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Intelligent personal assistants on mobile devices such as Apple’s Siri and Microso� Cortana are increasingly
important. Instead of passively reacting to queries, they provide users with brand new proactive experiences,
which aim to o�er the right information at the right time. It is, therefore, crucial for personal assistants to
understand users’ intent, i.e., what information users need now. Intent is closely related to context. Various
contextual signals, including spatio-temporal information and users’ activities, can signify users’ intent. It
is, however, challenging to model the correlation between intent and context. Intent and context are highly
dynamic and o�en sequentially correlated. Contextual signals are usually sparse, heterogeneous, and not
simultaneously available. We propose an innovative collaborative nowcasting model to jointly address all these
issues. �e model e�ectively addresses the complex sequential and concurring correlation between context
and intent, and recognizes users’ real-time intent with continuously arrived contextual signals. We extensively
evaluate the proposed model with real-world data sets from a commercial personal assistant. �e results
validate the e�ectiveness the proposed model, and demonstrate its capability of handling the real-time �ow of
contextual signals. �e studied problem and model also provide inspiring implications for new paradigms of
recommendation on mobile intelligent devices.
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1 INTRODUCTION
Recently, mobile intelligent personal assistants o�er a new paradigm of recommendation, in which
personal assistants strive to proactively recommend “the right information at just the right time” 1

and help you “get things done” 2 even “before you ask” 3. Some examples of such proactive
experiences are shown in Fig. 1. From le� to right, it shows the screenshot from Microso� Cortana,
Google Now, and Apple’s Siri, respectively. We can see that the recommended content contains
various types of information, including videos, news, tra�c conditions, weather, apps, places, and
many other types (e.g., calendars, stock prices, sports, events). Normally, as shown in this example,
di�erent types of information are presented by cards, which are the areas within the screen layout
showing one type of information. Due to limited display sizes of mobile devices, usually only one
or two cards can be e�ectively shown without users sliding up the screen canvas. �is essentially
requires personal assistants to determine precisely which type of information users intend to know
now, i.e., what users’ contemporary intent is.

Fig. 1. Proactive experience on personal assistants

Intent is closely related to users’ context, including both external context, e.g., location and time,
and internal context indicated by user’s current activities, e.g., usage of apps. For instance, i) When
it is 6:00 p.m. in the evening and a user is in the o�ce, then she may now intend to drive home;
ii) When a user has just le� a shopping center and is using Yelp, she may now intend to �nd a
restaurant. �erefore, for personal assistants to proactively present the right information at the
right time, we propose to continuously predict users’ intent based on their real-time context, and
we call this problem the intent monitoring problem.

Intent and context are dynamic and may swi�ly change in a very short time, as users are usually
moving around and doing di�erent things (e.g., working and then taking a rest, driving and then
dining). �e correlation between intent and context exhibits complex sequential and concurring
pa�erns. For example, when users are having breakfast, they may intend to check calendar or
read news. Besides co-occurring with certain context, users’ current intent may also be due to a
previous context (e.g., have just le� a shopping center), and conversely, the current context may
result from the action triggered by a previous intent (e.g., intended to watch videos and now using
1h�p://www.google.com/landing/now/
2h�p://dev.windows.com/en-us/cortana
3h�p://www.apple.com/ios/whats-new/
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Youtube). Fig. 2 illustrates such relationships among context, intent, and actions. Moreover, all
contemporaneous information that is potentially correlated with intent can be included in context,
which presents us highly heterogeneous contextual signals. In a real-time intent monitoring
scenario, these various contextual signals are typically not available simultaneously, which in fact
results in a real-time �ow of contextual signals. As with traditional recommendation problems,
contextual signals and intent are also very sparse. It is, therefore, a great challenge to jointly resolve
all these characteristics of intent monitoring.

Internal context

User activity

External context

Contextual signal Intent

Action

Fig. 2. Relationship between context, intent, and actions

Traditional recommendation algorithms o�en assume that the intent, e.g., to �nd interesting
movies, music tracks, or books, is already or always there, and pay no a�ention to whether users
have the intent and need such recommendations. Besides the ignorance of the existence of certain
intent, existing recommendation approaches also cannot e�ectively tackle the characteristics of
intent monitoring. For example, state-of-the-art recommendation models (Charlin et al. 2015; Koren
2009; Zhang et al. 2015) that capture the evolving of user preferences and item a�ributes cannot
e�ectively solve the intent monitoring problem. �is is because instead of evolving on a daily or
monthly basis, the intent, together with context, may change swi�ly within a very short time.
Models (Jannach et al. 2015; Rendle et al. 2010) for short-term (e.g., next-basket) recommendation
that depend on the similarity or co-occurring pa�erns between items cannot resolve the problem
either because they overlook the context for intent monitoring. Although a few context-aware
recommendation models (Adomavicius and Tuzhilin 2011; Liu et al. 2013) have looked at the
context, the considered context usually contains only signals about physical environments, and
their combinations are �xed and enumerable, e.g., 24 hours × 7 days × location types such as home
and o�ce (Karatzoglou et al. 2010; Wang et al. 2016; Zhu et al. 2015). While in intent monitoring
there are numerous (internal and external) contextual signals, and the combinations of context
cannot be enumerated (cf. Table 1).

Inspired by models explaining the chaotic weather and dynamic economy, we propose solving the
intent monitoring problem with an innovative collaborative nowcasting model, which continuously
predicts users’ real-time intent with a streaming �ow of contextual signals. Nowcasting is widely
used in meteorology and macroeconomics. It is de�ned as the prediction of the present and very
near future (cf. Section 7.1 for more details). A main di�erence between nowcast and forecast is
the e�ective exploitation of side data, which are quantities contemporaneous with the variable
of interest. Utilizing context as side data to intent, the proposed collaborative nowcasting model
successfully resolves the challenge of continuously arrived contextual signals. It also addresses the
sparsity and heterogeneity of contextual signals and e�ectively models the complex concurring and
sequential correlation between context and intent. Speci�cally, utilizing collaborative capabilities
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among users, we �rst summarize the shared temporal user behavior pa�erns among historical
contextual signals with collaborative latent factors, and then with the continuously arrived real-time
contextual signals, we generate serially correlated personalized latent factors to closely monitor
users’ real-time intent. �e contribution of this paper is summarized as follows.

• We identify the intent monitoring problem, which is to closely track users’ real-time intent.
�e problem has many real-world applications including emerging proactive experiences
in mobile intelligent personal assistants.
• We propose an innovative collaborative nowcasting model, which successfully models

the dynamic characteristics and complex sequential and concurring correlation between
context and intent, and e�ectively solves the intent monitoring problem with real-time
�ow of contextual signals.
• We also investigate the feasibility of deploying the collaborative nowcasting model with a

distributed infrastructure and discuss about the consistency of estimated latent factors.
• We extensively evaluate the proposed model in various aspects with real-world data sets

from a commercial personal assistant. �e results con�rm the superiority of the collab-
orative nowcasting model over various baselines, demonstrate the model’s capability of
handling the real-time �ow of contextual signals, and validate the feasibility of deploying
the collaborative nowcasting model in parallel.

�e rest of the paper is organized as follows. Section 2 formally de�nes the studied problem
and introduces the nowcasting concept. Section 3 presents the collaborative nowcasting model.
Sections 4 and 5 investigate the real-time data �ow and parallel deployment, respectively. Section 6
reports the experiments. Section 7 summarizes related work and Section 8 concludes this paper.

2 PRELIMINARY
We �rst formally de�ne the intent monitoring problem, and then introduce nowcasting concept
and existing nowcasting models.

2.1 Problem Formulation
�e intent we consider can be any potential information need of users’, for example, the intent
to read news, check weather or tra�c conditions, �nd nearby restaurants, monitor stock prices,
install new apps and so forth. Using the discrete time model, let t ∈ Z denote a time step. Within
time step t , a user u may have several types of intent. Let Γut be the intent set. Given a type of
intent γ , let IΓut (γ ) indicate whether user u has the intent γ within t , where

IΓut (γ ) =
{

1 if γ ∈ Γut ,
0 if γ < Γut .

�e context xut of useru contains any contemporaneous information potentially correlated with the
user’s intent, such as physical environments (e.g., spatial and temporal information) and activities
users have recently performed (e.g., usage of apps, visit of venues). We then formally de�ne the
intent monitoring problem as follows.

De�nition 2.1 (Intent Monitoring). Given a starting time t0, a monitoring granularity ∆, a type of
intent γ and context xut of user u, the intent monitoring problem is to predict the value of IΓut (γ )
with context xut for each time step t of length ∆ starting from t0.

2.2 Nowcasting
In this section, we brie�y introduce the nowcasting concept. To e�ectively utilize contemporaneous
information relevant to an variable of interest, we need nowcast instead of forecast. Nowcast is
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de�ned as the prediction of the current value of a variable of interest or its value in the very near
future, e.g., two hours (hence nowcast is sometimes also referred to as short-term forecast).

Historical data

Variable of
interest

Side data

(a) Nowcast

Historical data

Variable of
interest

(b) Forecast

Fig. 3. Di�erence between nowcast and forecast

�e main di�erence between forecast and nowcast lies in the availability of side data. As illustrated
in Fig. 3(a), side data, di�erent from historical data, are quantities that are contemporaneous with,
closely related to, and more frequently available than the variable of interest, e.g., the industrial
output to the gross domestic product (GDP). For nowcasting, we may infer the value of variable of
interest more accurately by utilizing both the historical and side data. While for forecasting, as
shown in Fig. 3(b), all the information we can exploit is the historical data (relative to the variable
of interest). To solve the intent monitoring problem, context is an important information source,
which can be treated as side data to intent. �erefore, the intent monitoring problem �ts into the
nowcasting scenario very well. A widely used nowcasting model in macroeconomics (Giannone
et al. 2005, 2008) �rst uses a few factors to describe the bulk movement of the time series of
various macroeconomic variables, and then exploits the relationship between the factors and
variable of interest for nowcasting. A direct application of this nowcasting model, however, is
not sensible due to the following reasons. i) �e nowcasting granularity of the above model is
monthly or quarterly, which is quite di�erent from the usually hourly granularity of the contextual
recommendation scenario. ii) �e macroeconomic variables in the above model are universal, while
in the intent monitoring problem, context is personalized for each individual user. iii) �e time
series of macroeconomic variables are not sparse. Each series has a non-zero value at plenty of
(usually all) time steps. However, in the intent monitoring problem, as we will see, contextual
signals are o�en very sparse and contain many missing values in a real-time scenario. To the best
of our knowledge, such a nowcasting model has never been applied to a recommendation scenario.
Nevertheless, inspired by the nowcasting scenario and above model, we develop our collaborative
nowcasting model.

