
1

Packing R-trees with Space-Filling Curves: Theoretical

Optimality, Empirical E�iciency, and Bulk-loading

Parallelizability

JIANZHONG QI, The University of Melbourne, Australia

YUFEI TAO, Chinese University of Hong Kong, Hong Kong, China

YANCHUAN CHANG, The University of Melbourne, Australia

RUI ZHANG, The University of Melbourne, Australia

The massive amount of data and large variety of data distributions in the big data era call for access methods

that are e�cient in both query processing and index management, and over both practical and worst-case

workloads. To address this need, we revisit two classic multidimensional access methods – the R-tree and the

space-�lling curve. We propose a novel R-tree packing strategy based on space-�lling curves. This strategy

produces R-trees with an asymptotically optimal I/O complexity for window queries in the worst case.

Experiments show that our R-trees are highly e�cient in querying both real and synthetic data of di�erent

distributions. The proposed strategy is also simple to parallelize, since it relies only on sorting. We propose a

parallel algorithm for R-tree bulk-loading based on the proposed packing strategy, and analyze its performance

under the massively parallel communication model. To handle dynamic data updates, we further propose index

update algorithms that process data insertions and deletions without compromising the optimal query I/O

complexity. Experimental results con�rm the e�ectiveness and e�ciency of the proposed R-tree bulk-loading

and updating algorithms over large data sets.

CCS Concepts: • Theory of computation→ Data structures and algorithms for data management; •

Information systems→Multidimensional range search; Spatial-temporal systems.

Additional Key Words and Phrases: R-trees, window queries, rank space, logarithmic method

ACM Reference Format:

Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2020. Packing R-trees with Space-Filling Curves:

Theoretical Optimality, Empirical E�ciency, and Bulk-loading Parallelizability. ACM Trans. Datab. Syst. 1, 1,

Article 1 (January 2020), 45 pages. https://doi.org/10.1145/3397506

1 INTRODUCTION

Spatial databases have been traditionally used in geographic information systems, computer-aided-
design, multimedia data management, and medical studies. They are becoming ubiquitous with
the proliferation of location-based services such as digital mapping, augmented reality gaming,
geosocial networking, and targeted advertising. For example, in digital mapping services such as
Google Maps, the “search this area” functionality supports querying places of interest (POIs) such as
shops within a given view area (cf. Fig. 1a). In a popular augmented reality game, Pokémon GO [58],

Authors’ addresses: Jianzhong Qi, The University of Melbourne, Melbourne, Victoria, 3010, Australia, jianzhong.qi@unimelb.

edu.au; Yufei Tao, Chinese University of Hong Kong, Shatin, Hong Kong, China, taoyf@cse.cuhk.edu.hk; Yanchuan Chang,

The University of Melbourne, Melbourne, Victoria, 3010, Australia, yanchuanc@student.unimelb.edu.au; Rui Zhang, The

University of Melbourne, Melbourne, Victoria, 3010, Australia, rui.zhang@unimelb.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2020/1-ART1 $15.00

https://doi.org/10.1145/3397506

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3397506
https://doi.org/10.1145/3397506

1:2 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

(a) Shops (blue and red dots) in a map view

(b) Gaming objects in a game view

Fig. 1. Window queries in real applications

every player has an avatar placed in the game map based on the player’s geographical location.
The players can interact with gaming objects (e.g., “pokémon”) in the game view through their
avatars (cf. Fig. 1b). Managing POIs or gaming objects in a view which usually has a rectangular
window shape is a typical application of spatial databases.

In these applications, there may be hundreds of millions of spatial objects (e.g., shops, restaurants,
pokémon, etc.) with a variety of distributions to be managed. Meanwhile, there may be huge
numbers of service requests from users, e.g., Google Maps has reached one billion users [49], and
Pokémon GO is attracting over 20 million daily active users [20]. Reporting POIs or pokémon in a
given area in real time under such settings poses signi�cant challenges.
Spatial indices are important techniques to address such challenges. They o�er fast retrieval

of spatial objects. We revisit a classic spatial index – the R-tree [27]. We aim to achieve an R-tree
structure that is e�cient in both window query processing and tree bulk-loading, and over both
practical and worst-case workloads. R-trees have attracted extensive research interests [4, 7, 11,
28, 33, 51, 55] and have been implemented in industrial database systems [42, 43]. An R-tree is a
balanced tree structure for external memory based spatial object indexing. Every node in an R-tree
may contain multiple entries. In the leaf nodes, the entries are minimum bounding rectangles (MBR)
of the data objects (and pointers to them); in the inner nodes, the entries are MBRs of and pointers
to the child nodes. An R-tree node usually corresponds to a disk block, the size of which constrains
the node capacity, i.e., the maximum number of entries per node, denoted by B. Given an R-tree,
a window query returns all the data objects (e.g., POIs or pokémon) indexed in the tree that are
within or intersect a given query window which is usually a rectangular region of interest.

R-trees have good query e�ciency in practice when they are constructed with carefully crafted
heuristics [11, 33, 36, 55]. However, all these heuristics cannot produce an R-tree with attractive
performance guarantees in the worst case. The Priority R-tree (PR-tree) [7] is an R-tree with a non-
trivial theoretical query performance guarantee. It answers a window query with O ((n/B)1−1/d +

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:3

k/B) I/Os in the worst case, which is known to be asymptotically optimal [4]. Here, n, d , and k

denote the data set size, the dimensionality, and the output size, i.e., the number of objects satisfying
the query, respectively. The PR-tree is designed for rectangles. As a follow-up study shows [28], the
PR-tree may not have satisfactory empirical performance on data objects of a small size (e.g., point
data) or queries with small query windows; and the tree construction is di�cult to parallelize.

We re-examine the construction of R-trees and aim for high window query e�ciency over point
data, which is a common way for representing locations on digital maps. Spatial objects with extents
can also be e�ciently transformed into points for query processing [65]. We target application
scenarios such as digital mapping where queries are much more frequent than updates over the
data. We construct R-trees that are query cost optimal. Our R-trees can also handle dynamic data
updates e�ciently and without compromising the query cost optimality.

We propose an R-tree packing strategy that creates R-trees with the worst-case optimal window
query I/O cost O ((n/B)1−1/d + k/B). This strategy has a simple procedure and yields R-trees that
have high practical query e�ciency. A key step we take before packing the data points is to map
them into a rank space such that their coordinates are mapped to their ranks in each dimension.
Ties in one dimension are broken by the coordinates in the other dimension(s). As a result, we
obtain data points with no repetitive coordinates in any dimension. We then simply pack every B

data points into a leaf node (except possibly the last leaf node) of an R-tree in ascending order of
the Z-order values of the data points in the rank space. The Z-order is an ordering created by the
Z-curve [44] which is a common type of space-�lling curve (SFC). The inner nodes of the R-tree are
created by packing every B child nodes into a parent node (except possibly the last node in each
level) again in ascending order of the Z-curve values and recursively from the bottom to the top of
the tree. An inner node entry stores a pointer to a child node and its MBR.
Our R-tree packing strategy relies only on sorting. It takes O (sort (n)) = O ((n/B) logM/B (n/B))

I/Os to bulk-load an R-tree, whereM is the size of the memory. A key advantage of this strategy is
that it is highly parallelizable, which is an important feature in the big data era. Bulk-loading an R-
tree with this strategywell suits the popularmassively parallel communication (MPC)model [5, 6, 10],
which paves the foundation for designing algorithms for MapReduce systems [18]. We propose a
parallel bulk-loading algorithm that takes O (logs n) rounds of computation, where s = n/д and д
is the number of machines participating in the parallel algorithm. The (parallel) running time of
our algorithm is O ((n logn)/д), while the total time (summed over all machines) is O (n logn). The
load of our algorithm, i.e., the maximum number of words received by any participating machine,
is O ((n logs n)/д). For modern machines, s is large, e.g., at the order of millions, allowing us to
bulk-load an R-tree with a very large number of points in just a few rounds of computation.
We further consider how to handle data updates for a bulk-loaded R-tree without impacting

the worst-case query cost optimality. We �rst convert the bulk-loaded R-tree into a deletion-only
structure by indexing the Z-order values of the data points (in addition to their MBRs) in the tree.
This structure can answer window queries using the MBRs and handle data deletions using the
Z-order values (just like a B-tree). It retains the O (n/B) space cost and the O ((n/B)1−1/d + k/B)
window query I/O cost, while it can also handle a deletion in O (logB n) amortized I/Os.

We then extend this structure to support insertions via the logarithmic method [13, 45]. The
logarithmic method replaces dynamic data insertions with bulk-loading a series of up to +logB n,
R-trees, where the i-th R-tree holds at most Bi new data points. When a window query is issued, the
query is run on every bulk-loaded R-tree. The worst-case query cost optimality of any individual
R-tree is retained, since there is no dynamic insertions on these trees. The overall window query
I/O cost does not exceedO ((n/B)1−1/d +k/B) either. This is because the tree sizes form a geometric

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

series, the maximum of which is n. The overall query cost is dominated by that of the largest tree,
which is O ((n/B)1−1/d + k/B).

When applying the logarithmic method, we use a B-tree to record the id of the tree in which a
data point is indexed. This B-tree helps identify the tree fromwhich a data point is to be deleted. The
tree ids in this B-tree may need to be updated when there are data insertions, which adds additional
insertion costs. To reduce the insertion costs, we further modify our deletion-only structure by
adding pointers that point from data points to the B-tree nodes. Such pointers enable e�ciently
locating the B-tree nodes to be updated for data insertions. As a result, compared with an earlier
study on dynamization of bulk-loaded structures [8], we reduce the amortized insertion I/O cost
from O (log2B n) to O (logB n) when O (logM/B (n/B)) = O (1), i.e., the memory sizeM is at the scale
of the data set size n, which is typically satis�ed by modern machines.
While the rank space has been used by the computational geometry community to develop

theoretical bounds [17, 21], we observe for the �rst time that rank-space conversion can be leveraged
to build a worst-case optimal structure for window queries. Furthermore, it is perhaps surprising
that we are able to achieve the purpose by combining the rank space with an SFC, because SFC-
based indices were previously thought to have poor worst-case query costs. Indeed, as shown by
Arge et al. [7], if an SFC is used directly (i.e., in the original data space) for indexing, there exist
window queries which retrieve few points, but have I/O costs linear to the data set size. In fact,
even analyzing the query cost of an SFC-based index is non-trivial. The limited literature on this
topic [31, 39, 60] has focused on the average query cost, which is analyzed indirectly by studying
the clustering behavior of SFCs.
In summary, this paper makes the following contributions:

(1) We propose the �rst SFC-based packing strategy that creates R-trees with a worst-case
optimal window query I/O cost.

(2) The proposed packing strategy suggests a simple R-tree bulk-loading algorithm relying only
on sorting. We propose such an algorithm under the massively parallel communication model
(and thus, it works on MapReduce systems) with attractive performance guarantees.

(3) We propose R-tree based dynamic index structures to handle data updates. We show that
such dynamic structures retain the optimal window query I/O cost in the worst-case. Further,
compared with an earlier study on dynamization of bulk-loaded structures [8], we reduce
the amortized data insertion cost from O (log2B n) to O (logB n).

(4) We perform extensive experiments on both real and synthetic data. The results con�rm the
superiority of the proposed R-tree packing strategy: on real data, the query I/O cost of the
R-trees that we construct is up to 31% lower than that of PR-trees [7] and similar to that
of STR-trees [36], which are a classic type of sorting based bulk-loaded R-trees; on highly
skewed synthetic data, the query I/O cost of the R-trees that we construct is 54% lower than
that of PR-trees and 64% lower than that of STR-trees. The proposed bulk-loading algorithm
also outperforms the PR-tree bulk-loading algorithm in running time by 85% over large data
sets with 20 million data points. When processing updates with the proposed dynamic index
structures, we achieve up to 98% lower query I/O costs comparing with the LR-tree [16] – a
Hilbert R-tree [33] variant with update supports. The advantage is most signi�cant when the
data distribution is highly skewed.

This article is an extension of our previous conference paper [50]. In the previous work, we
presented the R-tree packing strategy based on SFCs in the rank space. We showed the worst-case
query I/O cost optimality and the parallel implementation of the strategy. In this article, we present
new techniques to handle data updates to the R-trees constructed by our packing strategy while
retaining the worst-case query I/O cost optimality (Section 5). As a result, we obtain a fully dynamic

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:5

index structure that is worst-case optimal and empirically e�cient for window query processing.
Further, we show that our techniques can reduce the amortized data insertion cost from O (log2B n)

to O (logB n), comparing with an earlier study on dynamization of bulk-loaded structures [8]. Our
additional experiments on the index update techniques show (i) the e�ectiveness of the techniques
for retaining the high query e�ciency of our index structure, and (ii) the e�ciency of the techniques
in handling updates to our index structure (Section 6.2.3). We have also added a literature review
on R-tree update techniques (Section 2).

The rest of the article is organized as follows: Section 2 reviews related work. Section 3 details the
proposed R-tree packing strategy and the worst-case window query I/O costs. Section 4 describes
the proposed parallel R-tree bulk-loading algorithm. Section 5 discusses data update handling.
Section 6 presents experimental results, and Section 7 concludes the paper.

2 RELATEDWORK

We review studies on spatial queries and access methods, with a focus on R-trees.
Spatial queries and accessmethods.We focus on the window query (rectangular range query)

which is a basic type of spatial query [26]. A window query returns all data objects that satisfy a
certain predicate with a given query window, i.e., a (hyper)rectangular region of interest. Common
query predicates include containment and intersection, which require the data objects to be fully
contained in or intersect the query window, respectively.
A straightforward window query algorithm sequentially checks every data object and returns

an object if it satis�es the query predicate. This algorithm takes O (n/B) I/Os regardless of data
distribution and output size. Spatial indices have been used to obtain higher query e�ciency. We
focus on the R-tree index [27]. For a comprehensive review on spatial indices and spatial query
processing, interested readers are referred to [22].
R-trees. As discussed earlier, the R-tree is a balanced tree structure. The maximum number of

entries per tree node (node capacity) B is constrained by the disk block size, while the minimum

number of entries per tree node (except the root node) is Ω(B). The root node needs to contain at
least two entries unless it is also a leaf node. Thus, the height of an R-tree indexing n objects is
bounded by O (logB n).

A window query is processed by a top-down traversal over the nodes of an R-tree whose MBRs
satisfy the query. When the leaf nodes are reached, data objects in them satisfying the query are
returned. A series of studies [11, 14, 30, 41, 55] propose heuristics to optimize the node MBRs
during dynamic data insertion. The R*-tree [11], for example, considers the MBR overlaps and
region perimeters to decide the node into which a new object should be inserted.
R-tree packing and bulk-loading. A di�erent stream of research considers how to construct

an R-tree by packing data objects into the leaf nodes directly rather than inserting them individually.
The entire R-tree is bulk-loaded in a bottom-up fashion. Most R-tree packing algorithms [1, 19, 28, 33,
36, 52] rely on some ordering of the data objects and hence have an I/O cost ofO ((n/B) logM/B (n/B)),
which is the cost for sorting n objects (recall thatM is the number of objects allowed in the main
memory). Speci�cally, Roussopoulos and Leifker [52] sort the data objects by their x-coordinates
and pack every B objects into a leaf node. Leutenegger et al. [36] �rst sort the data objects by their
x-coordinates, and then partition the data into

√
n/B subsets. Objects in each subset are sorted by

theiry-coordinates and packed into the leaf nodes. Other studies use the Hilbert ordering [19, 28, 33].
Their resultant R-trees have shown good window query performance on nicely distributed data [28].
Achakeev et al. [1] also use an SFC (e.g., a Hilbert curve) for object ordering. Instead of packing
every B objects into a leaf node, they compute a series of split points to split the list of sorted objects

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

and pack the objects into leaf nodes accordingly. Their aim is to minimize the sum of the MBR
areas of the resultant tree nodes. These R-trees are not worst-case optimal for window queries.

There are also top-down bulk-loading algorithms. The Top-downGreedy Split (TGS) algorithm [23]
is a typical example. TGS partitions the data set into two subsets repeatedly until B approximately
equisized subsets have been obtained. The MBRs of these B subsets form entries of the root. Each
partition uses a cut orthogonal to an axis that yields two subsets with the minimum sum of costs,
where the cost is based on a user-de�ned function, e.g., the area of the MBR of a subset. There are
O (B) candidate cuts, where the hidden constant lies in the di�erent cuts in di�erent dimensions and
on di�erent orderings (e.g., lower x corner, center, etc.). In each dimension and with a particular
ordering, the i-th cut puts i · (n/B) objects in one subset and the rest in the other subset. TGS
has been shown to produce R-trees with good query e�ciency, but it has a high worst-case I/O
cost, O (n logB n), for R-tree construction. This is because it needs to scan the data set B times to
create the B partitions of a node (assuming that the orderings used for partitioning have been
precomputed). If viewed from a recursive binary partition perspective, the I/O cost of TGS is
e�ectively O ((n/B) log2 n) [7].
Agarwal et al. [4] propose an algorithm to bulk-load a Box-tree, which can be converted to an

R-tree with a worst-case query I/O cost ofO ((n/B)1−1/d +k logB n). This work is more of theoretical
interest. No implementation or experimental results have been given for the algorithm.

