This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

GCP: Graph Encoder with Content-Planning for
Sentence Generation from Knowledge Base

Bayu Distiawan Trisedya, Jianzhong Qi, Wei Wang, and Rui Zhang*

Abstract—A knowledge base is a large repository of facts that are mainly represented as triples, each of which consists of a subject, a
predicate, and an object. The triples together form a graph, i.e., a knowledge graph. The triple representation in a knowledge graph
offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is
difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural
sentences. We take an encoder-decoder based approach. Specifically, we propose a Graph encoder with Content-Planning

capability (GCP) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an
entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a
knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate
sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art
models by up to 3.6%, 4.1%, and 3.8% in three common metrics BLEU, METEOR, and TER, respectively.

Index Terms—Natural language processing, triple-to-text generation, knowledge base.

<+

1 INTRODUCTION

Knowledge bases in the form of Knowledge graphs
(KGs) are becoming an enabling resource for many ap-
plications, including question answering systems, recom-
mender systems, and summarization tools (for more de-
tails see survey [1], [2]). A fact in a KG is stored as
a triple that consists of three elements in the form of
(subject, predicate, object).lItdescribes a relation-
ship between an entity (the subject) and another entity
or literal (the object) via the predicate. This representation
allows easy data share between KGs. However, the elements
of a triple are typically stored as Uniform Resource Identifiers,
and many predicates (words or phrases) are not intuitive;
this representation is difficult to comprehend by humans.

In this paper, we study text generation [3] from struc-
tured data. Specifically, we aim to translate a set of triples
(i.e., a graph) into natural sentences to help humans com-
prehend the knowledge embedded in the triples. We call
this task triple-to-text generation. This task has many ap-
plications, such as description generation [4] and ques-
tion answering [5], [6]. For example, in description gen-
eration, the goal is to generate a sentence that describes
a target entity in a knowledge base. Table 1 illustrates
such an example. Suppose we are interested in an entity
David Cameron. First, a description generation system
extracts all information about David Cameron by querying
a knowledge base and retrieves three related triples (David
Cameron, birth place, London), <David Cameron,
birth date, 1966-10-09), and (London ,capital

e B. D. Trisedya is with Universitas Indonesia and The University of
Melbourne.
E-mail: bayu.trisedya@unimelb.edu.au

o] Qi is with The University of Melbourne.
E-mail: jianzhong.qi@unimelb.edu.au

o R. Zhang (www.ruizhang.info)
E-mail: rayteam@yeah.net *R. Zhang is the corresponding author.

o W. Wang is with The Hong Kong University of Science and Technology.
E-mail: weiwcs@ust.hk

Manuscript received XXXXXX XX, XXXX; revised XXXXXX XX, XXXX.

Authorized licensed use limited to: University of Melbourne. Downloa

TABLE 1
Data-to-text generation from knowledge base triples.

(David Cameron, birth place, London)
(David Cameron, birth date, 1966-10-09)
(London, capital of, England)

Triples

David Cameron was born on October 9, 1966

Target Sentence in London, the capital of England.

of, England). Then, the system generates a natural sen-
tence that incorporates the information of the triples to de-
scribe the entity. In this example, the generated description
is "David Cameron was born on October 9, 1966
in London, the capital of England".

Recent neural triple-to-text models use the encoder-
decoder framework [7], [8]. They propose graph encoders
to exploit the input structure. A graph encoder for sentence
generation requires to capture the relationships between
entities in a triple (intra-triple relationships, e.g., the rela-
tionship between David Cameron and London) and the
relationships between entities in related triples (inter-triple
relationships, e.g., a multi-hop relationship birth_country
between David Cameron and England, which may be
captured via entity London). Vougioklis et al. [9] propose
a graph encoder using feed-forward neural networks. This
encoder captures intra-triple relationships but may fail to
capture inter-triple relationships. Marcheggiani and Perez-
Beltrachini [10] propose a GCN encoder that employs Graph
Convolutional Networks [11] to encode the input graph.
The GCN encoder captures the relationship between an
entity and its close neighbors but may fail to capture multi-
hop relationships between entities (i.e., multi-hop inter-
triple relationships). Koncel-Kedziorski et al. [12] propose
GraphWriter combining Graph Attention Networks (GAT)
[13] and Transformer [14] as an encoder to handle multi-
hop inter-triple relationships.

In text generation, especially in triple-to-text generation,
there are two main challenges. The first is selecting impor-
tant data (entities) from a set of triples to be mentioned

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

in the target sentence (i.e., content-selection). The second is
ordering the selected data to generate a concise and easy-to-
understand sentence (i.e., content-planning). A fixed input
entity processing order induced by our entity-aware embed-
dings helps reduce the diversity of the content-plan learning
space, which leads to generated texts of higher quality.
They all use an encoder-decoder framework without explicit
content-planning, which has been shown to suffer in the
coherence of the output compared with traditional pipeline
methods that perform explicit content-planning (e.g., by
using manually created content templates) [15]. Moreover,
the encoders in these models are graph encoders, such as
GCN or GAT, which just consecutively aggregate all entities
in the input triples following the edges in the graph formed
by the triples. This aggregation ignores the entity mention
order in the target sentence and hence is sub-optimal in cap-
turing entities’ relationships for text generation. Meanwhile,
adding content-planning to neural text generation models
explicitly is non-trivial. An existing model [16] takes a
two-stage approach and learns content-planning separately
from the text generation stage. This two-stage architecture
is prone to error propagation between the content-planner
and the text generator. Moreover, this approach requires
significant human efforts to create triples—content-plan data
pairs as training data for the content-planner.

We address the above limitation of neural triple-to-text
generation models by performing content-planning dur-
ing the encoding process. We propose Graph encoder with
Content-Planning capability (GCP) that integrates graph en-
coding and content-planning capabilities in a single model.
It thus avoids the error propagation problem of the afore-
mentioned models. Since no triple-to-text generation data
provides ground truth for supervised content-plan learn-
ing, we propose an entity-order aware topological traver-
sal algorithm to encode a graph input following a proper
entity order (i.e., the order of entity occurrences in natural
sentences), which resembles a content-planning mechanism.
Our topological traversal algorithm relies on entity-order
aware embeddings to encode the content-plan.

To learn entity-order aware embeddings, we train a KG
embedding model over a word-entity graph. The word-
entity graph is a KG containing triples from which sentences
are to be generated, enriched by entity-word co-occurrence
triples and entity-order triples extracted from a text corpus
in a general domain, such as Wikipedia, to allow the learn
embeddings to capture the common entity order in natu-
ral sentences. Here, an entity-word co-occurrence triple is
formed by word-pairs that co-occur within a window in a
sentence. An entity-order triple represents a preceding rela-
tionship between two entities. The learned embeddings cap-
ture not only the relationships between words and entities
but also the common entity mentioning order in a sentence.
Hence, we can exploit the embeddings to provide supervi-
sion signals for the traversal algorithm and to initialize the
proposed text generation model. We learn the pretrained
entity-order aware embeddings in an unsupervised manner.
Therefore, we do not require triples—content-plan data pairs
as additional training data.

To capture the relationships between entities, we pro-
pose a Graph-LSTM unit that aggregates both an entity and
its relationships, as opposed to the standard LSTM unit [17]

Authorized licensed use limited to: University of Melbourne. Downloa

2

that can only take one input. The combination of the entity-
order aware topological traversal and the Graph-LSTM
units helps the proposed GCP aggregate the hidden states of
entities in a graph with a more natural order, i.e., following
common entity mentioning order in a sentence. Unlike our
proposed model, existing graph encoders such as the GCN
encoder [10] and GraphWriter [12] do not consider such
ordering. They use a simple aggregating mechanism, i.e., by
averaging the hidden state of the surrounding entities. Thus,
our proposed GCP provides a better graph representation
than the existing graph encoders and helps the decoder
generate a more natural sentence.

The main contributions of this paper are as follows.

C1: We propose a text generation model with a graph
encoder powered by content-planning capabilities to
generate sentences from a graph (i.e., a set of triples).
We propose a Graph-LSTM unit that aggregates both an
entity and its relationships in a single unit to capture
the intra-triple and inter-triple relationships between
entities in a KG.