3 COLLABORATIVE NOWCASTING MODEL
We �rst introduce the proposed model in Section 3.1 and then discuss the three steps for estimating
the model parameters in Sections 3.2, 3.3, and 3.4, respectively. We also brie�y discuss the model
consistency in Section 3.5.

3.1 Model Formulation
Following existing work on nowcasting (Banbura et al. 2013, 2012; Giannone et al. 2008), we model
the contextual information as stochastic processes and represent users’ historical and side data
as time series. Each type of contextual information is one stochastic process and produces one
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Table 1. Example of a panel

Time step 10 a.m. 11 a.m 12 p.m. 1 p.m. Now

Facebook 306 0 915 32 257
Skype 0 1853 0 0 -
McDonald’s 0 1256 652 0 0
IKEA 0 0 0 532 1247
Dist-to-O�ce 10.4 8.3 9.1 21.3 -
Day-of-Week 6 6 6 6 6

News Intent 0 0 1 1 ?

series. All the available series for a user u form a panel Xu . Table 1 shows an example of a panel
containing six series: two app series named Facebook and Skype, respectively; two venue series:
McDonald’s and IKEA; one spatial series: Dist-to-O�ce, and one temporal series: Day-of-Week.
�e monitoring intent is to read news. �e monitoring granularity (i.e., time step length) is one
hour and the panel shows the user’s historical and side data from 10 o’clock in the morning to now.
We denote by xui,t the t th random variable of the ith process in panel Xu , which is also referred to
as a contextual signal. �e value of xui,t either indicates the length users use an app or visit a venue,
or any other relevant quantities for the process such as the distance to users’ o�ce. In the sequel,
we use the two words process and series interchangeably when the context is clear. Note that in
the last time step (i.e., current/now), the side data may not be available in a synchronous manner,
which means we may have missing values (denoted by the symbol “−” in the above example) for
real-time nowcasting, and we will discuss in detail such real-time data �ow in Section 4. In practice,
there can be hundreds of series in a panel and the monitoring granularity can range from minutes
to hours depending on the application at hand. Each user has contextual signals speci�c to herself
and hence has a di�erent number of series. We denote by Nu the number of series in Xu , and by T
the number of time steps. For expositional convenience, we will present the model using the panel
of each individual user, and in the following part of this section, when the context is clear, we will
drop the superscript u for notational simplicity.

To obtain a parsimonious model and hence retain the model’s prediction power, we assume that
the dynamics of the panel are driven by a few latent factors. Let R denote the number of factors for
X . We assume that the contextual signal xi,t in panel X has the following structure

xi,t = λ
′
i · ft + ξi,t , 1 ≤ i ≤ N , 1 ≤ t ≤ T ,

where ft = (f1,t , . . . , fR,t )′ contains the latent factors, λi = (λi,1, . . . , λi,R )′ is called the factor
loading, and ξi,t is the random noise following a Gaussian distribution with zero mean and variance
ψ̃i,t . Note that the factor loading λi is only relevant to the ith series and the factor ft is shared by
all the series in the panel. Writing the above model in the matrix form, we have

xt = Λft + ξt , (1)

where Λ = (λ1, . . . ,λN )′, xt = (x1,t , . . . ,xN ,t )′, and ξt = (ξ1,t , . . . , ξN ,t )′ are the factor loading
matrix, the panel column vector, and noise vector at time step t , respectively. We also collect the
factors in a matrix F ∈ RR×T and let ft stand for the tth column of the factor matrix F . To re�ect
the fact that users’ behavior exhibits correlation, we assume that the factors across users are not
independent, i.e.,

E(f uit f
uj
t
′) , 0, 1 ≤ i, j ≤ M, 1 ≤ t ≤ T ,
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where f ukt denotes the factors for user uk and M is the number of users.
To handle the heterogeneity of contextual signals, we allow series to have di�erent noise variances

and, for model simplicity, we assume that the noise components are orthogonal across series and
time steps, i.e.,

E(ξtξ ′t ) = Ψt = diag(ψ̃1,t , . . . ,ψ̃N ,t ) ,
E(ξtξ ′t−δ ) = 0, for all δ > 0 .

To handle the missing value at the last time step and simplify the model, we set

ψ̃i,t =

{
ψi , if xi,t is available ,
∞ , if xi,t is not available ,

which means one series has the same noise variance across di�erent time steps and the missing
value is treated as noise with a very large variance.

To fully exploit the sequential pa�ern and co-movement of the latent factors, we assume that
the dynamics and autocorrelation of the latent factors have the following structure

ft = Aft−1 + Bωt , (2)
where A ∈ RR×R is the transition matrix, B ∈ RR×Q is a matrix of full rank, and ωt is the white
noise (i.e.,ωt ∼WN(0, IQ )).

�e given type of intent is also modeled as a stochastic process, where the value of the produced
time series indicates the likelihood of a user having the intent. When the likelihood is above
a chosen threshold, we say that the user has such intent. Let ŷt be the value of the nowcasted
likelihood at time step t . Assuming that the intent likelihood and contextual signals are jointly
normal (which is common in our daily life), we obtain that the likelihood is a linear function of the
estimated latent factors f̂t (Giannone et al. 2008), i.e.,

ŷt = α + β
′ f̂t , for 1 ≤ t ≤ T , (3)

where α and β are coe�cients. At this point, the model is fully established.
Remark one. �e model described above can simultaneously address the characteristics of

intent monitoring problem because of the following reasons. i) For each single user, it models
the context and intent as time series in a panel and considers the within-series and across-series
correlations in this panel. In this way, it fully takes into account the temporal dynamics and
sequential pa�erns between context and intent. ii) Applying the law of parsimony (i.e., Occam’s
razor) (Seasholtz and Kowalski 1993), instead of estimating a full model which may introduce
too much uncertainty due to a large number of parameters, the model restricts the estimation to
only a few latent factors, which leads to a parsimonious model and retains the model’s prediction
power. iii) By considering the factor correlation across users, it is able to exploit the collaborative
capabilities among users, and hence can e�ectively address the data sparsity problem, which is a
big challenge for intent monitoring.

Remark two. Similar factor models have been under active research in the macroeconomic
community. First, there are static factor models (Doz et al. 2011; Lawley and Maxwell 1962) which
summarize the panel with a few latent factors, and then dynamic factor models (Stock and Watson
2002) which additionally consider the serial correlation (i.e., transition) between latent factors.
�ere are also approximate dynamic factor models (Bai 2003) that considers the serial and cross-
series correlation between the measurement noise. With the explosive growth of economic data,
factor models dealing with panels of large sizes (Bai and Wang 2016) are investigated. When
addressing real-time scenarios, models focusing on nowcasting (Banbura et al. 2012; Giannone
et al. 2008) are also studied. We speci�c the proposed model (e.g., dynamics of factors, signal noises
with di�erent variances, etc.) with the characteristics of intent monitoring in mind (e.g., data
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Xu

User panel

X

Λ̂
u F̃

Loading

Collaborative
latent factors

Λ̂
u F̃

Xu

For each u

F̂u

Personalized
latent factors

For each u

su
Intent

Extracting Collaborative Latent Factors Collaborative Kalman Filtering

Regression for Nowcasting

Fig. 4. Collaborative nowcasting model

sparsity, heterogeneous data sources, real-time monitoring, etc.). �e proposed model is unique
in that it incorporates a further dimension, the user dimension, and considers the correlation
and collaboration across this dimension, which none of the existing factor models or nowcasting
methods takes into account.

�e remaining issue is estimating the parameters in the model. As mentioned above, one big
challenge in the intent monitoring problem is that the panel (as illustrated in Table 1) is usually
very sparse, and this will cause signi�cant problems in estimating the model parameters. We
propose solving this problem by exploiting the factor correlation across users, i.e., the collaborative
capabilities among users. In particular, as illustrated in Fig. 4, we �rst i) collect the panels of all
users and make these panels form a tensor, and then ii) use tensor decomposition techniques to
extract collaborative latent factors, which are then iii) used in the collaborative Kalman Filtering step
to obtain personalized latent factors and iv) �nally we use the personalized factors in the nowcasting
for each user.

3.2 Extracting Collaborative Latent Factors
To make use of the collaborative capabilities among users, we extract (i.e., estimate) latent factors
by simultaneously utilizing the panels of all users via tensor decomposition. We call the obtained
latent factors collaborative latent factors. Before discussing the methods of obtaining collaborative
latent factors, we �rst introduce notation and some basics of tensor and tensor decomposition.

3.2.1 Tensor and Tensor Decomposition Preliminary. A tensor is a multi-way (i.e., multidimen-
sional) array and the high-order generalization of vectors and matrices. As shown in Fig. 5, the
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three-dimensional array, denoted by X ∈ RN×T×M , is a three-way tensor. �e way of a tensor is
also known as modes or orders. In this paper, we will mainly focus on three-way, i.e., third-order,
tensors. �e general element of a three-way tensor X is denoted by xntm . Analogous to columns
and rows in a matrix, the column, row and tube �bers of a tensor contain the elements of x ·tm ,
xn ·m , and xnt ·, respectively, where the symbol “·” means all values for that subscript. Similarly,
the horizontal, lateral, and frontal slices of a tensor consist of the elements of xn · ·, x ·t ·, and x · ·m ,
respectively. For convenience, we also denote the uth frontal slice of X by Xu .