The PR-tree [7] is an R-tree that o�ers a worst-case window query I/O cost ofO ((n/B)1−1/d +k/B),
which is asymptotically optimal [4]. A PR-tree is created from a pseudo-PR-tree, which is an
unbalanced tree built in a top-down fashion. To create a pseudo-PR-tree, the data set is partitioned
into six partitions to form the child nodes of the root. Four of the partitions contain B objects
each, which are objects with the smallest lower x-coordinates, the smallest lower y-coordinates,
the largest upper x-coordinates, and the largest upper y-coordinates, respectively. The remaining
two partitions are two equisized partitions of the remaining objects, which are then recursively
partitioned to form subtrees of the root. When a pseudo-PR-tree is created, its leaf nodes are used as
the leaf nodes of a PR-tree. The MBRs of the leaf nodes are used to create another pseudo-PR-tree,
the leaf nodes of which are used as the parent nodes of the leaf nodes of the PR-tree. A PR-tree
is then built with O ((n/B) logn) I/Os bottom-up. Arge et al. [7] further propose a bulk-loading
strategy that lowers the I/O cost to O ((n/B) logM/B (n/B)). The main issue of the PR-tree is that it
lacks practical e�ciency in answering queries with small query windows or over data objects of a
small size (e.g., point data) [28].
We also note that other spatial indices such as kd-trees [12], O-trees [34], and cross-trees [25]

can o�er a worst-case optimal query I/O performance. Compared with R-trees created by our
packing strategy, kd-trees are more di�cult to bulk-load in parallel. In the MPC model, Agarwal et
al. [5] propose a randomized algorithm that can bulk-load a kd-tree with O (polylogs n) rounds of
computation. In contrast, we can bulk-load an R-tree with O (logs n) rounds of computation which
is lower, and our bulk-loading algorithm is deterministic. As for O-trees, they do not belong to the R-
tree family. They combine multiple auxiliary structures to ensure their theoretical guarantees. This
approach is mainly of theoretical interest, but in practice is expensive in both space consumption
and query cost (even being asymptotically optimal in the worst case). Cross-trees share a similar
issue in its practical query performance [3]. These indices are not discussed further.
R-tree update handling. The dynamic R-tree construction heuristics [11, 14, 30, 41, 55] men-

tioned above (e.g., the R*-tree insertion heuristics [11]) can also handle R-tree updates. Such
heuristics, however, do not guarantee optimal query performance for the updated R-trees.

Studies on R-tree packing and bulk-loading focus on static data settings. Most of them either do
not consider updates at all [4, 23, 36] or simply use the above dynamic R-tree construction heuristics

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:7

for updates [52]. The Hilbert R-tree [28] takes a slightly di�erent update handling strategy. This
R-tree can be seen as a B-tree that indexes the Hilbert-order values of the data points, and its
updates are handled by B-tree update algorithms. None of these studies guarantee optimal query
performance, with or without updates.
Arge et al. [7] extend the PR-tree to an LPR-tree using the logarithmic method [13, 45] for

handling updates while retaining the worst-case optimal window query performance. The LPR-tree
consists of a series of annotated pseudo-PR-trees (APR-trees) with increasing sizes. An APR-tree is a
pseudo-PR-tree with additional aggregate information stored in the inner nodes of the tree. Data
insertions on the LPR-tree are handled by bulk-loading new (and larger) APR-trees over the data
points to be inserted together with the data points in the existing (and smaller) APR-trees. Data
deletions, on the other hand, are handled by deleting the data points directly from the APR-trees
that contain them. To help locate a data point to be deleted, a time index is used to keep track
of the APR-tree in which a data point is contained. To further improve the update e�ciency, an
O (M) sized component of the LPR-tree is kept in main memory, which includes the �rst log2 (M/B)
APR-trees and the top levels of the rest of the APR-trees. By doing so, the LPR-tree obtains an
amortized insertion I/O cost of O (logB (n/M) + (1/B) logM/B (n/B) · log2 (n/M)) and an amortized
deletion I/O cost ofO (logB (n/M)). The LPR-tree is more of theoretical interest. No implementation
or experimental results have been given for it. Our proposed dynamic structure also uses the
logarithmic method, but it di�ers from the LPR-tree in that it is built on R-trees directly which are
much easier to construct and update than the APR-trees. This enables us to implement our dynamic
structure and evaluate its empirical performance. Also, our dynamic structure does not need to
reside in main memory which is more �exible. To the best of our knowledge, our dynamic structure
is the �rst dynamic structure that is built on the R-trees directly while retaining the worst-case
optimal window query performance.

Bozanis et al. [16] apply the logarithmic method over the Hilbert R-tree and propose the LR-tree.
The LR-tree bulk-loads new Hilbert R-trees to handle data insertions. It uses a simpli�ed R∗-tree
deletion algorithm without node merging to handle data deletions. Since the underlying R-trees
in the LR-tree are not window query optimal, the LR-tree does not guarantee worst-case optimal
window query performance either. Regardless of this, the LR-tree is the closest structure to our
proposed dynamic structure. Thus, it is used as a baseline in our experiments.
Parallel R-tree management. Parallelism has been exploited to scale R-trees to large data sets

and user groups. An early study [32] considers storing an R-tree on a multi-disk system. It stores a
newly created tree node in the disk that contains the most dissimilar nodes to optimize the system
throughput. A few studies [35, 38, 54] assume a shared-nothing (client-server) architecture for
distributed R-tree storing and query processing. Koudas et al. [35] store the inner nodes on a server
while the leaf nodes are stored on clients. They study how to decide the number of data objects
to be stored on a client and which objects to be stored together. Schnitzer and Leutenegger [54]
further create local R-trees on clients for higher query e�ciency. Mondal et al. [38] study load
balancing for R-trees in shared-nothing systems.
The studies above do not focus on parallel R-tree bulk-loading. Papadopoulos and Manolopou-

los [48] propose a generic procedure for parallel spatial index bulk-loading. They use sampling to
estimate the data distribution which helps partition the data space into regions. Data objects in
di�erent regions are assigned to di�erent clients for local index building. A global index is built on
the server to serve as a coordinator for query processing. A more recent study [2] bulk-loads an
R-tree with the MapReduce framework level by level, where each level takes a MapReduce round.
It uses the bulk-loading strategy mentioned above that aims to minimize the sum of the MBR areas
of the tree nodes [1]. Similar ideas have been used on GPUs [61] without a cost analysis.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Table 1. Frequently Used Symbols

Symbol Description

P A data set

p A data point

n The cardinality of P

d The dimensionality of P

q A window query

k The answer set size of a window query

T An R-tree

B The node capacity of an R-tree

h The height of an R-tree

M The memory size of a standalone machine

д The number of machines in a cluster

s The number of data points allowed in a machine

Γ An R-tree (B-tree) indexing both MBRs and Z-order values of data points

Λid A B-tree mapping data point ids to Z-order values and tree ids

H The number of sub-trees in a LogR∗-tree
µ The number of data point updates processed

¸ The number of global rebuilds

ñj The number of data point at the j-th global rebuild

3 R-TREE PACKING

We consider a set P of n data points in a d-dimensional Euclidean space. For ease of presentation,
we use d = 2 in our examples, although our approach applies to an arbitrary �xed dimensionality
d g 2. We focus on window queries. Given a rectangle q, a window query reports all the points in
P ∩ q. We list the frequently used symbols in Table 1.

3.1 Mapping to Rank Space

Before creating an index structure over P , we �rst map the data points into a d-dimensional rank
space as follows. In each dimension of the original data space, we sort the data points by their
coordinates and use the ranks as the coordinates in the corresponding dimension of the rank space.
If two data points have the same rank in a dimension, we break the tie by further comparing their
coordinates in the other dimensions (of the original space) in the order of dimension 1, dimension
2, . . ., dimension d . We assume no data points with the same coordinates in all d dimensions.

De�ne by [n] the integer domain [0,n − 1]. After the mapping, P becomes a set of n d-dimensional

points in [n]d such that no two points share the same coordinate in any dimension.

We use Fig. 2 to illustrate the mapping with a set of 8 (n = 8) 2-dimensional points P =
{p1,p2, . . . ,p8}. The coordinates of the points in the rank space are their ranks in the original
space. For example, p1 has the smallest x-coordinate and second largest y-coordinate in the original
space. Thus, its x-coordinate and y-coordinate in the rank space are 0 and 6, respectively. Points p2
and p3 both have the second smallest x-coordinate in the original space. In the rank space, their
x-coordinates are 1 and 2, because p2 has a smaller y-coordinate in the original space.

A query rectangle q = [qle1,qhe1]× [qle2,qhe2]× . . .× [qled ,qhed] in the original space is mapped
to a rectangle q = [ql1,qh1] × [ql2,qh2] × . . . × [qld ,qhd] in [n]d . Here, qli is the smallest rank of
the data points whose coordinates in dimension i in the original space are greater than or equal

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:9

y

e2

qhe2

e1qhe1ql

p
1

p
3 p

4

Rank space

y

ql

xx

2
5

6 7

8

p
p

p p

p
q q

Original space

7

6

5

4

3

2

1

0

765432100

p

p
4

p

p

p

p

p

1

2 5

6

7

8

p

3

Fig. 2. Mapping to rank space

to qle1; qhi is the largest rank of the data points whose coordinates in dimension i in the original
space are smaller than or equal to qhi . In Fig. 2, the solid rectangle represents a query rectangle q.
In the original space, the query range [qle1,qhe1] spans p2,p3,p4, and p6 in the x-dimension, among
which p2 (p6) has the smallest (largest) rank 1 (4). Thus, [qle1,qhe1] is mapped to [1, 4] in the rank
space. Similarly, the query range [qle2,qhe2] is mapped to [2, 5] in the rank space. Note that the
query mapping does not introduce false positives in the query answer because the data points do
not share the same coordinate in either dimension in the rank space.

Our goal is to store P in a structure so that all window queries can be answered e�ciently in the
worst case. Without loss of generality, we consider that n is a power of 2. Our techniques work
straightforwardly for the case where n is not a power of 2, which is discussed in Section 3.3.1.

3.2 Tree Structure and Packing Strategy

Our structure is simply an R-tree where the leaf nodes are obtained by packing points in ascending
order of their Z-order [44] values. Other space-�lling curves such as Hilbert curves can also be used
(as will be discussed in Section 3.4) but Z-order is used for illustration.

For each point p ∈ P , we compute its Z-order value Z (p) in [n]d by interleaving the bits of
its coordinate in every dimension. For example, suppose p = (x ,y), where x = ³1³2 . . . ³l and
y = ´1´2 . . . ´l in binary form where l = log2 n. Then, Z (p) = ´1³1´2³2 . . . ´l³l . We sort all the
points of P by their Z-order values, and cut the sorted list into subsequences, each of which
has length B, except possibly the last subsequence. Here, B g 1 is a parameter that controls the
maximum number of points that �t in a leaf node of an R-tree. Each leaf node includes the points
in a subsequence. The inner nodes of the R-tree are created by packing every B child nodes into a
parent node (except possibly the last node in each level) recursively from the bottom to the top of
the tree. This process resembles how a B-tree is created, except that an inner node entry stores a
pointer to a child node and its MBR instead of a key value. This creates our target R-tree.

The R-tree packing strategy is illustrated in Fig. 3. The rank space can be seen as an 8 × 8 grid. A
Z-curve (the dotted polyline) is drawn across the rank space. The order that a cell is reached by
the curve is the Z-order value of the data point in the cell, e.g., in Fig. 3a, p2 is in the second cell
reached by the curve; its Z-order value is 1, which is labeled in parentheses next to p2 (same for the
other points). Based on the Z-order values, the data points are sorted as: ïp2,p3,p4,p5,p1,p6,p7,p8ð.
We use B = 2 in this example. The eight data points are packed into four leaf nodes: N1 = ïp2,p3ð,
N2 = ïp4,p5ð, N3 = ïp1,p6ð, and N4 = ïp7,p8ð. These four leaf nodes are then packed in the order of
the Z-order values of the data points stored in them, resulting in two inner nodes N5 = ïN1,N2ð

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

7
TT

(c)

y

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 x

q

(a) (b)

q

x76543210

0

1

2

3

4

5

6

7

y

(15)(12)
(15)

(12)

(40)

(48) (54)

(63)

(19)
(1)

(40)

(1) (19)

(63)

(54)(48)

N

3

N2
N1

6N

5N

4N3N2N1N

4
p

6

3
p

1

p
4

p

p
3

pp

p
1

p

6
p

p

7
p

8
p

4

4

5
p

N

2
p

5

1
p

N

p
2

6

p
5

p
8

2
p

p
7

p

p
6

3
p

5 87

N

Fig. 3. R-tree packing

and N6 = ïN3,N4ð. A root node is further created to point to N5 and N6. The MBRs and the R-tree
T created are shown in Figs. 3b and 3c.

Algorithm 1 summarizes the the proposed R-tree packing strategy with the help of an auxiliary
queueQ . The queue stores 2-tuples in the form of ïN , tð where N and t are a tree node and its level
in the tree, respectively. The packing strategy takes:

(1) a sort on the data points for each dimension to map them into the rank space (Line 1),
(2) a linear scan on the data points to compute their Z-order values (Lines 2 and 3),
(3) another sort on the Z-order values (Line 4), and
(4) another linear scan on the data points (Lines 6 to 8) and logB n − 1 rounds of linear scans on

the MBRs of tree nodes for packing and loading an R-tree (Lines 9 to 12).

Together, this packing strategy takes O ((n/B) logM/B (n/B)) I/Os to bulk-load an R-tree (the CPU
time is O (n logn), noticing that the Z-order value of a point can be calculated in O (logn) time).
Sorting and linear scans can be easily parallelized. This suggests a simple parallel R-tree bulk-loading
algorithm where everything boils down to sorting. We present such an algorithm in Section 4.

Algorithm 1: Build-R-tree

Input: P = {p1,p2, . . . ,pn }: a d-dimensional database; B: the capacity of a tree node.

Output: T : an R-tree over P .

1 Map P into the rank space;

2 for each pi ∈ P in the rank space do

3 Compute Z-order value of pi ;

4 Sort P in ascending order of the Z-order values;

5 Let Q ← ∅;
6 for every B data points in the sorted P do

7 Create a leaf node N to store the B data points;

8 Q .enqueue (ïN , 1ð);
9 while Q .size () > 1 do

10 Dequeue the �rst B nodes of the same level t from Q ;

11 Create a node N to store MBRs (pointers) of the nodes;

12 Q .enqueue (ïN , t + 1ð);
13 Let T point to the last node in Q ;

14 return T ;

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:11

3.3 Window�ery Processing

When a window query is issued, we �rst map it to the rank space following the procedure described
in Section 3.1. To facilitate fast mapping, we create a B-tree for each dimension to store pairs of
point coordinates in the original space and corresponding coordinates in the rank space. Query
mapping using B-trees takes O (logB n) I/Os. The mapped query is then answered by our R-tree in
the same way as for a conventional R-tree. We omit the pseudo-code of the query algorithm for
conciseness. As an example, in Fig. 3c, we show the search paths for processing query q in gray.

3.3.1 �ery Cost. We prove that our R-tree answers a window query with O ((n/B)1−1/d + k/B)
I/Os in the worst case, where k is the number of points reported. This query complexity is known
to be asymptotically optimal [4, 15]. We start with the case where d = 2 and prove the worst-case
query cost to be O (

√
n/B + k/B)) in this subsection. We will generalize the proof to an arbitrary

�xed dimensionality d g 2 in the next subsection.
Let h f logB n be the height of the tree. Label the levels of the tree as 1, 2, . . . ,h bottom up.

Consider any level t ∈ [1,h]. Let ℓ be any vertical line in [n]2. We prove the following lemma,
which is su�cient for establishing our claim.

Lemma 3.1. The line ℓ intersects the MBRs of O (
√
n/Bt) nodes at level t .

Proof. Intuitively, the MBR of a node intersects a line ℓ when it covers data points on both sides
of ℓ (e.g., in Fig. 4, node N3 contains p1 and p6 on both sides of the dashed line ℓ) or data points on
ℓ (e.g., p2 in N1). Such a node corresponds to a Z-curve segment that crosses or ends at ℓ. Since
di�erent nodes correspond to non-overlapping curve segments (because the data points are packed
by ascending Z-order values), we derive the number of nodes intersecting ℓ via the number of
times that the Z-curve crosses ℓ.

C G

x76543210

1

2

3

4

5

6

7

y

0

p

p
4

p
3

p
2

p
5

p
8

1
N

2
N

3
N

4
N

6
p

1
p

7

ℓ

Fig. 4. Window query I/O cost

Letm be the smallest power of 2 larger than or equal to
√
nBt . Divide [n]2 into an (n/m) × (n/m)

grid denoted by G , where each cell hasm2 locations in [n]2. Note that the Z-curve traverses all the
locations in a cell before moving to another, i.e., it never comes back to the same cell.

We use Fig. 4 to illustrate the proof for the case where t = 1, i.e., at the leaf node level. It shows
the four leaf nodes N1,N2,N3, and N4 (the dashed rectangles) of an R-tree constructed. We have√
nBt =

√
8 × 21 = 4 which meansm = 4. The rank space is divided into an (8/4) × (8/4) = 2 × 2

grid, as denoted by the black solid line grid. The Z-curve enters and leaves each cell once, e.g., for
the top-left cell, the Z-curve enters at its bottom-left corner and leaves from its top-right corner.
Let C = [a,b] × [n] be the column of G that contains line ℓ. In Fig. 4, the vertical dashed line

represents ℓ, which is in column C = [0, 3] × [8] highlighted in gray. De�ne the line x = a as

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

the left boundary of C , and the line x = b as the right boundary. Let u be a node whose MBR
intersects ℓ. De�ne X (u) as the x-range of the MBR of u. For example, node N3 intersects the line,
and X (N3) = [0, 4]. Such a node u can be one of the following types:

• Type 1: a ∈ X (u) or b ∈ X (u), i.e., u overlaps column C (cf. node N3).
• Type 2: X (u) ¢ [a,b], i.e., u is inside column C (cf. node N1).

We prove that there are at most 2n/m f 2
√
n/Bt nodes of Type 1 and O (1 +m/Bt) = O (

√
n/Bt)

nodes of Type 2, which completes the proof of the lemma.