We propose an entity-order aware topological traversal
that aggregates the hidden states of entities in a graph
in a more natural order to integrate content-planning
capabilities in a graph encoder. The traversal algorithm
takes supervision signals based on the order of entity
mentions in natural sentences.

We present an entity-order aware graph embedding
model trained over a knowledge graph enriched by
entity-order relationships to capture the order of en-
tities in natural sentences.

We evaluate the proposed model over two real datasets.
The results show that our proposed model outperforms
the state-of-the-art models [9], [10] consistently.

C2:

C3:

C4:

C5:

This paper is an extension of our previous conference
paper [18]. In the conference paper, we propose GTR-
LSTM, a graph encoder with a Graph-LSTM unit to capture
multiple relationships between entities (i.e., contribution
C2). To capture multi-hop relationships between entities,
GTR-LSTM uses a topological traversal with a random
tie-breaker, which may improperly aggregate the entities’
hidden state due to its randomness. In this journal ex-
tension, we extend GTR-LSTM substantially by integrating
a content-planning mechanism into the encoder (C1). We
propose an entity-order aware topological traversal that
controls the order of the hidden state computation of entities
in a graph (C3, detailed in Section 3.4). The aggregation of
the hidden states follows the common entity mentioning
order in a sentence. Hence, our proposed encoder provides
a better graph representation that is aware of the proper
entity ordering to help the decoder generate a sentence. We
propose an entity-order aware embedding model to capture
the common order of entity mentions in a sentence. The
learned embeddings help the encoder to encode the input
graph in more natural order (C4, detailed in Section 3.3). We
also conducted a more comprehensive experimental study,
including the comparison with the state-of-the-art triple-to-
text generation models that use Graph Convolutional Net-
works, Graph Attention Networks, and Transformer models
(C5, detailed in Section 4).

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

2 RELATED WORK

In recent years, researchers have done lots of research on
KG, such as KG embedding [19], entity alignment [20],
relation extraction [21], etc. This work addresses the gen-
eration of sentence to describe triples in KG. In this section,
we discuss traditional and neural text generation models,
including the work in triple-to-text generation.

21

Traditional text generation models [3] consist of three steps:
(1) content-selection, which selects the data to be expressed,
(2) content-planning, which decides the structure of the
sentences to be generated, and (3) surface-realization, which
generates the final output based on the content-planning.
Most traditional models employ handcrafted rules or a
shallow statistical model for content-planning [22], sentence
planning [23], and surface realization [24].

In triple-to-text generation, Bontcheva and Wilks [25]
follow a traditional approach to generate sentences from
knowledge base triples in the medical domain. They start
with filtering repetitive triples (i.e., content-selection) and
then group the coherent triples (i.e., content-planning). The
generated sentences of the coherent triples are aggregated
to produce the final sentences (i.e., surface realization).
Cimiano et al. [26] generate cooking recipes from semantic
web data. They focus on using a large corpus to extract
lexicon in the cooking domain. The lexicon is then used with
a traditional text generation approach to generate cooking
recipes. Duma and Klein [27] learn a sentence template
from a parallel triples-text corpus. They first align entities in
the triples with entities mentioned in sentences. Then, they
extract templates from the aligned sentences by replacing
the entity mention with a unique word. These methods
employ rules that work well on triples in a seen domain
but fail on triples in a previously unseen domain.

Traditional Text Generation Models

2.2 Neural Text Generation Models

Recently, neural text generation models are proposed. Lebret
et al. [4] generate the first sentence of a biography using a
conditional neural language model. This model is trained to
predict the next word of a sentence based on the previously
generated words and additional features captured from
Wikipedia infoboxes. Liu et al. [28] propose a dual attention
model as a follow-up on biography summarization. These
studies employ the encoder-decoder framework [7] widely
used in machine translation. They run experiments on cross-
domain datasets, which show that the neural approach is
more flexible for an open domain since it is not limited to
handcrafted rules.

Recent studies show that adding a content-plan (i.e., the
order of data to be mentioned in a sentence) to neural text
generation models can improve the quality of the generated
text. Sha et al. [29] propose a link-based attention model to
learn the order of entity mentions in a sentence. Puduppully
et al. [16] employ pointer networks [30] to select salient
data and learn its order as a content-plan. Trisedya et al.
[31] propose a content-plan attention model to guide the
decoder for sentence generation. These models separate
content-planning and text generating in two stages, which
are prone to error propagation. In contrast, our proposed

Authorized licensed use limited to: University of Melbourne. Downloa

3

model integrates content-planning into the encoder to avoid
error propagation.

2.3 Neural Triple-to-text Generation

Current triple-to-text generation models also employ the
encoder-decoder framework. Recent studies proposed dif-
ferent types of encoders to encode the input triples, as
opposed to an LSTM encoder that is used in the typi-
cal text generation models. Vougiouklis et al. [9] develop
Neural Wikipedian, which generates a summary from the
triples. It uses feed-forward neural networks to encode each
triple and concatenate them as the input of the decoder.
Marcheggiani and Perez-Beltrachini [10] employ graph con-
volutional networks (GCN) [11] as the encoder. However,
these models may fail to capture inter-triple relationships.
Neural Wikipedian applies feed-forward neural networks
for each triple, which makes it only optimized for intra-
triple relationships. Meanwhile, GCN may fail to capture
long multi-hop relationships between entities because it
captures multi-hop relationships by stacking GCN layers,
which weakly aggregates these relationships.

The state-of-the-art in triple-to-text generation is Graph-
Writer [12]. It integrates Graph Attention Networks (GAT)
[13] and the Transformer model [14]. The GAT captures
the intra-triple and inter-triple relationships, while the self-
attention mechanism in the Transformer model captures
multi-hop relationships between entities in a graph.

The triple-to-text generation models above only focus on
capturing the relationships between entities entailed in the
given knowledge graph. They rely on the encoder-decoder
model to learn entity orders implicitly. In this paper, we
propose a graph encoder that performs not only encoding
but also content-planning to obtain more natural entity
order in the generated sentences.

2.4 Joint Learning of Word and Entity Embeddings

Joint learning of word and entity embeddings has become
an essential component in many downstream applications,
such as entity disambiguation, KG completion, and relation
extraction. Sharing representation is the most common tech-
nique for the joint learning [32], [33]. This technique first
computes the word and entity embeddings separately. It
then exploits anchor text (i.e., an entity mention in a text that
refers to an entity in a KG) to map both embeddings into
the same vector space. Another technique exploits entity
descriptions [34]. This technique forces an entity embed-
ding to be similar to the embedding of the corresponding
entity description. Since KGs may not have descriptions
for all entities, this technique may be limited by training
data availability. Cao et al. [35] propose a Multi-Prototype
Entity Mention Embedding model, which learns multiple
embeddings for an entity mention, considering that an
entity mention can refer to more than one entity, e.g., Apple
may refer to a company or a fruit. The resultant embeddings
may be difficult to be used as pre-trained embeddings since
a word may have multiple embeddings.

In this paper, we use joint learning of word and entity
embeddings to compute the entity-order aware embed-
dings. We use a translation-based graph embedding model
over a word-entity graph instead of entity mentions or
descriptions, which differs from all existing joint learning
methods (detailed in Section 3.3).

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Target Text

| David Cameron was born on October 9, 1966 in London, the capital of England.|

Target Text Pre-processor

Sentence Normalising

| David Cameron was born on1966-10-09 in London, the capital of England. |

| Sentence Normalizer |—>| Masking Module |

Entity masking

< ENT-1 $david_cameron [PERSON], birth place, ENT-2 $london [CITY] >
< ENT-1 $david_cameron [PERSON], birth date, ENT-3 $date [DATE] > I
< ENT-2 $london [CITY], capital of, ENT-4 $england [COUNTRY] > |

—_——_—,————_—— e —_——
Entity masking

v v v —_—
Y1 Y2 Y -
l———i——T —————— - I
|Decoder I :
| |
| | |
R B B B ==
T T
S1 Py 01 O,
.t 1 f

Triple Pre-processor

< David Cameron [PERSON], birth place, London [CITY] >
< David Cameron [PERSON], birth date, 1966-10-09 [DATE] >
< London [CITY], capital of, England [COUNTRY] >

| Entity Type Mapper H Masking Module |

f

T Entity type mapping

Input triples

< David Cameron, birth place, London >
< David Cameron, birth date, 1966-10-09 >
< London, capital of, England>

Fig. 1. Data-to-text sentence generation from knowledge base triples based on an encoder-decoder architecture.