Similar to matrix factorization, tensor decomposition decomposes a tensor into the sum of a few
low-rank (in particular rank-one) tensors that best approximates the given tensor. Two common
tensor decomposition techniques are the Tucker and CANDECOMP/PARAFAC (CP) decomposition.
�e CP decomposition can be treated as a special case of the Tucker decomposition. To avoid over
parameterizing the model, we will mainly focus on the CP decomposition and its variants. For a
given three-way tensor X ∈ RN×T×M , the CP decomposition is expressed as

X ≈
R∑
r=1

ur ◦vr ◦wr ,

where ur ,vr , wr are vectors of size N × 1,T × 1, and M × 1, respectively, and the symbol “◦” stands
for the outer product4. Fig. 5 illustrates the CP decomposition.

XN

M
T

u1 ur

v1 vr

w1 wr

≈ + · · · +

Fig. 5. CP decomposition

To obtain the CP decomposition, the following optimization problem is to be solved

min ‖X − X̂‖, where X̂ =
R∑
r=1

ur ◦vr ◦wr ,

where the symbol “−” denotes the element-wise subtraction (which produces a tensor Z with
zntm = xntm − x̂ntm ) and “‖ · ‖” denotes the tensor norm which is (similar to the matrix Frobenius
norm) de�ned as

‖X‖ =

√√√ N∑
n=1

T∑
t=1

M∑
m=1

x2
ntm .

For convenience, we collect the vectors ur , vr , and wr in matrices U ∈ RN×R , V ∈ RT×R , and
W ∈ RM×R , respectively. A common method to solve the above optimization problem is the
alternating least square (ALS) algorithm. ALS �rst initializes U , V , and W with singular value
decomposition (SVD) method, and then �xesU andV and solves forW (which reduces the problem
to an ordinary least square problem), and then �xes U andW and solves for V , and so forth, until
some convergence condition such as li�le or no change in U , V ,W is met.
4�e outer product of two vectorsa = (a1, . . . , am )′ andb = (b1, . . . , bn )′ is a matrixM of sizem×n with the general entryMi j = aibj ,
and similarly the outer product of a vector and a matrix is a three-way tensor.
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3.2.2 First Approach: CP Decomposition. Next, we discuss the method of extracting collaborative
latent factors from tensors. �e simplest approach to forming a tensor from panels is to use each of
the contextual information (N ), time (T ), and users (M) as one mode (i.e., dimension), as illustrated
in Fig. 5. One di�culty, however, lies in forming the contextual information mode because each
user u has di�erent types of contextual signals and hence a di�erent panel size Nu .

It is not sensible to deploy a uniform contextual information mode (i.e., let each horizontal slice
represent one type of contextual signal) by pooling together all types of contextual signals from
each user. �e reasons are: i) �e types of contextual signals for all users are numerous since
there are, for instance, tens of thousands of di�erent apps and hundreds of thousands of venues
from all users, which will result in an unnecessarily large tensor. ii) For each individual user, she
may experience only a small portion of the various types of contextual signals in the pool, which
means the frontal slice for this user will include a large amount of row �bers containing only
zeros, and this contradicts our goal of reducing sparsity. iii) Unlike the user-item matrix widely
used in traditional recommendations that contains target variables (e.g., ratings) to be predicted,
the contextual signals are not to be completed like the user-item matrix, but to be exploited as
historical/side data to extract latent factors that summarize the temporal dynamics and sequential
pa�erns. It is thus meaningless to incorporate all types of contextual signals for a single user.

�erefore, as a �rst approach, we collect the individual panel of each user, assemble these panels
together, and only append series containing zeros to small panels to make the contextual mode
uniform in size. Let M denote the number of users and

N = max{Nu |u = 1, . . . ,M}

denote the number of series in the largest panel. As illustrated in Fig. 5, we obtain the tensor
X ∈ RN×T×M , where the �rst, second, and third modes, as discussed above, are the contextual
information, time, and user dimensions, respectively.

A�er applying the CP decomposition to the obtained tensor X, the panel of the uth user, i.e., the
uth frontal slices of X, is approximated by

Xu ≈ UDuV ′ ,

where Du = diag(Wu,1, . . . ,Wu,r ), andU ∈ RN×R ,V ∈ RT×R ,W ∈ RM×R are the matrices obtained
in the CP decomposition. �e matrix V contains the collaborative latent factors, i.e.,

F̃ = V ′ .

At this point, the latent factor matrix for user u equals

F̃u = F̃ ,

and the factor loading matrix is computed by

Λ̂
u
= U uDu ,

where U u contains the �rst Nu rows of the matrix U . �e factor and loading matrices are then
used in the following collaborative Kalman Filtering step.

�e collaborative latent factors, di�erent from those obtained from a single panel, contain
prevalent behavioral features among a large number of users. �ey carry much more information
on the common behavior pa�ern and shared temporal structure of the contextual data, which is
not available from any single panel.
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3.2.3 Second Approach: PARAFAC2 Decomposition. By making the contextual mode be of uni-
form size, the tensor X contains many manually-imposed zero elements, which bring noise into
the parameter estimation procedure. To further reduce noise and data sparsity, in this method,
we only assemble the panel of each user together, and make no modi�cations to any panel (i.e.,
equivalent to removing the appended zero-series from the tensor used in the CP decomposition).
An example of the resulting tensor is shown in Fig. 6. In this se�ing, the tensor is a “jagged” tensor
that contains slices of various sizes in the contextual mode.

Xu V ′Gu

Lu

≈

Fig. 6. PARAFAC2 decomposition

In order to obtain the collaborative latent factors, we use the PARAFAC2 (Harshman 1972)
decomposition technique to perform tensor decomposition on the “jagged” tensor. PARAFAC2 is a
variant of the CP decomposition that relaxes some constraints of the CP’s. For a three-way tensor,
the PARAFAC2 decomposition only requires two out of the three modes to have uniform sizes,
which in our scenario are the time and user modes, while the third mode, i.e., the contextual mode,
can be of various sizes. An illustration of the PARAFAC2 decomposition is also shown in Fig. 6. In
our problem, the PARAFAC2 decomposition is equivalent to solving the optimization problem(

F̃ , Λ̃
u )
{u=1, ...,M }

= min
F ,Λu

M∑
u=1
‖Xu − ΛuF ‖2F

with certain uniqueness constraints (Kolda and Bader 2009), where F stands for the Frobenius norm.
A�er decomposition, the panel for the uth user is approximated by

Xu ≈ GuHLuV ′ ,

where Gu ∈ RNu×R is an orthonormal matrix, H ∈ RR×R is a matrix invariant to u, Lu ∈ RR×R is a
diagonal matrix, and V ∈ RT×R is the matrix containing the collaborative latent factors. For the
uth user, the initially estimated latent factors are

F̃u = F̃ = V ′ ,

and the factor loading matrix is computed by

Λ̂
u
= GuHLu .

�e PARAFAC2 decomposition is an e�ective approach because of the following reasons. i) �e
original structure of each panel is well approximated with no manually-imposed noise. ii) Since
the temporal mode, i.e., time dimension, of the tensor is uniform across slices, PARAFAC2 is able to
extract the shared temporal characteristics by utilizing such uniformity, which is vital in the intent
monitoring problem. iii) �e �exibility of PARAFAC2, i.e., allowing one mode to be of various
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sizes, is particularly suitable for the non-uniform contextual mode, which introduces no extra
constraints and hence retains more information than the CP decomposition. Extensive experiments
(cf. Section 6.4) also validate the superiority of the PARAFAC2 decomposition. �erefore, we use
this approach in the proposed model.

3.3 Collaborative Kalman Filtering
For the intent monitoring problem, it is not su�cient to utilize only the collaborative latent
factors obtained from the tensor decomposition. �e collaborative factors only re�ect the static
common structure of contextual signals. �e dynamics of the factors and hence the correlation
and co-movement of time series, however, are not fully taken into consideration. Moreover, the
collaborative factors are extracted from the data of all users and hence are the same for all users,
which is not suitable for personalized intent monitoring. �erefore, for each user u, we apply
Kalman �lter (Kalman 1960) to the collaborative factors F̃u and the panel Xu to obtain the �nal
estimation F̂u of the latent factors. �e factors F̂u re�ects both the collaborative and personalized
pa�erns, and the static and dynamic structures of all the available data. For notational simplicity,
in the sequel, we will drop the superscript u as the following parameter estimation procedure is for
each user.

3.3.1 Estimating Required Parameters. For the collaborative nowcasting model, we have obtained
the estimations of the factors and loading matrix. To apply Kalman �ler to each user, we �rst
estimate the remaining parameters of Eq. 1 and 2. By applying vector autoregression (VAR) on the
estimated collaborative factors, the estimations of matrices A and B are computed by

Â =
T∑
t=2

f̃t f̃
′
t−1

(
T∑
t=2

f̃t−1 f̃
′
t−1

)
and B̂ = CE

1
2 ,

respectively, where E ∈ RQ×Q is a diagonal matrix containing the largest Q eigenvalues of matrix
Ω (de�ned below), C ∈ RR×Q is a matrix containing the corresponding eigenvectors, and

Ω =
1

T − 1

T∑
t=2

f̃t f̃
′
t − Â

(
1

T − 1

T∑
t=2

f̃t−1 f̃
′
t−1

)
Â′.

Let the sample covariance matrix S of the historical data (a�er standardized normalization) be

S =
1
T

T∑
t=1

xtx
′
t .

�e covariance matrix Ψ in Eq. 1 is estimated by

Ψ̂ = diag(S − PΣP ′) ,
where Σ ∈ RR×R is a diagonal matrix containing the largest R eigenvalues of S , P ∈ RN×R is a
matrix consisting of the corresponding eigenvectors with P ′P = I , and the “diag” means keeping
only the elements at the main diagonal.

3.3.2 Correcting the Factors with Kalman Filter. With all required parameters at hand, we rees-
timate the factors by applying the Kalman �lter. Let the a priori and a posteriori factors and the
corresponding measurement error covariance matrices at each time step be f̃t , f̂t , P̃t , and P̂t ,
respectively. By Eq. 2, in the time update (prediction) step, the a priori factors for the next time
step are computed by

f̃t = Âf̂t−1 + B̂ωt ,
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and the a priori error covariance is computed by

P̃t = ÂP̂t−1Â
′ + B̂B̂′ .