• Type 1: Note that the Z-curve crosses the left boundary (i.e., enters column C) n/m times.
This is because there are n/m cells of G in each column, and the curve enumerates all the
locations of a cell of G before moving to another. In Fig. 4, there are n/m = 8/4 = 2 cells in
column C . The curve enters these two cells once each. Since the data points are sorted and
packed into nodes by their curve values, there are at most n/m nodes that contain data points
on both sides of the left boundary. Otherwise, some of these nodes must have overlapping
curve values, which is against our packing strategy. The same applies to the right boundary.
Thus, there are at most 2n/m nodes of Type 1. In the �gure, N3 overlaps the right boundary
of the top cell of columnC . It contains two data points p1 and p6 on the two sides of the right
boundary of this cell. The curve segment between them crosses the right boundary of the cell.
Since the curve only leaves the cell once, there cannot be another node N that also overlaps
the right boundary of the cell. Otherwise, the two curve segments corresponding to N and
N3 must overlap, which violates our packing strategy.
• Type 2: When u is in column C , the x-coordinate of any data point in the subtree of the
node is in the range of [a,b]. There are b − a + 1 = m distinct x-coordinates in the range,
implyingm data points in the range (recall that all points have distinct x-coordinates). Each
node at level t can index Bt data points. Thus, there are O (1 +m/Bt) nodes of Type 2. In
Fig. 4, b − a + 1 = 3 − 0 + 1 = 4. The four data points in the gray column can form at most
m/Bt = 4/21 = 2 nodes fully contained in the column, although there is just one such node
in this example which is N1. If p5 does not exist then p4 and p1 will form another node fully
contained in the column.

□

Discussion. For an R-tree with a height h f logB n, line ℓ interests the MBRs of O (
√
n/B) +

O (
√

n/B2) + . . . + O (
√

n/Bh) = O (
√
n/B) nodes. The above proof assumed n being a power of 2

and d = 2. When n is not a power of 2, let Ä = +log2 n,. We enlarge the rank space to [2Ä]2. Line

ℓ intersects O (
√
2Ä/B) nodes in the enlarged rank space. We have O (

√
2Ä/B) = O (

√
n/B) because

2Ä f 2n. The above argument can also be generalized to an arbitrary �xed dimensionality d g 2

to prove that our query cost is bounded by O ((n/B)1−1/d + k/B) in the worst case. This will be
proven in the following Section 3.3.2, which proves an even stronger result that subsumes the
aforementioned bound as a special case.

3.3.2 �ery Sensitive Bound in Arbitrary Dimensionality. Consider a query rectangleq = [ql1,qh1]×
[ql2,qh2]×. . .×[qld ,qhd] in [n]d , whered g 2 is an arbitrary �xed dimensionality. For each i ∈ [1,d],
set ¶i = qhi − qli + 1, and let Zi = {1, 2, . . . ,d } \ {i}, namely, Zi includes all the integers from 1 to d
except i . We prove a stronger version of our previous lemma: our structure answers the query in

O (logB n + ∆
1/d/B1−1/d

+ k/B) (1)

I/Os where ∆ =
∑d

i=1

∏

j ∈Zi ¶ j . In this bound, the three components logB n, ∆
1/d/B1−1/d , and k/B

denote the costs to map the query to rank space (query q here is already mapped), to �nd the nodes
intersecting the query boundary, and to output the points within the query, respectively.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:13

The bound looks a bit unusual such that it would help to look at some special cases: for d = 2, the

query cost isO (logB n +
√

(¶1 + ¶2)/B + k/B), while for d = 3, the cost becomesO (logB n + (¶1¶2 +

¶1¶3 + ¶2¶3)
1/3/B2/3

+ k/B). Since ¶i f n for all i ∈ [1,n], it always holds that∏j ∈Zi ¶ j f nd−1 and

∆ f d ·nd−1. Thus, Equation 1 is bounded byO ((d ·nd−1)1/d/B1−1/d
+k/B) = O ((n/B)1−1/d +k/B). In

other words, Equation 1 is never worse than the (query insensitive) bound established in Section 3.3.1,
but could be substantially better when q is small.

We say that the MBR of a node partially intersects q if it has a non-empty intersection with q, but
is not contained by q. We prove the following lemma, which is su�cient for establishing our claim.

Lemma 3.2. The query rectangle q partially intersects the MBRs of O (1 + ∆1/d/(Bt)1−1/d) nodes at
level t .

Proof. Letm be the smallest power of 2 at least (∆ · Bt)1/d . Divide [n]d into a grid G of size:

(n/m) × (n/m) × . . . × (n/m)
︸ ︷︷ ︸

d

Each cell ofG hasmd locations in [n]d (the cell’s projection on each dimension coversm values).
For each i ∈ [1,d], de�ne a dimension-i column of G as the maximal set of cells in G that have
the same projection on dimension i . Grid G has n/m dimension-i columns, each of which is a
d-dimensional rectangle in [n]d that covers the entire range [n] on every dimension j , i .

G

x76543210

1

2

3

4

5

6

7

y

0

C

p

p
4p

3

p
2

p
5

p
8

1
N

2
N

3
N

4
N1

p

p
6

7

q

Fig. 5. �ery sensitive I/O cost

We use Fig. 5 to illustrate the proof, where d = 2 and t = 1, i.e., we consider the leaf node
level. We have q = [1, 4] × [2, 5] (the solid line rectangle) and hence ¶1 = 4 − 1 + 1 = 4 and

¶2 = 5 − 2 + 1 = 4. Thus,m = (∆ · Bt)1/d =
√

(¶1 + ¶2)Bt =
√

(4 + 4) × 21 = 4. The rank space is
divided into an (8/4) × (8/4) = 2 × 2 grid, which is represented by the black solid line grid. Grid G
has 8/4 = 2 dimension-1 (the x-dimension) columns, i.e., the two vertical columns.

A node whose MBR partially intersects q must intersect one of the 2d boundary faces of q (e.g.,
edges of q in Fig. 5). We will prove that there can be at most O (1 +m/Bt +

∏

j ∈Zi ¶ j/m
d−1) nodes

intersecting each of the two faces of q perpendicular to dimension i . Summing this up on all d
dimensions gives the desired upper bound on the total number of nodes that partially intersect q:

∑d
i=1O (1 +m/Bt +

∏

j ∈Zi ¶ j/m
d−1)

= O (d + dm/Bt + ∆/md−1)
= O (1 + ∆1/d/(Bt)1−1/d)

Due to symmetry, it su�ces to consider the face of q that corresponds to ql1 (i.e., perpendicular
to dimension 1) – we refer to it as the dimension-1 left face of q. Let C be the dimension-1 column

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

of G that covers this face; C is a rectangle that can be written as [a,b] × [n] × [n] × . . . × [n]
︸ ︷︷ ︸

d−1

for

some a,b satisfying b − a + 1 =m and b is a multiple of 2. In Fig. 5, dimension 1 is the x-dimension,
and C is the gray column [0, 3] × [8]. De�ne the left boundary (or right boundary) of C to be the set
of points in [n]d with coordinate a (or b, respectively) on dimension 1.
Let u be a level-t node with an MBR intersecting the dimension-1 left face of q, and X (u) be

the projection of the MBR of u on dimension 1, e.g., node N3 intersects the left edge of q, and
X (N3) = [0, 4]. Such a node u can be one of the following types:

• Type 1: a ∈ X (u) or b ∈ X (u).
• Type 2: X (u) ¢ [a,b].

Next, we analyze the number of nodes for each type.

• Type 1: The Z-curve crosses the left boundary ofC at mostO (
∏d

j=2+¶i/m,) =O (1+¶2¶3 . . . ¶d

/md−1) times within the dimension-1 left face of q. This is because there are O (
∏d

j=2+¶i/m,)
cells of C within the range of q in dimensions 2 to d (e.g., in Fig. 5, there are 1 + ¶2/m =
1 + 4/4 = 2 cells of C within the dimension 2 range [2, 5] of q), and the curve enumerates
all the locations of a cell before moving to another cell. By the reasoning explained in the

proof of Lemma 3.1, there are at most O (
∏d

j=2+¶i/m,) nodes containing data points on both

sides of the left boundary. The same applies to the right boundary. Therefore, the number of
Type-1 nodes is O (1 + ¶2¶3 . . . ¶d/m

d−1).
• Type 2: All the Bt points in the subtree of node u must have x-coordinates between a and b.
There can be only b − a + 1 =m such points (recall that all points have distinct coordinates
in each dimension), implying at most O (1 +m/Bt) such nodes.

It thus follows that the dimension-1 left face ofq intersects theMBRs ofO (1+m/Bt+
∏

j ∈Zi ¶ j/m
d−1)

nodes at level t . This completes the proof. □

3.4 Extending to Other Space-Filling Curves

Although we have used the Z-curve as the representative SFC, the only property that we require
from the Z-curve is the following quad-tree recursive pattern. Divide the data space [n]d (where n is
a power of 2) into 2d rectangles of the same size, i.e., each rectangle is a “d-dimensional square”
with a projection length of n/2 on each dimension (recall how the root of a d-dimensional quad-tree
would partition the space). For example, in Fig. 5, grid G is divided into 22 = 4 squares (cells) each
with an edge length of 4. The quad-tree recursive pattern says that the SFC must �rst enumerate
all the points within a rectangle before starting to enumerate the points of another. In Fig. 5, the
Z-curve enumerates the points of the bottom-left cell before moving to the bottom-right cell. The
pattern must be followed recursively within each rectangle, by treating it as a smaller data space
[n/2]d . All our proofs hold verbatim on any SFCs (e.g., the Hilbert curve) that obey this pattern.

4 PARALLEL R-TREE BULK-LOADING

Next, we present a parallel R-tree bulk-loading algorithm based on our packing strategy. A straight-
forward parallel algorithm that bulk-loads an R-tree level by level requires O (logB n) rounds of
parallel computation. We show how to reduce the number of rounds toO (logs n) without sacri�cing
the computation time. Here, s denotes the number of data points that a machine participating in the
parallel algorithm can handle. Modern machines can easily handle millions of data points, where
logs n is typically bounded by a constant.

The key idea of the proposed algorithm is to distribute the data points (or MBRs of tree nodes) in
a way that the machines can bulk-load O (logB s) levels of the �nal R-tree in each round of parallel

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:15

computation. Then,O (logs n) such rounds su�ce to build the entire R-tree of logB s · logs n = logB n

levels. To bulk-load logB s levels in each round, a machine is assigned a subset of the data points
(MBRs) that forms a few R-tree branches of logB s levels independently from the data assigned to
the other machines. This is feasible because we can assign data points to the machines in their
sorted order for packing independently.

4.1 Parallel Computation Model

Without relying on a particular parallel platform such as ApacheHadoop, we design the parallel bulk-
loading algorithm based on a generalized parallel model named themassively parallel communication

(MPC) model [5, 6, 10]. Popular parallel frameworks such as MapReduce [18] and Spark [62] are
typical examples of this model. Our implementation di�ers slightly from that of Agarwal et al. [5]
who also use the MPC model to build an index. We copy the built index back to a single machine,
while Agarwal et al. leave the index distributed among the machines. This is because our query
algorithm runs on a single machine. We leave distributed query processing for future work.
The MPC model makes the following assumptions. Let n be the input size, д be the number

of machines, and s = n/д. In each round of parallel computation, every machine receives some
data from other machines, performs computation, and sends some data to other machines. The
computation is done in the memory and hence there is no disk I/O cost, except for the initial
data reading and the �nal data writing. We consider only algorithms that require a machine to
receive/send O (s) words of information in each round, i.e., the communication I/O cost for a
machine in each round is O (s) (with the terminology of Beame et al. [10], these algorithms must
have load O (s) in each round).
MPC algorithms are measured by:

(1) the number of computation rounds R,
(2) the (parallel) running time T , which sums up the maximum computation cost of a single

machine in each round, and
(3) the total amount of computationW , which sums up the computation costs of all machines in

all rounds.

Let tMi,r
be the time complexity of machineMi in round r . Then:

T =
R∑

r=1

max
i ∈1..д

tMi,r
(2)

W =

R∑

r=1

д
∑

i=1

tMi,r
(3)

For the purpose of building an R-tree,W should not exceed the time complexityO (n logn) for a
single-machine implementation of the proposed packing strategy; T should be O ((n logn)/д) to
achieve a speedup of д with д machines.

A primitive operation we need is sorting. In the MPC model, sorting n elements (initially evenly
distributed on the д machines) can be done in O (logs n) rounds, O ((n logn)/д) running time,
O (n logn) total amount of computation, and O ((n logs n)/д) load (communication I/Os) [24] (see
Tao et al. [57] for a simple algorithm when s g д ln(д · n) holds).

Mapping n data points to the rank space and sorting them by their Z-order values thus can
be done in O (logs n) rounds. This process takes O ((n logn)/д) running time and O (n logn) total
amount of computation. We focus on packing the sorted data points to form an R-tree next.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

4.2 Distributed Packing

Every round bulk-loadsΘ(logB s) levels of the target R-tree. In the �rst round,O (s) consecutive data
points are assigned to a machine by the ascending order of their Z-order values, where an R-tree
of Θ(logB s) levels is bulk-loaded locally. This creates O (n/s) R-trees. A second round bulk-loads
the next Θ(logB s) levels of the target R-tree over the root MBRs of those O (n/s) R-trees. For this
purpose, O (1 + д/s) machines are used, each assigned O (s) root MBRs; this results in O (n/s2) tree
roots. The above process repeats until the MBRs can all be bulk-loaded in a single machine (the
number of participating machines decreases by a factor of Θ(s) each time, while each such machine
is always assignedO (s) MBRs). A total ofO (logB n/ logB s) = O (logs n) rounds are incurred, where
O (s logs n) = O ((n logs n)/д) running time and O (n) total amount of computation are taken to
compute the MBRs. Over theO (logs n) rounds, the maximum load of any participating machine, i.e.,
the load (communication I/O cost) of our packing algorithm, is also O (s logs n) = O ((n logs n)/д).

T

p

p p p
1 2 3 4 876

ppp p
5

p
9

pp p p
9 10 11

1
N

2
N

12
p

N
9 12

N
11

N
10

N

14
N

13
N

p
10

p
11

p
12

N
6

N
5

pp

p
1413

p
15

p
16

p

N
8

N
7

p
13

3
N

4
N

14 15 165
pp p p

6 7 84321
ppp

p

M1 M2 M3 M4

R1

R2

Fig. 6. Parallel R-tree bulk-loading

The rounds are illustrated in Fig. 6, where n = 16, B = 2, д = 4, and s = 4. A total of logs n = 2

rounds are needed. Each round bulk-loads logB s = 2 levels. In the �rst round R1, every machine is
assigned s = 4 data points. The 4 machines bulk-load 4 R-trees of 2 levels locally. The 4 MBRs of
the roots of these local R-trees are bulk-loaded by a single machineM1 in the second round R2.
We omit the pseudo-code of the parallel bulk-loading algorithm as it is similar to Algorithm 1,

except that now a machine handles O (s) data points instead of n, and the loop to bulk-load an
R-tree (Lines 9 to 12) is broken into rounds.

5 UPDATE HANDLING

In previous sections, we focused on bulk-loading a static R-tree structure to guarantee a worst-case
optimal window query performance. In this section, we discuss how to handle data updates for
the bulk-loaded tree without impacting the worst-case optimal query performance. We will �rst
convert the static R-tree structure into a deletion-only R-tree structure in Section 5.1. This structure
retains theO (n/B) space cost and theO ((n/B)1−1/d +k/B) window query I/O cost, while it can also
handle a deletion in O (logB n) amortized I/Os. The structure does not support insertions. We then
extend this structure to support insertions in Section 5.2, which leads to a fully dynamic structure

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:17

named the LogR-tree that still answers a window query in O ((n/B)1−1/d + k/B) I/Os. We study
how to further reduce the insertion cost, resulting in an insertion improved structure named the
LogR∗-tree in Section 5.3.

5.1 Deletion

Recall that our static R-tree structure stores all the points of P sorted by their Z-order values. In
this tree, an inner node entry stores a pointer to a child node and its MBR. We modify this tree
slightly such that an inner node entry also stores the minimum Z-order value of the corresponding
child node. This increases the size of an inner node entry and reduces the node capacity B by a
small constant factor, but it does not impact either the space cost or the window query cost in big-O
notation. The modi�ed R-tree structure can be seen as a B-tree Γ over P with the Z-order values as
the key values. This structure is illustrated in Fig. 7a, where the numbers in parenthesis represent
Z-order values, e.g., p2 has a Z-order value of 1, and N1 has a minimum Z-order value of 1.

(15) (19) (54) (63)(48)(40)

(54)(40)

(40)(1)

(1) (15)

(1) (12) p
8

2N

p

N

2
p

3
p

N

3N

4
p

5

65
p p

6

p
1

N

1 4

7

N

(a) Γ

(1) (3)

(1,40) (2,1) (6,48)(5,19)

(7)(5)

(7,54) (8,63)

(5)(1)

(4,15)(3,12)

N

p p
3

p

3N2N

5

1N

N

p
1

6

2
p

N

7
p

6
p

85
p

4

4

(b) Λid

Fig. 7. Deletion-only structure

We support deletion by object identi�ers. Every point p ∈ P is associated with a unique integer
identi�er denoted by id , and a user supplies the id of p to trigger the deletion of p. Since the B-tree
Γ is constructed using Z-order values as the keys, we need to further construct a structure to map
id’s to Z-order values and enable deletion by id . This is done by an additional B-tree over the points
in P , where the id’s are the keys, and the points in P are stored in the leaf nodes with their Z-order
values. We call this additional B-tree the ID B-tree and denote it by Λid . As Fig. 7b shows, the
ID B-tree stores the data points in its leaf nodes. Each point is associated with a pair (id, z_value)
representing the id and the Z-order value of the point, e.g., p2 has an id of 2 and a Z-order value
of 1. The minimum data point id in a leaf node is stored in its corresponding entry in the parent
node, e.g., the minimum data point id of the leftmost leaf node, node N1, is 1, which is stored in the
parent node as N1 (1).