3 PROPOSED MODEL

We start with the problem definition. We consider a set of
triples as the input, which is denoted by T = {t1,t2, ..., t, }
where a triple ¢,, consists of three elements (subject s,,, pred-
icate p,, and object 0,,), tn, = (Sn,Pn,0n). Every element
can contain multiple words. We aim to generate a sentence
that consists of a sequence of words ¥ = (y1,¥a2, ..., Yk),
such that the relationships in the input triples are correctly
represented in) while the sentences have a high quality.
Table 1 illustrates the input and output of the problem.

3.1

Our solution framework uses an encoder-decoder architec-
ture [7], as illustrated in Fig. 1. The framework consists
of three components: a triple pre-processor, a target text pre-
processor, and an encoder-decoder module.

The triple pre-processor consists of an entity type map-
per and a masking module. The entity type mapper maps
the subjects and objects in the triples to their types, such that
the target sentences are learned based on entity types rather
than entities. For example, the input entities in Table 1,
David Cameron, London,England,and 1966-10-09 are
mapped to PERSON, CITY, COUNTRY, and DATE, respec-
tively. The mapping aims to improve the model general-
izability in handling entities unseen in training but with
known types, hence improving the output quality. The
masking module converts each entity into an entity iden-
tifier (eid). The target text pre-processor consists of a text
normalizer and a masking module. The text normalizer
converts abbreviations and dates into the same format as
the corresponding entities in the triples. Similar to that of
the triple pre-processor, the masking module of the text
processor replaces entities in the target sentences by their
eids. These modules are detailed in Section 3.2.

The main component of the framework is the encoder-
decoder module. In the encoder side, we propose GCP.
Unlike the standard encoder-decoder framework, GCP is
designed to accommodate KG triples as input. GCP cap-
tures both intra-triple and inter-triple entity relationships by
handling cycles in the input graph and capturing multiple

Solution Framework

Authorized licensed use limited to: University of Melbourne. Downloa

relationships between entities. Besides these capabilities,
our proposed encoder also has the capability as a content-
planner. This capability helps our model to generate a
sentence with a better ordering of entity mentions.

To handle multiple relationships between entities, we
propose a Graph-LSTM unit that aggregates both an en-
tity and its relationships. Meanwhile, the content-planning
capability is obtained through an entity-order aware topo-
logical traversal that controls the aggregation of the hid-
den states of the entity in a graph. The traversal takes
supervision signals on the processing order from an entity-
order aware embeddings. To learn such entity-order aware
embeddings, we train a translation-based graph embedding
model over a word-entity graph. The word-entity graph is a
KG that contains triples from which sentences are to be gen-
erated and has been enriched by entity-word co-occurrence
triples and entity-order triples extracted from a text corpus,
such as Wikipedia. Here, an entity-word co-occurrence triple
is formed by word-pairs that co-occur within a window
in a sentence. An entity-order triple represents a preceding
relationship between two entities. The entity-order aware
embedding models and the proposed GCP are detailed in
Section 3.3 and Section 3.4, respectively.

3.2 Entity Masking

Entity masking makes our proposed framework generalize
better to entities unseen in training. This technique ad-
dresses the problem of limited training data faced by many
natural language generation tasks.

Entity masking replaces entity mentions with eids, gids,
and types in both the input triples and the target sentences.
Here, type represents an entity type, and eid represents a
local identifier to differentiate entities in a given input. They
together help learn the output positions of entities base on
their types without knowing the actual entity names. Mean-
while, gid is a global entity identifier to differentiate entities
in the entire dataset. It helps learn entity-specific mapping
from input triples to output position and context. In the
encoder side, the subject s,, and the object o,, of a triple
tn, = (Sn,Pn,0n) are transformed into (eid, gid, type). The

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEEé)eamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Knowledge graph triples

<$david_cameron, birth place, $london>

<$david_cameron, occupation, $politician> in London.

David Cameron is a British politician who was born on October 9, 1966

Text corpus

<$david_cameron, birth date, 1966-10-09>

Entity masking

Word-entity graph

<$david_cameron, birth place, $london>
<$david_cameron, occupation, $politician>
<$david_cameron, birth date, 1966-10-09>
<$david_cameron, PRE, $politician>
<$david_cameron, PRE, $date>

in London.

$london.

David Cameron is a British politician who was born on October 9, 1966

$David_cameron is a British $politician who was born on $date in

Enriched text corpus

<$date, PRE, $london>
<David, C0OOC, Cameron>
<David, c€ooC, is>

/\

<David, CO0C, a>
<$david_cameron, COOC, is>
<$david_cameron, COOC, a>
<$david_cameron, COOC, British>

Entity-order triples

<$david_cameron, PRE, $politician>
<$david_cameron, PRE, $date>

Entity-word co-occurrence triples

<David, COOC, Cameron>
<David, C00C, is>
<David, C00C, a>

T <$date, PRE, $london>

| ’7 <$david_cameron, COOC, is>

<$david_cameron, COOC, a>

Fig. 2. The construction of a word-entity graph.

predicate p,, is preserved since it indicates the relationship
between the subject and the object. In the decoder side, the
entities in the target text are replaced by their corresponding
eids. As illustrates in Fig. 1, the entity David Cameron
is replaced by "ENT-1 $david_cameron [PERSON] "lin
the input triple and "ENT-1" in the target sentence. Here,
ENT-1, $david_cameron, and [PERSON] are the local
identifier, global identifier, and entity type, respectively.

To obtain the entity type, the entity type mapper uses
DBpedia [36] lookup API. Since the datasets used in the
experiments are extracted from Wikipedia, the API provides
type information for all entities in the datasets. The API may
return multiple types for an entity. The type assigned for
each entity is determined by its level in the WordNet [37]
hierarchy. We take the type with the highest level (i.e., the
most specific level) in the hierarchy.

The local identifiers are generated locally for each train-
ing sample. We assign a unique eid to each entity in the
input triples and match the entity with the entity mentions
in the target sentence. Entity matching to generate the eids is
not the focus of our study. We use three matching methods
to find entity mentions in the target sentence: exact match-
ing, n-gram matching, and parse tree matching. Exact match-
ing is used to find the exact mentions; n-gram matching
is used to handle partial matching with the same number
of words (e.g., "David Cameron" and "David C."); and
parse tree matching is used to find partial matching with
a different number of words (e.g., "David Cameron" and
"David W. Cameron").

The global identifiers are generated uniquely to differ-
entiate entities in the entire dataset. For unseen entities in
testing, the gid is set to a unique identifier $unk. In such a
scenario, the entity types play critical roles to differentiate
entities in the input.

1. To make the following examples more intuitive, we use the first
word of the entity mention to represent the entity instead of us-
ing eid and gid. For example, we use "David" instead of "ENT-1
$david_cameron" in Fig. 3.

<$david_cameron, COOC, British>

In training data preparation, before masking the entities
in the target sentence, we normalize the target sentence to
convert abbreviations and dates into the same format as
the corresponding entities in the input triples. To convert
abbreviations, we use a dictionary of acronyms extracted
from Wikipedia [38]. To convert dates, we use regular
expressions. Fig. 1 illustrates the sentence normalization
procedure. The string "October 9, 1966" is replaced by
"1966-10-09" to match the date format on the triple.

3.3 Entity-order Aware Embedding Model

Since we aim to generate sentences based on a given set
of triples, it is critical to learn embeddings that preserve
the relationships between the words that form the sentences
and the entities that form the triples. A joint embedding
learning model can help capture the relationship between
words and entities as well as the relationship between words
and entities themselves. To train such an embedding model,
we follow Wang et al. [32] and Yamada et al. [33] and take
a translation-based graph embedding approach. Such an
approach (e.g., TransE and variants [19], [39]-[41]) considers
that the embedding of the object o of a triple should be
close to the embedding of the subject s plus the embedding
of the predicate p, i.e., s + p ~ o. This approach preserves
entity structure information, i.e., entities that share similar
neighbors in a KG should have a close representation in the
embedding space.