In the measurement update (correction) step, the Kalman gain Kt is obtained by considering the
ratio of the measurement and transition error covariance and equals

Kt = P̃t Λ̂
′(Λ̂P̃t Λ̂

′
+ Ψ̂t )−1 .

With the Kalman gain, the a priori (collaborative) factors are corrected by utilizing the user’s panel,
and the corrected, i.e., personalized, factors are estimated by

f̂t = f̃t +Kt (xt − Λ̂ f̃t ) .
�e a posteriori covariance used for next time step is then computed by

P̂t = (I −Kt Λ̂)P̃t .
�e a posteriori factors f̂t are the estimated personalized latent factors we need for the next step. In
practice, we can also apply the Kalman Smoother (RTS Smoother) to fully exploit all the available
data. Following existing work (Sun et al. 2014), the above approach is referred to as the collaborative
Kalman �ltering because it uses the same latent factors extracted from the data of all users and the
system parameters such as transition matrix A, covariance matrix Ψ, etc. are estimated with such
collaborative latent factors.

3.4 Regression for Nowcasting
�e �nal step is to establish the relationship between the personalized latent factors and the intent,
i.e., to estimate the coe�cients in Eq. 3. We use the ordinary least square (OLS) regression to
estimate the coe�cients α and β . In particular, let τ be the last time step where the intent is
available (in the historical data). Let matrix F̄ = ( f̂1, . . . , f̂τ ) contain the personalized latent factors
until time step τ . Let the corresponding intent likelihood in the τ time steps be y = (y1, . . . ,yτ ).
�e coe�cients α and β are then estimated by running OLS with F̄ and y. �e linear function of
Eq. 3 is then used in the intent monitoring for following time steps. �e threshold θ we use is the
median of the ��ed intent likelihood ŷt for 1 ≤ t ≤ τ . If ŷτ+δ > θ for any δ > 0, we say the user
has the intent, i.e., IΓτ+δ (γ ) = 1.

3.5 Discussion on the Consistency of Latent Factors
Next, we brie�y discuss asymptotic properties, in particular the consistency, of the estimated latent
factors. It has been proved (Bai 2003; Doz et al. 2011; Forni et al. 2009) that the latent factors, when
estimated individually (i.e., for each user), are consistent estimates of the true factors when the
number of time steps T and size of panels N approach in�nity, provided that i) the initial factors
and loadings are estimated by the principle component analysis (PCA), ii) the model parameters
such as A and B are estimated by vector autoregression (VAR) on the initial factors, and iii) a few
assumptions and conditions, which are standard in the literature (Doz et al. 2012; Stock and Watson
2002), hold such as contextual signals xit have uniformly bounded variance and all the eigenvalues
of Λ′Λ diverge at the same rate. For convenience, we denote this estimator byMindi .

Following the existing literature (i.e., making the same assumptions as (Doz et al. 2012) and (Stock
and Watson 2002)), since we also use VAR to estimate the model parameters A, B, etc., the only
di�erence betweenMindi and the collaborative nowcasting model lies in the �rst step, i.e., esti-
mating the initial factors. For the collaborative nowcasting model, we estimate the initial factors
(i.e., collaborative latent factors) by jointly decomposing the panels of a large number of users with
PARAFAC2 tensor decomposition. Such collaborative latent factors are not consistent with respect
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to each user, because they represent a common structure and shared features of all users. If we
can instead prove that the collaborative latent factors are consistent in terms of all users, then the
factors estimated by the proposed model are overall consistent. Considering that the PCA of a
panel Xu can be obtained by singular value decomposition (SVD) of Xu and that PARAFAC2 is a
high-order generalization of SVD (Bro 1997; Chew et al. 2007; Kiers et al. 1999), it is viable to believe
that the collaborative latent factors F̃ will be consistent in terms of all users. In an empirical analysis
using Monte Carlo simulation—a standard approach in the literature to empirically demonstrating
consistency (Bai 2003; Doz et al. 2012; Stock and Watson 2002)—we do observe such consistency
results (cf. Section 6.5.4).

In the sequel, we provide an initial comparison between PCA and PARAFAC2 and leave a rigorous
and complete proof of consistency (which can be long) as future work. As mentioned above, the
PCA of a panel Xu can be obtained by singular value decomposition of Xu , i.e.,

Xu ≈ U (u)Σ(u)V (u) ′ ,
where Σ(u) ∈ RN×T is a rectangular diagonal matrix and contains the singular values of Xu

in descending order, and U (u) ∈ RNu×Nu and V (u) ∈ RT×T are orthonormal and contain the
corresponding le� and right singular vectors, respectively. Here, the superscript (u) denotes that
the matrices are obtained separately for each user. �e initial factors, denoted by F̃pc , are estimated
by the �rst R rows of Σ(u)V (u) ′, i.e.,

F̃ (u)pc =
(
Σ(u)V (u)

′)
[R]
,

where the subscript [R] denotes selecting the �rst R rows. Comparing the SVD with PARAFAC2
(cf. Section 3.2.3), we can observe a similar decomposition of the panel in the sense that they both
�rst obtain orthonormal and then diagonal matrices. �e collaborative latent factors F̃ are only
di�erent, up to a scale matrix, from F̃ (u)pc in that F̃ are shared by all users. Since F̃pc are consistent
with respect to each user, it is believed that F̃ are consistent with respect to all users.

Another way to demonstrate the above point is to show that the personalized latent factors F̂
obtained by the collaborative nowcasting model converge to the �nal latent factors obtained by
Mindi . To achieve this, we can iteratively apply the second step of the collaborative nowcasting
model (i.e., Kalman �ltering) with its output as its input for the next iteration, i.e., to use the
personalized latent factors F̂ as new ‘initial’ factors by se�ing F̃ = F̂ . �e loading matrix in each
subsequent iteration is estimated by running VAR on X and F̃ , i.e.,

Λ = XF̃ ′(F̃ F̃ ′)−1 ,

and all other parameters are estimated as described in Section 3.3. We will use this method to
establish another empirical evidence to support the consistency of the proposed model in the
experiments.

4 COLLABORATIVE NOWCASTING MODEL FOR THE FLOWOF CONTEXTUAL
SIGNAL

At this point, it remains unclear whether the collaborative nowcasting model can e�ectively
address the �ow of contextual signals which arrive at various speeds. It is also unclear whether the
collaborative capabilities will retain and help address the missing signals/data. To the best of our
knowledge, real-time data �ow has never been formally speci�ed in a recommendation scenario
such as intent monitoring. �erefore, in this section, we �rst formally specify the data �ow we
focus on in Section 4.1, and then present how the collaborative nowcasting model addresses such
data �ow in Section 4.2.
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4.1 Formal Specification of the Data Flow
Within each time step, various contextual signals (e.g, the focus time of certain apps and distance
to home) may not be simultaneously available, as depicted by the missing values in the last column
of Table 1. �is phenomenon is caused by the frequency in the data collection process. �e latency
that a certain signal is retrieved and available in the intent monitoring/nowcasting component
is determined by the frequency that the signal is sensed, processed, and sent to the monitoring
component. Since we exploit a large amount of di�erent signals and the ways of collecting these
signals are very di�erent in real-world applications (due to the various costs), the contextual signals
will be available with di�erent latency, and hence produce a real-time data �ow.
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...

x2,1

x1,1

xN ,2
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...
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...
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�x1,T |TH

Historical data Side data

History Now

Fig. 7. Real-time data flow

To formally describe the �ow of contextual signals, let H be the times that the nowcasting
component fetches contextual signals from various data sources within a time step. Let T denote
the current time step and Dk the set of signals that are newly released or updated up to the kth
(1 ≤ k ≤ H ) data fetch within T . �e entire information set Dk at the kth data fetch consists of all
the historical data (i.e., before T ) and the side data Dk collected up to now (i.e., within T ), i.e.,

Dk = {xit |k | i = 1, . . . ,N , t = 1, . . . ,Ti,k } ,
whereTi,k = T for signal xi ∈ Dk (i.e., available up to the kth data fetch), andTi,k = T −1 otherwise.
Such real-time data �ow is illustrated in Fig. 7. Within the last time step (i.e., current/now), as
depicted by the large red rectangle on the right, at the �rst data fetch only signals x1 and xN−1 are
available. Other signals are currently unavailable or missing, as depicted by the symbol “−”. At
the second data fetch, signals x2 and xN are newly available, and the value of xN−1 is updated, as
depicted by �xN−1. At the last data fetch, with a well chosen monitoring granularity, all contextual
signals will be available.

4.2 Collaborative Nowcasting Model for the Data Flow
4.2.1 Collaborative Capability for Missing Data. With the continuous arrival of contextual

signals (i.e., data released and updated from various sources), users’ contemporaneous intent will
be increasingly perceptible. From the above model speci�cation and factor estimation process, we
can see that the collaborative nowcasting model captures the sequential and concurring pa�erns
between context and intent as follows. First, from the last time step, it obtains ‘initial’ factors
for the current time step by the transition of factors (cf. Eq. (2)). �en, within the current time
step, it continuously corrects the initial factors to capture the e�ect of concurring context. �e
initial factors capture the sequential pa�erns of users’ behavior because they are estimated based
on their behavior at last time step. More importantly, since the whole factor transition process
(e.g., transition matrix A and covariance matrix Ψ etc.) is estimated by leveraging the collaborative
capabilities among users, such initial factors also capture the common behavior pa�erns among
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users. In this way, the collaborative nowcasting model retains the collaborative capability among
users and retains predictive power even when the signals are collected at a low speed which means
a large amount of contextual signals for the current time step is missing. In our experiments, the
collaborative nowcasting model is able to make reliable nowcast even if a major amount (e.g., 60%,
cf. Section 6.5.2) of data is missing.

