
1

Incremental Evaluation of
Visible Nearest Neighbor Queries

Sarana Nutanong†‡, Egemen Tanin†‡, Rui Zhang†
†Department of Computer Science and Software Engineering

University of Melbourne, Victoria, Australia
{sarana,egemen,rui}@csse.unimelb.edu.au
‡NICTA Victoria Laboratory, Australia

Abstract— In many applications involving spatial objects, we
are only interested in objects that are directly visible from query
points. In this article, we formulate the visible k nearest neighbor
(VkNN) query and present incremental algorithms as a solution,
with two variants differing in how to prune objects during the
search process. One variant applies visibility pruning to only
objects, whereas the other variant applies visibility pruning to
index nodes as well. Our experimental results show that the
latter outperforms the former. We further propose the aggregate
VkNN query, which finds the visible k nearest objects to a set
of query points based on an aggregate distance function. We
also propose two approaches to processing the aggregate VkNN
query. One accesses the database via multiple VkNN queries,
whereas the other issues an aggregatek nearest neighbor query
to retrieve objects from the database and then re-rank the results
based on the aggregate visible distance metric. With extensive
experiments, we show that the latter approach consistently
outperforms the former one.

Index Terms— Geographical information systems, Spatial
databases, Query processing.

I. I NTRODUCTION

V ISIBILITY is an extensively studied topic in computational
geometry and computer graphics. Many algorithms have

been developed to efficiently compute the region visible to a
given query point [2], [3], [13], [25], [29]. Many problems in
spatial databases also involve visibility. For example, a tourist
can be interested in locations where views of scenes such as
sea or mountains are available. In an interactive online game,
a player commonly needs to know enemy locations that can be
seen from his/her position. In such problems, only objects directly
visible from a user’s location are relevant. In this article, we
investigate thevisible k nearest neighbor (VkNN) query [18],
which incorporates the requirement of visibility into thek nearest
neighbor (kNN) query.

A VkNN query retrievesk objects with the smallest visible
distances to a query pointq. In Figure 1, the V3NN of q are
B, A andD (in order of visible distance). ObjectC is excluded
because it is blocked byB. ObjectA is considered nearer toq
thanD because the visible part ofA is nearer toq than that ofD.

Processing the VkNN query requires determining the visibility
of objects. One straightforward method consists of the following
steps: (i) calculating the visibility region of a query point,
(ii) using the query’s visibility region to “clip” data objects to
obtain the visible parts of each object, and (iii) executinga kNN
query on the clipped data objects. The drawback of this approach
is that the visibility region computation requires accessing all
objects in the database.

Fig. 1. The VkNN query

We propose more efficient VkNN algorithms, based on the
observation that finding thek visible NNs (VNNs)requires only a
subset of the complete visibility region. Specifically, to determine
the visible distance between the query pointq and an objectX,
it is sufficient to consider only the objects nearer toq than X.
The above observation allows us to adapt anincremental nearest
neighbor algorithm [14] to simultaneously obtain the relevant
obstacles and VNNs. This adapted incremental VkNN algorithm
makes use of a new distance function, MINV IDIST, to rank
the VNNs and order the tree branches during the search. The
M INV IDIST betweenX and q is defined as the distance from
q to the nearest visible point onX. For example (Figure 1), the
M INV IDIST betweenq andD is the distance betweenq andd,
which is the nearest visible point onD. A problem scenario that
may benefit from the VkNN query is as follows.

Scenario 1 (Placement of Security Cameras):Suppose that a
security company wants to attachk security cameras tok dif-
ferent buildings to monitor a siteq. Clearly, it would require
the monitored siteq to be visible to all of thesek buildings.
Furthermore, the security company may also want the distances
from these security cameras toq to be minimized.

In this scenario, the user (the security company) can use
the VkNN query to find thesek visible nearest buildings. Our
incremental VkNN algorithm also allows postconditions to be
applied to query results. For example, when a security camera
cannot be attached to some of thek nearest buildings, the user
can incrementally retrieve more results until the user obtains k

buildings that can accommodate security cameras.
Furthermore, we propose a multi-query-point generalization to

the VkNN query, called theaggregate VkNN (AVkNN) query. An
AVkNN query findsk objects with the smallest aggregate visible
distances to a given set of query points, rather than a singlequery
point. A problem scenario for the AVkNN query is as follows.

2

Scenario 2 (Placement of Network Antennas):Suppose that a
telecommunication company is searching for a building to install
an antenna (or multiple antennas) to provide network accessto m

different sites. This building must have a line of sight to each of
thesem sites. Furthermore, since the signal strength has a negative
correlation with the distance from an antenna, the company also
wants to minimize the worst-case distance to the sites.

In this scenario, the user (the telecommunication company)
can use our AVkNN algorithms to find the nearest building
visible to the m sites (if exists). In addition, similar to the
VkNN algorithms, our AVkNN algorithms are incremental so
postconditions can be applied to the problem. The user can
incrementally retrieve possible solutions until the first one that
satisfies the postconditions is found.

Our investigation of the AVkNN query focuses on three
aggregate functions,SUM, MAX and MIN . By exploiting the
concept ofaggregate search region(AGGSR), we are able to
apply an incremental retrieval strategy to the AVkNN query. We
propose two incremental approaches (sets of algorithms) for the
AVkNN query. The first one uses a brute-force strategy, which
issues a VkNN query at each query point, although an effective
pruning technique based on visible distance is applied to improve
the performance. We call this approachmultiple retrieval front
(MRF). The second approach issues just one aggregate query to
retrieve objects from the database and then re-rank the results
based on the aggregate visible distance metric. We call this
approachsingle retrieval front (SRF). Our experimental results
show that SRF consistently outperforms MRF.

The contributions of this article are summarized as follows:

• formalization and investigation of the VkNN query and the
M INV IDIST distance metric;

• two incremental algorithms, POSTPRUNING and PREPRUNING,
for processing VkNN queries without pre-computing visibility
regions, and an optimality proof of PREPRUNING in terms of
the I/O cost;

• a multi-query-point generalization of the VkNN query (i.e., the
AVkNN query) with two sets of associated algorithms;

• experimental studies on the VkNN and AVkNN algorithms.

This article is an extended version of our previous paper [18].
In our previous paper, we have proposed the VkNN query and two
approaches to processing it, POSTPRUNING and PREPRUNING. In
this article, we first provide a new PREPRUNING algorithm which
is optimal in terms of the I/O cost. Second, we generalize the
VkNN query to a multi-query-point version, the AVkNN query,
and propose two approaches for the AVkNN query. Third, we
perform a thorough experimental study on the algorithms forboth
types of queries.

The rest of the article is organized as follows. Section II
discusses related work on spatial data structures and queries.
Section III provides preliminaries on the MINV IDIST metric, the
aggregatek nearest neighbor query and search regions. Section IV
presents two algorithms for processing VkNN queries. Section V
formulates the AVkNN query and presents two approaches to
processing the AVkNN query. Results of our experimental study
are reported in Section VI. Finally, Sections VII and VIII give
the conclusions and future research directions respectively.

II. RELATED WORK

A. Algorithms to Construct Visibility Regions

Construction of a visibility region (also known as avisibility
polygon) inside a polygon with obstacles has been investigated
in the context of computational geometry. Asano et al. [3]
propose a method which requiresO(n2) time and space for
preprocessing andO(n) to compute the visibility polygon for each
view point (n denotes the total number of edges of obstacles).
Asano et al. [2] propose an algorithm that runs inO(n log n)

time and the same result is also independently obtained by Suri
and O’Rourke [25]. Heffernan and Mitchell [13] propose an
algorithm with the time complexity ofO(n + h log h) (whereh

is the number of obstacles). Zarei and Ghodsi [29] propose an
algorithm that requiresO(n3 log n) time andO(n3) space for
preprocessing. The algorithm runs inO((1 + h′) log(n + |V (q)|))

time, where|V (q)| is the size of the visibility polygonV (q), and
h′ is bounded byMIN (h, |V (q)|).

These algorithms efficiently solve the problem of visibility
polygon construction, but must rely on preprocessing and/or
accessing all obstacles. As a result, they are not suitable for
many applications in the domain of spatial databases due to the
following reasons: (i) any update will invalidate the preprocessed
data; (ii) accessing all objects for each query is expensive.

B. Distance Metrics

We use the R*-tree [4], which is a variant of the popular spatial
indexing structure R-tree [12] in our experiments. Our algorithms
can also be applied to other hierarchical structures such asthe
quadtree [24]. An R-tree consists of a hierarchy ofminimum
bounding rectangles (MBRs), where each corresponds to a tree
node and bounds all the MBRs in its sub-tree. Data objects are
stored in leaf nodes and they are partitioned based on a heuristic
that aims to minimize the I/O cost.