To capture relationships between words and entities, we
train a translation-based graph embedding model over a
word-entity graph constructed as follows (cf. Fig. 2). The
core of the word-entity graph is a KG containing triples from
which sentences are to be generated. This can be a general
domain knowledge base, such as DBpedia [36].

We add two sets of triples to the core graph. The first
contains entity-word co-occurrence triples, and the second
contains entity-order triples. Both sets of triples are ex-
tracted from a text corpus such as Wikipedia. First, we apply
entity masking (cf. Section 3.2) to the text corpus to enrich

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2021 at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1966

birth_date

birth_place

former_leader

Fig. 3. A small knowledge graph formed by a set of triples.

them with masked sentences, where entity mentions are
replaced by their global identifiers. The masked sentences
not only capture relationships between words and entities
but also help in entity disambiguation [33].

To collect entity-word co-occurrence triples, we ex-
tract word pairs that co-occur in the enriched text cor-
pus within a window W, (W; = 5 in our experi-
ments) and a frequency of co-occurring for at least 5
times. For each extracted pair (w;,ws), we create a triple
by adding a predefined relationship CooC. For exam-
ple, (David, cooC, Cameron>2 is extracted from the raw
sentence, and ($david_cameron, COOC, is)? is extracted
from the corresponding masked sentence. These triples are
added to the word-entity graph in Fig. 2.

To collect entity-order triples, first, we extract a
list of gids from left to right in the masked sen-
tences, e.g., [$david_cameron, Spolitician, $date,
$london|. Then, we extract the entity pairs using
a sliding window W, = 2 from the list. For
each extracted pair (ej,ez), we create a triple by
adding a predefined relationship PRE. For example,
(sdavid_cameron, PRE, $politician) is added to the
word-entity graph in Fig. 2. This triple represents a preced-
ing relationship, i.e., $david_cameron is mentioned before
Spolitician in a sentence.

Based on the word-entity graph, our embedding model
learns the entity and word embeddings by minimizing a
margin-based objective function:

Te = Y o max(0,[y+ /)~ f@)]) O
tr€Tr t/. €T/

Tr = {{s,p,0)l(s,p,0) € Gwr} 2)

7. = {{(s\poy|seZyu{(s,pd)|deZ} (3

f@tr) = |Mps+p—Mpo, 4

Here, ||-||, is the L2-Norm, y is a margin hyperparameter,
7, is the set of valid triples from a word-entity graph
Gwe, T, is the set of corrupted triples, and Z is the set
of entities (subject s and object o of a triple) in Gy . The
corrupted triples are used as negative samples created
by replacing the subject or object of a valid triple in 7,
with a random entity. Since we extract triples from text
corpus based on word co-occurrences, the word-entity
graph may consist of reflexive (e.g., {(s,p,0),{(0,p,s)}),
one-to-many (e.g., {(s,p,01),(s,p,02)}), many-to-one
(e.g., {(s1,p,0),(s2,p,0)}), and many-to-many (e.g.,
{(s1,p,01), (s1,D,02), (S2,D,01), (S2,p,02)}) relationships.
To handle these types of relationships, we employ TransR

2. This kind of triples captures the relationship between words. They
also resemble the relationship between words in the skip-gram model.

3. This kind of triples captures the relationship between en-
tities and words, and the relationship between entities, e.g.,
($david_cameron, COOC, $london).

Authorized licensed use limited to: University of Melbourne. Downloa

6

[40] (cf. Eq. (4)), where the subject and object embeddings
(s and o) are projected into a relation space by a learned
matrix My to compute a plausibility score f(¢,) for each
corresponding predicate p.

The advantages of our embeddings are twofold. First,
our embeddings capture the relationships between words
and entities. In Fig. 2, the embeddings capture the re-
lationship between the entity $david_cameron and the
word British. Second, our embeddings preserve the entity
order information in a sentence that helps break ties in the
topological traversal over the input graph for our encoder.

We train the embedding model before training the
encoder-decoder model. We randomly initialize the embed-
dings and train the embedding model. Then, the learned
embeddings are used to initialize the embeddings used in all
the models tested, including the proposed and the baseline
models (Section 4.1).

34 GCP

A graph encoder for sentence generation requires to capture
the relationships between entities in a triple (i.e., intra-
triple relationships) and the relationships between entities in
related triples (i.e., inter-triple relationships). GCP addresses
these requirements by a Graph-LSTM unit and an entity-
order aware topological traversal. The Graph-LSTM unit
captures multiple relationships between entities in a KG.
Meanwhile, the entity-order aware traversal aggregates the
entities” hidden state by following the common order of
entity mentions in a sentence (i.e., content-plan). This makes
our GCP serve as both an encoder and a content-planner.
GCP differs from existing graph encoders, such as the
GCN encoder [10] and GraphWriter [12], in handling the
above problems. Neither the GCN encoder nor the Graph-
Writer explicitly considers entity ordering when comput-
ing entity hidden states (i.e., they simply use a weighted
average of the hidden state of the surrounding entities).
In comparison, the content-planning capability of our GCP
encoder helps it provide a better graph representation that
guides the decoder to generate a more natural sentence.

3.4.1 Node and Vertex Representation

Our GCP model takes a directed graph G = (V, &) as the
input, where V is a set of vertices that represent entities or
literals, and £ is a set of directed edges that represent predi-
cates. A vertex (i.e., entity) consists of a local entity identifier
eid, a global identifier gid, and an entity type, while an edge
(i.e., predicate) may consist of multiple words, e.g., "birth
date". Hence, to represent a vertex (or an edge), we use a
linear transformation as follows.

x = tanh(W[w1; wa;...; w;] + b) (5)

where [;] denotes vector concatenation, b denotes bias vec-
tor, w; denotes the embedding of a word in a vertex (or en
edge). We use zero paddings to handle different numbers of
words in a vertex. W is a learned parameter matrix.

3.4.2 Graph-LSTM Unit

GCP computes a hidden state by taking into account the
processed entity and its edge (the edge pointing to the
current entity from the previous entity) to handle multiple

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEEé)eamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

relationships between entities in a KG. Thus, our Graph-
LSTM unit (cf. Fig. 4(a)) receives two inputs: the entity and
its relationship. We propose the following model to compute
the hidden state of each Graph-LSTM unit.

it = e <Z (Uiexte + Wiex;1)>

e

(©)

fre = o (fote + foH) @)

o0 = o <Z (U°*x¢e + woex;1)> 8)

g: = tanh <Z (U9°x¢e + Wgex;1)>)

h: = (ht—l * Z fte> + (g * it) (10)
e

x; = tanh(h¢) * ot (11)

Here, U and W are learned parameter matrices, o denotes
the sigmoid function, * denotes element-wise multiplica-
tion, x is the input at the current time-step, and x}_; is
the hidden state of the previously processed vertex. The
input gate i determines the weight of the current input. The
forget gate f determines the weight of the previous state.
The output gate o determines the weight of the cell state
forwarded to the next time-step. The state g is the candidate
hidden state used to compute the internal memory unit
h based on the current input and the previous state. The
subscript ¢ is the time-step. The subscript/superscript e is
the input element (an entity or a predicate). Following Tree
LSTM [42] and Graph LSTM [43], we also use a separate
forget gate for each input that allows the Graph-LSTM unit
to incorporate information from each input selectively.

3.4.3 Aggregating Entity Hidden State

The goals of GCP are twofold. The first is to encode
a graph input to capture the relationship between enti-
ties in it. The second is to serve as a content-planner
that informs the decoder regarding the proper order of
entity mentions in the target sentence. To achieve these
goals, GCP uses an entity-order aware topological traversal
over the input graph to compute the hidden states of the
entities. The traversal decides which hidden states to be
computed next by sequentially taking a vertex with zero
in-degree until all vertices are processed. Our intuition is
that the order of entity mentions in a sentence follows
the direction of the edges. For example, given a triple
(David, birth place, London), the graph representa-
tion contains a directed edge birth place from David to
London, and a common sentence to describe the graph is
"David was born in London".