4.2.2 Collaborative Kalman Filtering for the Data Flow. Besides the initial factors estimated from
the last time step, the collaborative Kalman �ltering step also helps address the missing data in the
data �ow. Speci�cally, by assigning the missing data a very large measurement noise variance, the
missing data almost have no e�ect on the obtained personalized latent factors. �is is because the
Kalman gain e�ectively balances the system noise and measurement noise, and will trust either
the system transition (i.e., initial factors) or the real measurement (concurring context), depending
on which is less noisy (Kalman 1960; Welch and Bishop 1995). Similarly, when there are various
available contextual signals, which are subject to subsequent updates, the collaborative Kalman
�ltering will choose to trust more on the signals that have a reasonable measurement �uctuation at
the current data fetch. Given that the measurement of mobile devices is o�en noisy and subject
to subsequent amendments, the above property the collaborative Kalman �ltering enables the
proposed model to e�ectively handle the noisy data �ow.

4.2.3 Formal Description for Handling the Data Flow. In summary, the collaborative nowcasting
model has the ability to e�ectively capture the continuously increased perceptibility of users’ intent
by fully exploiting all the currently available information, including all historical and side data and
the collaboration among users. Formally, the estimated intent likelihood ŷt |k at the kth data fetch
is the expected value of intent conditioned on the entire information set currently available, i.e.,

ŷt |k = E[yt |Dk ;M] ,
whereM denotes the proposed collaborative nowcasting model. Note that this equation abstracts
the whole model including Eq. (1)−(3) and the factor estimation process. With the increasing
amount of available contextual/side signals, the estimated latent factors will continuously approach
to the true factors. So is the estimated intent likelihood to the true likelihood. Extensive experiments
(cf. Section 6.5.2) also demonstrate such capabilities of the collaborative nowcasting model.

5 PARALLELIZATION OF COLLABORATIVE NOWCASTING MODEL
To enhance the nowcasting e�ciency, in this section, we discuss a parallelized deployment of the
collaborative nowcasting model. We �rst present the deployment in Section 5.1, and then analyze
the communication cost of such a deployment in Section 5.2.

5.1 Parallel Deployment
For mobile personal assistants to provide real-time services, we propose to deploy the second and
third (i.e., Kalman �ltering and regression) steps of the collaborative nowcasting model (as shown
in Fig. 4) onto each mobile device, as illustrated by Fig. 8. �e advantage of such a deployment is
more e�cient nowcasting and less communication cost between the server and mobile devices.
�e improved e�ciency is because we perform the computation of Kalman �ltering and linear
regression in parallel and e�ectively utilize the computing capabilities of mobile devices. �e
decreased communication cost is due to the reduced communication when we perform intent
nowcasting with real-time data �ow.

Such a deployment is a feasible choice because of the following reasons. i) Although mobile
devices usually have limited capability of computation and need to save power, it is well known
that the computation of Kalman �ltering and linear regression is light-weighted, and thus such a
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Fig. 8. System configuration of parallel collaborative intent nowcasting

deployment will not impose a heavy computation load to mobile devices. ii) �e communication
cost between the server and mobile devices will be lower, which is detailed in the following section.

5.2 Analysis of Communication Cost
Once the collaborative latent factors F̃ ∈ RR×T ′ (here T ′ denotes the number of historical time
steps used for parameter estimation), and other parameters Λ̂u ∈ RNu×R , Â ∈ RR×R , B̂ ∈ RR×Q ,
and Ψ̂

u ∈ RNu×Nu (which is a diagonal matrix) are obtained by the server utilizing the historical
data, we only need to send these parameters to mobile devices once, and the mobile devices can
provide e�ective nowcasting for quite a long time (e.g., approximately one week, as used in our
experiments). Other communication cost is that mobile devices need to send back to the server
their historical contextual signals, which can be done in a periodic and batch fashion. �erefore,
the communication cost for M users in such a deployment is

O
(∑M

u=1 (Nu ×T ′ + R ×T ′ + Nu × R + R × R + R ×Q + Nu )
)

= O
(
M(RT ′ + R2 + RQ) + (T ′ + R + 1)∑M

u=1 N
u
)
.

Since we desire parsimonious models, R and Q are normally small constants (e.g., 4 and 2, respec-
tively), therefore, the asymptotic communication cost is

O
(
MT ′ +T ′

M∑
u=1

Nu

)
.

If instead, we deploy the centralized approach, i.e., let mobile devices send the �ow of real-time
data to the server and receive IΓut (γ ) ∈ {0, 1} (i.e., whether a user has the intent) from the server,
then to provide the same level of service for intent monitoring as the above infrastructure, the
communication cost is

O(∑M
u=1 N

u ×T ′ + Nu × H × δ + H × δ )

= O
(
δH

∑M
u=1(Nu + 1) +T ′∑M

u=1 N
u
)
,
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where H is the number of data fetches within one time step, and δ is the number of time steps
we monitor the intent. Simplifying the above formula by dropping constant terms, we have the
communication cost of

O
(
δH

M∑
u=1

Nu +T ′
M∑
u=1

Nu

)
.

Considering a normal scenario where on average Nu ≥ 30 and δ = T ′/3, we have δH
∑M
u=1 N

u ≥
10HMT ′. Since H ≥ 1, comparing with these two communication costs, we can easily see that the
former approach incurs at least one order of magnitude less communication cost than the later one.

We also empirically study the feasibility of the proposed parallel deployment, and measure the
ratio of speed-up when we distribute the computation of Kalman �ltering and linear regression to
multiple computing units in Section 6.5.3.

6 EXPERIMENTS
We use the contextual recommendation task in personal assistants to empirically evaluate the
collaborative nowcasting model. �e experiments are conducted on a 64-bit Windows computer
with a 2.8GHz Intel(R) CPU and 24GB main memory. �e algorithms are implemented with Matlab.

6.1 Data Sets
�e data sets we use are sampled from the recommendation log of a commercial personal assistant.
When a user uses the personal assistant, various types of cards carrying di�erent information such
as news, weather, stock prices are recommended. If the user is interested in a card, she may click
the card for more information or view the card for a while. We use such click and view (reading
time per pixel is above a chosen threshold) as an indicator of the intent. Di�erent types of cards
indicate di�erent types of intent. We pick out eight types of intent that are commonly monitored in
most personal assistant applications. �e eight types cover the aspects of News, Events, Weather,
Places, Finance, Calendar, Tra�c, and Sports, respectively. We sampled two data sets for these
types of intent between 10 June and 9 July 2015 (the �rst), and 15 August and 10 September 2015
(the second), which in total contain 20, 807 and 16, 406 anonymous users, respectively. For each
type of intent, we also collect the user’s contemporaneous context, in particular, the apps used and
the venues visited by the user. To protect users’ privacy, we use an anonymous identi�er for each
app and venue, and remove the latitude and longitude of the venue.

6.2 Evaluation Criteria
We use the macro and micro F-measures on the predicted intent to evaluate the model performance.
Let ρ be the number of testing time steps. We denote by su = (su1 , . . . , suρ )′ the true intent of user u,
where sut = 1 means the user has the given intent (i.e., clicks or views the corresponding card) and
sut = 0 means no such intent at time step t . Let ŝu = (ŝu1 , . . . ŝuρ )′, ŝut ∈ {0, 1} be the predicted intent.
�e precision and recall for user u are computed by

Precu = su ′ŝu

1′ŝu
and Recu = su ′ŝu

1′su
,

respectively. Let Prec and Rec be the average precision and recall among all users, respectively.
�e macro F-measure equals

Macro F-measure = 2 × Prec × Rec
Prec + Rec

.
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Fig. 9. Relative performance of the collaborative nowcasting model to R = 2 when R is varied from 2 to 6 for
four selected types of intent.

�e precision and recall considering all testing instances are computed by

Prec =
∑
u s

u ′ŝu∑
u 1′ŝu

and Rec =
∑
u s

u ′ŝu∑
u 1′su

,

respectively, and the micro F-measure equals

Micro F-measure = 2 × Prec × Rec
Prec + Rec .

�e macro F-measure re�ects the average performance among all users by weighting equally the
precision and recall of each user. �e micro F-measure evaluates the performance of the model per
recommendation instance, which has a bias towards the users who have more intent records.

6.3 Methods to Compare
�e methods we compare with the collaborative nowcasting model CNowcast include

• BoostedTree. BoostedTree (Wu et al. 2010) is an ensemble of regression trees (decision
trees). It is used in existing contextual ranking models (Shokouhi and Guo 2015) and gives
the best performance on the intent monitoring problem among several classic algorithms
we have tried including linear regression, SVM, etc.
• FM. Factorization machine (FM) (Rendle 2012) is a state-of-the-art method for next-basket

recommendations (Rendle et al. 2010), which recommend the items that will be in the
user’s shopping cart during the next time step. It also e�ectively performs many other
recommendation tasks.
• NowcastIndi. �is is the nowcasting model (Giannone et al. 2008) introduced in Section

2.2. In this method, the model is applied to the panel of each individual user.
• CNowcastCP. In this method, we use the CP tensor decomposition to obtain the collabo-

rative latent factors, which is introduced in Section 3.2.2.
�e temporal features are implicitly modeled by the nowcasting related methods. To help the

BoostedTree and FM models utilize the temporal features, we also add the time of day and day of
week as additional features. We use the �rst three quarters of the data sets to train the model and
the remaining for testing. Unless otherwise speci�ed, we parameterize the collaborative nowcasting
model with four factors and two transition noise: R = 4, Q = 2, and use default parameter values
for all other methods.
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Fig. 10. Relative performance of the collaborative nowcasting model to Q = 1 when Q is varied from 1 to 3
for four selected types of intent.