Fig. 2. MINDIST, MAX DIST, and MINMAX DIST metrics

KNN search algorithms using R-trees usually depend on
some distance estimators to decide in which order to access
the tree nodes and data objects. Figure 2 illustrates commonly
used distance estimators [24], such as MAX DIST, M INMAX DIST

and MINDIST. The MINDIST between the query pointq and
an MBR X is the smallest Euclidean distance betweenq

and X. The MAX DIST betweenq and X is the largest Eu-
clidean distance betweenq and X. The MINMAX DIST [22]
or MAX NEARESTDIST [23] is the greatest possible distance
between the nearest object inX and q. The MINDIST function
is optimistic in the sense that the MINDIST of an MBR is
guaranteed to be smaller than or equal to the distance of the
nearest object in the MBR. Both MAX DIST and MINMAX DIST

are pessimistic [24] because the MAX DIST and MINMAX DIST of
an MBR are guaranteed to be greater than or equal to the distance
of the nearest object in that MBR.

3

C. Nearest Neighbor Query Processing

The k nearest neighbor (kNN) query findsk objects nearest
to a given query point. A formal definition of the query can be
given as follows.

Definition 1 (k Nearest Neighbor (kNN) Query): Given a set
S of objects and a query pointq, the kNN of q is a setA
of objects such that: (i)A containsk objects fromS; (ii) for
any objectX ∈ A and objectY ∈ (S − A), M INDIST(q, X) ≤

M INDIST(q, Y).
Two well known algorithms for processingkNN queries are

depth-first (DF)kNN [22] and best-first (BF)kNN [14]. They
differ in the order of tree traversal. DF-kNN visits tree nodes in a
depth-first manner and meanwhile maintains thek nearest objects
discovered so far as candidates. Thekth nearest object’s distance
to q is used as a pruning distance to discard subsequent tree nodes
and objects. When every node is either visited or discarded,thek

objects remaining in the candidate set are the resultantk nearest
neighbors (NNs).

BF-kNN visits tree nodes and data objects in the order of their
distances to the query point. Farther nodes are never prunedbut
scheduled to be visited later on, and they may not be visited
at all if the k NNs are discovered first. The main benefit of
BF-kNN is threefold: (i) the value ofk need not be specified in
advance; (ii) the results are ranked according to their distances by
default; (iii) the number of visited nodes is minimal (that is, the
algorithm is I/O optimal.) Since our VkNN algorithms are based
on BF-kNN, we further elaborate the discussion as follows.

Algorithm 1 BF-kNN(Tree, q, k)
1: CreatePQ with Tree.ROOT as the first entry
2: Create an empty setA of answers
3: repeat
4: E ← PQ.POPHEAD()
5: if E contains an objectthen
6: InsertE.OBJ into A
7: else if E contains a nodethen
8: Children ← Tree.GETCHILD NODES(E.NODE)
9: for all C in Children do

10: D ← Calculate MINDIST(q, C)
11: CreateNewEntry from C andD
12: InsertNewEntry into PQ
13: end for
14: end if
15: until k objects inA or PQ is empty
16: return A

Algorithm 1 gives the detailed steps of BF-kNN. We start with
a priority queuePQ with the root node as the first entry and an
empty setA that will contain the resultantk NNs (Lines 1 and 2).
If the entry retrieved fromPQ is an object, the object is the next
NN (Lines 5 and 6); otherwise (the entry contains a tree node)
(Line 7), we retrieve the child nodes stored in the node (Line8).
For each of its child nodes, a new entry is created, the MINDIST is
calculated and the entry is then inserted intoPQ (Lines 9 to 13).
The repeat-until loop stops when thek NNs has been discovered
or PQ is exhausted (Line 15). Finally, the setA of resultantk
NNs is returned (Line 16).

An example run of the algorithm is given in Figure 3. The upper
part of Figure 3(b) shows the R-tree for the dataset in Figure3(a).
The lower part of Figure 3(b) lists the execution steps of BF-kNN.
The priority queuePQ keeps all the nodes and data objects to be
visited in the order of their distances toq. In Step 1,R, S andT

are inserted intoPQ. In Step 2,S is retrieved fromPQ and its
two child entriesX andW are inserted intoPQ. In Step 3,R is
retrieved fromPQ, and nodesU andV are inserted intoPQ. In
Step 4,V is retrieved fromPQ and it is the first NN. If another
NN is needed, the process continues until another data object is
discovered. In this manner, an arbitrary number of NNs can be
incrementally obtained.

(a) R-tree of objects with MBRs(b) R-tree and execution steps of a
BF-kNN search

Fig. 3. An example run of BF-kNN

D. Related Spatial Problems

Ferhatosmanoglu et al. [9] propose theconstrainedkNN query
which finds the NNs inside a polygon defined as linear constraints
(or a disjunction of linear constraints). Although the visibility
region can be represented as a disjunction of constraints, it is
inefficient to use the constrainedkNN algorithm to solve the
VkNN problem. This is because the visibility region depends on
the location of the query point, i.e., each query point has its unique
visibility region. Solving VkNN using the constrained NN query
requires an additional step of visibility region computation.

The nearest surrounder (NS) queryis proposed by Lee et
al. [16]. An NS query finds the nearest object for all orientations
around the query pointq. Consequently, only objects visible toq
can be an NS. The main difference between the NS query and the
VkNN query is that an NS query finds all “visible” objects around
the query point whereas the number of visible objects for VkNN
is user-determined. Two NS algorithms were proposed: the angle-
basedsweepalgorithm and the distance-basedripple algorithm.
Since both of our VkNN algorithms are distance-based, we further
discuss the ripple algorithm as follows.

The ripple algorithm retrieves NS candidates in the order of
M INDIST using a priority queue. The algorithm keeps track of
the NS set and the associated orientation of each NS candidate
discovered so far. Upon retrieval of each object, the NS set is
accordingly updated. The algorithm halts when the priorityqueue
is exhausted or it satisfies the followingNS termination check (NS-
TC) conditions: (i) each orientation has an associated NS; (ii)all
objects in the priority queue are outside the smallest circle that
encloses all NS answers (centered atq).

Papadias et al. [20] propose a generalization to thekNN query,
called theaggregatekNN (AkNN) query. An AkNN query finds
k objects with the smallest aggregate distances to a setQ of
query points. Papadias et al. investigate three types of aggregate
functions:SUM, MAX and MIN ; and propose two approaches for
processing AkNN queries,multiple-andsingle query. They have
shown that the single query algorithm is more efficient than the
multiple-query one in terms of I/O cost and response time. This
study however does not address AVkNN queries.

4

Theclosest-pair queryin spatial databases [6] involves finding
two objects from two different datasets where the distance be-
tween them is minimized. The similarity between the closest-pair
and aggregate NN problems is that they both involves comparing
distances of objects from different reference points (objects).
However, the two problems differs in the following ways: (i)the
number of aggregate query points is much smaller than the
cardinality of the dataset, while the two datasets in a closest-pair
query may have similar sizes; (ii) the aggregate query points are
usually localized, while the two closest-pair datasets mayspan
the same dataspace.

The visibility graph [11] involves problems related to the ob-
structed distance between two points in a 2D space with obstacles.
Specifically, the obstructed distance between two points isthe
length of the path between the two points that (i) does not pass the
interior of any obstacle, and (ii) minimizes the travellingdistance.
A visibility graph can be constructed by connecting obstacles’
corners that are visible to each other. The visibility graphin
turn allows the problem of obstructed distance calculations to
be solved in a spatial-network manner [21].

Zhang et al. [30] propose a database-oriented solution to
spatial problems with obstacles. Their solution does not require a
complete visibility graph to be constructed beforehand butcreates
a local visibility graphon the fly. Among a wide range of spatial
queries in presence of obstacles, theobstructed NN (ONN) query
is proposed. The ONN query retrievesk objects with the smallest
obstructed distancesin a setting of polygonal obstacles and point
data objects.

Although both VkNN and ONN are NN variants that involve
obstacles, they require different techniques. For VkNN, any
object blocked by obstacles has the distance of infinity, while
ONN instead uses the distance of the shortest detour. Since
blocked objects could be returned as ONN results, the visibility-
culling strategy used in VkNN algorithms is inapplicable to
ONN. The emphasis of the ONN algorithm is the use of a local
visibility graph to calculate obstructed distances via Dijkstra’s
algorithm [7]. For VkNN, the MINV IDIST betweenq and an
object X is the Euclidean distance betweenq and the nearest
visible point onX. One may generalize MINV IDIST as a single-
hop variant of the obstructed distance measure. Specifically, any
object unreachable by a single hop fromq has the MINV IDIST of
infinity and is ignored. This property of MINV IDIST eliminates
the need for Dijkstra’s algorithm. As a result, a visibilitygraph
is not needed for MINV IDIST calculations in VkNN.

Tung et al. [27] propose an obstacle-aware clustering technique.
The technique can be used to construct a spatial data structure that
is more suitable for spatial queries that use the obstructeddistance
as the proximity measure [30] than the R-tree [12]. However,
the technique requires the visibility graph to be constructed
beforehand. As pointed out by Zhang et al. [30], this requirement
incurs additional effort to maintain the visibility graph when
updating the set of obstacles.