Since the input graph may contain cycles (e.g., Fig. 3),
there could be no vertices with zero in-degree to be visited
next. In this case, we need to provide supervision signals
to break ties (i.e., tie-breaking procedure) in the traversal.
The supervision signal comes from the learned embeddings,
which preserve the information about the order of entity
mentions in a sentence (cf. Section 3.3). Given two vertices
v1 and v, the entity to be processed earlier is decided based
on their precedence computed by their embeddings. If there
is a PRE relationship between the entities ¢; and ey that
correspond to v; and vy, then v, should be processed first.

Authorized licensed use limited to: University of Melbourne. Downloa

7

Otherwise, we process vy first. We use a function fp,. to
denote the computation of the vertex to be processed first:

if cos(Mpe1 + Ppre, Mpez2) > 0
otherwise

UL 12)

V2,

Jore(vi,v2) = {

where e; and ey are the embeddings of e¢; and e, respec-
tively. M, is the learned projection matrix, and ppre is the
embeddings of predicate PRE (i.e., a predicate that indicates
the relative position between two entities), and cos(x,y) is
the cosine similarity between two vectors x and y. If there
are more than two vertices that have the same smallest
in-degree, the function in Eq. (12) is run recursively, e.g.,
fore(fpre(v1,v2),v3) for three vertices v1, ve, and vs. When
a vertex v; is visited, the hidden states of all adjacent vertices
of v; are computed (or updated if it is already computed in
the previous step).

Take the graph in Fig. 3 as an example. The order of
hidden state computation is as follows. The process starts
with a vertex with zero in-degree. Since there is no such
vertex, we use Eq. (12) to determine the next vertex to be
processed. Suppose that David is chosen as the starting
vertex. Then x/;,,,, is computed using x¢ as the previous
hidden state, and all directed edges started from David
are removed. Next, X]q66 and xJ,, 4., are computed con-
secutively (vertex 1966 is selected by Eq. (12), and vertex
London is selected in the next traversal step) by passing
X}.viq as the previous hidden state. Next, all directed edges
started from London are removed (there are no directed
edges started from 1966). In the last step, xJ; ., ;; is updated.
Fig. 4(a) illustrates the overall process.

3.4.4 Capturing Global Information of the Input Graph

From Fig. 4(a), we can see that the traversal creates two
branches, one ended in X/ 444, and the other ended in X/, ;-
After the encoder has computed the hidden state of each
vertex, X/, .., does not include the information of x/ 444 and
vice versa. Moreover, the graph can contain cycles that cause
difficulties in determining the starting and ending vertices.
Our traversal procedure ensures that the hidden states of
all vertices are updated based on their adjacent vertices
(local neighbors). To further capture the global information
of the graph, we apply an attention model [44] on GCP.
The attention model takes as input the hidden states of all
vertices computed by the encoder and the previous hidden
state of the decoder. It computes the context vector of the
decoder in each time-step. Fig. 4(b) illustrates the attention
model of GCP. We use the following equation to compute
the weights of each vertex.
_ eXp(hgﬂwaé)
32 exp(hf_, W)

(13)

it

Here, h¢_, is the previous hidden state of the decoder, |X|
is the total number of entities (vertices) in the input triples,
W is a learned parameter matrix, x’ is the hidden state of
a vertex, and o = {aq,aq,...,,} are the weights of the
vertices. The context vector of the decoder for each time-
step is computed as follows.

| X|

/
Cr = E QtXy
t=1

(14)

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

‘ Attention model

T I i T

,
< X gavid X966 X Jondon X england

X ”david >

A A

X [} } X . i ’
Xdavid [1966 Xondon Xengland david

Xull Xbirthfdate Xbirthjlace

(a) Encoding step in GCP.
Fig. 4. The Proposed GCP Model.

The attention mechanism above differs from the standard
sequence-to-sequence model [8]. In the standard sequence-
to-sequence model, the attention is applied at the word
level. In comparison, in GCP, the attention is applied at the
entity level. Attention at the entity level is more intuitive in
selecting the order of entity mentions in the target sentence.

3.5 Decoder

The decoder of the proposed framework is a standard
LSTM. It is trained to generate the output sequence by
predicting the next output word y, conditioned on the
hidden state h{. The current hidden state h{ is conditioned
on the hidden state of the previous time-step h{ ,, the
output of the previous time-step y;—1, and a context vector
ci. The hidden state and the output of the decoder at time-
step k are computed as:

hj.

Uk

F(hi_1,yk—1,cx)
softmax(Mhj)

(15)
(16)

Here, ¢, is the output probability distribution over the
vocabulary, f is a single LSTM unit, and M is the hidden-
to-output weight matrix. The encoder and the decoder are
trained to maximize the conditional log-likelihood:

V]

PV T)=logd > yi; x logi,
k j=1

Hence, the training objective is to minimize the negative
conditional log-likelihood:

sz%Zp(le)

where (Y, T) is a pair of Ou?ﬁlllt word sequence and input
triple set, 3/’ is the one-hot vector representation of the target
sentence over the vocabulary V, and D is the number of
training samples. During the evaluation, we use a beam
search with a beam size of 5 in the decoder.

To handle the out of vocabulary problem, we use entity
masking as described in Section 3.2. We also perform exper-
iments without entity masking. In this setup, we use a copy
mechanism [45] that replaces the unknown token generated
by the decoder by the input token with the highest attention
score from the attention model (cf. Section 3.4.4).

17)

(18)

4 EXPERIMENTS

We evaluate our framework on two datasets. The first is
the dataset from the WebNLG challenge [46]. We call it the
WebNLG dataset. It contains 25,298 triples-text pairs, with

Authorized licensed use limited to: University of Melbourne. Downloa

Decoder previous hidden state hd,,;

Decoder

Attention model

a={ay,ay, ..., }

Xcapitalﬁof Xformer,leader

b ST .
(b) Attention model of GCP.

9,674 unique sets of triples. For each set, there are multiple
sentences collected via crowd-sourcing as the ground truth,
which may contain different entity mention orders. The
tested models are trained over such a dataset to learn to
generate different variations of entity mention orders. The
dataset consists of a Train+Dev dataset and a Test Unseen
dataset. We split Train+Dev into a training set (80%), a de-
velopment set (10%), and a Seen testing set (10%) (denoted
by Seen test dataset). The Train+Dev dataset contains triples
in ten categories (topics, e.g., astronaut, monument, food,
etc.), while the Test Unseen (denoted by Unseen test dataset)
dataset has five other unseen categories. The maximum
number of triples in each triple set is seven. For the second
dataset, we collected data from Wikipedia pages regarding
landmarks. We call it the GKB dataset. We first extract triples
from Wikipedia infoboxes and sentences from the Wikipedia
text that contain entities mentioned in the triples. Human
annotators then filter out false matches to obtain 1,000
triples-text pairs. This dataset is split into the training and
development set (80%) and the testing set (20%) (denoted
by GKB test dataset). Table 1 illustrates the data pairs of the
WebNLG and GKB datasets.

We implement the proposed model using Keras and
TensorFlow. We use three evaluation metrics, BLEU [47],
METEOR [48], and TER [49]. For the metric computation
and significance testing, we use MultEval [50].

4.1 Tested Models

We compare our model GCP* with two adaptations of
a sequence-to-sequence model for triple-to-text generation
and three graph encoder models.

Sequence Encoder. A straightforward adaptation of
sequence-to-sequence models [7], [8] for triple-to-text gen-
eration is to transform a set of input triples 7 into a
sequence of tokens, i.e., T = {wy, Wa, ..., Wy, }, where m is
the number of tokens in the triples. Here, w; represents the
embedding of a token. This sequence forms an input for the
encoder. In this adaptation, we use two types of sequence-
to-sequence models, including an LSTM-based model (S-
LSTM) and a Transformer-based model (S-TRANS).

