

trajectory length l is measured as the total length of all sub-

trajectories. For example, a trajectory with a length of 400

units contains 4 sub-trajectories.

These two trajectory types represent two common cases.

First, a directional trajectory represents a case where the

directionality is absolute, e.g., a truck driver follows the

shortest path to a destination while keeping track of a pizza

place to get some food. Second, a random trajectory represents

a case where the directionality is weak, e.g., a tourist visits

sightseeing destinations while keeping track of supermarkets

to drop by before going back to her hotel.

8.2 Experimental Results

8.2.1 Effect of l on INE, kSPT and IkSPT

In the first set of experiments, we show the effect of the

monitoring distance l on the execution time and traversal cost

of the three methods. The value of l is ranged from 0 to 800

units. The l value of 0 corresponds to the query being used as

a snapshot query, i.e., finding an instantaneous result without

continuous monitoring. According to Figures 12 and 13, INE

is the best method when used for a snapshot query. However,

when the monitoring distance l increases, execution time and

traversal cost of INE consistently increase for directional and

random trajectories. This is because, INE has to reevaluate

kMDO results for each unvisited node encountered by the

query point.

For kSPT, on the other hand, both execution time and

traversal cost remain unchanged, because kSPT computes

the kMDO results for all nodes in the network. For IkSPT,
changes in l do not produce a noticeable effect on both cost

measures. This is because while computing the kMDO results

for the initial query location of qs, IkSPT also computes

results or partial results for its surrounding node. Hence, the

incremental cost of computing subsequent node is negligible.

The experimental results show that INE is the best method for

a snapshot query, while IkSPT is the best method if continuous

kMDO monitoring is required.
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Fig. 12. Effect of l (directional trajectories)

8.2.2 Effect of d on INE, kSPT and IkSPT

In the second set of experiments, we show how the three

methods scale as the distance d from the initial location qs
to destination qe increases. The distance d is varied from

800 to 4,000 units. According to Figures 14 and 15, since

kSPT computes kMDO results for all nodes in the network,
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Fig. 13. Effect of l (random trajectories)

the distance d has no effect on either the execution time or the

traversal cost for both directional and random trajectories. For

INE and IkSPT, on the other hand, the distance d has positive

correlation with their execution time and traversal cost. These

results conform with our discussion in Section 7. We can also

see that IkSPT has a much smaller cost and scales better than

INE as d increases.
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Fig. 14. Effect of d (directional trajectories)
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Fig. 15. Effect of d (random trajectories)

8.2.3 Effect of k on INE, kSPT and IkSPT

The third set of experiments presents a study on the effect of

the number k of requested MDOs on the three methods. The

value of k is varied from 2 to 10. According to Figure 16

(directional) and Figure 17 (random), the parameter k has no

noticeable effect on the execution time or the traversal cost of

INE. As explained in Section 7, each MDO has to be covered

by the network expansions with respect to qs and qe. This

requirement creates a high setup cost in order to determine

the first MDO. This setup cost dominates the incremental cost

of determining the subsequent (k21) MDOs. As k increases,

kSPT and IkSPT have similar behavior. That is, both execution

time and traversal cost increase as k increase. This is because,

k determines the number of labels for each node. Since kSPT
has to construct the kMDO results for all nodes in the network

and IkSPT halts when requested nodes are complete, The

execution time and traversal cost of IkSPT are much smaller

than those of kSPT.
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Fig. 16. Effect of k (directional trajectories)
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Fig. 17. Effect of k (random trajectories)

8.2.4 Effect of ρ on INE, kSPT and IkSPT

In the last set of experiments, we vary the parameter ρ from

100 to 500 nodes per object. According to Figures 18 and 19,

for kSPT and IkSPT, we see slight increases in the execution

time and traversal cost as ρ increases. We have found that

as the number of detour objects reduces (as a result of an

increase in the number ρ of nodes per object), each kSPT
branch (corresponding to a detour object) becomes larger and

results in a greater number of priority queue entries. Hence, as

ρ increases, we can see slight increases in the execution time

and traversal cost of kSPT and IkSPT for both directional and

random trajectories (Figures 18 and 19). For INE, since the

minimum search space is determined by the distance from qs
to qe, there is no correlation between ρ and the traversal cost.

The execution time of INE, on the other hand, decreases and ρ
increases. This is because as ρ increases the number of objects

reduces, which produces less candidates and pre-candidates to

process in order to determine the k MDOs. We can also see

that IkSPT continues to outperform the other two methods in

both cost measures.

8.3 Summary

We have derived ranges of experimental parameters and their

default values based on a realistic CDQ setting. Since IkSPT
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Fig. 18. Effect of ρ (directional trajectories)
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Fig. 19. Effect of ρ (random trajectories)

is a localization of kSPT, IkSPT can only perform better than

or similar to kSPT for both cost measures. IkSPT scales better

than INE as the distance d from qs to qe and the monitoring

distance l increase. Although IkSPT scales worse than INE

as k increases, IkSPT still performs better than INE for all

values of k in the range of [2,10].

9 CONCLUSIONS

We formulated the continuous detour query (CDQ) and pro-

posed an efficient method to process the query. We have com-

pared our proposed method, IkSPT-CDQ, to two competitive

techniques, INE-CDQ and kSPT-CDQ. INE-CDQ constructs

kMDO results on a node-by-node basis and uses the Dijkstra’s

algorithm [9] to explore detour objects around the current

query location. When the query point encounters a new

node, the kMDO results have to be reevaluated. The other

competitive method, kSPT-CDQ, constructs kMDO results in

a data-centered manner and calculates kMDO results for all

nodes in the network.

Our proposed method, IkSPT-CDQ, incrementally retrieves

data objects according to their distances to the destination and

computes kMDO results for a subset of nodes in the network.

As a result, IkSPT-CDQ does not incur access to all objects

and network nodes. Since our method enables construction

of kSPTs during runtime, one can apply preconditions to the

object retrieval process in order to exclude irrelevant objects

from IkSPT construction.

Experimental results show that for the default values of

parameters, IkSPT-CDQ is 3.1 times as fast as INE-CDQ and

2.3 times as fast as kSPT-CDQ. In terms of the traversal

cost, IkSPT-CDQ has an improvement factor of 2.3 times

and 2.4 times in comparison to INE-CDQ and kSPT-CDQ,
respectively.
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