Set nlast = n right after constructing the B-trees Γ and Λid . To delete a point p, we compute its
Z-order value by a point search over Λid and delete its entry from both Γ and Λid in O (logB n)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

I/Os. This may trigger an under�ow in the node containing p, which is handled in the same way as
a normal B-tree. We decrease n by 1. If n has dropped to nlast/2, we perform an overhaul, which
destroys the B-trees Γ and Λid , reconstructs two new ones from (the remaining points in) P , and
resets nlast = |P |.
Cost analysis. It is clear that the space occupied by the deletion-only structure is O (n/B) at all

times (n equals to the size of the current P).
Regarding the deletion cost, �rst note the trivial fact that the cost isO (logB n) if an overhaul does

not take place. If an overhaul happens, it takes O (sort (n)) = O ((n/B) logM/B (n/B)) I/Os where
M g 2B is the memory size (in number of words). We charge the cost over the nlast/2 = n deletions
since the last overhaul. Therefore, each deletion bears onlyO ((1/B) logM/B (n/B)) = o(logB n) I/Os.
Note the little-o notation here. Thus, the amortized deletion cost is bounded by O (logB n).

It remains to prove that the query cost is O ((n/B)1−1/d + k/B). Using precisely the same ar-
gument as in the proof of Lemma 3.1 (and the discussion on the case where n is not a power of
2) in Section 3.3.1, we know that the query cost is bounded by O ((nlast/B)

1−1/d
+ k/B). This is

O ((n/B)1−1/d + k/B) because n g nlast/2.

5.2 Insertion

We now combine the deletion-only structure with the logarithmic method [13, 45] to obtain a fully
dynamic structure. The key idea of the logarithmic method is to replace insertions by constructing
a series of new deletion-only structures to hold the points to be inserted. There is no real insertion
occurring on any of the deletion-only structures constructed (except for insertions on the Λid tree).
Thus, the deletion and query cost bounds of the deletion-only structures are preserved.

Γ1 Γ2 Γ3 Γ+logB n ,−1 Γ+logB n , Λid

Fig. 8. LogR-tree

Speci�cally, as shown in Fig. 8, we create a series of +logB n, deletion-only structures denoted
by Γ1, Γ2, . . . , Γ+logB n , , where Γi can index up to Bi data points. The initial data set P is indexed in
Γ+logB n , , while the rest of the deletion-only structures are empty.

To insert a new point pnew , we �nd the smallest j such that 1 +
∑j

i=1 |Γi | f B j , where |Γi |
represents the number of points indexed in Γi . We use pnew and the points in Γ1, Γ2, . . . , Γj to
bulk-load a new Γj , and empty Γ1, Γ2, . . . , Γj−1. To delete a point pdel , we locate the deletion-only
structure that indexes pdel and delete pdel following the procedure described in Section 5.1. To
help locate pdel , we modify the ID B-tree Λid such that it also stores the id of the deletion-only
structure in which a point is indexed, denoted by tree_id . Thus, in Λid , a leaf node entry now stores
a triple (id, tree_id, z_value) instead of (id, z_value). A window query is processed over each of
Γ1, Γ2, . . . , Γ+logB n , , and the results are combined together as the �nal query answer.
We use LogR-tree to denote the above structure resulted from applying the logarithmic method

over our deletion-only structure. The following result holds for the LogR-tree, which is due to Arge
and Vahrenhold [8].

Lemma 5.1. Suppose that we have an O (n/B)-space structure that supports a deletion in O (logB n)

amortized I/Os, answers a reporting query inO (Q (n) + k/B)) I/Os (k is the number of points reported),

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:19

and can be constructed in O (sort (n)) I/Os. Then, we can apply the logarithmic method to obtain a

structure with the following guarantees:

• Space cost: O (n/B);

• Query cost: O
(
∑ +logB n ,

i=1 Q (min{Bi ,n})
)

+O (k/B);

• Deletion cost: O (logB n) amortized;

• Insertion cost: O (log2B n + logB n · logM/B (n/B)) amortized.

Applying the lemma to our deletion-only structure described in Section 5.1, we have Q (n) =

(n/B)1−1/d . The lemma yields a fully-dynamic structure that consumesO (n/B) space, and supports a
deletion inO (logB n) amortized I/Os and an insertion inO (log2B n+ logB n · logM/B (n/B)) amortized
I/Os. The query cost is bounded by:

O

(+logB n ,∑

i=1

Q (min{Bi ,n})
)

+O (k/B)

= O

(+logB n ,∑

i=1

min{(Bi/B)1−1/d , (n/B)1−1/d }
)

+O (k/B)

= O ((n/B)1−1/d + k/B)

(4)

Note that the summation term in the equation above is asymptotically dominated by the last term
(i.e., i = +logB n,).

Nowadays, thememory sizeM typically satis�es logM/B (n/B) = O (1) – recall thatO (logM/B (n/B))

is the number of passes performed by an external sort on n points. The insertion cost is then
O (log2B n) amortized.

5.3 Improving the Insertion Cost

Next, we will hack into the logarithmic method and present an improved version of Lemma 5.1
speci�c to our structures. The improvement lowers the amortized insertion cost from O (log2B n) to
O (logB n) when logM/B (n/B) = O (1).

The description below essentially follows the ideas of Arge and Vahrenhold [8], but introduces
new pointers to lower the insertion cost. The focus will be placed on explaining the algorithm steps
involving these pointers and the corresponding analysis.
B-tree. Regarding the B-trees used in our structure, we require that:

• All the data points are at the leaf level.
• If a leaf node over�ows, Ω(B) points must have been inserted into the node since the node
was created.
• If a leaf node under�ows, Ω(B) points must have been deleted from the node since the node
was created.

These requirements can be easily ful�lled by slightly modifying the standard B-tree algorithms
(see, e.g., Arge and Vitter [9] and Huddleston and Mehlhorn [29]).

The LogR∗-tree structure. We use LogR∗-tree to denote the proposed structure with improved
insertion costs. The LogR∗-tree resembles the LogR-tree as shown in Fig. 8, but with additional
pointers in the leaf nodes of the deletion-only structures Γi . For conciseness, we do not draw another
�gure to illustrate the LogR∗-tree.

In a LogR∗-tree, at all times, the input set P is stored in a sequence of H f 1 + +logB n, deletion-
only structures Γ1, Γ2, . . . , ΓH that satisfy the following conditions.

• Each point in P is in one and only one deletion-only structure;
• The number of points in Γi , denoted by |Γi |, can be anywhere from 0 to Bi .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Each point p ∈ P is said to have the structure index i if p is stored in Γi .
Same as that in the LogR-tree, the ID B-tree Λid in LogR*-tree also stores the structure index of

the points. For each point p ∈ P , its entry in Λid stores its id , structure index tree_id , and Z-order
value in the structure z_value . Now Λid serves as a “dictionary” that maps the id of a point to its
structure index in O (logB n) I/Os.
Based on the structural design above, each point p ∈ P with structure index i is stored: (i) at a

leaf node u of Γi and (ii) at a leaf node v of Λid .
We refer to the address of v as the dictionary address of p. Along with the entry of p in u, we

store a pointer to v , which we call the dictionary pointer of p. As an example, consider the structure
Γ and its corresponding ID B-tree Λid in Fig. 7. The dictionary pointer of p2 should point to N1 of
Λid , since p2 is in N1 of Λid . This pointer allows us to fetch v in a single I/O once u has been found,
which is essential for reducing the insertion cost from O (log2B n) to O (logB n).

Finally, we also store an integer nдlobal to be de�ned in the global rebuilding operation below.
Global rebuilding. This operation constructs a “clean” structure from the current P with n

points. It takes the following steps:

• Destroy all structures.
• Build (i.e., bulk-load) a deletion-only structure Γ+logB n , on all the points in P .
• Build Λid and update the dictionary pointers in Γ+logB n , .
• Set nдlobal to n.

It is rudimentary to implement the above operation in O (sort (n)) = O ((n/B) logM/B (n/B)) I/Os.
We use the above operation to build the �rst structure from the initial P (before all updates). In
general, after a global rebuild, we perform the next global rebuild after +nдlobal/2, updates. The
global rebuild takes O (sort (nдlobal)) = O ((nдlobal/B) logM/B (nдlobal/B)) I/Os. Therefore, each of
those updates is amortized only o(logB n) I/Os.

Query. To answer a query, we simply search all the H deletion-only structures in the LogR∗-tree.
The query cost is:

O

(1+ +logB n ,∑

i=1

Q (min{Bi ,n})
)

+O (k/B) = O ((n/B)1−1/d + k/B) (5)

Algorithm 2: LogR∗-tree-Deletion

Input: ïΓ1, Γ2, . . . , ΓH ;Λid ð: a LogR∗-tree; pdel : a point to be deleted.

Output: ïΓ1, Γ2, . . . , ΓH ;Λid ð: the updated LogR∗-tree.

1 i, z ← Point query on Λid to �nd pdel , return tree id i and Z-order value z of pdel ;

2 Delete pdel from Γi using standard B-tree deletion procedures by key value z;

3 Delete pdel from Λid using standard B-tree deletion procedures;

4 if under�ow and node merging occur in Λid then

5 for each p ∈ Λid that has been moved to a new node v do

6 i ′, z′ ← tree id i ′ and Z-order value z′ of p;
7 Point query on Γi′ by key value z′ to �nd p;

8 Dictionary address of p ← v ;

9 return ïΓ1, Γ2, . . . , ΓH ;Λid ð;

Deletion.We delete a point pdel in two steps as summarized in Algorithm 2:

(1) Find the structure index i of pdel using Λid and perform the deletion in Γi (Lines 1 and 2).
This takes O (logB n) I/Os.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:21

(2) Delete pdel from Λid (Line 3). If this triggers an under�ow, treating the under�owmay change
the dictionary addresses of O (B) points in the deletion-only structures. For every such point
p, we perform a point query on its corresponding deletion-only structure to locate it and
update its dictionary pointer (Lines 4 to 8), which takesO (logB n) I/Os. A total ofO (B logB n)

I/Os are incurred by these dictionary pointer updates. However, an under�ow can happen
only after Ω(B) points have been deleted from the node. We can charge the O (B logB n) cost
over those deletions, each of which is amortized only O (logB n) I/Os.

Insertion.We insert a point pnew as follows, which is summarized in Algorithm 3.

(1) Find the smallest j satisfying 1 +
∑j

i=1 |Γi | f B j (recall that |Γi | is the number of points stored
in Γi , Lines 1 to 5). Denote by S1 the set of points stored in Γ1, Γ2, . . . , Γj−1 and denote by S2
the set of points in Γj . Destroy Γ1, Γ2, . . . , Γj , and construct a new Γj on S1 ∪S2 ∪ {pnew } (Lines
6 to 11). This process takes O (sort (B j)) = O (B j−1 logM/B B

j−1) = O (B j−1 logM/B (n/B)) I/Os.
For every point p ∈ S1, update its structure index in Λid (Lines 7 and 8). This takes onlyO (1)

I/Os using the dictionary pointer of p, which results inO (|S1 |) I/Os in total. Every such p has
moved up to a deletion-only structure with a higher index – we say that p has been promoted.
By de�nition of j , we have |S1 | g B j−1. Hence, the total cost of this step isO (|S1 | logM/B (n/B))

I/Os. We charge this cost over the points in S1 such that every promoted point is amortized
O (logM/B (n/B)) I/Os.

(2) Insert pnew into Λid (Line 12). If this triggers an over�ow, treating the over�ow may change
the dictionary addresses of O (B) points in the deletion-only structures. For every such point,
updating its dictionary pointer takes O (logB n) I/Os (Lines 13 to 17). A total of O (B logB n)

I/Os are incurred by these dictionary pointer updates. However, an over�ow can happen only
after Ω(B) points have been inserted into the node. We can charge the O (B logB n) cost over
those insertions, each of which is amortized only O (logB n) I/Os.

Algorithm 3: LogR∗-tree-Insertion

Input: ïΓ1, Γ2, . . . , ΓH ;Λid ð: a LogR∗-tree; pnew : a point to be inserted.

Output: ïΓ1, Γ2, . . . , ΓH ;Λid ð: the updated LogR∗-tree.

1 i ← 1, sum ← |Γi |;
2 while 1 + sum > Bi do

3 i ← i + 1;

4 sum ← sum + |Γi |;
5 j ← i;

6 S1 ← the set of points in Γ1, Γ2, . . . , Γj−1;
7 for each p ∈ S1 do
8 Find p in Λid via its dictionary pointer and update its tree id to j;

9 S2 ← the set of points in Γj ;

10 Destroy Γ1, Γ2, . . . , Γj ;

11 Bulk-load Γj with S1 ∪ S2 ∪ {pnew };
12 Insert pnew into Λid using standard B-tree insertion procedures;

13 if over�ow and node split occur in Λid then

14 for each p ∈ Λid that has been moved to a new node v do

15 i ′, z′ ← tree id i ′ and Z-order value z′ of p;
16 Point query on Γi′ by key value z′ to �nd p;

17 Dictionary address of p ← v ;

18 return ïΓ1, Γ2, . . . , ΓH ;Λid ð;

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Finishing the update cost analysis. Suppose that we perform µ updates in total. Let ni be the
value of n before the i-th (1 f i f µ) update. We prove that our algorithms handle these updates
in O (

∑µ
i=1 (1 + logB ni · logM/B (ni/B))) I/Os. This proves that our amortized cost is O (logB n ·

logM/B (n/B)) per insertion and deletion.
We will focus on bounding the cost that arises at Step (1) of the insertion procedure. By the

earlier discussion, it is clear that the other steps in the insertion and deletion procedures perform
O (logB n) amortized I/Os per insertion and deletion.

The cost of Step (1) of insertion can be computed via the number of point promotions, since every
point promotion bears an amortized I/O cost of O (logM/B (n/B)). The number of point promotions
is in turn determined by the number of points promoted and the number of times that these points
are promoted. We analyze these two factors by separating the µ updates into epochs.

Suppose that there were ¸ global rebuilds in total. They divide the time line into ¸ epochs, where
the j-th epoch starts from the moment when the j-th global rebuild happened and ends right before
the next global rebuild (the last epoch is “open” by this de�nition). De�ne ñj as the value of n at
the j-th global rebuild (ñ1 is the size of the initial P before all updates).

Since there are at most +ñj/2, updates in the j-th epoch, the number of points that were promoted
at least once in this epoch is obviously O (ñj). A point can only be promoted to a deletion-only
structure with a higher index. Thus, the number of deletion-only structures H in the LogR∗-tree
in the j-th epoch bounds the number of times that a point can be promoted. The value of H is
bounded by the following lemma.

Lemma 5.2. The number of deletion-only structures in the LogR∗-tree (i.e., the value of H) remains

between +logB ñj , and 1 + +logB ñj , throughout the j-th epoch.

Proof. The value of H equals +logB ñj , right after the j-th global rebuild and never decreases
(recall that Γ+logB ñj , has ñj points at the beginning of the j-th epoch, while the epoch has at most

ñj/2 deletions). Meanwhile, at any moment, it must hold that BH f n f 3ñj/2 since we perform
global rebuilding after +ñj/2, updates. Hence, H f logB (3ñj/2) f 1 + +logB ñj , because B g 2. □

Based on Lemma 5.2, in the j-th epoch, a point can be promoted O (logB ñj) times. As discussed
above, there are O (ñj) points promoted where each promotion bears an amortized I/O cost of
O (logM/B (n/B)). Thus, Step (1) of insertion incurs in total O (ñj · logB ñj · logM/B (n/B)) I/Os. This
means O (logB ñj · logM/B (n/B)) I/Os per update.

Therefore, we obtain a fully dynamic structure that has O (n/B) space cost, O ((n/B)1−1/d + k/B)
query I/O cost, O (logB n) deletion I/O cost, and O (logB n · logM/B (n/B)) insertion I/O cost. As
mentioned earlier, the insertion I/O cost becomes O (logB n) when logM/B (n/B) = O (1).

5.4 Practical Considerations

In this section, we constructed a dynamic structure named LogR∗-tree that retains the worst-case
optimal query performance while also having attractive update performance. Due to the complex
design of this structure, there are factors to be considered when applying this structure.
In terms of the application scenarios, as mentioned in Section 1, we target applications such

as digital mapping where queries are much more frequent than updates over the data, e.g., there
may be millions of users querying Google Maps while the map data may not require constant
updates. Our index design is thus prioritized for the query performance. Our static structure o�ers
an empirically e�cient and worst-case optimal query performance. It may be used for applications
such as data warehousing that allow periodic rebuilds (e.g., overnight). Our dynamic structure
(i.e., the LogR∗-tree) further allows online data updates for applications such as digital mapping
without impacting the worst-case optimal query performance, which is the core contribution of

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:23

Section 5. However, we do acknowledge that our LogR∗-tree is not designed for applications with a
high data update frequency, e.g., moving object databases. How to retain the worst-case optimal
query performance in such applications is challenging and an interesting future study. Also, we
focus on relatively low dimensional space, and mention that there are studies for high-dimensional
window queries (e.g., [64]), but those are not our target applications.

In terms of the implementation complexity, while our LogR∗-tree may look complex at a �rst
glance, it only consists of slightly adapted versions of B-trees and can be implemented based on the
B-tree. Index management over our LogR∗-tree such as concurrency control and caching can be
done using standard B-tree concurrency control and caching algorithms. Our use of the ID B-tree
to keep track of the tree IDs of the data points does bring extra update workloads, and it breaks the
nice property of being cache-oblivious for the trees constructed by the logarithmic method. These
may impact the update e�ciency and the throughput of the database system. As our experiments
in Section 6.2.3 show, our LogR∗-tree does have a higher update cost than a baseline tree structure
that uses the logarithmic method without the ID B-tree. This would limit the applicability of our
index structure to applications with highly frequent updates as discussed above.

In terms of the update costs, they are achieved based on an amortized analysis. A global rebuild
is needed after every n/2 updates, which can bring I/O peaks. To avoid impacting query users’
experience, an update server (or a cluster) may run in parallel with the query server to perform
global rebuilds. During a rebuild, the query server can query the “old” index structure and scan
the data points updated after the rebuild is triggered (which should not be many in our target
applications) to provide query answers. There are also techniques (e.g., [46, 47, 53]) to de-amortize
the costs for the logarithmic method. Their basic idea is to distribute the workload of a global rebuild
across the updates in a rebuild cycle, such that no updates have a signi�cantly higher workload
than the others. However, these techniques are mainly of theoretical interest. Adapting them for
our dynamic structures to achieve an empirically e�cient de-amortization while preserving the
theoretical optimality would require signi�cant research e�orts. We leave this task for future study.