Triple Encoder. The sequence encoder suffers from fail-
ing to capture both intra-triple relationships and inter-triple
relationships since linearizing a set of triples may discard
the graph structure. In the triple encoder adaptation, we

4. Link to code and data: https://bitbucket.org/bayudt/gtrlstm/
src/master/GCP/

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEEé)eamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9
TABLE 2
Comparison of model performance.
\ BLEU 1 \ METEOR + \ TER |
Model | Seen Unseen GKB | Seen Unseen GKB | Seen Unseen GKB
Without entity masking
S-LSTM 43.46+.24 23.40+.40 26.97+.23 | 35.25+.14 28.34+.29 26.42+.37 | 56.274+.33 69.43+.28 67.594.39
T-LSTM 45.334+.39 27.31+.32 27.274+.19 | 34.944+.38 29.54+.44 28.80+.34 | 50.63+.22 61.96+.17 59.41+.25
S-TRANS 44.404+.31 24.454+.26 27.87+.15 | 35.18+.13 28.75+.35 27.07+.27 | 56.01£.17 69.30+.33 66.49+.19
T-TRANS 45.65+.12 27.53+.28 27.724.19 | 34.37+.28 29.98+.19 28.53+.11 | 51.414+.30 61.79+.39 59.03+.23
TFE 45.294.32 27.32+.28 26.224+.18 | 33.83+.36 29.07+.19 28.174.31 | 52.614+.45 62.88+.26 60.534.47
GCN 51.49+.16 29.084+.15 30.85+.13 | 36.82+.18 30.184.17 29.67+£.15 | 46.58+.13 62.244+.16 58.80+£.20
GraphWriter 51.62+.21 28.14+.14 30.65+.22 | 36.74+.11 29.77+.21 30.02£.17 | 46.41+£.22 62.46+t.11 58.55+.15
GCP (proposed) | 53.99+.16 31.07+.15 38.37+.13 | 37.25+.12 28.31£.17 30.65+.20 | 44.58+.16 59.21+.14 54.58+.11
With entity masking
S-LSTM 49.61£.18 27.31+.15 29.364.32 | 39.664.47 28.80+.47 29.67+.17 | 50.07+.23 65.75+.27 65.93+.31
T-LSTM 51.84+.27 31.704+.33 32.67+.20 | 38.63+.13 31.264.19 29.26+.20 | 46.27+.32 58.884+.32 56.26+.16
S-TRANS 49.27+.29 26.494.18 29.354.24 | 39.84+.34 29.214.19 29.844.16 | 49.35+.24 65.56+.21 66.514.27
T-TRANS 51.51+£.29 31.794.29 32.19+.30 | 39.04+.22 31.394.33 29.21+.11 | 46.14+.32 58.744+.31 56.97+.15
TFF 46.934.24 27.95+.21 30.204.26 | 35.67+.31 30.96+.26 28.814.39 | 49.044+.16 61.22+.19 58.144.54
GCN 56.31+£.24 32.46+.15 41.25+.14 | 39.01£.19 30.73+£.16 32.71£.12 | 42.41+£.15 58.53+.13 51.95+.13
GraphWriter 56.45+.26 32.59+.20 42.12+.18 | 39.30+.20 31.32+.15 33.26+.11 | 42.28+.14 58.74+.11 51.52+.16
GCP (proposed) | 58.53+.11 36.61+.24 45.14+.11 | 40.93+.21 32.30+.14 35.23+.16 | 40.67+.16 57.08+.15 50.35+.13

aggregate the elements of the same triple to retain the intra-
triple relationship. The adaptation is done by first grouping
the elements of each triple, i.e., the input is represented as
T = {{(Wi1,0, Wij),ees (Wny1, ... Wy j) }, Where w,, ; is
the embedding of the j-th token in the n-th triple. Then, we
apply a sequence encoder hierarchically. The first step is to
apply the sequence encoder for each group (i.e., a triple)
to obtain the triple representation. The second step is to
apply another sequence encoder over the sequence of triple
representations obtained. We use two types of sequence-
to-sequence models, including an LSTM-based model (T-
LSTM) and a Transformer-based model (T-TRANS).

Graph Encoder. We also compare with three existing
graph encoder models, including;:

o TFF encoder [9], which is a graph encoder using feed-
forward neural networks.

o GCN encoder [10], which is a graph encoder based on
the Graph Convolutional Networks.

o GraphWriter [12], which is the state-of-the-art graph
encoder that combines Graph Attention Networks and
Transformer. We remove the title encoder of the Graph-
Writer since the dataset does not include titles for each
set of triples.

4.2 Hyperparameters

We use grid search to find the best hyperparameters for
the models. For the embedding model, we choose the
embedding dimensionality among {50, 75,100,200}, the
learning rate of the optimizer among {0.001,0.01,0.1}, and
the margin v among {1,5,10}. We train the embedding
model with a batch size of 100 and a maximum of 400
epochs. We use 512 hidden units (dimensions) for both the
encoder and the decoder. We use a 0.5 dropout rate for
regularization on both the encoder and the decoder to avoid
over-fitting. We find that using adaptive learning rates for
optimization is efficient and leads to faster converge. Thus,
we use Adam [51] with a learning rate of 0.0002 instead of
stochastic gradient descent.

Authorized licensed use limited to: University of Melbourne. Downloa

4.3 Effect of Entity Masking

Table 2 shows the overall comparison of model perfor-
mance. It shows that entity masking gives a consistent im-
provement for all models. Generalizing the input triples and
target sentences helps the models to learn the relationships
between entities from their types. This is particularly helpful
when there is limited training data. We use a combination of
exact matching, n-gram matching, and parse tree matching
to find the entity mentions in the sentence. The entity
masking accuracy (i.e., the precision of correctly recognizing
the entities to be masked) for the WebNLG dataset is 87.15%,
while for the GKB dataset is 82.45%.

Entity masking improves the BLEU score of the pro-
posed model by 8.4% (from 53.99 when not using entity
masking to 58.53 when using entity masking), 17.8%, and
17.6% on the Seen, Unseen, and GKB test datasets, re-
spectively. Using entity masking improves not only the
output quality but also the running time by requiring a
smaller vocabulary.

4.4 Effect of Models

Table 2 also shows that the proposed model GCP achieves a
consistent improvement over the baseline models, which is
statistically significant, with p < 0.05 based on the t-test of
all metrics. We use MultEval to compute the p-value based
on approximate randomization [50]. The improvement in
the BLEU score indicates that GCP reduces errors in the
generated sentence. Our manual inspection confirms this
result. The better (lower) TER score suggests that GCP
generates a more compact output (i.e., better aggregation).

Table 3 shows a sample output of all models.
The baseline models produce sentences that contain er-
rors (e.g., the GCN output contains a wrong aggre-
gation, "the elizabeth tower, wembley stadium,
and london is in england"). Moreover, the baseline
models generate sentences with a weak composition (e.g.,
is in london is repeated in a single sentence for Graph-
Writer). GCP successfully avoids these problems.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 3
Sample output of the system. The error is highlighted in bold.

Input (Elizabeth Tower, location, London), (Wembley Stadium, location, London),
(London, capital of, England), (England, former leader, David Cameron)
Reference london , england is home to wembley stadium and the elizabeth tower. david cameron is one
of the former leader of england .
S.LSTM england ' s leader is david cameron and place in the city of london . the elizabeth tower
is located in england and is located in the wembley stadium.
T-LSTM the wembley stadium is located in london , england . the elizabeth tower is located in
england. one of the minister of england is the leader david cameron.
S-TRANS the wembley stadium is located in london and the elizabeth tower is located in the city
of london . england is lead by david cameron.
T-TRANS england is the location of elizabeth tower and the wembley stadium . david cameron lives
in london.
GCN the elizabeth tower, wembley stadium, and london is in england , where david cameron is
the former leader .
GraphWriter the elizabeth tower is in london and the wembley stadium is in london , england . london
is in england and the former leader is david cameron
GCP (proposed) the wembley stadium and elizabeth tower are both located in london , england . the former
leader of england is david cameron .
TABLE 4
Human evaluation results.
‘ Seen ‘ Unseen ‘ GKB
Model | Correctness Grammar Fluency | Correctness Grammar Fluency | Correctness Grammar Fluency
S-LSTM 2.13 2.27 2.14 1.44 1.82 1.58 1.48 1.97 1.74
T-LSTM 2.32 2.42 2.45 1.52 1.62 1.79 2.13 2.31 2.21
S-TRANS 2.20 2.35 2.16 1.45 1.84 1.67 1.53 2.01 1.79
T-TRANS 2.39 2.45 2.52 1.54 1.69 1.83 2.20 2.37 2.31
TFF 1.82 1.74 1.63 1.31 1.58 1.55 1.72 1.87 2.06
GCN 2.54 2.50 2.31 1.65 1.87 1.91 2.20 2.36 2.15
GraphWriter 2.64 2.56 2.38 1.66 1.90 1.96 2.25 2.42 2.24
GCP (proposed) 2.69 2.58 2.52 1.87 2.01 2.03 2.28 2.52 2.37
4.5 Human Evaluation TABLE 5