Recently, Gao et al. [10] propose thevisible reversekNN
(VRkNN) queryin a setting of point data objects and rectangular
obstacles. A VRkNN query finds all objects with the query pointq

as a member of the VkNN [18] set. They also propose a VRkNN
algorithm which applies the visibility culling concept to awell
known RkNN algorithm, the TPL algorithm [26]. Similar to our
VkNN algorithms, the VR-kNN algorithm retrieve obstacles using
a best-first search to construct the region visible toq.

III. PRELIMINARIES

A. TheM INV IDIST Metric

In order to formally define MINV IDIST, we first need to define
two functions: thevisibility clipping function and theshadow
function, whose definitions are given as follow.

The visibility clipping function CLIP is based on the polygon
clipping algorithm proposed by Vatti [28]. In Vatti’s algorithm,
clipping two polygons is done by partitioning the space according
to the y-coordinates of the two polygons’ vertices. These parti-
tions are then processed in an orderly fashion. For each partition,
a partial resultant contour is obtained by scanning for possible
intersections between the two polygons. After all partitions are
processed, the complete resultant polygon is obtained without
post-processing, e.g., sorting the edges.

In this paper, we define CLIP as a function that returns the
visible part of an objectX with respect to a query pointq and a
given setS of objects (functioning as obstacles). That is,

CLIP(q, X,S) = X −
[

Y ∈S

SHADOW(q, Y).

The shadow of an objectY is the region obscured byY from
the perspective of a given query pointq. That is,

SHADOW(q, Y) =
[

y∈INTERIOR(Y)

{s : y ∈ qs},

where INTERIOR(Y) denotes the set of points inY that are not
on the edges. Using only the interior ofY instead of the complete
objectY means thatY cannot block itself.

M INV IDIST is the distance between the query point and the
nearest visible point of an object, formally defined as follows.

Definition 2 (Minimum Visible Distance —M INV IDIST):
Given a set S of objects (functioning as obstacles), the
M INV IDIST betweenq andX given as

M INV IDIST(q, X,S) =



M INDIST(q, X ′), if X ′ 6= ∅

∞, otherwise,

whereX ′ is equal to CLIP(q, X,S).
Our incremental processing technique allows us to use only

a small subset ofS to calculate the MINV IDIST of an object.
Detailed discussion on MINV IDIST calculations in the context of
incremental query processing will be given in Section IV.

According to Definition 2, MINV IDIST calculations in 3D can
be achieved by replacing the polygon clipping algorithm [28]
with a 3D volume clipping algorithm [8]. Discussion on the
effect of MINV IDIST calculations in 3D on the proposed VkNN
algorithms is given in Section IV-C.

B. Aggregate Nearest Neighbor Query

An aggregatekNN (AkNN) query findsk objects with the
smallest aggregate distances to a setQ of query points. A formal
definition of the AkNN query can be given as follows.

Definition 3 (AggregatekNN Query): Given a setQ of query
points and a setS of objects, the aggregatekNN of Q is a set
A of objects such that: (i)A containsk from S; (ii) for any
given X that is inA andY in (S −A), the aggregate MINDIST

betweenQ andX, AGGM INDIST(Q, X), is less than or equal to
AGGM INDIST(Q, Y).

The AGGM INDIST function is defined as follows.
Definition 4 (Aggregate Minimum Distance —AGGM INDIST):

Given a setQ of query points and a selection on the aggregate

5

function, AGGM INDIST(Q, X) returns either the minimum
(M INM INDIST(Q, X)), maximum (MAX M INDIST(Q, X)) or
sum (SUMM INDIST(Q, X)) of M INDIST(q, X) for all q in Q.

An example AkNN query is given in Figure 4. According to the
sum-aggregate distance (SUMM INDIST) function, the aggregate3
NNs ofq1 andq2 areX, Y andZ, in the order of SUMM INDIST.

Fig. 4. Aggregate query example with the query setQ = {q1, q2} and data
objectsX, Y andZ. The ellipses show the boundaries of the search regions
SUMSR(Q, SUMM INDIST(Q, X)), SUMSR(Q, SUMM INDIST(Q, Y)) and
SUMSR(Q, SUMM INDIST(Q, Z)).

We can adapt the BF-kNN algorithm (Algorithm 1) to ob-
tain an algorithm to process AkNN queries by changing the
distance function (Line 10 of Algorithm 1) from MINDIST to
AGGM INDIST. The BF-search principle in the BF-kNN algorithm
is still applicable to AkNN queries. It is because AGGM INDIST is
optimistic for all aggregate functions (i.e.,SUM, MAX andMIN).

C. Search Region

For each nearest neighbor retrieved from the priority queue,
there is a corresponding search region (SR) which delimits the
current coverage of the search. According to the example given
in Figure 3(a), the region enclosed by Circle 4,{p : ‖q − p‖ ≤

M INDIST(q, V)}, corresponds toV . We define an SR as a
function of q and a coveragec as SR(q, c) = {p : ‖q − p‖ ≤ c}.

Similarly, for an AkNN query, an aggregate SR (AGGSR) can
be formally defined as follows.

Definition 5 (Aggregate Search Region):Given a setQ of
query points, the search region AGGSR(Q, c) is a set of pointsp
such that AGGM INDIST(Q, p) 1 is less than or equal toc, i.e.,

AGGSR(Q, c) = {p : AGGM INDIST(Q, p) ≤ c}.
Since we consider three aggregate functions:SUM, MAX

and MIN ; there are three types of AGGSRs: SUMSR,
MAX SR and MINSR respectively. For example, Figure 4
shows three SUMSRs of the three objectsX, Y and Z.
The region SUMSR(Q, SUMM INDIST(Q, X)) is a set of
points p where SUMM INDIST(Q, p) is less than or equal
to SUMM INDIST(Q, X). Any object that is overlapped with
SUMSR(Q, SUMM INDIST(Q, X)) has a AGGM INDIST smaller
than or equal toX. The reverse however does not hold. In
other words, SUMSR(Q, SUMM INDIST(Q, X)) may not over-
lap with all objects that have aggregate distances smaller than
SUMM INDIST(Q, X). For example, SUMM INDIST(Q, X) is
smaller than SUMM INDIST(Q, Y), but X does not overlap with
SUMSR(Q, SUMM INDIST(Q, Y)).

1To avoid an excessive number of distance functions, AGGM INDIST(Q, p)
also denotes the aggregate value of{‖q − p‖ : q ∈ Q}.

Lemma 1:The SUMSR of aSUM-AkNN query is convex.
Proof: According to Definition 5, the SUMSR of a setQ

of query points and the coveragec can be expressed as follows.

SUMSR(Q, c) = {p :
X

q∈Q

‖q − p‖ ≤ c}.

To prove that such a region is convex, we show that all points
on the line segmentab has to be in the region for any two points
a andb in the region, i.e.,

0

@

X

q∈Q

‖q − a‖ ≤ c

1

A

^

0

@

X

q∈Q

‖q − b‖ ≤ c

1

A .

Let x be any point onab. That is,x is λa+µb, whereλ andµ

are nonnegative real numbers andλ+µ is 1. The sum of distances
betweenx and all query points inQ is

X

q∈Q

‖λa+µb−q‖, which is

also smaller than or equal toc because of the following relations.

X

q∈Q

‖λa + µb − q‖ =
X

q∈Q

‖λ(a − q) + µ(b − q)‖

≤
X

q∈Q

`

‖λ(a − q)‖+ ‖µ(b − q)‖
´

≤ λc + µc = c

Therefore, any pointx on ab is also in the SUMSR.
Applying the same principle to theMAX function, we will

also obtain the same result. By exploiting the convexity of
SUMSRs and MAX SRs, we can determine whether we have
obtained enough obstacles to calculate the aggregate MINV IDIST

(AGGM INV IDIST) of an object. Consequently, we will see that
both data retrieval and visibility region construction canbe
done in an incremental manner. For theMIN aggregate function,
M INSRS do not share the same property of convexity. This will
be further discussed in Section V-B.

IV. V ISIBLE NEARESTNEIGHBOR QUERY

A Visible k Nearest Neighbor (VkNN) queryfinds k nearest
objects visible to a query point. We consider the VkNN problem
in a setting where (i) data objects are represented as polygons,
and (ii) each data objects is also an obstacle. A formal definition
of the query is given as follows.

Definition 6 (Visiblek Nearest Neighbor (VkNN) Query):
Given a setS of objects (represented by polygons), the visible
kNN of q is a setA of objects such that: (i)A containsk

visible objects fromS (given that the number of visible objects
is greater than or equal tok); (ii) for any given X that is inA
andY that is not inA, Y ∈ S −A, M INV IDIST(q, X,S) is less
than or equal to MINV IDIST(q, Y,S).

Using MINV IDIST (Definition 2) to rank VkNN results means
that invisible objects, which has the distances of infinity,are
ignored. Calculating the MINV IDIST between an objectX and a
query pointq does not require the completeS. Lemma 2 can be
used to determine a subsetB of S such that MINV IDIST(q, X,S)

yields the same result as MINV IDIST(q, X,B).
Lemma 2: If M INV IDIST(q, Z,S) is greater than

M INV IDIST(q, X,S) then MINV IDIST(q, X,S) is equal to
M INV IDIST(q, X,S − {Z}).