6.4 Results of Parameter Tuning and Comparison
6.4.1 E�ect of Parameters R and Q . E�ect of R. We �rst study the e�ect of the number of

factors R (i.e., dimension of ft ) by varying R from 2 to 6. Fig. 9 shows the relative performance of
the collaborative nowcasting model on the �rst data set for four types of intent: News, Weather,
Finance, and Sports. We can see that the performance, measured by the macro F-measure, of the
model �rst decreases and then increases when R varies from 2 to 4. �is is because when R = 2,
the fundamental structure and movement of the context can already be e�ectively captured (this is
consistent with the �ndings in (Giannone et al. 2005) that many macroeconomic variables can be
captured by two factors). When R increases to 3, the increased uncertainty brought by estimating
more parameters outruns the marginal bene�ts from capturing moderately more dynamics of the
context. However, this situation is reversed when R increases to 4. When we further increase R to
5 and 6, the performance of the model keeps increasing moderately for News and Weather intent,
but decreases for Finance and Sports intent. �e reason for the increase is the same as before. �e
decrease is because 5 or 6 factors make the model over�t for these two types of intent. We will
discuss in detail the di�erence between di�erent types of intent in Section 6.4.3. From the �gure
we can also see that the performance variance of the proposed model is very small. In most cases,
the variance is less than 5%. �is indicates that the proposed model is robust to the choice of the
number of factors. �e relative performance measured by the micro F-measure is similar and hence
omi�ed.

E�ect of Q . Fig. 10 shows the relative macro F-measure of the model when Q is changed from
1 to 3. We can see that when Q = 2, the performance of the model slightly increases (except for
weather). When Q increases to 3, the performance drops. �is indicates that a two dimensional
white noise can e�ectively model the other aspects in the dynamic transition between factors. �e
relative micro F-measure is similar and thus omi�ed.

6.4.2 Comparison across Models. Tables 2 and 3 respectively present the macro and micro
F-measures of each method on the �rst data set for the eight types of intent when the monitoring
granularity is one hour (i.e., ∆ = 1 hour). For expositional convenience, we report each method’s
relative F-measure to the BoostedTree method.

Cnowcast vs. BoostedTree. From the two tables we can see that the Cnowcast method
consistently outperforms the BoostedTree method, and the performance advantage is up to 28
times. �is demonstrates that the proposed model is able to e�ectively utilize the user’s real-time
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Table 2. The macro F-measure of each model relative to BoostedTree when ∆ = 1 hour

Model News Events Weather Places Finance Calendar Tra�c Sports
BoostedTree 0.0380 0.0165 0.0039 0.0005 0.0014 0.0007 0.0059 0.0038
FM 0.738 0.747 0.922 1.791 2.770 5.788 0.192 0.699
NowcastIndi 2.586 3.720 5.806 24.26 14.28 14.61 2.387 5.181
CNowcastCP 2.625 3.845 5.796 25.54 13.66 17.27 2.940 5.533
CNowcast 3.024 4.410 6.479 28.23 16.50 18.13 3.068 6.426

Table 3. The micro F-measure of each model relative to BoostedTree when ∆ = 1 hour

Model News Events Weather Places Finance Calendar Tra�c Sports
BoostedTree 0.0538 0.0271 0.0084 0.0008 0.0132 0.0018 0.0228 0.0166
FM 1.327 1.618 2.207 10.32 0.767 5.502 0.255 1.085
NowcastIndi 1.832 2.282 2.870 20.02 1.742 7.756 0.860 1.352
CNowcastCP 1.994 2.437 3.014 21.85 1.731 9.251 1.098 1.540
CNowcast 2.130 2.688 3.155 23.19 1.910 9.441 1.116 1.669

context, while the BoostedTree, although providing strong performance in many other problems,
fails to capture the structure and dynamics of the context and intent. We can also see that the
superiority of Cnowcast over BoostedTree is larger on the macro F-measure than micro F-measure.
�is indicates that the proposed model is able to monitor the intent of much more users e�ectively
than the BoostedTree method. �erefore, the proposed model is more suitable for real-world
applications where there are a large number of users and every user counts.

Cnowcast vs. FM. �e Cnowcast method also consistently outperforms the FM method, with a
performance advantage of up to 16 times (for places and tra�c columns in Table 2). �is shows
that although the FM method provides state-of-the-art performance on the short-term next-basket
recommendation problem, it is unable to make e�ective contemporaneous recommendations in
a highly dynamic scenario like the intent monitoring problem. From Table 2, we can see that for
many types of intent, FM also has a much lower macro F-measure than the Cnowcast method. �is
again supports that the proposed method is able to provide e�ective recommendations for more
users and is more appropriate for real-world applications.

Cnowcast vs. NowcastIndi. From the two tables, we can see that the collaborative nowcasting
model consistently and greatly outperforms the individual nowcasting model, in terms of both
macro and micro F-measures. �is con�rms that by exploiting the panels of all users simultaneously,
the proposed model is able to obtain the collaborative latent factors that capture the common
characteristics for the intent-related context, and hence utilizes the collaborative capabilities of
all users. �is also validates that the proposed model can e�ectively address the data sparsity and
personalized nowcast problem encountered by the nowcasting model when it is applied to the
intent monitoring problem.

Cnowcast vs. CnowcastCP. We can see from Tables 2 and 3 that, across all types of intent, the
proposed model signi�cantly outperforms the CnowcastCP model (which appends zero-series to
obtain the collaborative latent factors) in terms of both macro and micro F-measures. �is validates
that by keeping the panels in their original forms, the proposed model avoids the manually-imposing
noise, which gives the model a signi�cant advantage in e�ectively modeling the swi�ly changing
context and intent.
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Table 4. The macro F-measure of each model relative to BoostedTree when ∆ = 4 hours

Model News Events Weather Places Finance Calendar Tra�c Sports
BoostedTree 0.1670 0.0783 0.0191 0.0042 0.0187 0.0026 0.0093 0.0166
FM 0.877 1.102 1.459 3.465 1.263 9.179 1.332 1.395
NowcastIndi 1.746 2.643 4.403 12.70 3.788 14.92 5.800 4.221
CNowcastCP 1.766 2.513 4.329 12.16 3.412 15.33 5.483 4.195
CNowcast 1.963 2.950 4.904 14.13 4.680 16.95 7.377 5.264

Table 5. The micro F-measure of each model relative to BoostedTree when ∆ = 4 hours

Model News Events Weather Places Finance Calendar Tra�c Sports
BoostedTree 0.2154 0.1199 0.0405 0.0081 0.0559 0.0072 0.0379 0.0487
FM 1.040 1.280 1.497 4.951 0.932 7.231 1.114 1.276
NowcastIndi 1.365 1.733 2.223 8.073 1.526 8.019 1.997 1.625
CNowcastCP 1.422 1.686 2.301 7.893 1.427 8.447 2.048 1.636
CNowcast 1.513 1.927 2.432 9.026 1.822 8.888 2.572 2.037

6.4.3 Comparison across Intent Types. From Tables 2 and 3, we can observe that the performance
of di�erent models varies greatly across di�erent types of intent. i) For the Places intent, the
proposed model outperforms the BoostedTree and FM methods signi�cantly more than other types,
in terms of both macro and micro F-measures. �is is because a place’s type of intent depends on a
more complex context than other types. �e BoostedTree and FM methods are unable to e�ectively
model the context and the extra complexity makes it more di�cult for them to produce e�ective
recommendations. ii) From Table 3, we can see that for Finance and Tra�c intent, FM performs
worse than the BoostedTree method, and for Sports, its performance is very close to that of the
BoostedTree. In addition, for these three types of intent, the advantage of the proposed model over
the BoostedTree method is also lower than other types (less than two times). �ese phenomenon
are due to that the three types of intent are related to a relatively less complicated and less dynamic
context. �e modeling of such context can be to some extent narrowed down by the time of day and
day of week features (e.g., users o�en check stock prices during the exchange time on weekdays).
Nevertheless, for any type of intent, the related-context consists of much more information than
only the time-related features. �e best performance of the proposed method demonstrates that it
can e�ectively model the structure of the context and the dynamic correlation between the context
and intent, regardless of the intent type and complexity of the context.

6.4.4 Comparison across Monitoring Granularity. Tables 4 and 5 present the macro and micro
F-measures of each method on the �rst data set when the monitoring granularity is four hours,
respectively. With the decrease of granularity (from 1 hour to 4 hours), the user’s panel becomes less
sparse, which gives the BoostedTree, FM and NowcastIndi methods an opportunity to outperform
the proposed model if data sparsity is the main impediment. From these tables, we can see that the
proposed model still consistently performs the best, and outperforms the other methods signi�cantly.
�is indicates that the worse performance of the other methods is not mainly due to data sparsity,
but because they fail to capture the structure and dynamics of the context and intent.

Fig. 11 presents the average performance ratio of the proposed model (across all types of intent)
to the BoostedTree and FM methods on the �rst data set when the monitoring granularity ∆ is
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Fig. 11. Average performance ratio of the collaborative nowcasting model to BoostedTree and FM across all
types of intent when ∆ varies from 4 to 1.
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Fig. 12. E�ect of correcting collaborative latent factors to personalized latent factors

varied from four hours to one hour, respectively. From the �gures we can see that with the increase
of the monitoring granularity (i.e., from 4 hours to 1 hour) the advantage of the proposed model over
the BoostedTree and FM models also becomes increasingly larger. With the increase of granularity,
the intent is closer to the present, i.e, “now”. �e increasing advantage indicates that the proposed
model is particularly suitable for the nowcasting scenario where the user’s real-time intent is
closely tracked.

From these experiment results, we can see that, under various scenarios and in terms of both
macro and micro F-measures, the proposed collaborative nowcasting model consistently performs
best and outperforms state-of-the-art methods by a signi�cant margin. �e e�ectiveness and
superiority of the proposed collaborative nowcasting model for the intent monitoring problem is
thereby empirically con�rmed.

6.5 Study of the Collaborative Nowcasting Model
6.5.1 E�ect of Personalized Latent Factors. Next, we study the e�ect of correcting the collab-

orative latent factors to personalized latent factors, i.e., the second step of the proposed model.
Essentially, without the second step, we cannot predict (and correct) the factors for the next time
step. In order to study the e�ect, we let the PARAFAC2 tensor decomposition in the �rst step
also contain the contextual signals in the testing part (which is in fact impractical in real-world
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Fig. 13. Performance of collaborative nowcasting model with real-time data flow

applications due to e�ciency issues), and denote this method by CNowcast-A. In this way, we can
directly use the obtained collaborative latent factors for the regression (i.e., third) step.