To complement the automatic evaluation, we conduct hu-
man evaluations for all of the masked models. We recruited

The results of different content-planning mechanism.

ten human annotators. Each of them has studied English for Model | BLEU T | METEOR 7
at least ten years and completed education in a fully English | Seen Shuffled | Seen Shuffled
environment for at least two years. We provide a website Without entity masking
that shows them the triples and the generated text. The TransE-based 52.794 .18 52.314.15|36.594+.26 35.004.13
annotators are given training on the scoring criteria. We also Random 51.17+.13 51.214+.28 |34.85+.25 34.93+.30
provide scoring examples. We randomly selected 200 sets of Manual (GTR-LSTM) | 54.27+.21 51.53+.1337.35+.15 35.374.20
triples along with the output of each model. We only select Proposed (GCP) 03.99+.16 53.73:+.19)37.25+.12 37.05+.18
. X R -w/o WE graph 50.15£.29 50.10+.17|33.27+£.18 33.05+.22
the sets with more than two triples. We use three evaluation - w/0 EO triples 50.354.26 50.21-.15|34.27+.16 34.05+.25
metrics [52]: correctness, grammaticality, and fluency. For each -w/0 COOC triples |53.67+.18 53.72+.14|36.67+.17 36.72+.17
pair of a triple set and generated sentences, the annotators With entity masking
gtve a score between one to three fOF each metric. TransE-based 56.38+.13 56.19+.19|40.19+.15 39.84+.14
Correctness measures the semantics of the output. Scores Random 55.244+.98 55.244+.20 | 38.66+.12 37.96+.27
3,2, and 1 are given to the generated sentences that contain =~ Manual (GTR-LSTM) | 58.32+.15 56.34+.22|40.81+.17 38.99+.13
zero, one, and more than one errors in the relationships PrOP;)Sﬂ\jdv I(EGCP)h gggii; giggi;i ggg;i?é ggggi}g
e : : . -W ra
between .ent1t1es, respt.ectwely. Grammaticality measures the . W/g EO t%iplr;s 56541 05 55141 26 |38.541.19 37.89L 18
grammatical and spelling errors of the output. Similar to the _ /4 COOC triples|57.97+.16 57.88+.22 |40.85+.18 40.624.12

correctness metric, scores 3, 2, and 1 are given to generated
sentences with zero, one, and more than one grammatical
and spelling errors, respectively. The last metric, fluency,
measures the fluency of the output (e.g., contain repetition
or not). The annotators give a score based on the aggregation
of the sentences and the existence of sentence repetition. The
total time spent for these evaluations is around 300 hours.
Table 4 shows the results. The inter-annotator agreement
measured by Fleiss” kappa [53] is 0.56, which indicates
moderate agreement. The results confirm the automatic
evaluation in which GCP achieves the best scores.

Authorized licensed use limited to: University of Melbourne. Downloa

4.6 Effect of Content-planning

The triples in the Seen test dataset are manually ordered,
such that the order of the entities in the input triples follows
the order of entity mentions in the target sentence. In real
applications, the triples may be automatically gathered (e.g.,
for question answering), where the entities and triples may
not follow their order of appearances in the target sentence.
To evaluate the robustness of our model against such scenar-
ios, we randomly shuffle the triples of the Seen dataset (de-

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorilé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

noted by Shuffled test dataset). We compare using different
content-planning mechanisms for GCP. They use different
topological sort tie-breaking procedures as follows.

o TransE-based content-planning, which uses the same
tie-breaking procedure as the proposed full GCP model,
but it learns the entity embeddings using TransE [19]
instead of TransR in GCP.

e Random content-planning, which randomly selects an
entity on its tie-breaking procedure.

e Manual (GTR-LSTM) content-planning, which breaks
ties based on the order of entity mentions in the target
sentence from the input triples. When such an order
is unknown, it falls back to a random ordering. This
variant is essentially the GTR-LSTM model, which is a
graph encoder in our previous conference paper [18].

o Proposed content-planning, which uses all proposed
features as detailed in Section 3.4

Our proposed embedding model is designed to capture
the relationships between both entities and words while
preserving the order of entity mentions in a sentence.
The latter feature helps the tie-breaking procedure of GCP
(Section 3.4). The experimental results in Table 5 show
the effectiveness of the proposed tie-breaking procedure.
Our proposed model outperforms the Random and TransE-
based content-planners consistently. This demonstrates the
effectiveness of our model in learning the order of entity
mentions in the target sentences, as neither Random nor
TransE-based content-planners considers such orders. To
confirm these results, we further compare the performance
of TransE and our model in predicting the entity order in a
sentence. We randomly sample 500 pairs of input triples and
the corresponding sentence output. For each input triples,
we run the entity-aware topological traversal with both tie-
breaking procedures. Then, we manually check whether the
entity order generated by the traversal is the same as the
entity mentioning order in the sentence output. TransE only
yields 75.8%, while that for our model is 87.3%.

Comparing with the Manual content-planner, our model
also yields better performance in general. On the Seen
test dataset, both models achieve comparable performance.
These results are expected since the triples in the Seen test
dataset are ordered according to the entity mentions in
the target sentences. However, on the Shuffled and GKB
test dataset, the performance of the Manual content-planner
drops substantially, while our proposed model is robust to
such data and generates sentences of higher quality.

We further perform ablation tests to show the effective-
ness of our entity-order aware embeddings. First, we re-
move the joint embedding learning, i.e., remove word entity
graph and learn the embeddings separately (denotes as w/o
WE graph). Next, we test the joint embeddings without
any triple enrichment, i.e., no ordering or co-occurrence is
considered (denoted as w/o EO triples). Finally, we evaluate
the joint embeddings without co-occurrence triple enrich-
ment, i.e., considering entity order but not co-occurrence
(denoted as w/o COOC triples). The results in Table 5 show
that the first two variants suffer in the performance sub-
stantially. Meanwhile, the exclusion of co-occurrence triples
has a relatively smaller impact. These results show that our
proposed entity-order aware embedding model effectively

Authorized licensed use limited to: University of Melbourne. Downloa

11

captures the proper entity order commonly exhibited in
natural sentences.

5 CONCLUSIONS AND FUTURE WORK

We proposed a graph encoder named GCP for sentence gen-
eration from knowledge base triples. The proposed model
maintains the structure of input triples as a graph (i.e., a
KG) to optimize the amount of information preserved in the
input. The model can handle cycles to capture the global
information of a KG and handle multiple relationships
between entities of a KG. We propose an entity-order aware
topological traversal to integrate the content-planning in
the encoding process. Hence, our model not only works
as an encoder but also serves as a content-planner. Our
entity-order aware traversal algorithm helps to encode a KG
in a more natural order by taking supervision signals on
the processing order from entity-order aware embeddings
trained over a word-entity graph.

The experimental results show that our GCP model
offers better performance than all the competitors. On the
Seen WebNLG dataset, our model outperforms the best ex-
isting model, the GraphWriter model, by up to 3.6%, 4.1%,
and 3.8% in terms of BLEU, METEOR, and TER scores,
respectively. On the GKB dataset, our model outperforms
the GraphWriter model by up to 7.1%, 3.1%, and 2.2% in
these three metrics, respectively.

Our learned entity-order aware embeddings may cap-
ture a kind of linguistic bias: the common entity order in
natural sentences (learned from Wikipedia), even though
there could be other correct entity orders. The common en-
tity order should be sufficient for general-purpose scenarios.
The consistency in the entity ordering makes reading the
generated sentences easier. For future work, it would also
be interesting to investigate poetry generation or story gen-
eration that may require diversity in the generated output.