Proof: Let v be a point such that‖q − v‖ is equal to
M INV IDIST(q, X,S). The line segmentqv can be one of the
two cases: (i)v is the nearest point onX to q (the MINV IDISTs

6

of B and A in Figure 1 for examples), which means that the
M INV IDIST of the object does not depend on any other objects;
(ii) qv is determined by a corner or an edge of an object. Since
such object needs to at least have a corner onqv, the object
has to be nearer toq thanX. (For the example in Figure 1, the
M INV IDIST of D is determined by the top-left corner ofB.)

Lemma 2 implies that only objects with the MINV IDIST

greater thanX can be safely ignored (as obstacles) when calculat-
ing the MINV IDIST betweenX andq. Thus, a subsetB of S that
makes MINV IDIST(q, X,B) equivalent to MINV IDIST(q, X,S)

can be given as follows.

B = {Y : Y ∈ S, M INV IDIST(q, Y,S) < M INV IDIST(q, X,S)}.

This lemma allows us to incrementally retrieve VNNs and
construct the visibility region at the same time. Consequently,
the required amount of visibility knowledge is optimized. An
optimistic estimator is used to rule out objects with MINV IDISTs
greater than that of the object being considered. For example, if
the MINDIST of X is greater thanc the MINV IDIST of X has
to be greater thanc as well. Let us consider Figure 5, where
objects in the figure are considered according to the order of
M INDIST. In Step 1, we know that MINV IDIST of B is equal
to MINDIST(q, B), because no other object has a MINDIST

smaller thanB. In Step 2,C is obscured byB so C is not
a VNN of q. In Step 3,D is found to be partially blocked
by B. As B is the only know obstacle, MINV IDIST(q, D, {B})

becomes the tentative MINV IDIST of D. Since CLIP(q, D, {B})

is farther thanA (which is the next object in line),D may not
be the next VNN and we have to considerA first. In Step 4,
The MINV IDIST of A is calculated. The visible part ofA is
nearer than CLIP(q, D, {B}), so A becomes the second VNN.
In Step 5, the MINV IDIST of D is recalculated (withA taken in
to consideration this time). The MINV IDIST of D is unaltered
andD becomes the third VNN.

Figure 5(b) also shows how the visibility clipping (CLIP)
function is used to calculate the MINV IDIST. The MINV IDIST

betweenD and q is is equivalent to the MINDIST between
CLIP(q, D, {B, A}) andq.

(a) Steps 1, 2 and 3 (b) Steps 4 and 5

Fig. 5. MINV IDIST calculations using the visibility clipping function

We now describe two incremental algorithms to process VkNN
queries. In our presentation, we assume that all objects are
indexed in an R-tree [12], although our algorithms are applicable
to many hierarchical spatial indices such as the k-d-tree [5] or
the quadtree [24]. We propose two variations, POSTPRUNING

(Algorithm 2) and PREPRUNING (Algorithm 3), which differ in
the distance estimator used to order entries in the priorityqueue
but produce the same results.

A. ThePOSTPRUNING Algorithm

The POSTPRUNING algorithm (Algorithm 2) is based on the
BF-kNN algorithm (Algorithm 1). In Line 6, the distance of
the object entry is set to MINV IDIST. If the newly assigned
M INV IDIST is still smaller than the distance of the head of
the priority queue2, the object is added toA as the next VNN
(Lines 7 and 8). Otherwise, the entry is inserted back into the
priority queue for reassessment if the distance is not infinity
(Lines 9 and 10). In terms of node processing (Lines 12 to 19),
M INDIST is used as the estimator for each child node which is
the same as the BF-kNN algorithm. The MINDIST metric can be
used as a VkNN estimator because MINDIST is also optimistic
for VkNN, i.e., the MINDIST of a node is always less than or
equal to the object with the smallest MINV IDIST in the node.

Algorithm 2 POSTPRUNING(Tree, q, k)
1: CreatePQ with Tree.ROOT as the first entry
2: Create an empty setA of answers
3: while PQ is not emptyand |A| is less thank do
4: E ← PQ.POPHEAD()
5: if E contains an objectthen
6: E.DST← Calculate MINV IDIST(q, E,A)
7: if E.DST≤ PQ.HEAD().DST then
8: InsertE.OBJ into A
9: else if E.DST is not infinity then

10: InsertE back intoPQ
11: end if
12: else if E contains a nodethen
13: Children ← Tree.GETCHILD NODES(E.NODE)
14: for all C in Children do
15: D ← Calculate MINDIST(q, C)
16: CreateNewEntry from C andD
17: InsertNewEntry into PQ
18: end for
19: end if
20: end while
21: return A

Modifying the NS (nearest surrounder) ripple algorithm:
POSTPRUNING-NS-TC. In the original definition of the NS ripple
algorithm [16], data objects are retrieved from the priority queue
according to the MINDIST metric. The NS ripple algorithm can
be modified to incrementally retrieve VNNs and to stop after
obtaining thek VNNs. This modification is done by applying
the MINV IDIST metric and reinserting objects that may not be
the next VNN into the priority queue. This modification will
result in an algorithm similar to POSTPRUNING (Algorithm 2)
with the termination check NS-TC (Section II). We hence call
this modification POSTPRUNING-NS-TC.

B. ThePREPRUNING Algorithm

The PREPRUNING algorithm (Algorithm 3) is an optimiza-
tion of POSTPRUNING (Algorithm 2) in terms of the I/O cost.
Unlike POSTPRUNING, PREPRUNING applies MINV IDIST to
objects as well as index nodes. Index nodes are hence “pre-
pruned” according to their visibilities before being visited. At
each iteration, we first retrieve the head ofPQ (Line 4) and
calculate its MINV IDIST (Line 5). We then check whether the
updated distance is larger than the distance of the new head of

2For brevity, we omit the handling of a marginal case wherePQ is empty.
This omission is also applied to the rest of algorithms.

7

PQ (Line 6). If that is the case, we check whether the entry is
visible, i.e., the distance is not infinity (Line 7). If the entry is
visible, it is reinserted intoPQ (Line 8). The entry is discarded
if it is found to be invisible. If the updated distance is otherwise
smaller than the new head ofPQ, we check if the entry is an
object (Line 10). If yes, the object is inserted intoA as the next
VNN (Line 11); otherwise (an index node), for each child node
of the index node, a new entry is created and inserted intoPQ

(Lines 12 to 19).

Algorithm 3 PREPRUNING(Tree, q, k)
1: CreatePQ with Tree.ROOT as the first entry
2: Create an empty setA of answers
3: while PQ is not emptyand |A| is less thank do
4: E ← PQ.POPHEAD()
5: E.DST← Calculate MINV IDIST(q, E,A)
6: if E.DST > PQ.HEAD().DST then
7: if E.DST is not infinity then
8: InsertE back intoPQ
9: end if

10: else if E contains an objectthen
11: InsertE.OBJ into A
12: else if E contains a nodethen
13: Children ← Tree.GETCHILD NODES(E.NODE)
14: for all C in Children do
15: D ← Calculate MINDIST(q, C)
16: CreateNewEntry from C andD
17: InsertNewEntry into PQ
18: end for
19: end if
20: end while
21: return A

Note that another possible PREPRUNING variant is to use
M INV IDIST(q, C,A) as the distance of a child nodeC in Line 15.
However, the MINV IDIST of C calculated based onA could be
inaccurate, sinceA may not contain all objects with MINV IDISTs
less than that ofC. We thus cannot avoid recalculating the
M INV IDIST for every entry retrieved fromPQ (Line 5). Since
M INV IDIST is significantly more expensive than MINDIST, this
modification introduces a higher computational overhead. We
will not further consider this PREPRUNING variant in this article.

C. Comparison BetweenPOSTPRUNING and PREPRUNING

We analyze the VkNN query cost in two major components,
the I/O and CPU costs. The I/O cost concerns the number of
pages retrieved from the disk. The CPU cost is dominated by the
M INV IDIST computation.

Generally, we expect POSTPRUNING to be more expensive than
PREPRUNING in terms of both I/O and CPU costs for large values
of k due to the following reasons. POSTPRUNING does not prune
invisible nodes so it has a higher I/O cost than PREPRUNING.
In terms of the CPU cost, although the MINV IDIST function
(which is much more expensive than MINDIST) is only applied
to objects (not to R-tree nodes) for POSTPRUNING, the algorithm
ends up with more entries to compute the MINV IDIST. This is
because the lack of pruning eventually creates more objectsto
consider. Furthermore, MINV IDIST also provides a better search
ordering than MINDIST on visible nodes. An example comparing
the difference that POSTPRUNING and PREPRUNING have in
terms of search orders are given in Figures 6 and 7.

Assume thatF is recently discovered as the first VNN (after
Step 2 in Figure 7(a)). According to Algorithm 2 where MINDIST

is used for search ordering,B is searched beforeA because
M INDIST(q, B) is smaller than MINDIST(q, A). In Step 3,I,
H and G are inserted into the priority queuePQ. In Step 4,
the nearest entry inPQ is I and it is retrieved from the priority
queue. ThenI is discarded because it is invisible. NodeA is now
the nearest. ObjectsC, D andE from A are inserted intoPQ in
Step 5. Next,D is discovered as the second VNN in Step 6.