6 EXPERIMENTS

We study the empirical performance of the proposed algorithms in this section.

6.1 Experimental Setup

Algorithms. As summarized in Table 2, we test the following algorithms. For the bulk-loading
and window query processing performance, we compare our bulk-loading algorithm with the
STR-tree [36], Hilbert R-tree [28], H-GO R-tree [1], TGS R-tree [23], and PR-tree [7], which have
been described in Section 2. Note that the H-GO R-tree assumes known query width and height in
its original proposal [1]. We adapt it by ignoring the query width and height (i.e., letting them be 0)
to keep consistency with the rest of the algorithms. We denote the baseline algorithms by “STR”,
“HR”, “HGO”, “TGS”, and “PR”, respectively. We denote the proposed algorithm by “ZR” for that
it builds an R-tree based on Z-order values.

As discussed in Section 3.4, the proposed packing strategy is also applicable to other space-�lling
curves such as the Hilbert curve. To demonstrate this applicability, we further implement an R-tree
based on the proposed packing strategy where the data points are sorted and packed by their
Hilbert-order values in the rank space. We denote this R-tree by “HRR”. This R-tree shares a similar
structure with the Hilbert R-tree, except that the data points are mapped to the rank space before
they are packed. Note that the query cost bounds derived in Section 3.3 hold for this tree.
For the update handling performance, we compare our LogR-tree and LogR*-tree with the LR-

tree [16] that applies the logarithmic method over the Hilbert R-tree as discussed in Section 2.
We denote this baseline algorithm by “LR-tree”. We implement the LogR-tree and the LogR*-tree

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Table 2. Algorithms Evaluated

Experiment Group Algorithm Description

Bulk-loading and Baseline HGO H-GO [1]
query processing HR Hilbert R-tree [28]

PR PR-tree [7]
STR STR-tree [36]
TGS TGS R-tree [23]

Proposed HRR Rank space technique (using Hilbert curve)
ZR Rank space technique (using Z-curve)

Parallel bulk-loading Baseline L-C Level-by-level technique (communication time)
L-M Level-by-level technique (running time T)
L-R Level-by-level technique (response time)

Proposed ZR-C Multi-level technique (communication time)
ZR-M Multi-level technique (running time T)
ZR-R Multi-level technique (response time)

Update handling Baseline LR-tree LR-tree [16]
Proposed LogR-H LogR-tree (using Hilbert curve)

LogR-Z LogR-tree (using Z-curve)
LogR*-H LogR*-tree (using Hilbert curve)
LogR*-Z LogR*-tree (using Z-curve)

over both Z-curves and Hilbert-curves. We denote the resultant trees by “LogR-Z”, “LogR*-Z”,
“LogR-H”, and “LogR*-H”, where the su�xes “-Z” and “-H” denote Z-curve and Hilbert-curve
based implementations, respectively. We do not compare with the other baseline bulk-loading
algorithms (HGO, PR, STR, and TGS) because their bulk-loaded R-trees are uncompetitive in query
processing, as shown in the experimental results in Section 6.2.1. Combining such R-trees with the
logarithmic method to handle updates will not be competitive either. We also note that the PR-tree
has an update algorithm [7] based on the logarithmic method. However, this algorithm is more of
theoretical interest. No implementation or empirical result has been presented for it.
Following previous studies [7, 23, 28, 36], we focus on the I/O cost of the algorithms above.
For the parallel bulk-loading performance, we compare our proposed multi-level algorithm with

a level-by-level parallel bulk-loading algorithm that also uses the proposed packing strategy. We
implement these algorithms over both Z-curves and Hilbert curves. We observe that the SFC used
has very small impact on the parallel bulk-loading performance, since it only a�ects the curve values
of the data points. To keep the �gures concise, we only report the results over Z-curves and denote
the two corresponding algorithms by “ZR” and “L”, respectively. For these parallel algorithms, we
measure (i) the response time (denoted by “ZR-R” and “L-R”, respectively), which is the duration
for which an algorithm runs, (ii) the running time T (denoted by “ZR-M” and “L-M”, respectively),
which is the sum of the maximum single machine response time over all MapReduce rounds of an
algorithm, and (iii) the communication time (denoted by “ZR-C” and “L-C”, respectively), which
is the part of the response time spent on communication. We do not measure the I/O cost of the
parallel algorithms because they are based on Spark which has a di�erent I/O mechanism from
those of the standalone algorithms based on the TPIE library [37].
System environment. The window query and index update experiments are run on a 64-bit

machine running Ubuntu 14.04 with a 2.60 GHz Intel i5 CPU, 4 GB memory, a 1 TB TOSHIBA
MQ01ABD075 (5400 RPM) hard disk drive, and a 240 GB SanDisk SSD Plus solid-state drive. We use

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:25

Ke Yi’s single-machine implementation1 of the Hilbert R-tree, TGS R-tree, and PR-tree, which uses
the TPIE library [37] – a C++ library that provides APIs for implementation of external memory
algorithms and data structures. For ease of comparison, we also implement a single-machine version
of the H-GO R-tree (based on Ke Yi’s Hilbert R-tree implementation), the STR-tree, the LR-tree, and
the proposed HRR, ZR, LogR-tree and LogR*-tree using TPIE. In all the R-tree structures except for
those used in the LogR-tree and the LogR*-tree, we use 40 bytes for each entry in a node. For an
inner node entry, these 40 bytes include 32 bytes for the 4 coordinates (8 bytes each) of an MBR
and 8 bytes for a pointer pointing to the disk block storing the corresponding child node. For a leaf
node entry, these 40 bytes include 8 bytes for an id of a data point and 32 bytes for the coordinates
also in the form of an MBR for ease of implementation. For the LogR-tree, each entry in an R-tree
node has 48 bytes instead of 40, where the 8 extra bytes store a space-�lling curve value. For the
LogR*-tree, a leaf node entry needs to additionally store a space-�lling curve value (8 bytes) and a
dictionary pointer (8 bytes). We thus use 56 bytes for each entry. We use a block size of 4 KB. This
means that the maximum fanout of an R-tree node (i.e., B) is 102 (85 for the LogR-tree and 73 for
the LogR*-tree). For the H-GO R-tree, following its original proposal [1], we use B/3 to bound the
minimum number of entries in an R-tree node.
The bulk-loading experiments are run on the single machine described above and on a clus-

ter. The parallel bulk-loading algorithms are implemented with Scala and run on Apache Spark
1.6.0-SNAPSHOT, which also supports the MapReduce model but is more e�cient than Hadoop
MapReduce. We use a cluster with 16 virtual nodes from an academic computing cloud [40] running
on OpenStack. Each virtual node has 12 GB memory and 4 cores running at 2.6 GHz. One of the
virtual nodes acts as the master and the other 15 virtual nodes act as slaves. Each core simulates
a worker machine, and hence there are 60 worker machines in total, i.e., д = 60. The network
bandwidth is up to 200 Mbps. We use Apache Hadoop 2.6.0 with Yarn as the resource manager.

(a) Tiger-East data (b) Tiger-Full data (c) Gaussian data (d) Skew data

(e) Cluster data

Fig. 9. Experimental data

Data sets. We use both real and synthetic data sets. The real data set contains 17,468,292
rectangles (666 MB in size) representing geographical features in 18 eastern states of the USA
extracted from a subset of the TIGER/Line 2006SE data [59]. We use the center of the rectangles as
our data points. We denote this data set by “Tiger-East” and plot it in Fig. 9a. For the parallel bulk-
loading experiments, we further construct a data set that contains the rectangle centers from the
full TIGER/Line 2006SE data (62,174,885 rectangles, 2.32 GB in size). We denote it by “Tiger-Full”
and plot it in Fig. 9b.

Synthetic data sets are generated with a space domain of 1×1where the data set cardinality ranges
from 0.5 to 20 million (and up to 100 million for parallel bulk-loading experiments). We generate

1https://www.cse.ust.hk/~yike/prtree/

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.cse.ust.hk/~yike/prtree/

1:26 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Table 3. Parameters and Their Se�ings

Parameter Setting

Data sets Tiger-East, Tiger-Full, Uniform, Gaussian, Skew, Cluster

d 2, 3, 4, 5

n (million) 0.5, 1, 5, 10, 20, 40, 60, 80, 100

Cache size (blocks) 0, 1, 4, 16, 64, 256

Percentage of data updates (%) 20, 40, 60, 80, 100, 120

Query window area (%) 0.0001, 0.001, 0.01, 0.1, 1, 2

Storage hardware hard disk drive, solid-state drive

four groups of synthetic data sets, denoted by “Uniform”, “Gaussian”, “Skew”, and “Cluster”,
respectively. The Uniform and Gaussian data sets follow uniform and Gaussian distributions (µ = 0.5

and Ã = 1), respectively. We plot a sample Gaussian data set in Fig. 9c. The Skew and Cluster data
sets are generated following the PR-tree paper [7]. A Skew data set is generated from a Uniform
data set by raising the y-coordinates to their powers, i.e., the coordinates of a randomly generated
data point are converted from (x ,y) to (x ,y³), ³ = 9. We plot a sample Skew data set in Fig. 9d.
The Cluster data set is designed to test the worst-case window query performance of the R-trees
bulk-loaded using an SFC. It contains 10,000 clusters with centers evenly distributed on a horizontal
line. Each cluster contains a subset of points following a uniform distribution in a 0.00001× 0.00001
square around the center. We plot a sample Cluster data set with four clusters in Fig. 9e.
We vary the query window size, the data set size, the data dimensionality, the cache size, the

hardware for index storage, and the percentage of data updates. The experimental parameters are
summarized in Table 3, where default values are in bold.

6.2 Results

We present results on window query processing, bulk-loading, and update handling, respectively.

6.2.1 Window �ery Processing. We start with the window query performance of the bulk-loaded
R-trees (without data updates). We generate 100 square-shaped queries at locations following
the data distribution in each experiment except for the experiments on the Cluster data set. The
Cluster data set is designed to test the worst-case performance of the R-trees. Following the PR-
tree paper [7], we generate long and thin window queries to query this data set. The bottom-left
(bottom-right) corner of each query is randomly placed to the left (right) of the leftmost (rightmost)
cluster, such that the query spans all 10,000 clusters. The height of the query is generated as the
intended query window size divided by the query width.

For ease of comparison, we follow previous studies [7, 23, 28, 36] and report the average I/O cost
per query relative to the output size. Let the number of blocks read for a query be I and the output
size be k/B. We report I/(k/B). Note that I/(k/B) g 1, i.e., we need to at least read all the blocks
containing the data points in the query answer. A smaller value of I/(k/B) is more preferable.
Varying the query window size. We �rst vary the area of the query window from 0.0001% to

2% of the data space. We show the query I/O cost relative to the output size k/B over 10 million
data points (17 million for Tiger-East) in Fig. 10. A general observation is that the relative query
costs of the R-trees decrease as the query window area increases. This is because a larger query
window overlapping a tree node is more likely to overlap the data points in this node, i.e., there are
lower percentages of extra query I/Os that do not contribute to the output.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:27

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

0.0001 0.001 0.01 0.1 1 2

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Query window size (%)

(a) I/O (Uniform)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

0.0001 0.001 0.01 0.1 1 2
R

e
la

ti
v
e
 I
/O

 c
o
s
t

Query window size (%)

(b) I/O (Gaussian)

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

0.00010.001 0.01 0.1 1 2

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Query window size (%)

(c) I/O (Cluster)

2
0

2
1

2
2

2
3

2
4

0.0001 0.001 0.01 0.1 1 2

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Query window size (%)

(d) I/O (Skew)

2
0

2
1

2
2

2
3

2
4

0.0001 0.001 0.01 0.1 1 2

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Query window size (%)

HGO
HR

HRR
PR

STR
TGS

ZR

(e) I/O (Tiger-East)

Fig. 10. �ery costs – varying the query window size

The R-trees HRR and ZR created by the proposed packing strategy have the smallest query I/O
costs on Uniform, Gaussian, and Cluster data (Figs. 10a, 10b, and 10c). On Skew and Tiger-East
data, the query I/O costs of HRR and ZR are close to those of TGS which are the smallest (Figs. 10d
and 10e). This demonstrates that HRR and ZR not only have an asymptotically optimal cost in the
worst case but also perform well in other cases. Our advantage attributes to the rank space mapping
before packing the data points. Such a packing strategy e�ectively incorporates the designs of both
HR and STR, which both perform well on non-extreme data.
We also notice that HRR outperforms ZR. This suggests that when packing data points in the

same rank space, the Hilbert curve yields a better packed R-tree than the Z-curve does. This result
is consistent with an earlier study [33] that compares the query performance of R-trees packed
with the Hilbert curve and the Z-curve in the same Euclidean space.

Regarding the baseline techniques, while TGS has smaller query I/O costs than our HRR and ZR
on Skew and Tiger-East data (e.g., 3.29 vs. 3.95 and 5.82 when the query window area is 0.0001%
of the data space on Tiger-East data, Fig. 10e), it is not worst-case optimal. Its query I/O costs
are much higher than ours on the other data sets (e.g., 174.88 vs. 9.87 and 16.05 when the query
window area is 0.0001% of the data space on Gaussian data, Fig. 10b). The other heuristic techniques
HGO, HR, and STR share a similar limitation. In particular, the two Hilbert curve based techniques
HGO and HR su�er the most on Cluster data (Fig. 10c), which is designed to test the worst-case
performance of Hilbert R-trees. PR is the only baseline with worst-case optimal window query costs.
Its empirical query costs, however, are consistently higher than those of HRR (e.g., 9.49 vs. 3.95 and
5.82 when the query window area is 0.0001% of the data space on Tiger-East data, Fig. 10e) and only
slightly smaller than those of ZR on Skew data (Fig. 10d). For fairness, HGO and PR are designed
for rectangles. They may not be optimal on point data for which HRR and ZR are designed.
To help further understand the bene�t of the proposed packing strategy, we list the average

output size (k/B) per query for Cluster data as follows. For the di�erent query window areas tested
(i.e., from 0.0001% to 2% of the data space size), the output sizes are 0.99, 0.99, 10.80, 98.73, 974.64,
and 1936.29, respectively. Based on these output sizes and the relative query I/O costs shown in
Fig. 10c, we can derive the absolute query I/O costs of the di�erent R-trees. For example, at query

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

window area being 2%, the relative query I/O costs of HRR, ZR, TGS, PR, STR, HGO, and HR are
1.25, 1.28, 1.46, 1.59, 1.61, 50.40, and 51.37, which correspond to 2,420.36 (1,936.29×1.25), 2,478.45
(1,936.29×1.28), 2,826.98 (1,936.29×1.46), 3,078.70 (1,936.29×1.59) I/Os, 3,117.43 (1,936.29×1.61),
97,589.02 (1,936.29×50.40), and 99,467.22 (1,936.29×51.37), respectively. This means that HRR has at
least 406.64 (14%) and up to 97,046.86 (98%) fewer I/Os than the baselines techniques. Similarly, ZR
has at least 348.53 (12%) and up to 96,988.77 (98%) fewer I/Os than the baselines techniques. Note
that these are improvements per query. For target applications such as digital mapping, there can
be millions of user queries to be processed at the same time. The accumulated bene�t of HRR and
ZR over such a large number of queries is non-trivial.
Note that, for extremely small window queries (e.g., a point query), our techniques would be

disadvantaged, because the R-tree query costs may be too small to justify the extra costs to access
the B-trees for mapping the query window into the rank space. Under such a scenario, the baseline
techniques may be preferred since they do not have the extra mapping costs.

2
0

2
1

2
2

2
3

2
4

2
5

0.5 1 5 10 20

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data set size (million)

(a) I/O (Uniform)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

0.5 1 5 10 20

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data set size (million)

(b) I/O (Gaussian)

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

0.5 1 5 10 20

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data set size (million)

(c) I/O (Cluster)

2
0

2
1

2
2

2
3

0.5 1 5 10 20

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data set size (million)

(d) I/O (Skew)

2
0

2
1

2
2

2
3

0.5 1 5 10 17

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data set size (million)

HGO
HR

HRR
PR

STR
TGS

ZR

(e) I/O (Tiger-East)

Fig. 11. �ery costs – varying the data set cardinality

Varying the data set cardinality. Next, we vary the data set cardinality n from 0.5 to 20 million
while keeping the query window size at 0.01% of the data space. For Tiger-East, we vary n to up to
17 million (i.e., the full Tiger-East data set) and generate the subsets by random sampling.

We see from Fig. 11 that the relative I/O costs drop as n increases for most techniques. This is
because the data density increases with n. A query window overlapping a tree node may overlap
more data points in this node, which causes the relative query I/Os to drop. TGS is an exception,
and its query performance �uctuates. This technique relies on heuristics to minimize the area of
the MBRs for the points packed together, which may not be optimal for all cases.

Our HRR technique again yields the smallest query I/O costs on Uniform, Gaussian, and Cluster
data sets. On Tiger-East and Skew data, TGS has the smallest query I/O costs while those of HRR
are close, e.g., 2.50 vs. 2.78 on 0.5 million Tiger-East data (Fig. 11e). As mentioned above, the query
costs of TGS �uctuate, which can be over 25 times as large as those of HRR, e.g., 32.61 vs. 1.26 on 20
million Gaussian data (Fig. 11b). Our ZR technique has higher query costs than our HRR technique
because of the di�erent space-�lling curves used, but it still preserves a consistently low query cost
across the di�erent data sets due to our rank space mapping based indexing technique.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:29

STR has close query performance to that of HRR and ZR, for that these techniques share a similar
design. However, on Cluster data, the performance di�erence is still non-trivial, e.g., 78.28 vs. 28.21
and 33.87 on 20 million data points (Fig. 11c). HGO and HR again su�er the most on Cluster data.
Additionally, we see that the query costs of HGO and HR do not drop as fast as the other techniques
on Gaussian, Cluster, and Skew (Figs. 11b, 11c, and 11d), where the data distributions are skewed.
This can be explained as follows. HGO and HR use a grid of a �xed size to partition the data space.
As n increases, there may be multiple points falling into the same grid cell, which are given the
same Hilbert value, especially in the highly dense regions of the skewed data sets. This could lead
to an arbitrary ordering for such points and impinge the performance of the resultant R-trees.