ACKNOWLEDGMENTS

Bayu Distiawan Trisedya is supported by the Indonesian
Endowment Fund for Education (LPDP). This work is sup-
ported by Australian Research Council (ARC) Discovery
Project DP180102050.

REFERENCES

[1] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph
embedding: A survey of approaches and applications,” TKDE,
vol. 29, no. 12, 2017.

[2] R.Zhang, B. D. Trisedy, M. Li, Y. Jiang, and J. Qi, “A comprehen-
sive survey on knowledge graph entity alignment via representa-
tion learning,” CoRR abs/2103.15059, 2021.

[3] E. Reiter and R. Dale, Building natural language generation systems.
Cambridge University Press, 2000.

[4] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from
structured data with application to the biography domain,” in
EMNLP, 2016.

[5] Q. Wu, C. Shen, P. Wang, A. Dick, and A. v. d. Hengel, “Image
captioning and visual question answering based on attributes and
external knowledge,” TPAMI, vol. 40, no. 6, 2018.

[6] P.Wang, Q. Wu, C. Shen, A. Dick, and A. van den Hengel, “Fvqa:
Fact-based visual question answering,” TPAMI, vol. 40, no. 10,
2018.

[71 K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder—decoder for statistical machine
translation,” in EMNLP, 2014.

[8] D.Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in ICLR, 2015.

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE(]‘aeamissioDn. See hﬁtp;/:/L\;wzvg).ize]e.eorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
eda on becember , at

:35:41 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3118703, IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[9]

[10]

(1]

[12]

(13]

(14]

[15]
[16]
(17]
(18]

[19]

[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]
[31]
[32]

[33]

[34]

(35]

[36]

(37]

(38]

[39]

0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorﬁlé)ublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2021 at

Transactions on Pattern Analysis and Machine Intelligence

P. Vougiouklis, H. Elsahar, L.-A. Kaffee, C. Gravier, F. Laforest,
J. Hare, and E. Simperl, “Neural wikipedian: Generating textual
summaries from knowledge base triples,” Journal of Web Semantics,
2018.

D. Marcheggiani and L. Perez-Beltrachini, “Deep graph convolu-
tional encoders for structured data to text generation,” in INLG,
2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Ha-
jishirzi, “Text generation from knowledge graphs with graph
transformers,” in NAACL, 2019.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017.

S. Wiseman, S. M. Shieber, and A. M. Rush, “Challenges in data-
to-document generation,” in EMNLP, 2017.

R. Puduppully, L. Dong, and M. Lapata, “Data-to-text generation
with content selection and planning,” in AAAI, 2019.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, 1997.

B. D. Trisedya, J. Qi, R. Zhang, and W. Wang, “Gtr-Istm: A triple
encoder for sentence generation from RDF data,” in ACL, 2018.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in NIPS, 2013.

B. D. Trisedya, J. Qi, and R. Zhang, “Entity alignment between
knowledge graphs using attribute embeddings,” in AAAI, 2019.
B. D. Trisedya, G. Weikum, J. Qi, and R. Zhang, “Neural relation
extraction for knowledge base enrichment,” in ACL, 2019.

P. A. Duboue and K. R. Mckeown, “Empirically estimating order
constraints for content planning in generation,” in ACL, 2001.

W. Lu and H. T. Ng, “A probabilistic forest-to-string model for
language generation from typed lambda calculus expressions,” in
EMNLP, 2011.

W. Lu, H. T. Ng, and W. S. Lee, “Natural language generation with
tree conditional random fields,” in EMNLP, 2009.

K. Bontcheva and Y. Wilks, “Automatic report generation from
ontologies: The miakt approach,” in NLDB, 2004.

P. Cimiano, J. Liiker, D. Nagel, and C. Unger, “Exploiting ontology
lexica for generating natural language texts from RDF data,” in
ENLG, 2013.

D. Duma and E. Klein, “Generating natural language from linked-
data: Unsupervised template extraction,” in IWCS, 2013.

T. Liu, K. Wang, L. Sha, Z. Sui, and B. Chang, “Table-to-text
generation by structure-aware seq2seq learning,” in AAAI, 2018.
L. Sha, L. Mou, T. Liu, P. Poupart, S. Li, B. Chang, and Z. Sui,
“Order-planning neural text generation from structured data,” in
AAAI 2018.

O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
NIPS, 2015.

B. D. Trisedya, J. Qi, and R. Zhang, “Sentence generation for entity
description with content-plan attention.” in AAAI, 2020.

Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph and
text jointly embedding,” in EMNLP, 2014.

I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning
of the embedding of words and entities for named entity disam-
biguation.” in CoNLL, 2016.

H. Zhong, J. Zhang, Z. Wang, H. Wan, and Z. Chen, “Align-
ing knowledge and text embeddings by entity descriptions,” in
EMNLP, 2015.

Y. Cao, L. Huang, H. Ji, X. Chen, and J. Li, “Bridge text and knowl-
edge by learning multi-prototype entity mention embedding,” in
ACL, 2017.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and
C. Bizer, “Dbpedia - a large-scale, multilingual knowledge base
extracted from wikipedia,” Semantic Web, 2015.

C. Fellbaum, WordNet: An Electronic Lexical Database.
1998.

A. S. Schwartz and M. A. Hearst, “A simple algorithm for
identifying abbreviation definitions in biomedical text,” in Pacific
Symposium on Biocomputing, 2003.

Z. Wang,]J. Zhang,]. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in AAAI, 2014.

MIT Press,

[40]

[41]

[42]

[43]
[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

12

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in AAAI,
2015.

G. Ji, K. Liu, S. He, and]. Zhao, “Knowledge graph completion
with adaptive sparse transfer matrix,” in AAAI, 2016.

K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory net-
works,” in [JCNLP, 2015.

X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object
parsing with graph Istm,” in ECCV, 2016.

T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in EMNLP, 2015.

R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” in
SIGNLL, 2016.

C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini,
“Creating training corpora for nlg micro-planners,” in ACL, 2017.
K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in ACL, 2002.
M. J. Denkowski and A. Lavie, “Meteor 1.3: Automatic metric
for reliable optimization and evaluation of machine translation
systems,” in WMT, 2011.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A
study of translation edit rate with targeted human annotation,” in
AMTA, 2006.

J. H. Clark, C. Dyer, A. Lavie, and N. A. Smith, “Better hypothesis
testing for statistical machine translation: Controlling for opti-
mizer instability,” in ACL, 2011.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2015.

C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini,
“The webnlg challenge: Generating text from RDF data,” in INLG,
2017.

J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological Bulletin, 1971.

~

-

Bayu Distiawan Trisedya is a Lecturer in the
Faculty of Computer Science Universitas In-
donesia, who is currently a Postdoctoral Re-
search Fellow in the School of Computing and
Information Systems at The University of Mel-
bourne. He received his Bachelor’'s and Master’s
degrees from Universitas Indonesia in 2009 and
2011, respectively. He received his Ph.D. degree
from The University of Melbourne in 2021.

Jianzhong Qi is a Senior Lecturer in the School
of Computing and Information Systems at The
University of Melbourne. He received his Ph.D.
degree from The University of Melbourne in
2014. His research interests include machine
learning and data management and analytics,
with a focus on spatial, temporal, and textual
data.

Wei Wang is currently a Professor in the In-
formation Hub, The Hong Kong University of
Science and Technology (Guangzhou). Prior to
that, He was a Professor in the School of Com-
puter Science and Engineering, University of
New South Wales, Australia. He received the
Ph.D. degree from the Hong Kong University of
Science and Technology in 2004.

Rui Zhang is a Visiting Professor at Tsinghua
University. His research interests include big
data, data mining, and machine learning. Pro-
fessor Zhang has won several awards, includ-
ing Future Fellowship by the Australian Re-
search Council in 2012, Chris Wallace Award
for Outstanding Research by the Computing Re-
search and Education Association of Australasia
in 2015, and Google Faculty Research Award in
2017.

:35:41 UTC from IEEE Xplore. Restrictions apply.