Let us now consider the search order (Figure 7(b)) produced by
PREPRUNING (Algorithm 3), where MINV IDIST is also applied
to nodes. In Step 2,F is discovered as the first VNN. In
Step 3, we examineB and find out that MINV IDIST(q, B, {F})

is greater than MINDIST(q, A) so B is inserted back intoPQ

and NodeA becomes the nearest entry. ObjectsC, D andE, are
inserted intoPQ (Step 4), then ObjectD which currently has the
smallest MINV IDIST is discovered as the second VNN (Step 5).
PREPRUNING visits fewer nodes than POSTPRUNING, because
PREPRUNING is in fact I/O optimal (Theorem 1).

Fig. 6. An R-tree of{C, D, E, F, G, H, I}; ObjectsC, D and E are in
NodeA; H, G andI are inB; F is by itself.

Theorem 1:The I/O cost of the PREPRUNING algorithm is
optimal.

Proof: According to Lemma 2, the MINV IDIST assigned
to the head entry based on the obstacles retrieved so far (Line 5
of Algorithm 3) is the correct MINV IDIST. This implies that the
algorithm strictly visits the node with the smallest MINV IDIST

before any other nodes. Since the next VNN cannot be retrieved
without exploring the node with the current smallest MINV IDIST,
the algorithm visits the minimum number of nodes and hence it
is I/O optimal.

This however does not mean that PREPRUNING always per-
forms better than POSTPRUNING. The I/O cost reduction comes
with an additional processing cost, i.e., the computation of

POSTPRUNING

Step PQ A

1 〈F, B, A〉 {}

2 〈B, A〉 {F}

3 〈I, A, G, H〉 {F}

4 〈A, G, H〉 {F}

5 〈D, G, C, H, E〉 {F}

6 〈G, C, H, E〉 {F, D}

(a)

PREPRUNING

Step PQ A

1 〈F, B, A〉 {}

2 〈B, A〉 {F}

3 〈A, B〉 {F}

4 〈D, B, C, E〉 {F}

5 〈B, C, E〉 {F, D}

(b)

Fig. 7. Search orders of the POSTPRUNING and PREPRUNING algorithms
for the example in Figure 6

8

M INV IDIST for every node visited. The MINV IDIST function
is more expensive than MINDIST due to the polygon clipping
operations. We will further investigate their practical performance
especially for different values ofk in our experimental study
(Section VI-A).

The NS adaptation, POSTPRUNING-NS-TC, has a similar
behavior to POSTPRUNING when k is smaller than the number
of VNNs. When using the two variants to rank all VNNs in
the dataset, POSTPRUNING always visits all R-tree nodes due
to the absence of termination check. POSTPRUNING-NS-TC, on
the other hand, terminates when (i) the query point is completely
surrounded by VNNs, and (ii) the next entry in the priority queue
is outside the minimum circle centered atq that encloses all
current VNNs candidates (termed as theenclosing circle). Fig-
ure 8 shows the visibility region (as the white area) in two cases.
Figure 8(a) shows a case where the query point is surrounded by
VNNs. In this cases, POSTPRUNING-NS-TC terminates when the
next entry in the priority queue is outside the enclosing circle.
Figure 8(b) shows a case where there exists an angular gap of
VNNs. In this case, the enclosing circle is inapplicable andlike
POSTPRUNING, POSTPRUNING-NS-TC visits all nodes in the
R-tree. In both cases, PREPRUNING visits only nodes overlapped
with the visibility region. Therefore, PREPRUNING incurs a lower
I/O cost than the two POSTPRUNING variants.

(a) Fully surrounded query point (b) Visibility region with a VNN Gap

Fig. 8. Visibility region in two different cases

A setting that could be favorable to POSTPRUNING-NS-TC is
when the query point is fully surrounded by VNNs and all objects
in the enclosing circle are visible. This could happen when (i) the
number of visible of objects is low enough, or (ii) the query point
is situated in the middle of a circle formation of objects. Insuch
cases, POSTPRUNING-NS-TC could have a smaller response time
than PREPRUNING, since no benefits can be gained from pruning
index nodes beforehand.

In a 3D application, the cost of MINV IDIST calculations
is higher than the 2D one. This may affect the preference
between the POSTPRUNING-NS-TC and PREPRUNING algo-
rithms. In a setting of centralized processing, the cost of
M INV IDIST calculations could outweigh the I/O cost. As a result,
POSTPRUNING-NS-TC could be the preferred option. In contrast,
in a distributed setting, PREPRUNING could perform better than
POSTPRUNING-NS-TC, since the I/O cost is determined by the
network latency and bandwidth. Experimental studies on VkNN
in 3D will be investigated as future work.

V. AGGREGATEV ISIBLE NEARESTNEIGHBOR QUERY

In Section I, we have motivated the aggregate visiblek nearest
neighbor (AVkNN) query, which is a multi-query-point general-

ization to the VkNN query. A formal definition of the AVkNN
query is given as follows.

Definition 7 (Aggregate VkNN (AVkNN) Query): Given a set
S of objects (represented by polygons) and a setQ of query
points, the aggregate visiblek NNs ofQ is a setA of objects such
that: (i)A containsk objects fromS that are visible toQ; (ii) for
any givenX in A andY in (S −A), AGGM INV IDIST(Q, X,S)

is less than or equal to AGGM INV IDIST(Q, Y,S).
The AGGM INV IDIST function is defined as follows.
Definition 8 (AggregateM INV IDIST — AGGM INV IDIST):

Given a set Q of query points, the distance function
AGGM INV IDIST(Q, X,S) is the aggregate distance of
M INV IDIST(q, X,S) for all q in Q.

We focus on three aggregate functions,SUM, MAX and MIN ,
which correspond to three distance functions: SUMM INV IDIST,
MAX M INV IDIST and MINM INV IDIST, respectively. Figure 9
shows the visibility regions generated from the setQ of
query points {q1,q2} and the datasetS, {U, V, W, X, Y, Z}.
The SUMM INV IDIST between Q and X can be given
as (M INV IDIST(q1, X,S) + M INV IDIST(q2, X,S)), which is
in turn equal to (‖q1 − x1‖ + ‖q2 − x2‖). Similarly,
MAX M INV IDIST and MINM INV IDIST of the same object and
query points are equal toMAX {‖q1 − x1‖, ‖q2 − x2‖} = ‖q1 −

x1‖ and MIN{‖q1 − x1‖, ‖q2 − x2‖} = ‖q2 − x2‖ respectively.
In the same way as the MINV IDIST metric is defined (Def-

inition 2), an object X is invisible to Q iff the distance
AGGM INV IDIST(Q, X,S) is infinity. This implies the following
properties.

(i) For SUMM INV IDIST and MAX M INV IDIST, X is in-
visible to Q iff there exists a query pointq in
Q such that MINV IDIST(q, X,S) is infinity. Figure 9
gives an example where both sum and maximum of
M INV IDIST(q1, U,S) and MINV IDIST(q2, U,S) are infin-
ity because MINV IDIST(q1, U,S) is infinity.

(ii) For M INM INV IDIST, X is invisible to Q iff
M INV IDIST(q, X,S) is infinity for all query points q

in Q. Figure 9 gives an example where the minimum
of M INV IDIST(q1, U,S) and MINV IDIST(q2, U,S) is
non-infinity because MINV IDIST(q2, U,S) is non-infinity.

Fig. 9. Visibility regions generated from two query pointsq1 andq2 with
the data setS of {U, V, W, X, Y, Z}

The problem of AVkNN cannot be solved using conventional
aggregatekNN (AkNN) query algorithms, since each query point
has a different set of visible objects and each visible object may
have a different visible part for each query point, as illustrated in
Figure 9. Therefore, we propose two incremental approachesto
processing AVkNN queries:multiple retrieval front (MRF)and
single retrieval front (SRF), for the three aggregate functions.

9

A retrieval front is a sub-query used to access the database.
Figure 10 shows how the two approaches differ in the way
they access the database. MRF executes multiple instances of the
GETNEXTVNN algorithm (Algorithm 4), which is an algorithm
to incrementally retrieve VNNs based on the PREPRUNING

algorithm (Algorithm 3), at each query point. The results from
different query points are combined in a priority queue. SRF,
in contrast, accesses the database via a single FILTERED-IANN
query (Algorithm 7). Both approaches have apost-processing
component. For MRF, the post-processing component is used to
reorder objects retrieved from them query points according to
their AGGM INV IDIST to Q. For SRF, the post-processing com-
ponent is used to reorder objects retrieved from FILTERED-IANN
according to AGGM INV IDIST. For both approaches, we maintain
all retrieved objects as obstacles to calculate the AGGM INV IDIST

of the objects in the priority queue (MainPQ). The priority
queueMainPQ uses the AGGM INDIST metric as an optimistic
estimator and AGGM INV IDIST as the actual ranking distance
metric. Therefore, objects retrieved from the head ofMainPQ

are in the increasing order of AGGM INV IDIST. As a result, both
approaches can be used to incrementally retrieveaggregate VNNs
(AVNNs)from the database.