PR is again consistently outperformed by HRR and ZR, except for on 10 million Skew data where
PR outperforms ZR slightly (Fig. 11d). On real data, our HRR and ZR reduce the query costs by
up to 31% and 7%, respectively (2.78 and 3.71 vs. 4.00 on 0.5 million Tiger-East data, Fig. 11e). On
synthetic data, our HRR and ZR reduce the query costs by up to 53% and 44%, respectively (28.21
and 33.87 vs. 60.53 on 20 million Cluster data, Fig. 11c).

2
1

2
2

2
3

2
4

2
5

2 3 4 5

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data dimensionality

(a) I/O (Uniform)

2
0

2
1

2
2

2
3

2 3 4 5

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data dimensionality

(b) I/O (Gaussian)

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2 3 4 5

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data dimensionality

(c) I/O (Cluster)

2
0

2
1

2
2

2 3 4 5

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data dimensionality

(d) I/O (Skew)

2
0

2
1

2
2

2 3 4 5

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Data dimensionality

HGO
HR

HRR
STR

ZR

(e) I/O (Tiger-East)

Fig. 12. �ery costs – varying the data dimensionality

Varying the data dimensionality. We further vary the data dimensionality d from 2 to 5. The
higher dimensional (i.e., d > 2) data sets are generated as follows. For Uniform and Gaussian, the
coordinates of the data points in each dimension follow uniform and Gaussian (µ = 0.5 and Ã = 1)
distributions, respectively. For Skew, the coordinates of the data points from a Uniform data set are
raised to the power of ³ = 9 for every dimension other than the �rst dimension. For Cluster, the
data points are generated to form 10,000 clusters with centers evenly distributed on a horizontal
line in the �rst dimension. Each cluster contains a subset of points following a uniform distribution
in a 0.00001d hypercube around the center. For Tiger-East, we add higher dimensional coordinates
to the real data points via randomly picking coordinates from the �rst two dimensions.

We keep the query window size at 0.01% of the data space. On the Uniform, Gaussian, Skew, and
Tiger-East data, the queries follow the data distribution and have a hypercube shape. On the Cluster
data, a query window is a hyperrectangle where the edge in the �rst dimension spans across the
data space (i.e., with length 1), while the edge in any other dimension is randomly placed and with

length (0.01% × data space size)1/(d−1) .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

Note that TGS and PR are dropped from the baselines for this set of experiments as their
implementations [7] are hard-coded for d = 2.
As shown in Fig. 12, when d increases from 2 and 5, our HRR technique again outperforms the

baselines on Uniform, Gaussian, and Cluster data while being close to the best baseline on Skew
and Tiger-East data. Our ZR technique is also robust to the increase in d across the data sets.
An overall observation is that the relative query costs increase as d increases. This is expected

because the data become more sparse as d increases, which leads to larger MBRs that may overlap
with a query window but contribute few query answer points. There is an exception on Cluster data,
where the relative query costs of HRR, ZR, and STR drop from d = 2 to d = 4 before rising again at
d = 5 (Fig. 12c). We conjecture that this is because the Cluster data set occupies a data space of
[0, 1]× [0, 0.00001]d−1 such that the projected distribution in the �rst dimension is clustered and the
projected distribution in each of the other dimensions is uniform. Increasing d from 2 to 3 adds a
dimension with a projected uniform distribution. This not only makes the overall data distribution
more sparse but also makes it more uniform, which brings down the query costs (i.e., a less skewed
data distribution tends to have lower query costs, cf. Figs. 12a and 12c). As d increases further, the
impact of a more sparse data distribution becomes more prominent, and the relative query costs
rise again. Note that the Hilbert curve based techniques HGO and HR do not bene�t much from
increasing d because the Cluster data set is designed to show their worst-case performance.

2
1

2
2

2
3

2
4

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(a) I/O (Uniform)

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(b) I/O (Gaussian)

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(c) I/O (Cluster)

2
0

2
1

2
2

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(d) I/O (Skew)

2
0

2
1

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

HGO
HR

HRR
PR

STR
TGS

ZR

(e) I/O (Tiger-East)

Fig. 13. �ery costs – varying the cache size

Varying the cache size. In this set of experiments, we examine the impact of caching the tree
nodes in main memory. We start caching from the root node to nodes in the lower levels of a tree.
We vary the number of nodes cached from 1 to 256. From Fig. 13, we see that caching does not
have a signi�cant impact on the relative performance of the R-trees bulk-loaded by the di�erent
techniques. Our HRR and ZR techniques still obtain the best performance on Uniform, Gaussian,
and Cluster data while they are also competitive on Skew and Tiger-East data. Note that our HRR
and ZR techniques require two B-trees each for window query mapping. We cache the same number
of nodes for each B-tree as that for the R-tree, i.e., our techniques require extra caching costs.
However, this is just a constant time (i.e., 2 times) extra cost, which is worth paying to obtain the
worst-case performance guarantee.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:31

Overall, as the cache size increases, the query costs decrease for all techniques. The decrease in
the costs may not seem too signi�cant. This is because the main I/O costs come from accessing the
leaf nodes, while even a cache with 256 blocks have not reached the leaf nodes yet (recall that our
default data set size is 10 million, which means over 900 nodes at the parent level of the leaf nodes).
For example, when the cache size increases from 1 (caching only the tree root) to 4 (caching the
tree root and three child nodes of the root), the absolute query cost may drop by up to 3 I/Os. This
means a drop of only 3% of the I/O costs, e.g., for TGS on Uniform data (cf. Fig. 13a), which has
92.72 I/Os per query on average. Also, not all cached nodes are accessed for every query. Thus, as
the cache size increases further, the decrease in the I/O costs does not increase linearly with it.

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

HDD SSD

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Storage hardware

(a) Response time (Uniform)

2
-2

2
-1

2
0

2
1

2
2

2
3

HDD SSD

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Storage hardware

(b) Response time (Gaussian)

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

HDD SSD

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Storage hardware

(c) Response time (Cluster)

2
-1

2
0

2
1

2
2

2
3

HDD SSD

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Storage hardware

(d) Response time (Skew)

2
-1

2
0

2
1

2
2

2
3

2
4

HDD SSD

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Storage hardware

HGO
HR

HRR
PR

STR
TGS

ZR

(e) Response time (Tiger-East)

Fig. 14. �ery costs – impact of storage hardware

Impact of data storage hardware. To examine the impact of data storage hardware, we com-
pare the query times using a solid-state drive (SSD) for index storage with those using a hard disk
drive (HDD). We report the results on default data set size and query window size in Fig. 14.

All the techniques run faster on SSD. The speed-up can be up to 10 times, e.g., for PR on Tiger-East
data (cf. Fig. 14e). Di�erent techniques may have a di�erent speed-up on di�erent data sets, because
they may form di�erent data grouping. When the tree nodes accessed for query processing tend to
be stored consecutively in the HDD, the speed-up o�ered by the SSD may be less signi�cant. Thus,
the performance gaps between di�erent techniques may vary on HDD and SSD. For example, the
performance gaps between our HRR and the baseline techniques are larger on the SSD than on the
HDD on Gaussian data (cf. Fig. 14b). However, a faster technique on the HDD is also faster on the
SSD in general. These observations con�rm the adaptability of our techniques to SSDs.
KNN query processing.While our structures are designed for window queries, they can also

be adapted for kNN queries. We present kNN query performance results in an online appendix.

6.2.2 Bulk-loading. We implemented both the standalone bulk-loading algorithm (Section 3.2) and
the parallel bulk-loading algorithm (Section 4.2). For the standalone algorithm (denoted by “ZR”),
we measure the I/O, the response time on both HDD and SSD, and the index size. For the parallel
algorithm, we measure the response time (denoted by “ZR-R”), the running time T (denoted by
“ZR-M”), and the communication time (denoted by “ZR-C”), as described in Section 6.1.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

We also implemented the bulk-loading algorithm for the proposed packing strategy using the
Hilbert curve. We denote the standalone implementation by “HRR”. As Figs. 15 and 16 show, HRR
and ZR have very similar bulk-loading I/O and time costs. This is expected as they only di�er in
the curve used. Similar observation is made on the parallel implementation of the algorithms. To
keep the �gures concise, we omit the parallel HRR algorithm.
We report the results on Uniform and Tiger data in this subsection. Results on the other data

sets show similar relative algorithm performance patterns and are omitted due to space limit. The
similar relative algorithm performance across di�erent data sets is expected. This is because the
bulk-loading algorithms rely on sorting the data points. Di�erent data sets may have an impact on
the sorting e�ciency, but such an impact is the same across the di�erent bulk-loading algorithms
since the same sorting algorithm is used (i.e., external merge sort in the TPIE library).
Bulk-loading on a single machine. We �rst show the algorithm performance when the algo-

rithms are running on a single machine.
Varying the data set cardinality.We vary the data set cardinality and show the bulk-loading costs

in Fig. 15 for Uniform and Tiger-East data. Here, we randomly sample the Tiger-East data set to
obtain subsets of of di�erent sizes.

We see from Figs. 15a and 15e that the bulk-loading I/O costs increase with the data set cardinality
as expected. Both HR and STR outperform HRR and ZR in I/O cost, because they require fewer
rounds of sorting. HR only sorts on the Hilbert-order values, while STR only sorts on the coordinates.
Our HRR and ZR algorithms pay extra sorting costs in bulk-loading to achieve lower (and worst-case
optimal) query costs, as shown above. PR has a slightly smaller I/O cost than those of HRR and
ZR at start, but its I/O cost increases faster and gets very close to those of HRR and ZR when
the data set cardinality exceeds 10 million. This can be explained by that PR needs to construct a
pseudo-PR-tree for bulk-loading each level of the target R-tree. As there are more data points, the
pseudo-PR-tree becomes taller and takes more I/Os to construct. TGS has a higher bulk-loading I/O
cost than HRR and ZR due to its repetitive data access for optimization function computation. HGO
has the highest bulk-loading I/O cost, which is incurred by accessing the data points to compute
the дopt∗ cost values: for each дopt∗ (i), i ∈ [b − 1,n − 1], a block of data points is needed for MBR
area computation. Note that, in our HGO implementation, we only bu�er a block of B дopt∗ cost
values but not the data points. This is to keep in line with the rest of the algorithms which are all
based on external memory (including sorting which is done by external merge sort). When more
memory are available to bu�er data points, the I/O cost of HGO is expected to be lower.
The bulk-loading times are shown in Figs. 15b, 15d, 15f, and 15h. We see that the comparative

performance of the algorithms in terms of response time is consistent with that in the I/O cost. HR
and STR have the lowest response times for their least amount of sorting workload. HRR, ZR, and
PR have close response times which are higher than those of HR and STR, since they need to do
more sorting. TGS and HGO have the highest response times due to their higher I/O costs for cost
function computation. Comparing the HDD times with the SSD times on the same data set (e.g.,
Figs. 15b and 15d), we see that the algorithms run (up to 2.5 times) faster on SSD, although now the
advantage of SSD is less signi�cant than that in query processing. This is because (1) computation in
the bulk-loading process (e.g., sorting) takes a more signi�cant portion of the overall response time
than computation in querying processing; and (2) bulk-loading requires more sequential accesses,
i.e., scanning and (merge) sorting the data points, where the performance of HDD su�ers less.

The bulk-loaded index sizes are shown in Figs. 15c and 15g. The baselines HR, PR, STR, and TGS
all have the same index size, as they all pack every B points into a leaf node of the R-trees. Our
HRR and ZR techniques create d B-tree indices in addition to an R-tree bulk-loaded. This results
in about 78% larger index sizes. For HGO, we set b = B/3 following its original proposal [1] such
that a leaf node of an R-tree may have at least B/3 and at most B data points. We observe that the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:33

10
4

10
5

10
6

10
7

10
8

0.5 1 5 10 20

I/
O

 c
o
s
t

Data set size (million)

HGO
HR

HRR
PR

STR
TGS

ZR

(a) I/O (Uniform)

10
0

10
1

10
2

10
3

10
4

0.5 1 5 10 20

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data set size (million)

(b) HDD time (Uniform)

10
7

10
8

10
9

10
10

0.5 1 5 10 20

In
d
e
x
 s

iz
e
 (

b
y
te

)

Data set size (million)

HGO
HR

HRR
PR

STR
TGS

ZR

(c) Index size (Uniform)

10
0

10
1

10
2

10
3

10
4

0.5 1 5 10 20

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data set size (million)

(d) SSD time (Uniform)

10
4

10
5

10
6

10
7

10
8

0.5 1 5 10 17

I/
O

 c
o
s
t

Data set size (million)

HGO
HR

HRR
PR

STR
TGS

ZR

(e) I/O (Tiger-East)

10
0

10
1

10
2

10
3

10
4

0.5 1 5 10 17

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data set size (million)

(f) HDD time (Tiger-East)

10
7

10
8

10
9

10
10

0.5 1 5 10 17

In
d
e
x
 s

iz
e
 (

b
y
te

)

Data set size (million)

HGO
HR

HRR
PR

STR
TGS

ZR

(g) Index size (Tiger-East)

10
0

10
1

10
2

10
3

10
4

0.5 1 5 10 17

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data set size (million)

(h) SSD time (Tiger-East)

Fig. 15. Bulk-loading costs – standalone algorithms (varying the data set cardinality)

R-trees created by HGO can be up to twice as large (Fig. 15g) as those created by HR, PR, STR, and
TGS. This means a 50% storage utilization of the leaf nodes, which is lower than the 80% storage
utilization reported in the original proposal. The lower storage utilization can be explained by that
we use point data and assume unknown query pro�le by setting the query size to be zero. Under
such settings, it makes sense to group small numbers of close points together (i.e., leaving as little
blank space in an MBR as possible), so as to minimize the MBR areas. As a result, more groups
of points (i.e., leaf nodes) are created, which leads to the lower storage utilization. In contrast,
rectangular data are used in the original proposal. The height and the width of the data rectangles
are further expanded by a query window size, after which many rectangles may be overlapping
already. In this case, it makes sense to group more overlapping rectangles together, such that the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

overlapping area only contributes to the total MBR area once. Thus, a higher storage utilization
was obtained. This also explains why the curve of HGO becomes closer to those of HR, PR, STR,
and TGS as there are more data points (Figs. 15c and 15g), since denser data allow grouping more
points together without including much blank space in the resultant MBRs.

10
5

10
6

10
7

10
8

2 3 4 5

IO
 c

o
s
t

Data dimensionality

HGO
HR

HRR
STR

ZR

(a) I/O (Uniform)

10
1

10
2

10
3

10
4

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data dimensionality

(b) HDD time (Uniform)

10
8

10
9

10
10

2 3 4 5

In
d
e
x
 s

iz
e
 (

b
y
te

)

Data dimensionality

HGO
HR

HRR
STR

ZR

(c) Index size (Uniform)

10
1

10
2

10
3

10
4

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data dimensionality

(d) SSD time (Uniform)

10
6

10
7

10
8

2 3 4 5

I/
O

 c
o
s
t

Data dimensionality

HGO
HR

HRR
STR

ZR

(e) I/O (Tiger-East)

10
2

10
3

10
4

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data dimensionality

(f) HDD time (Tiger-East)

10
8

10
9

10
10

2 3 4 5

In
d
e
x
 s

iz
e
 (

b
y
te

)

Data dimensionality

HGO
HR

HRR
STR

ZR

(g) Index size (Tiger-East)

10
1

10
2

10
3

10
4

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Data dimensionality

(h) SSD time (Tiger-East)

Fig. 16. Bulk-loading costs – standalone algorithms (varying the data dimensionality)

Varying the data dimensionality. We further vary the data dimensionality from 2 to 5. As shown
in Fig. 16, the bulk-loading costs increase as d increases, since the size of each data point and the
number of data blocks to be processed increase with d . The relative performance of the algorithms is
similar to that when the data set cardinality is varied, i.e., HR and STR have the lowest bulk-loading
costs; our HRR and ZR have higher costs than HR and STR for our more sorting rounds; and HGO
has the highest costs for its cost value computations. We note that the increase in the bulk-loading

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:35

costs of HGO is the slowest. This is because its cost value computation takes a data block access
for each дopt∗ (i), i ∈ [b − 1,n − 1], which is not impacted by d .

Focusing on our own techniques HRR and ZR, we see that our bulk-loading costs and the resultant
index sizes do not increase drastically with d . This is because our additional computation (and I/O)
costs are just for d rounds of sorting, and our additional storage space requirement is for d B-trees,
both of which scale linearly with d .
Parallel bulk-loading. Next, we study the performance of our parallel bulk-loading algorithm.