Fig. 12(a) and Fig. 12(b) show the relative performance of the two methods CNowcast and
CNowcast-A (with∆ = 4) on the �rst data set measured by macro and micro F-measures, respectively.
From the two �gures, we can see that without the second step, the performance of CNowcast-A
deteriorates signi�cantly in terms of both macro and micro F-measures for all types of intent. �e
micro F-measure of CNowcast-A for the Tra�c intent drops nearly 20% when compared with that of
CNowcast. �e worse performance of CNowcast-A indicates that it is crucial for the model to blend
in su�cient personalization for each individual user. �at CNowcast consistently outperforms
CNowcast-A by a clear margin demonstrates that the second step of the collaborative nowcasting
model, which corrects the collaborative latent factors to personalized latent factors, is an e�ective
way to achieve such personalization.

�e second data set. To further investigate the e�ectiveness of the collaborative nowcasting
model, we conduct all the above experiments with the second data set. �e results are similar and
hence omi�ed. In the sequel, we proceed with the second data set to further conduct the following
experiments (with the monitoring granularity being one hour, i.e., ∆ = 1).

6.5.2 Handling the Real-Time Data Flow. To study the collaborative nowcasting model’s capabil-
ity of processing real-time data �ow, we test the model’s performance by simulating the continuous
arrival of contextual signals. We randomly permute the contextual signals for each user, and let
them arrive at the nowcasting component in a streaming fashion. We assign a null value to all the
currently unavailable signals.

Fig. 13(a) and Fig. 13(b) present the relative macro and micro F-measures of the collaborative
nowcasting model, for four types of intent News, Events, Weather, and Places, when the proportion
of available signals is increased from 1% to 100%, respectively. Fig. 13(c) and Fig. 13(d) plot the same
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Fig. 14. Performance of collaborative nowcasting model against the number of computing units

performance measures for the other four types of intent Finance, Calendar, Tra�c, and Sports.
From these �gures, we can see a clear increasing pa�ern when the proportion of available signals
is more than 30% for all types of intent. �e performance for the Sports intent is increased by
more than 20%, in terms of both macro and micro F-measures (comparing when 100% signals are
available with only 1% available). �is clearly demonstrates that with the continuous arrival of
contextual signals, the collaborative nowcasting model has increasing capability to capture users
real-time intent.

We can also observe that when there are less than 30%, especially when only 5% or 10%, of
contextual signals are available, the performance of the model becomes slightly worse for many
types of intent such as News, Weather, Places, and Tra�c. �is is because the information for intent
nowcasting comes from two sources: one is the transition/prediction from previous time steps
(history), and the other is the contemporaneous contextual signals (current). When there are only a
few signals, these signals moderately corrects the latent factors obtained from system transition, but
are not su�ciently informative to accurately capture users’ intent. �is phenomenon indicates that
these two components are equally important, relying on too much on either source will deteriorate
the performance. From the subsequent steady increasing pa�erns, we can see that, for these types
of intent, when there are su�cient contextual signals the collaborative nowcasting model can
e�ectively balance these two information sources and provide e�ective intent monitoring.

Another observation is that with the arrival of only a small portion of signals, the model
performance may be signi�cantly improved, such as when the last 20% signals are available the
increase of micro F-measure of the Places intent depiced in Fig. 13(b). �e improvement is because
such type of intent is more contextual, which means they need more contextual signals to be
e�ectively monitored. For example, the Places intent depends on more complex context (and we
have already observed this in Section 6.4.3), and hence it can be more e�ectively monitored when
there are a plenty (e.g., more than 80%) of contextual signals.

In general, from the major increasing pa�erns, these experiments clearly demonstrates that the
collaborative nowcasting model can e�ectively tackle the scenario of real-time data �ow for intent
monitoring.

6.5.3 E�ect of Intent Monitoring in Parallel. Next, we empirically investigate the feasibility of
deploying the intent nowcasting system in parallel, in particular, we test the ratio of computation
speed-up when processing intent nowcasting in multiple computing units. To simulate the infras-
tructure described in Section 5, we use a main process to act as the server and multiple threads as
mobile devices.
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Fig. 14 plots the overall CPU time when the number of computing units (i.e., threads) is varied
from 1 to 8. �e number above each bin represents the relative CPU time when compared with
the centralized con�guration (i.e., deploying the whole system in one computing unit). From the
�gure, we can see that with the increase of computing units, the computation time drops rapidly,
and the improved e�ciency of the system is proportional to the number of computing units. �e
ratio of speed-up (e.g., 0.60) is larger than the reciprocal (e.g., 0.50) of the corresponding number of
computing units is due to three reasons. i) �e computation load on each computing unit is not
perfectly balanced, which makes the one with the heaviest load halt last. ii) Some components
of the computation such as the PARAFAC2 tensor decomposition are not parallelized. iii) �ere
exist various overheads to maintain the distributed processing such as the communication cost
(cf. Section 5). Since these are common issues in distributed systems, the signi�cantly improved
e�ciency demonstrates the feasibility of deploying the intent nowcasting system in a parallel
manner.

6.5.4 On the Consistency of Latent Factors. In the �nal set of experiments, we investigate the
consistency of the estimated factors. Following existing studies on the consistency of estimated
factors (Bai 2003; Doz et al. 2011, 2012; Stock and Watson 2002), we �rst run a Monte Carlo
simulation with small synthetic data. �e synthetic data are generated according to the factor
model described in Section 3.1, where the measurement noise components are uncorrelated across
series and time steps, and the factors follow a �rst-order linear transition correlation5. Speci�cally,
entries of the loading matrix are independently drawn from a standard normal distribution. �e
factors are generated with the autoregression coe�cient being 0.9 and transition noise being white
noise. �e measurement noise is drawn from a normal distribution with the noise-to-signal ratio
uniformly drawn from [0.1, 0.9] (cf. (Doz et al. 2012) and (Doz et al. 2011) for more details). We
generate data of di�erent sizes, where the maximum panel size N varies from 10 to 100: N = 10,
25, 50, 100, and the number of time steps T varies from 50 to 200: T = 50, 100, 200. To simulate
di�erent panel sizes for di�erent users, and considering the skewed distribution of such sizes, we
generate panel sizes with a power-law like distribution (Clauset et al. 2009) with 80% of panel sizes
uniformly drawn from [2R, 2R + 0.2(N − 2R)] and 20% from [2R + 0.2(N − 2R)+ 1,N ] where R = 4.

We evaluate the precision of estimated factors by the following measure

Precision of estimate =
Tr

(
F ′F̂ (F̂ ′F̂ )−1F̂ ′F

)
Tr (F ′F ) ,

where F and F̂ are the true and estimated factors, respectively. �is measure is a trace of the
multivariate regression of F̂ onto F and represents the correlation between the true and estimated
factors (we use this measure is because the factors are identi�ed up to a rotation). A value closer
to one indicates a be�er estimation. To be�er observe the convergence of the estimated factors,
we compare the estimates obtained from the collaborative nowcasting model with those from the
individual nowcasting model (Doz et al. 2011) (NowcastIndi) and from principle components (i.e.,
PCA). We perform 1800 Monte Carlo repetitions and report the average results for M = 20 and
M = 50 users in Table 6.

From the results, we can clearly see that as with the estimators of principle components and
NowcastIndi, the precision of estimated factors by CNowcast increases with the panel size N and
number of time steps T . Since both principle components and NowcastIndi have been proved to
be consistent estimators, this result serves as an empirical evidence for that the factors estimated
by CNowcast is also asymptotically consistent. We can also see from the result that, the precision
5Equivalent to se�ing τ = 0 and d = 0 in (Doz et al. 2012) and (Doz et al. 2011)
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Table 6. Precision of factor estimation

T
M = 20 M = 50

N = 10 N = 25 N = 50 N = 100 N = 10 N = 25 N = 50 N = 100

Principle components

50 0.4203 0.4557 0.4926 0.5367 0.4178 0.4531 0.4908 0.5348
100 0.4785 0.5282 0.5787 0.6374 0.4764 0.5260 0.5773 0.6359
200 0.5102 0.5718 0.6329 0.7024 0.5088 0.5707 0.6323 0.7015

NowcastIndi

50 0.4488 0.4883 0.5261 0.5687 0.4460 0.4855 0.5242 0.5666
100 0.5182 0.5754 0.6278 0.6839 0.5159 0.5730 0.6263 0.6824
200 0.5580 0.6303 0.6938 0.7596 0.5561 0.6288 0.6932 0.7585

CNowcast

50 0.5486 0.5569 0.5641 0.5716 0.5452 0.5480 0.5518 0.5563
100 0.6062 0.6181 0.6282 0.6422 0.5710 0.5782 0.5865 0.5995
200 0.6408 0.6560 0.6689 0.6863 0.5881 0.5996 0.6117 0.6310

of estimated factors by CNowcast is higher than that of principle components and NowcastIndi
in many cases especially when N < 100 and T < 100 (and that the precision of NowcastIndi
is higher than that of principle components is consistent with the �ndings in (Doz et al. 2011)
and (Doz et al. 2012)). �is, again, con�rms that the proposed model can exploit the collaborative
capabilities among users when there are few data. Another interesting fact we can observe from
the result is that CNowcast has a slower convergence rate compared with principle components
and NowcastIndi especially when the number of users is larger.

Next, we use the real-world data set, iteratively apply the second step of the collaborative
nowcasting model (cf. Section 3.5), and use the macro and micro F-measures to check the relationship
between the iteratively corrected personalized latent factors (CNowcast-IntentType) and those
estimated individually (NowIndi-IntentType).