(a) Multiple Retrieval Front (MRF)

(b) Single Retrieval Front (SRF)
Fig. 10. Structural comparison between MRF and SRF

A. Multiple Retrieval Front (MRF)

In the MRF approach, the query processing is divided into
two components: data retrieval and post-processing as shown
in Figure 10(a). The data retrieval component consists ofm

retrieval fronts, wherem is the number of query points. Each
retrieval front is an instance of GETNEXTVNN (Algorithm 4),
which is an incremental VNN retrieval performed at each query
point. The post-processing component consists of a priority queue
MainPQ and a listL of obstacles. We useMainPQ to rank
objects according to their AGGM INV IDIST to Q, where the
AGGM INV IDIST of each object is calculated based onL.

In what follows, we present two MRF algorithms: Algorithm 5
and Algorithm 6. Algorithm 5 can be used to process AVkNN
queries for theSUM, MAX and MIN aggregate functions. An
optimization can be applied for theMIN aggregate function, which
results in Algorithm 6.

Algorithm 4 GETNEXTVNN(Tree, q, PQ, B)
1: while PQ is not emptydo
2: E ← PQ.POPHEAD()
3: E.DST← M INV IDIST(q, E,B)
4: if E.DST > PQ.HEAD().DST then
5: if E.DST is not infinity then
6: InsertE back intoPQ
7: end if
8: else if E contains an objectthen
9: return (E.OBJ, E.DST)

10: else if E contains a nodethen
11: Children ← Tree.GETCHILD NODES(E.NODE)
12: for all C in Children do
13: D ← Calculate MINDIST(q, C)
14: CreateNewEntry from C andD
15: InsertNewEntry into PQ
16: end for
17: end if
18: end while
19: return (null, infinity)

We first explain Algorithm 5. The initialization steps
(Lines 1 to 8) of the algorithm involves: (i) creating a priority
queueMainPQ, the listL of all discovered obstacles and the set
A of results; (ii) retrieving the first VNN for each query point;
(iii) initializing the minimum coverage (MinCov) to zero.

The main part of query processing takes place in the repeat-
until loop (Lines 9 to 30). For each iteration, we check whether
the head object ofMainPQ is contained by all SRs (Line 10).
Consequently, for everyqi in Q, we ensure that any object
that may block any part of the head object is discovered. As a
byproduct, this condition also ensures that any object thathas the
AGGM INV IDIST smaller than the head object’s AGGM INV IDIST

is discovered. As a result, each iteration of the repeat-until loop
can be one of the two cases:

(i) The AGGM INV IDIST of the head object can be calculated
(Lines 11 to 17). For this case, we retrieve the head
object from MainPQ and calculate the AGGM INV IDIST

of the head object (Lines 11 and 12). Then we check
whether the newly calculated distance is smaller than the
distance/estimate of the next head object (Lines 13). If yes,
the head object is the next AVNN (Line 14). Otherwise,
the object is reinserted intoMainPQ, or discarded if its
AGGM INV IDIST is infinity (Lines 15 to 17).

(ii) More objects need to be retrieved (Lines 19 to 28).For
this case, we select the query with the minimum coverage
MinCov (Lines 19 and 20)3, and insert its corresponding
objectXi into MainPQ if it is not a duplicate of a previ-
ously retrieved object (Lines 21 to 26). ObjectXi is replaced
and the coverage of the corresponding query is updated
(Line 27). The newXi is inserted intoBi (Line 28)4.

The loop repeats untilk AVNNs are found or all VNNs from
each ofqi in Q have been considered (Line 30). Finally,A is
returned as the result (Line 31).

An example run of Algorithm 5 with the aggregate function of
SUM is shown in Figure 11. The setS of objects is{X, Y, Z, W},
and the setQ of query points is{q1, q2}. In the initialization

3For brevity, we omit the handling of a marginal case where all
Cov1, Cov2, ..., Covm are infinity and X1, X2, ..., Xm are null. This
omission is applied to all MRF algorithms.

4We again here omit the handling of a marginal case whereXi is null.
This omission is also applied to all MRF algorithms

10

Algorithm 5 MRF-AVkNN(Tree, Q, k)
1: CreateMainPQ, an obstacle listL and an answer setA
2: for all qi in Q = {q1, q2, ..., qm} do
3: Create a listBi of obstacles
4: CreatePQi with Tree.ROOT as the first entry
5: (Xi, Covi) ← GETNEXTVNN(Tree, qi , PQi, Bi)
6: InsertXi into Bi

7: end for
8: MinCov ← 0
9: repeat

10: if MainPQ is not emptyand ∀qi ∈ Q,
MainPQ.HEAD().OBJ⊆ SR(qi , MinCov) then

11: E ← MainPQ.POPHEAD()
12: E.DST← Calculate AGGM INV IDIST(Q, E.OBJ,L)
13: if E.DST≤MainPQ.HEAD().DST then
14: InsertE.OBJ into A
15: else if E.DST is not infinity then
16: InsertE back intoMainPQ
17: end if
18: else
19: MinCov ← MIN m

i=1 Covi

20: i ← the indexi such thatCovi = MinCov
21: if Xi is not inL then
22: InsertXi into L
23: D ← Calculate AGGM INDIST(Q, Xi)
24: Create an entryE from Xi andD
25: InsertE into MainPQ
26: end if
27: (Xi, Covi) ← GETNEXTVNN(Tree, qi , PQi, Bi)
28: InsertXi into Bi

29: end if
30: until k objects inA or dataset exhausted
31: return A

steps (Lines 1 to 8),Z is discovered as the first VNN ofq1

and Y is discovered as the first VNN ofq2. The minimum
coverage (MinCov) of each step is illustrated as two circles,
each corresponding to one query point. Each pair of circles are
labelled according to its step number. A solid circle denotes the
case where an object is discovered via its corresponding query
point, and a dotted circle denotes the opposite case. For example,
MinCov at Step 1 is denoted as two circles with the labels of
“1”. The circle centered atq1 is solid because the discovered
objectZ is retrived viaq1. The execution steps are as follow:
Step 1: Since MainPQ is still empty, we go to Line 19 and

calculateMinCov; then we select the indexi such that
Covi is equal toMinCov, i.e., i is one in this case.
The VNN of q1, Z, is inserted intoMainPQ (Line 25).
We retrieve the next VNN ofq1 to replaceZ and the
corresponding coverageCovi is updated (Line 27).

Step 2: The priority queueMainPQ has only one object,Z,
in it (MainPQ = 〈Z〉). We still cannot determine the
SUMM INV IDIST of Z becauseZ is not yet contained
by all SRs. As a result, we need to retrieve more objects
to expand the SRs. ObjectY which is the next VNN of
q2, is inserted intoMainPQ. We then retrieve the next
VNN of q2 to replaceY .

Step 3: [MainPQ = 〈Y, Z〉.] ObjectX is discovered viaq2 and
is inserted intoMainPQ.

Step 4: [MainPQ = 〈X, Y, Z〉.] ObjectX is discovered viaq1

but it is discarded because it is a duplicate.
Step 5: [MainPQ = 〈X, Y, Z〉.] Object W is retrieved viaq2

and inserted intoMainPQ.

Step 6: [MainPQ = 〈X, Y, Z, W 〉.] Object Y is discovered via
q1 but discarded.

Step 7: [MainPQ = 〈X, Y, Z, W 〉.] Object Z is discovered via
q2 but discarded.

Step 8: [MainPQ = 〈X, Y, Z, W 〉.] At this point, we
have obtained enough obstacles to calculate the
SUMM INV IDIST of X, the head object ofMainPQ,
based on the obstacle list of〈X, Y, Z, W 〉. Object
X is retrieved and its SUMM INV IDIST is calculated
(Lines 11 and 12). Since the SUMM INV IDIST of X is
smaller than the next nearest item (Line 13),X is added
to A (Line 14).

(a) Steps 1 to 4

(b) Steps 5 to 7

Fig. 11. MRF example

Algorithm 6 MRF-MIN -AVkNN(Tree, Q, k)
1: Create an empty setA of answers
2: for qi in Q do
3: Create a listBi of obstacles
4: CreatePQi with Tree.ROOT as the first entry
5: (Xi, Covi) ← GETNEXTVNN(Tree, qi , PQi, Bi)
6: InsertXi into Bi

7: end for
8: MinCov ← 0
9: repeat

10: MinCov ← MIN m

i=1 Covi

11: i ← the indexi such thatCovi = MinCov
12: if Xi is not inA then
13: InsertXi into A
14: end if
15: (Xi, Covi) ← GETNEXTVNN(Tree, qi , PQi, Bi)
16: InsertXi into Bi

17: until k objects inA or dataset exhausted
18: return A

For theMIN -AVkNN query, we can improve the algorithm by
removing the post-processing part. This is because, ifX is a
VNN of qi and has never been previously discovered as a VNN
of anyqj in Q (wherei is not equal toj), M INV IDIST(qi, X,S)

must be smaller than or equal to any MINV IDIST(qj , X,S). That
is, MINV IDIST(qi, X,S) is equal to MINM INV IDIST(Q, X,S).
This improved algorithm is shown in Algorithm 6. In order to

11

find the next AVNN, it is sufficient to always look forXi that
has the smallest MINV IDIST to qi (Lines 10 and 11) and ensure
that its not a duplicate (Lines 12 to 14). After that, we replace the
currentXi by the next VNN ofqi and then updateCovi (Line 15).
ObjectXi is then inserted into its corresponding obstacle listBi

(Line 16). The loop (Lines 9 to 17) repeats untilk neighbors are
discovered or the dataset is exhausted for all query points.