10
1

10
2

10
3

10 20 40 60 80 100

T
im

e
 (

s
)

Data set size (million)

L-C
L-M
L-R

ZR-C
ZR-M
ZR-R

(a) Time (Uniform)

10
1

10
2

10
3

10 20 40 62

T
im

e
 (

s
)

Data set size (million)

(b) Time (Tiger-Full)

Fig. 17. Bulk-loading costs – parallel algorithms (varying the data set cardinality)

Varying the data set cardinality. We scale our experiments to 100 million points of synthetic data
and 62 million points of real data (i.e., Tiger-Full). Subsets of real data are generated by randomly
sampling the Tiger-Full data set. We show in Fig. 17 the communication time (ZR-C), running time
(ZR-M), and response time (ZR-R) of the proposed parallel bulk-loading algorithm. We observe that
ZR-C, ZR-M, and ZR-R are consistently smaller than their level-by-level counterparts L-C, L-M,
and L-R. ZR-C is up to 38% smaller than L-C (at 60 million Uniform data) due to the smaller number
of communication rounds of the proposed algorithm, while ZR-M is only up to 14% smaller than
L-M (at 10 million Tiger-Full data) since both algorithms perform similar computations. Overall,
the response time ZR-R is up to 13% smaller than L-R (at 20 million Tiger-Full data). Note that the
response time includes the time to write the bulk-loaded R-tree back to a single machine for query
processing. This writing requires a large number of I/Os on a single machine, which makes up
for about two thirds of the response time and is the same for both algorithms. The bene�t of the
proposed algorithmwould be more signi�cant if this writing time is left out. Also, the improvements
are obtained over R-trees with relatively low heights (e.g., 4 for 100 million data points), where
the execution of the proposed parallel algorithm and the level-by-level parallel algorithm di�ers
by no more than two rounds. When the tree height gets larger and there are more rounds, the
performance improvement is expected to be higher.
Meanwhile, by comparing Figs. 15b and 17a, we see that, on 10 million data points, both the

response time (ZR-R, 108.61 seconds) and the running time (ZR-M, 62.20 seconds) of the proposed
parallel algorithm are smaller than the running time of the standalone implementation ZR (229.18
seconds) and the baseline algorithm PR (196.81 seconds). The advantage of the running time ZR-M
over PR is 68%, and this advantage grows with the data set size (e.g., 85% on 20 million data points),
demonstrating the scalability of the proposed parallel algorithm.

Varying the number of participating machines д.We further examine the scalability of our parallel
bulk-loading algorithm by varying the number of participating machines (i.e., worker machines)
д in the cluster from 1 to 60 (which is the number of all worker machines in our cluster). To suit
the capacity of a single worker machine, we use 10 million synthetic points and 17 million real
data points (i.e., Tiger-East data) in this set of experiments. As shown in Fig. 18, when the number
of worker machines increases, the response times (Z-R and L-R) and the running times (Z-M and
L-M) decrease while the communication times (Z-C and L-C) increase. These observations are

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

expected. Sharing the workload by more machines shortens the overall response time as well as
the running time of each machine, but it also creates more communication costs to transfer the
workload. Our algorithm costs Z-R, Z-M, and Z-C again outperform their level-by-level counterparts
consistently. Another observation is that our response time Z-R decreases almost linearly as д
increases from 1 to 8, which con�rms the strong scalability of our proposed parallel bulk-loading
algorithm. When д increases further, the decrease in Z-R slows down, as there are higher scheduling
and communication costs for running more machines in the cluster.

10
0

10
1

10
2

10
3

1 2 4 8 16 32 60

T
im

e
 (

s
)

Number of machines

L-C
L-M
L-R

ZR-C
ZR-M
ZR-R

(a) Time (Uniform)

10
1

10
2

10
3

10
4

1 2 4 8 16 32 60
T

im
e
 (

s
)

Number of machines

(b) Time (Tiger-East)

Fig. 18. Bulk-loading costs – parallel algorithms (varying the number of participating machines д)

10
1

10
2

10
3

60 180 300 420 540

T
im

e
 (

s
)

Number of partitions

L-C
L-M
L-R

ZR-C
ZR-M
ZR-R

(a) Time (Uniform)

10
1

10
2

10
3

60 180 300 420 540

T
im

e
 (

s
)

Number of partitions

(b) Time (Tiger-Full)

Fig. 19. Bulk-loading costs – parallel algorithms (varying the number of partitions)

Varying the number of partitions. Spark allows creating more partitions than the worker machines
available, such that faster machines can be allocated with more partitions while slower machines can
be allocated with fewer partitions (i.e., to achieve a better load balancing). In this set of experiments,
we study how the number of partitions impacts our algorithm performance. In Fig. 19, we show
the results where the number of partitions is varied from 60 to 540 for 100 million synthetic data
points and 62 million real data points (i.e., Tiger-Full data). We see that, increasing the number
of partitions helps reduce the algorithm times initially. The most signi�cant drop in the times is
observed when the number of partitions increases from 60 to 120 (e.g., Z-R is reduced by 28% on 100
million Uniform data). This is consistent with the Spark Programming Guide [56] which suggests
to set the number of partitions to be 2 to 4 times of the number of worker machines д (i.e., 120 to
240 since we have д = 60). When the number of partitions increases further, the bene�t fades away
because more scheduling costs are incurred. There are �uctuations in the algorithms times because
of the unstableness of the virtual nodes on which the algorithms are run. When the number of
partitions reaches 540, a more obvious increase in the response times Z-R and L-R is observed.

6.2.3 Update Handling. This subsection evaluates the performance of the dynamic structures. We
�rst bulk-load LogR-trees (LogR-H and LogR-Z), LogR∗-trees (LogR∗-H and LogR∗-Z), and the
LR-tree with the same set of one million data points. Then, we insert points into or delete points
from the trees. We run 100 window queries over the trees after all updates are completed. The

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:37

2
3

2
4

2
5

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

(a) �ery I/O (Uniform)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

(b) �ery I/O (Cluster)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

LR-tree
LogR-H

LogR*-H
LogR*-Z
LogR-Z

(c) �ery I/O (U. + C.)

2
1

2
2

2
3

2
4

2
5

2
6

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

(d) Insertion I/O (Uniform)

2
1

2
2

2
3

2
4

2
5

2
6

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

(e) Insertion I/O (Cluster)

2
1

2
2

2
3

2
4

2
5

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

(f) Insertion I/O (U. + C.)

Fig. 20. �ery and update I/O costs – insertion (Uniform and Cluster data)

window queries are generated in the same way as described in Section 6.2.1. The relative I/O cost
per window query and the average I/O cost per update are measured and reported.
Insertion.We �rst study the impact of insertions by inserting from 20% to 120% new data points

(i.e., 200,000 to 1,200,000 insertions) into the dynamic structures (after the initial trees have been
bulk-loaded). The data points inserted follow the same distributions as those of the initial data
sets. In particular, for the experiments on Tiger-East data, the initial data points and the inserted
data points are disjoint random samples of the original Tiger-East data set. An exception is the
“Uniform+Cluster” set of experiments (denoted by “U. + C.” in Figs. 20c and 20f), where the initial
points follow a uniform distribution while the inserted points follow a clustered distribution (same
as the Cluster data). This set of experiments aims to test the capability of our proposed dynamic
structures to preserve the worst-case query cost optimality when the data distribution changes.
From Fig. 20, we see that, as more points are inserted, the relative query I/O costs decrease

overall, and there are �uctuations (e.g., Fig. 20a). The decreasing trend is because, when the points
become more dense, a query window overlapping with a tree node has a higher probability to
overlap with the data points in this node, i.e., there are lower percentages of extra query I/Os that
do not contribute any output. The cost �uctuations are caused by the periodic bulk-loading of
a series of R-trees for hosting the inserted points. As more points are inserted, more R-trees are
created. Among these R-trees, the smaller ones may cause higher relative query I/Os, as the points
in their nodes are more sparse. This impinges the overall decreasing trend of the query I/O costs.
Note that the number of R-trees does not increase constantly. When a series of R-trees are all full,
they are destroyed and rebuilt into a single larger R-tree. At this moment, the relative query I/O
costs decrease again. Also, since the LogR-trees, LogR∗-trees, and LR-trees have di�erent fanout
(i.e., values of B), they may have di�erent rebuilding and query cost �uctuation cycles.

The insertion I/O costs increase slowly as there are more points inserted, and there are also
�uctuations (e.g., Fig. 20d). The slow increasing trend is expected as the amortized insertion I/O
cost is in the scale of logB n where B is quite large (i.e., B g 73). Even for the smallest B value
73, when n grows from the initial value 1, 000, 000 by 120% to 2, 200, 000, the cost di�erence is

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:38 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

only log73 2, 200, 000 − log73 1, 000, 000 ≈ 3.40 − 3.22 = 0.18. The �uctuations in the insertion I/O
costs can also be explained by the periodic bulk-loading of the R-trees. When a large R-tree is
bulk-loaded, there will be a peak in the insertion I/O costs. Then, the insertion I/O costs may drop
slightly until the next bulk-loading of another large R-tree.
Focusing on the comparison among the di�erent structures, we see that, in terms of the query

I/O costs, both proposed structures LogR-H and LogR∗-H outperform the baseline structure LR-
tree consistently across Uniform, Cluster, and Uniform+Cluster data (Figs. 20a, 20b, and 20c). In
particular, on Cluster data, LogR-H and LogR∗-H reduce the relative query I/O cost by up to 98%,
e.g., 172.40 (LogR-H) vs. 10,227.56 (LR-tree) for query processing after 120% insertions. Similar
query I/O cost reduction is observed on Uniform+Cluster data, which con�rms the capability of
our LogR-trees and LogR∗-trees to preserve the worst-case query I/O cost optimality. Between our
structures LogR-H and LogR∗-H, LogR∗-H yields slightly higher query I/O costs. This is because
LogR∗-H stores extra dictionary pointers in its R-trees to improve insertion performance, which
leads to a smaller fanout and hence more I/Os to fetch the query answer. LogR-Z and LogR∗-Z have
higher query I/O costs than LogR-H and LogR∗-H (and LR-tree on Uniform data) do. They use the
Z-curve which is known to be outperformed by the Hilbert-curve used by the other trees.
The lower query I/O costs of our structures come with higher insertion costs (Figs. 20d, 20e,

and 20f). The extra insertion costs are incurred by the rank space mapping and the ID B-tree
maintenance, which are not required by LR-tree. We argue that the extra insertion costs (e.g., 32.45
vs. 2.82 for 120% insertions of LogR-H and LR-tree on Cluster data) are worth spending, considering
the signi�cant gains in the query performance. Also, using our proposed parallel bulk-loading
strategy, we can further bring down the bulk-loading times of the R-trees in our structures. Another
observation is that LogR∗-H and LogR∗-Z have very similar insertion I/O costs, which is expected as
they only di�er in the curve value computation. They both have lower insertion I/O costs than those
of LogR-H and LogR-Z, and the improvement is up to 23%, e.g., 25.24 vs. 32.59 after 80% insertions on
Uniform data (Fig. 20d). On the same data set, the extra query I/O costs paid by LogR∗-H comparing
with LogR-H are just up to 12%, e.g., 16.45 vs. 14.73 after 20% insertions (Fig. 20a). This veri�es the
e�ectiveness of our insertion improvement technique for the LogR∗-trees.

The experimental results on Gaussian, Skew, and Tiger-East data are shown in Fig. 21. The overall
performance patterns of the di�erent structures resemble those in Fig. 20. We notice that LR-tree
has slightly lower query I/O costs than those of the proposed structures on Skew data, e.g., 2.58
vs. 3.28 for LR-tree and LogR-H after 100% insertions (Fig. 21b). This is because LogR∗-trees and
LogR-trees may have slightly more tree nodes than LR-trees due to their smaller B values, which
cost more query I/Os. On Skew data, such extra costs dominate the query cost reduction achieved
by our rank space based R-trees in LogR∗-trees and LogR-trees over Hilbert R-trees in LR-tree.
Deletion. Next, we study the impact of deletions by deleting from 20% to 100% of the initial

data points (i.e., 200,000 to 1,000,000 deletions). The points are randomly deleted, except for the
“Uniform→Cluster” data (denoted by “U.→ C.” in Figs. 22c and 22f). For this set of experiments, the
initial data points follow a uniform distribution, and 10% to 50% of the points are later deleted to
form a clustered distribution, i.e., only points outside the clusters are deleted to form a data set
similar to the Cluster data. The aim is to test the capability of our proposed dynamic structures to
preserve the worst-case query cost optimality when the data distribution changes.

As shown in Fig. 22, when more points are deleted, the relative query I/O costs increase. This is
because, as the points become more sparse, a query becomes more likely to overlap with a tree
node but few points inside the node. When all the points (100%) have been deleted, there is no
query cost. We denote the relative query I/O cost by 1 in this case to suit the logarithmic notation
of the �gures. LogR-H and LogR∗-H again outperform LR-tree consistently across Uniform, Cluster,
and Uniform→Cluster data (Figs. 22a, 22b, and 22c). On Cluster data, LogR-H and LogR∗-H reduce

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:39

2
1

2
2

2
3

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

(a) �ery I/O (Gaussian)

2
1

2
2

2
3

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

(b) �ery I/O (Skew)

2
1

2
2

2
3

20 40 60 80 100 120

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Insertion ratio (%)

(c) �ery I/O (Tiger-East)

2
1

2
2

2
3

2
4

2
5

2
6

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

(d) Insertion I/O (Gaussian)

2
1

2
2

2
3

2
4

2
5

2
6

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

(e) Insertion I/O (Skew)

2
1

2
2

2
3

2
4

2
5

20 40 60 80 100 120

I/
O

 c
o
s
t

Insertion ratio (%)

LR-tree
LogR-H

LogR*-H
LogR*-Z
LogR-Z

(f) Insertion I/O (Tiger-East)

Fig. 21. �ery and update I/O costs – insertion (Gaussian, Skew, and Tiger-East data)

2
0

2
1

2
2

2
3

2
4

2
5

2
6

20 40 60 80 100

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

(a) �ery I/O (Uniform)

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

20 40 60 80 100

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

(b) �ery I/O (Cluster)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

10 20 30 40 50

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

LR-tree
LogR-H

LogR*-H
LogR*-Z
LogR-Z

(c) �ery I/O (U.→ C.)

2
2

2
3

2
4

2
5

20 40 60 80 100

I/
O

 c
o
s
t

Deletion ratio (%)

(d) Deletion I/O (Uniform)

2
3

2
4

2
5

2
6

2
7

20 40 60 80 100

I/
O

 c
o
s
t

Deletion ratio (%)

(e) Deletion I/O (Cluster)

2
3

2
4

2
5

2
6

2
7

10 20 30 40 50

I/
O

 c
o
s
t

Deletion ratio (%)

(f) Deletion I/O (U.→ C.)

Fig. 22. �ery and update I/O costs – deletion (Uniform and Cluster data)

the relative query I/O cost by up to 98%, e.g., 158.85 (LogR-H) vs. 10,832.98 (LR-tree) after 20%
deletions. Similar cost reduction is observed on Uniform→Cluster data, which again con�rms the
capability of LogR-trees and LogR∗-trees to preserve the worst-case query I/O cost optimality.

The deletion I/O costs of the LogR-trees and LogR∗-trees increase between 20% and 40% deletions.
This is because, as more points are deleted, the nodes in the ID B-trees under�ow, which need to
be merged and cause extra I/Os. After the merging, the R-tree nodes in LogR∗-H and LogR∗-Z need
to be accessed to further update the dictionary pointers, which explains for their higher I/O costs

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:40 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

than those of LogR-H and LogR-Z. There is a drop in the deletion I/O costs of the LogR-trees and
LogR∗-trees between 40% and 60% deletions. This is because of an overhaul of these trees after 50%
of the points are deleted, which creates more compact ID B-trees and reduces the node merging
later on. In comparison, LR-tree simply lets the R-tree nodes under�ow, and it does not have an
ID B-tree. No node merging occur. Note also that, since LR-tree does not have an ID B-tree, it
only supports deletions by data point coordinates but not by ids, which can be very expensive on
highly skewed data, e.g., Cluster and Uniform→Cluster data (Figs. 22e and 22f). This explains for
the higher deletion I/O costs of LR-tree than those of the proposed structures, noting that this may
not be an exactly fair comparison since our structures use deletions by ids.

2
0

2
1

2
2

2
3

2
4

20 40 60 80 100

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

(a) �ery I/O (Gaussian)

2
0

2
1

2
2

2
3

2
4

20 40 60 80 100

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

(b) �ery I/O (Skew)

2
0

2
1

2
2

2
3

20 40 60 80 100

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Deletion ratio (%)

LR-tree
LogR-H

LogR*-H

LogR*-Z
LogR-Z

(c) �ery I/O (Tiger-East)

2
3

2
4

2
5

20 40 60 80 100

I/
O

 c
o
s
t

Deletion ratio (%)

(d) Deletion I/O (Gaussian)

2
3

2
4

2
5

20 40 60 80 100

I/
O

 c
o
s
t

Deletion ratio (%)

(e) Deletion I/O (Skew)

2
3

2
4

2
5

20 40 60 80 100

I/
O

 c
o
s
t

Deletion ratio (%)

(f) Deletion I/O (Tiger-East)

Fig. 23. �ery and update I/O costs – deletion (Gaussian, Skew, and Tiger-East data)

The experimental results on Gaussian, Skew, and Tiger-East data are shown in Fig. 23. The
overall comparative performance patterns again resemble those in Fig. 22, with an exception that
LR-tree has slightly lower query I/O costs than those of the proposed structures on Skew data, e.g.,
3.26 vs. 5.97 for LR-tree and LogR-H after 80% deletions (Fig. 23b).
Impact of caching. In this set of experiments, we further examine the impact of caching the

tree nodes. For query processing, we follow the caching experiments in Section 6.2.1 and start
caching from the root node of every R-tree in the logarithmic structure to nodes in the lower
levels. For data insertion and deletion, we implement a cache using the least recently used (LRU)
replacement strategy. We vary the number of nodes cached from 1 to 256.

We show in Fig. 24 the impact of caching on query and index update costs with data insertions.
Here, we insert 80% more data points into the indices and then query the updated indices. As
expected, when the cache size increases, the query and data update costs decrease for all techniques.
Comparing with that on the caching experiments in Section 6.2.1 (Fig. 13), the query costs now
decrease more signi�cantly as the cache size increases (especially when the cache size exceeds 16
blocks, e.g., Figs. 24a to 24c). This is because, as mentioned above, the update experiments here
are done on smaller data sets (with one million data points) for e�ciency consideration. A smaller
number of I/Os is needed for query processing on these smaller data sets. Thus, the I/Os saved by
caching now takes up a larger portion of the overall I/O costs.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:41

2
3

2
4

2
5

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(a) �ery I/O (Uniform)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(b) �ery I/O (Cluster)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

LR-tree
LogR-H

LogR*-H
LogR*-Z
LogR-Z

(c) �ery I/O (U.→ C.)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(d) Insertion I/O (Uniform)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(e) Insertion I/O (Cluster)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(f) Insertion I/O (U.→ C.)