Fig. 15(a) and Fig. 15(b) depict such relationship for the News and Weather intent, and Fig. 15(c)
and Fig. 15(d) for Finance and Tra�c. Due to the constraint of computation resources, we only
present the results with the number of iterations up to �ve. Points at one iteration represent
the collaborative nowcasting model, and horizontal lines represent the individual model. From
Fig. 15(a) and Fig. 15(b), we can see that for the News intent, the performance of iteratively obtained
personalized latent factors, in terms of both macro and micro F-measures, is very close to that of
the factors estimated individually, especially when the number of iterations is greater than three.
For the Weather intent, the micro F-measure of personalized latent factors is also very close to the
line representing the performance of the individual model. From Fig. 15(c) and Fig. 15(d), we can
see that for the Finance intent, however, the relation is not very clear as the F-measures of the two
counterparts are not close to each other. �is might be due to the limited number of time steps and
panel sizes we use. Overall, from these �gures, we can clearly observe a decreasing trend of the
F-measures of the personalized latent factors with the increase of iterations. �e collaborative latent
factors estimated by PARAFAC2 set an initial value for the personalized factors. �e decreasing
trend indicates that iteratively applying the second step of the collaborative nowcasting model
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Fig. 15. Performance relation between iteratively obtained personalized latent factors and individually
obtained latent factors

enforces the factors to move toward those estimated individually whose initial values are set by
individual principle components. Since the initial factors estimated by principle components are
proved to be consistent, this is an empirical evidence that the initial factors estimated by PARAFAC2
are also consistent. By the analysis in Section 3.5, this provides another supporting evidence for
that, overall, the factors estimated by the collaborative nowcasting model are consistent.

Finally, we can also observe from the above �gures that using one iteration to correct the
collaborative latent factors to personalized latent factors is able to blend in su�cient personalization
in the collaborative nowcasting model. More iterations will make the model overemphasize on the
personalized side and lead to deteriorated performance.

7 RELATEDWORK
In this section, we review related work on nowcasting models and contextual recommendations in
Sections 7.1 and 7.2, respectively.

7.1 Nowcasting Models
7.1.1 Nowcasting in Meteorology. �e term nowcasting is �rst used in meteorology, which refers

to: monitoring the current weather condition and forecasting the weather within the next three (or
six) hours 6. �e current weather condition for a certain area can be highly dynamic and may not
be directly observable by a limited number of observation stations. �e side data that can be used
in weather nowcast are radar re�ectivity and satellite imagery (Dixon and Wiener 1993; Wilson
et al. 1998). With the exponential increase of real-time surface observations, more and more side
6h�p://glossary.ametsoc.org/wiki/Nowcast
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data are available for weather nowcast such as the vertical atmospheric conditions provided by
commercial aircra� during ascent and descent (Moninger et al. 2010), water vapor distributions
provided by ground-based GPS receivers (MacDonald et al. 2002), and large amounts of social
media data from Facebook, Twi�er etc. (Mass 2012; Mass and Mass 2011). �e model used, for
instance in thunderstorm nowcasting (Dixon and Wiener 1993), mainly uses a linear regression
model with double exponential smoothing to e�ectively identify and track the storm and other
physical atmospheric conditions. �e model used in inclement weather nowcasting (Lin et al. 2015)
with tweets (posts on Twi�er) as side data uses the sum aggregate of weather related tweets within
a certain spatio-temporal range followed by a linear regression to predict the impact of inclement
weather. �e variable of interest and side data that these models focus on are of quite di�erent
nature than the intent monitoring problem, and hence are inapplicable.

7.1.2 Nowcasting in Macroeconomic. Nowcasting is then used in macroeconomics (Giannone
et al. 2008) to monitor the contemporaneous value of a variable of interest that is o�cially published
with a signi�cant lag such as the GDP. �e side data used in such nowcast are macroeconomic
�gures that are released much more frequently than the variable of interest, which for instance in
GDP nowcast includes: personal consumption, industrial production, surveys, �nancial variables
(e.g., interest rates, stock prices, consumer price index (CPI)), Google Trend data (Sco� and Varian
2014) etc. A widely used nowcasting model is proposed by Giannone etc. (Giannone et al. 2008),
which is now applied in GDP nowcasting by many agencies (Banbura et al. 2012) including the
Federal Reserve Board and European Central Bank.

7.1.3 Nowcasting in Data Mining. Recently, nowcasting is studied in data mining to obtain
real-time information describing real-world phenomena such as the levels of rainfall, regional
in�uenza-like illness rates (Lampos and Cristianini 2012), or the mood of the nation on some
on-going events (Lansdall-Welfare et al. 2012). �e side data currently exploited include search
engine query log (e.g., Google Trend data) (Duncan and Elkan 2014), posts in social media (Lampos
and Cristianini 2012) like Twi�er, etc. �e model in (Lampos and Cristianini 2012) uses tweets
and the sparse learning method Bootstrapped Least Absolute Shrinkage and Selection Operator
to select a consistent subset of textual features from the n-grams of web encyclopedias, and then
regression is applied on the selected features and variable of interest. �is model cannot apply to
intent monitoring because it cannot address the personalized scenario. A non-trivial task is to �rst
build from a high-quality textual corpus an initial set of good candidate textual features related to
the personalized intent.

7.2 Contextual Recommendations
7.2.1 Collaborative Filtering (CF). CF is a technique widely used in traditional recommendation

systems. �e essential idea of CF is to make use of the data from other (in particular similar) users or
items. Two common CF techniques are matrix factorization (MF) and neighborhood methods (Koren
and Bell 2011). In the MF approach, the user-item matrix, containing the ratings of each user to
each item, is factorized into the product of two low-rank matrices. In the neighborhood approach,
recommendations are based on similar items or users. One problem in CF is that the user’s context
is not considered, which makes it inapplicable to intent monitoring.

7.2.2 Time-Aware Recommendations. By additionally considering the gradual evolving of user
preferences and item a�ributes, there are several time-aware recommendation models. �e
timeSVD++ model (Koren 2009) augments the MF approach with gradually changing user prefer-
ences. �e model includes in the MF a time-related preference bias, which is based on the mean
date during the period a user rates the items. �e dynamic Poisson factorization (Charlin et al.
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2015) extends the timeSVD++ model by further allowing for progressively evolving item a�ributes.
�e auto-regressive moving average model in (Zhang et al. 2015) applies on the daily time series of
token features extracted from product reviews and recommends the items expected to be popular in
the future. �ese approaches cannot apply to intent monitoring because the context they consider
is only time, and the gradually evolving preferences or a�ributes are quite di�erent from the
frequently varied intent.

7.2.3 Context-Aware Recommendations. Besides time, context-aware recommendation mod-
els (Adomavicius and Tuzhilin 2011; Liu et al. 2013) try to incorporate more evidence of a speci�c
situation such as the location, device, purchasing purpose, etc. to model the user preferences
on unseen items. Assuming that there are static latent contextual factors that in�uence the user
preferences, these factors can be learned with the probabilistic latent semantic analysis (PLSA) (Hof-
mann 2003) or hierarchical linear models (HLMs) (Raudenbush and Bryk 2002). �e PLSA and
HLM models, however, cannot apply to the intent monitoring problem because the contextual
factors are required to be static while in our problem the latent factors are highly dynamic and
have strong serial and cross-sectional correlation. �e model in (Mahmood et al. 2009) considers
the dynamic contextual factors over the course of an interaction, e.g., conversation, with the user.
However, in the proactive experiences where we monitor the intent, there is no interaction with
the user. �e multiverse recommendation (Karatzoglou et al. 2010) uses a multidimensional tensor:
user-item-context, to model user preferences. �is model cannot apply to intent monitoring either
because the tensor in our problem is not to be completed, but to be utilized to continuously nowcast
the intent at the last time step.

7.2.4 Proactive Experiences. �e model in (Shokouhi and Guo 2015) addresses the proactive
experiences in search engines and personal assistants. Unlike monitoring intent, it uses the reactive
search history to re-rank a given list of cards. �erefore, the model cannot apply to intent monitoring.
Deep learning and other learning-based methods (Song and Guo 2016; Sun et al. 2016a) are also
used to predict users’ repeated search pa�erns in search engines and improve proactive experiences
on mobile devices. Although such methods may gain slightly be�er accuracy by introducing more
degrees of freedom (e.g., more parameters), they require much more computation resources, and
cannot e�ectively address the scenario of real-time data �ow.

8 CONCLUSIONS
Proactively recognizing users’ real-time intent has wide applications in proactive information
triggering and recommendation tasks such as the newly emerged proactive experiences provided by
intelligent personal assistants. Exploiting the real-time �ow of contextual signals is an e�ective way
to achieve such intent monitoring. �e intent monitoring problem has many new characteristics
that traditional recommendation tasks lack, and hence requires the development of new methods
to jointly solve these characteristics all together.

We have proposed an innovative collaborative nowcasting model, which e�ectively resolves the
intent monitoring problem by systematically utilizing both the collaborative capabilities among
users and the power of nowcasting methods. By summarizing the shared co-movement and temporal
structures of all panels with the parsimonious collaborative latent factors, it e�ectively solves the
sparsity and heterogeneity of contextual signals. By obtaining the dynamic sequential correlation
among collaborative latent factors and continuously correcting the collaborative latent factors
to personalized latent factors with the real-time �ow of contextual signals, the proposed model
well balances the predictive power of both historical and real-time contextual data, and is able
to perform e�ective intent nowcasting. �e collaborative nowcasting model can also be easily
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deployed in a distributed fashion, which incurs much less communication cost than the centralized
infrastructure and also enables e�cient intent nowcasting on mobile devices.

We have evaluated the collaborative nowcasting model in various aspects with real-world
recommendation data sets from a commercial personal assistant. �e results have demonstrated
that the collaborative nowcasting model outperforms various baselines by a signi�cant margin, that
the model has e�ective capabilities of addressing the real-time data �ow of contextual signals, and
that the model can be easily and largely accelerated by using parallel computing units. We hope that
the studied problem and model can draw more a�ention to new paradigms of recommendations on
mobile intelligent devices.

Future Work. Since the consistency of estimated latent factors has not been formally and
rigorously established, we plan to rigorously prove the consistency of latent factors in the future.
Another future work is to develop mechanisms for the proposed model to automatically select
more relevant and discard very noisy contextual signals.
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