B. Single Retrieval Front (SRF)

In this section, we present twosingle retrieval front (SRF)
algorithms: (i) Algorithm 8 for theSUM and MAX aggregate
functions; (ii) Algorithm 9 for theMIN aggregate function.

Algorithm 8 accesses the database via a singlefiltered incre-
mental aggregate NNalgorithm (FILTERED-IANN, Algorithm 7),
which adapts a similar strategy to BF-kNN (Algorithm 1). How-
ever, Algorithm 7 has following differences from Algorithm1:
(i) visibility filtering (Lines 3 and 4) is applied to avoid needlessly
processing entries (nodes/objects) invisible to all querypoints, and
(ii) M INDIST is replaced by AGGM INDIST.

Although Algorithm 7 contains visibility filtering, objects
retrieved via the algorithm are still ranked according to the
AGGM INDIST metric. The post-processing component is used
to re-rank objects according to the AGGM INV IDIST metric.

Algorithm 7 FILTERED-IANN(Tree, Q, PQ, B)
1: while PQ is not emptydo
2: E ← PQ.POPHEAD()
3: if E is blocked byB for all q in Q then
4: DiscardE
5: else if E contains an objectthen
6: return (E.OBJ, E.DST)
7: else if E contains a nodethen
8: Children ← Tree.GETCHILD NODES(E.NODE)
9: for all C in Children do

10: D ← Calculate AGGM INDIST(Q, C)
11: CreateNewEntry from C andD
12: InsertNewEntry into PQ
13: end for
14: end if
15: end while
16: return (null, infinity)

The initialization steps (Lines 1 to 3) of Algorithm 8 involves:
(i) creating a priority queuePQ for the FILTERED-IANN query
(Line 1), MainPQ, an obstacle listB and an answer setA for
post-processing of the retrieved objects (Line 2); (ii) initializing
the coverageCov to zero (Line 3).

Similar to the MRF counterpart, the query-processing loop
(Lines 4 to 21) of the algorithm consists of the data retrieval and
the post-processing components. WhenMainPQ is not empty
(Line 5), we process the retrieved object by calculating the
AGGM INV IDIST of the head object ofMainPQ if the following
two criteria are satisfied.

(i) The head objectMainPQ.HEAD().OBJ is confined in
AGGSR(Q, Cov) (Definition 5).

(ii) All query pointsq in Q are contained by AGGSR(Q, Cov).
Specifically, Cov is greater than or equal to the mini-
mum coverage boundcb that makes AGGSR(Q, cb) con-
fine all query points inQ. The value ofcb calculated as
MAX {AGGM INDIST(Q, q) : q ∈ Q}.

For the SUM and MAX aggregate functions, the AGGSRs are
convex (Lemma 1). By imposing these two criteria, we ensure

that any object that may obscure any part of the head object
is discovered. Therefore, the AGGM INV IDIST of an object is
calculated only when all relevant obstacles are known.

Each iteration of the repeat-until loop (Lines 4 to 21) can be
one of the two cases:

(i) The AGGM INV IDIST of the head object can be calculated
(Lines 6 to 12).For this case, we first retrieve the objectE

at the head ofMainPQ and calculate its AGGM INV IDIST

(Lines 6 and 7). Second we check if the AGGM INV IDIST

of E is still smaller than the distance of the current head
object (Line 8). The object becomes the next NN if that is
the case (Line 9). The object is otherwise inserted back into
MainPQ if the distance is not infinity (Line 11).

(ii) More objects need to be retrieved (Lines 14 to 19).For
this case, we retrive a new objectX and updateCov via
FILTERED-IANN (Line 14). If the objectX is notnull then
X is inserted intoB (Line 16) and an entry is created ac-
cording toX andCov, which is AGGM INDIST(Q, X) (Line
17). The new entry is inserted intoMainPQ (Line 18).

The loop (Lines 4 to 21) repeats untilk of AVNNs are retrieved
or the dataset is exhausted.

Algorithm 8 SRF-AVkNN(Tree, Q, k)
1: CreatePQ with Tree.ROOT as the first entry
2: CreateMainPQ, an obstacle listB and an answer setA
3: Cov ← 0
4: repeat
5: if MainPQ is not emptyand

∀q ∈ Q, q ∈ AGGSR(Q, Cov) and
MainPQ.HEAD().OBJ⊆ AGGSR(Q, Cov) then

6: E ← MainPQ.POPHEAD()
7: E.DST← AGGM INV IDIST(Q, E.OBJ,B)
8: if E.DST≤MainPQ.HEAD().DST then
9: InsertE.OBJ into A

10: else if E.DST is not infinity then
11: InsertE back intoMainPQ
12: end if
13: else
14: (X, Cov) ← FILTERED-IANN(Tree,Q, PQ,B)
15: if X is not null then
16: InsertX into B
17: Create an entryE from X andCov
18: InsertE into MainPQ
19: end if
20: end if
21: until k objects inA or dataset exhausted
22: return A

Figure 12 shows how Algorithm 8 runs on the example in
Figure 11. The aggregate function isSUM. The execution steps
are as follow:
Step 1: Since MainPQ is initially empty, we skip to Line

14. ObjectX is retrieved via an FILTERED-IANN call
and inserted intoB and MainPQ with the distance of
SUMM INDIST(Q, X) (Lines 14 to 19).

Step 2: [MainPQ = 〈X〉.] We cannot yet calculate the
SUMM INV IDIST of X because a part ofX is still
outside the current AGGSR (Ellipse 1). We continue to
retrieve the next ANN,Y , and insert it intoMainPQ.

Step 3: [MainPQ = 〈X, Y 〉.] ObjectZ which is the next aggre-
gate NN toQ is retrieved and inserted intoMainPQ.

Step 4: [MainPQ = 〈X, Y, Z〉.] Object W is retrieved and
inserted intoMainPQ.

12

Step 5: [MainPQ = 〈X, Y, Z, W 〉.] The SUMM INV IDIST of X,
the current head object, can be calculated becauseX is
inside the AGGSR. We calculate the SUMM INV IDIST

based on the four obstacles we have retrieved (X, Y , Z

andW). The SUMM INV IDIST of X is smaller than the
SUMM INDIST of Y , the next head ofMainPQ, so X

is the first AVNN ofQ.

Fig. 12. SRF example

For the MIN aggregate function, MINSR is concave. Algo-
rithm 8, which relies on the AGGSR convexity, is thus no longer
applicable. In this case, we have formulated an alternativealgo-
rithm which exploits a special property of the MINM INV IDIST

function. The distance MINM INV IDIST betweenX and Q is
the minimum of MINV IDIST(q, X,S) for all query points in
Q, where S is the set containing all objects in the dataset.
It is therefore sufficient to use only objects nearer toQ to
determine the MINM INV IDIST between an object andQ. In
other words, the query processing can be done in the same
manner as PREPRUNING (Algorithm 3). Specifically, the AVkNN
algorithm for MIN (Algorithm 9) is obtained by replacing:
(i) M INV IDIST by MINM INV IDIST (Line 5), and (ii) MINDIST

by MINM INDIST (Line 15).

Algorithm 9 SRF-MIN -AVkNN(Tree, Q, k)
1: CreatePQ with Tree.ROOT as the first entry
2: Create an empty setA of answers
3: while PQ is not emptyand |A| is less thank do
4: E ← PQ.POPHEAD()
5: E.DST← Calculate MINM INV IDIST(Q, E,A)
6: if E.DST > PQ.HEAD().DST then
7: if E.DST is not infinity then
8: InsertE back intoPQ
9: end if

10: else if E contains an objectthen
11: InsertE.OBJ into A
12: else if E contains a nodethen
13: Children ← Tree.GETCHILD NODES(E.NODE)
14: for all C in Children do
15: D ← Calculate MINM INDIST(Q, C)
16: CreateNewEntry from C andD
17: InsertNewEntry into PQ
18: end for
19: end if
20: end while
21: return A

C. Analysis on the MRF and SRF Approaches

We analyze the two approaches using three parameters: (i) the
numberm of query points; (ii) the numberk of AVNNs required;

(iii) the sparsity of the query points (defined as the spans of the
s× s square that confines the query points).

Our analysis includes both I/O and CPU costs. The I/O cost
is the cost for accessing nodes in the R-Tree. The CPU cost is
dominated by the visibility computation.