2
1

2
2

2
3

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(g) �ery I/O (Gaussian)

2
1

2
2

2
3

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(h) �ery I/O (Skew)

2
1

2
2

2
3

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(i) �ery I/O (Tiger-East)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(j) Insertion I/O (Gaussian)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(k) Insertion I/O (Skew)

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(l) Insertion I/O (Tiger-East)

Fig. 24. �ery and update I/O costs – impact of the cache size (insertion)

We also see that caching does not have a signi�cant impact on the relative algorithm performance.
Similar to what has been observed in the experiments without caching, our LogR∗-H and LogR-H
techniques still outperform the baseline technique LR-tree in the query costs on all data distributions
except for Skew data. Note that our techniques require two B-trees for each R-tree in the logarithmic
tree structure for window query mapping. Similar to the caching experiments in Section 6.2.1, we
cache the same number of nodes for each B-tree as that for the R-tree, i.e., our techniques require a
small constant time (i.e., 2 times) extra caching cost, to obtain the performance guarantee.

In terms of the index update (i.e., data insertion) costs, our techniques are still outperformed by
the LR-tree after caching, as we need to maintain a more complex data structure. The performance

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:42 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

2
4

2
5

2
6

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(a) �ery I/O (Uniform)

2
8

2
9

2
10

2
11

2
12

2
13

2
14

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(b) �ery I/O (Cluster)

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

LR-tree
LogR-H

LogR*-H
LogR*-Z
LogR-Z

(c) �ery I/O (U.→ C.)

2
1

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(d) Deletion I/O (Uniform)

2
3

2
4

2
5

2
6

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(e) Deletion I/O (Cluster)

2
3

2
4

2
5

2
6

2
7

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(f) Deletion I/O (U.→ C.)

2
2

2
3

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(g) �ery I/O (Gaussian)

2
1

2
2

2
3

2
4

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(h) �ery I/O (Skew)

2
1

2
2

2
3

1 4 16 64 256

R
e
la

ti
v
e
 I
/O

 c
o
s
t

Cache size (blocks)

(i) �ery I/O (Tiger-East)

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(j) Deletion I/O (Gaussian)

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(k) Deletion I/O (Skew)

2
2

2
3

2
4

2
5

1 4 16 64 256

I/
O

 c
o
s
t

Cache size (blocks)

(l) Deletion I/O (Tiger-East)

Fig. 25. �ery and update I/O costs – impact of cache size (deletion)

gap does not increase with the cache size (note the logarithmic scale in the y-axis of the �gures).
This shows that our techniques can take advantage of the cache as well as the LR-tree does.

For data deletions, we show the impact of caching in Fig. 25, where we delete 80% (40% for
the “Uniform→Cluster” data) of the data points and then query the updated indices. The overall
observations are similar to that in Fig. 24. The query and index update costs drop when the cache
size increases, while the cache dose not signi�cantly impact the relative performance of the di�erent
techniques. There are two exceptions. First, the query costs rise back on the Uniform, Gaussian,
and Tiger-East data when the cache size reaches 256 blocks (Figs. 25a and 25g). This is because we
counted the cost of pre-loading the tree nodes into the cache as part of the query I/O costs. When

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Packing R-trees with Space-Filling Curves 1:43

256 tree nodes are cached, the pre-loading I/O costs outweigh the reduction in the query costs (on
Uniform, Gaussian, and Tiger-East data which are less skew and have lower query costs), which
causes the rise in the overall query costs. Second, on Uniform and Tiger-East data, LR-tree now
yields slightly lower query I/O costs when the cache size reaches 16 blocks, e.g., 3.44 vs. 4.50 for
LR-tree and LogR-H when caching 64 blocks on Tiger-East data (Fig. 25i). However, LR-tree is still
much worse than our techniques on worst-case workloads, e.g., on Cluster data (cf. Fig. 25b).
Insertion and deletion. Experiments where there are both insertions and deletions show

consistent results to the above. We omit the results due to space limit.

7 CONCLUSIONS

We revisited a classic spatial index, the R-tree, and proposed an R-tree packing strategy to construct
R-trees that are worst-case optimal and empirically e�cient for query processing. This packing
strategy maps data points into a rank space where the points are packed by their Z-order values.
Mapping into a rank space avoids data points with the same coordinates. This overcomes the
di�culty of space-�lling curve based indices in o�ering optimal query performance in worst-
case scenarios [7, 65]. It results in an R-tree structure that can answer a window query with
O ((n/B)1−1/d + k/B) I/Os in the worst case, which is asymptotically optimal. Experiments on both
real and synthetic data con�rmed the query e�ciency of such an R-tree: on real data, the query
I/O cost of the R-tree is up to 31% lower than that of PR-trees and similar to that of STR-trees; on
highly skewed synthetic data, the query I/O cost of the R-tree is 54% lower than that of PR-trees
and 64% lower than that of STR-trees. Another advantage of this packing strategy is that it only
relies on sorting, which well suits parallel bulk-loading of R-trees over large data sets. We proposed
a parallel R-tree bulk-loading algorithm based on this packing strategy using the MapReduce model.
The algorithm takes only O (logs n) rounds of computation to bulk-load an R-tree. It outperforms
the PR-tree bulk-loading algorithm in running time by 85% on large data sets with 20 million
data points. We also considered data update handling. Our R-tree based dynamic index structures
can process data insertions and deletions without compromising the worst-case query I/O cost
optimality. These proposed dynamic index structures achieve up to 98% lower query I/O costs
comparing with the LR-tree – a Hilbert R-tree variant with update supports. The advantage is most
signi�cant when the data distribution is highly skewed.

For future work, we are interested in applying the rank space technique over other indices such
as quad-trees and GiMP [63] to optimize window query processing. De-amortizing the update cost
to avoid workload peaks for global rebuilds would be another interesting direction to explore.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

Thiswork is supported in part byAustralian Research Council (ARC)Discovery Project DP180103332,
a direct grant (Project Number: 4055079) from The Chinese University of Hong Kong, and a Faculty
Research Award from Google.

REFERENCES

[1] Daniar Achakeev, Bernhard Seeger, and Peter Widmayer. 2012. Sort-based Query-adaptive Loading of R-trees. In

CIKM. 2080–2084.

[2] Daniar Achakeev, Marc Seidemann, Markus Schmidt, and Bernhard Seeger. 2012. Sort-based Parallel Loading of R-trees.

In 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. 62–70.

[3] Pankaj K. Agarwal, Lars Arge, Octavian Procopiuc, and Je�rey Scott Vitter. 2001. A Framework for Index Bulk Loading

and Dynamization. In 28th International Colloquium on Automata, Languages and Programming. 115–127.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:44 Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang

[4] Pankaj K. Agarwal, Mark de Berg, Joachim Gudmundsson, Mikael Hammar, and Herman J. Haverkort. 2001. Box-trees

and R-trees with Near-optimal Query Time. In 17th Annual Symposium on Computational Geometry (SoCG). 124–133.

[5] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, and Abhinandan Nath. 2016. Parallel Algorithms for Constructing

Range and Nearest-Neighbor Searching Data Structures. In PODS. 429–440.

[6] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. 2014. Parallel Algorithms for

Geometric Graph Problems. In STOC. 574–583.

[7] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. 2008. The Priority R-tree: A Practically E�cient andWorst-case

Optimal R-tree. ACM Transactions on Algorithms 4, 1, Article 9 (2008), 9:1–9:30 pages.

[8] Lars Arge and Jan Vahrenhold. 2004. I/O-e�cient Dynamic Planar Point Location. Computational Geometry 29, 2

(2004), 147 – 162.

[9] Lars Arge and Je�rey Scott Vitter. 2003. Optimal External Memory Interval Management. SIAM J. Comput. 32, 6 (2003),

1488–1508.

[10] Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication Steps for Parallel Query Processing. In PODS.

273–284.

[11] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-Tree: An E�cient and

Robust Access Method for Points and Rectangles. In SIGMOD. 322–331.

[12] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 18, 9

(1975), 509–517.

[13] Jon Louis Bentley. 1979. Decomposable Searching Problems. Inform. Process. Lett. 8, 5 (1979), 244 – 251.

[14] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. 1996. The X-tree : An Index Structure for High-Dimensional

Data. In VLDB. 28–39.

[15] Mark Berg, Marc Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. 2000. Computational Geometry. Springer

Berlin Heidelberg.

[16] Panayiotis Bozanis, Alexandros Nanopoulos, and Yannis Manolopoulos. 2003. LR-tree: A Logarithmic Decomposable

Spatial Index Method. Computer Journal 46, 3 (2003), 319–331.

[17] Bernard Chazelle. 1988. Functional Approach to Data Structures and Its Use in Multidimensional Searching. SIAM J.

Comput. 17, 3 (1988), 427–462.

[18] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed Data Processing on Large Clusters. Commun. ACM

51, 1 (2008), 107–113.

[19] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing Yu. 1994. Client-Server Paradise. In VLDB.

558–569.

[20] Artyom Dogtiev. 2018. Pokémon GO Revenue and Usage Statistics (2017). http://www.businessofapps.com/data/

pokemon-go-statistics/. Accessed: 2019-11-05.

[21] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. 1984. Scaling and Related Techniques for Geometry

Problems. In STOC. 135–143.

[22] Volker Gaede and Oliver Günther. 1998. Multidimensional Access Methods. Comput. Surveys 30, 2 (1998), 170–231.

[23] Yván J. García R, Mario A. López, and Scott T. Leutenegger. 1998. A Greedy Algorithm for Bulk Loading R-trees. In

GIS. 163–164.

[24] Michael T. Goodrich. 1999. Communication-E�cient Parallel Sorting. SIAM J. Comput. 29, 2 (1999), 416–432.

[25] Roberto Grossi and Giuseppe F. Italiano. 1999. E�cient Cross-trees for External Memory. In External Memory Algorithms

and Visualization. 87–106.

[26] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. The VLDB Journal 3, 4 (1994), 357–399.

[27] Antonin Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD. 47–57.

[28] HermanHaverkort and Freek V.Walderveen. 2008. Four-dimensional Hilbert Curves for R-trees. Journal of Experimental

Algorithmics 16, Article 3.4 (2008), 19 pages.

[29] Scott Huddleston and Kurt Mehlhorn. 1982. A New Data Structure for Representing Sorted Lists. Acta Informatica 17,

2 (1982), 157–184.

[30] H. V. Jagadish. 1990. Spatial Search with Polyhedra. In ICDE. 311–319.

[31] H. V. Jagadish. 1997. Analysis of the Hilbert Curve for Representing Two-dimensional Space. Inform. Process. Lett. 62,

1 (1997), 17–22.

[32] Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. In SIGMOD. 195–204.

[33] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree Using Fractals. In VLDB. 500–509.

[34] Kothuri Venkata Ravi Kanth and Ambuj K. Singh. 1999. Optimal Dynamic Range Searching in Non-replicating Index

Structures. In ICDT. 257–276.

[35] Nick Koudas, Christos Faloutsos, and Ibrahim Kamel. 1996. Declustering Spatial Databases on a Multi-Computer

Architecture. In EDBT. 592–614.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://www.businessofapps.com/data/pokemon-go-statistics/.
http://www.businessofapps.com/data/pokemon-go-statistics/.

Packing R-trees with Space-Filling Curves 1:45

[36] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple and E�cient Algorithm for R-Tree

Packing. In ICDE. 497–506.

[37] Thomas Mølhave. 2012. Using TPIE for Processing Massive Data Sets in C++. SIGSPATIAL Special 4, 2 (2012), 24–27.

[38] Anirban Mondal, Masaru Kitsuregawa, Beng Chin Ooi, and Kian Lee Tan. 2001. R-tree-based Data Migration and

Self-tuning Strategies in Shared-nothing Spatial Databases. In GIS. 28–33.

[39] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis of the Clustering Properties of the

Hilbert Space-Filling Curve. IEEE Transactions on Knowledge and Data Engineering 13, 1 (2001), 124–141.

[40] Nectar. 2018. The National eResearch Collaboration Tools and Resources Project. https://nectar.org.au/. Accessed:

2019-11-05.

[41] Yutaka Ohsawa and Masao Sakauchi. 1990. A New Tree Type Data Structure with Homogeneous Nodes Suitable for a

Very Large Spatial Database. In ICDE. 296–303.

[42] Oracle Corporation. 2001. Oracle Spatial User’s Guide and Reference Release 9.0.1. https://docs.oracle.com/cd/A91202_

01/901_doc/appdev.901/a88805/toc.htm. Accessed: 2019-11-05.

[43] Oracle Corporation. 2019. MySQL 8.0 Reference Manual. https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-

indexes.html. Accessed: 2019-11-05.

[44] Jack A. Orenstein and T. H. Merrett. 1984. A Class of Data Structures for Associative Searching. In PODS. 181–190.

[45] Mark H. Overmars. 1987. Design of Dynamic Data Structures. Springer-Verlag.

[46] Mark H. Overmars and Jan van Leeuwen. 1981. Dynamization of Decomposable Searching Problems Yielding Good

Worsts-Case Bounds. In 5th GI-Conference on Theoretical Computer Science. 224–233.

[47] Mark H. Overmars and Jan van Leeuwen. 1981. Worst-case Optimal Insertion and Deletion Methods for Decomposable

Searching Problems. Inform. Process. Lett. 12, 4 (1981), 168–173.

[48] Apostolos Papadopoulos and Yannis Manolopoulos. 2003. Parallel Bulk-loading of Spatial Data. Parallel Comput. 29, 10

(2003), 1419–1444.

[49] Ben Popper. 2017. Google Announces over 2 Billion Monthly Active Devices on Android. https://www.theverge.com/

2017/5/17/15654454/android-reaches-2-billion-monthly-active-users. Accessed: 2019-11-05.

[50] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2018. Theoretically Optimal and Empirically E�cient

R-trees with Strong Parallelizability. Proceedings of the VLDB Endowment 11, 5 (2018), 621–634.

[51] Jianzhong Qi, Rui Zhang, Lars Kulik, Dan Lin, and Yuan Xue. 2012. The Min-dist Location Selection Query. In ICDE.

366–377.

[52] Nick Roussopoulos and Daniel Leifker. 1985. Direct Spatial Search on Pictorial Databases Using Packed R-trees. In

SIGMOD. 17–31.

[53] James B. Saxe and Jon L. Bentley. 1979. Transforming Static Data Structures to Dynamic Structures. In FOCS. 148–168.

[54] Bernd Schnitzer and Scott T. Leutenegger. 1999. Master-client R-trees: A New Parallel R-tree Architecture. In SSDBM.

68–77.

[55] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree: A Dynamic Index for Multi-Dimensional

Objects. In VLDB. 507–518.

[56] Apache Spark. 2016. Spark Programming Guide. https://spark.apache.org/docs/1.6.0/programming-guide.html.

Accessed: 2019-11-28.

[57] Yufei Tao, Wenqing Lin, and Xiaokui Xiao. 2013. Minimal MapReduce Algorithms. In SIGMOD. 529–540.

[58] The Pokémon Company. 2018. Pokémon Go. http://www.pokemongo.com. Accessed: 2019-11-05.

[59] United States Census Bureau. 2006. TIGER/Line Shape�les and TIGER/Line Files. https://www.census.gov/geo/maps-

data/data/tiger-line.html. Accessed: 2019-11-05.

[60] Pan Xu and Srikanta Tirthapura. 2014. Optimality of Clustering Properties of Space-Filling Curves. ACM Transactions

on Database Systems 39, 2 (2014), 10:1–10:27.

[61] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel Spatial Query Processing on GPUs Using R-trees. In 2nd

ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. 23–31.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster Computing

with Working Sets. In 2nd USENIX Conference on Hot Topics in Cloud Computing. 10–10.

[63] Rui Zhang, Panos Kalnis, Beng Chin Ooi, and Kian-Lee Tan. 2005. Generalized Multidimensional Data Mapping and

Query Processing. ACM Transactions on Database Systems 30, 3 (2005), 661–697.

[64] Rui Zhang, Beng Chin Ooi, and Kian-Lee Tan. 2004. Making the Pyramid Technique Robust to Query Types and

Workloads. In ICDE. 313–324.

[65] Rui Zhang, Jianzhong Qi, Martin Stradling, and Jin Huang. 2014. Towards a Painless Index for Spatial Objects. ACM

Transactions on Database Systems 39, 3 (2014), 19:1–19:42.

Received February 2019; revised January 2020; accepted April 2020

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://nectar.org.au/.
https://docs.oracle.com/cd/A91202_01/901_doc/appdev.901/a88805/toc.htm.
https://docs.oracle.com/cd/A91202_01/901_doc/appdev.901/a88805/toc.htm.
https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-indexes.html.
https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-indexes.html.
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users.
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users.
https://spark.apache.org/docs/1.6.0/programming-guide.html.
http://www.pokemongo.com.
https://www.census.gov/geo/maps-data/data/tiger-line.html.
https://www.census.gov/geo/maps-data/data/tiger-line.html.

	Abstract
	1 Introduction
	2 Related Work
	3 R-tree Packing
	3.1 Mapping to Rank Space
	3.2 Tree Structure and Packing Strategy
	3.3 Window Query Processing
	3.4 Extending to Other Space-Filling Curves

	4 Parallel R-tree Bulk-Loading
	4.1 Parallel Computation Model
	4.2 Distributed Packing

	5 Update Handling
	5.1 Deletion
	5.2 Insertion
	5.3 Improving the Insertion Cost
	5.4 Practical Considerations

	6 Experiments
	6.1 Experimental Setup
	6.2 Results

	7 Conclusions
	Acknowledgments
	References