The numberm of query points has a positive correlation to the
I/O cost of MRF because MRF executes a VkNN query for each
query point. Since SRF uses a single query to retrieve objects, m
should have no effect on the I/O cost of SRF. The CPU costs of
both SRF and MRF are proportional tom, because the cost of
AGGM INV IDIST computation is proportional tom.

A larger k means more nodes to retrieve and distances to
compute. Hence, both I/O and CPU costs increase ask increases
regardless of whether the algorithm is MRF or SRF based. The
incremental I/O and CPU costs for retrieving the next VNN also
has a positive correlation withk. This is because there are more
obstacles involved in the MINV IDIST computation and more
invisible objects or nodes to prune due to more obstacles ask

increases.
The effect of the sparsity of the query points depends on the

aggregate function. ForSUM and MAX aggregate functions, the
query has to consider more objects in order to obtaink AVNNs
for a more scatteredQ. The effect is opposite forMIN -AVkNN,
i.e., the query has to consider fewer objects in order to obtain k

AVNNs for a more scatteredQ. This is because more scattered
query points means that there are less common objects in the
sets of visible objects from different query points. According to
Definition 8,X being visible toQ requires: (i)X to be completely
visible toQ for SUM and MAX ; and (ii) X to be partially visible
to Q for MIN . As Q becomes more scattered, it is harder for an
object to be visible to all query points inQ but easier to be visible
to at least one of query points inQ. This affects MRF and SRF
algorithms in the same manner.

VI. EXPERIMENTAL STUDY

In this section, we report the result of our experimental study.
We use both synthetic and real datasets. We generate datasets
with different cardinalities. The default cardinality we use in the
experiments is 150,000. Each dataset contains rectangles that are
distributed uniformly at random in a space of10, 000 × 10, 000

square units. The width and height of each rectangle vary from
0.5 to 10 units randomly. The real dataset has556, 696 census
blocks from Iowa, Kansas, Missouri and Nebraska in a space of
10, 000 × 10, 000 square units. Each dataset is stored in a disk-
based R*-tree with a disk page size of4 KB. Each R*-tree has the
buffer capacity of5% of its size. Each experiment is conducted on
20 randomly located queries and the reported result is the average
result of the 20 queries.

A. Experiments on the VkNN Algorithms

This subsection presents a performance comparison be-
tween the two POSTPRUNING variants (Section IV-A) and the
PREPRUNING algorithm (Section IV-B). The two POSTPRUNING

variants are the (standard) POSTPRUNING algorithm described in
Algorithm 2 and the modification of the NS ripple algorithm,
POSTPRUNING-NS-TC. We vary two parameters, the numberk

of VNNs and the cardinalityn of the dataset.

13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 15 30 45 60 75 90 105 120 135 150

nu
m

be
r

of
 p

ag
es

k

PostPruning
PostPruning-NS-TC

PrePruning

(a) I/O cost

 0

 200

 400

 600

 800

 1000

 1200

 15 30 45 60 75 90 105 120 135 150

nu
m

be
r

of
 M

B
R

s

k

PostPruning
PostPruning-NS-TC

PrePruning

(b) Visibility computation (CPU) cost

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 15 30 45 60 75 90 105 120 135 150

tim
e

(s
ec

)

k

PostPruning
PostPruning-NS-TC

PrePruning

(c) Total response time

Fig. 13. The effect ofk on a synthetic dataset of150, 000 rectangles

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 15 30 45 60 75 90 105 120 135 150

nu
m

be
r

of
 p

ag
es

k

PostPruning
PostPruning-NS-TC

PrePruning

(a) I/O cost

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 15 30 45 60 75 90 105 120 135 150
nu

m
be

r
of

 M
B

R
s

k

PostPruning
PostPruning-NS-TC

PrePruning

(b) Visibility computation (CPU) cost

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 15 30 45 60 75 90 105 120 135 150

tim
e

(s
ec

)

k

PostPruning
PostPruning-NS-TC

PrePruning

(c) Total response time

Fig. 14. The effect ofk on a real dataset containing556, 696 census blocks from Iowa, Kansas, Missouri and Nebraska

 100

 1000

 10000

 50 100 150 200 250

nu
m

be
r

of
 p

ag
es

Number of objects (x 1000)

PostPruning
PostPruning-NS-TC

PrePruning

(a) I/O cost

 1000

 10000

 100000

 50 100 150 200 250

nu
m

be
r

of
 M

B
R

s

Number of objects (x 1000)

PostPruning
PostPruning-NS-TC

PrePruning

(b) Visibility computation (CPU) cost

 0.1

 1

 10

 50 100 150 200 250

tim
e

(s
ec

)

Number of objects (x 1000)

PostPruning
PostPruning-NS-TC

PrePruning

(c) Total response time

Fig. 15. The effect ofn on synthetic datasets

1) Effect ofk: In this experiment, we study the effect ofk

on the I/O cost, CPU cost and total response time. For both
datasets, we vary thek value from15 to 150 with an increment
of 15. Figure 13 shows the result for the synthetic dataset with
the default cardinality. For all cost measures, POSTPRUNING and
POSTPRUNING-NS-TC do not produce any noticeable difference
whenk is smaller than the number of VNNs. The NS termination
check provides benefit only when we use the VkNN query to
rank all visible objects. We therefore focus our comparisonon
POSTPRUNING and PREPRUNING in this experiment.

For all cost measures, POSTPRUNING and PREPRUNING per-
form similarly when k is small. As k increases, the cost of
POSTPRUNING increases more rapidly than that of PREPRUNING.
This is because, as more VNNs are retrieved, the ratio between
visible and invisible nodes becomes greater. These invisible nodes
are pruned by PREPRUNING but not by POSTPRUNING.

In terms of the I/O cost (Figure 13(a)), PREPRUNING always
performs better than POSTPRUNING because PREPRUNING is
optimal in terms of the I/O cost (Theorem 1).

In terms of the CPU (visibility computation) cost (Fig-
ure 13(b)), fork values under90 PREPRUNING has a slightly
higher cost than POSTPRUNING. This is because PREPRUNING

applies the MINV IDIST function to nodes as well as objects
while the MINV IDIST function is applied to only objects for
POSTPRUNING. As more VNNs are retrieved, POSTPRUNING has
more entries to consider than PREPRUNING because many nodes
are pruned by PREPRUNING.

The total response time is shown in Figure 13(c). We observe

that the two algorithms perform similarly whenk is small. Whenk
is greater than135 the benefit of pruning invisible nodes becomes
notable and PREPRUNING outperforms POSTPRUNING more and
more. In summary, PREPRUNING has a better performance and
scales better than POSTPRUNING.

The same experiment is conducted on the real dataset and the
result is shown in Figure 14. Similar to the results from the
synthetic dataset, PREPRUNING scales better than POSTPRUNING

for all measures. The cost difference between the two algorithms
is much larger than that of the synthetic dataset. This is be-
cause the real dataset has a greater density than the synthetic
dataset. The higher density consequently accents the difference
between the results produced by the MINDIST and MINV IDIST

distance functions.

2) Effect ofn: In this experiment, we study the effect ofn by
using POSTPRUNING, POSTPRUNING-NS-TC and PREPRUNING

to rank all visible objects for eachn value. We varyn from 50,000
to 250,000 with an increment of 50,000. Figure 15 shows that the
I/O cost, CPU cost and total response time of POSTPRUNING in-
crease asn increases, while the costs for POSTPRUNING-NS-TC
and PREPRUNING decrease. This is because POSTPRUNING

visits every node. Increasing the number of objects means a
larger R*-Tree and more nodes for POSTPRUNING to visit.
POSTPRUNING-NS-TC has lower costs than POSTPRUNING

because POSTPRUNING-NS-TC terminates the search when all
possible VNNs candidates are considered.

For PREPRUNING, although the NS-TC is not applied, the
algorithm achieves lower costs than POSTPRUNING-NS-TC. This

14

is because, PREPRUNING visits only nodes overlapped with
the visibility region. The costs of POSTPRUNING-NS-TC and
PREPRUNING reduce asn increases because of the negative corre-
lation between the number of VNNs andn as shown in Figure 16.
In summary, PREPRUNING visits fewer nodes, performs less
visibility computation and has a smaller total response time than
the two POSTPRUNING variants. Specifically, PREPRUNING has
a threefold smaller response time than POSTPRUNING-NS-TC.

 100

 1000

 50 100 150 200 250

N
um

be
r

of
 V

N
N

s

Number of objects (x 1000)

Fig. 16. Number of VNNs vs dataset size

3) Summary: PREPRUNING has a better performance than
POSTPRUNING and POSTPRUNING-TC-NC. When the number
of obstacles is small, the two POSTPRUNING variants may have a
smaller total response time than PREPRUNING, however, the cost
difference is negligible.

B. Experiments on the AVkNN Algorithms

This subsection presents performance comparisons between
two sets of AVkNN algorithms, MRF and SRF, in terms of the
I/O cost and total response time. For both MRF and SRF, the
total response time is significantly dominated by the CPU cost,
and thus the CPU cost can be deduced from the total response
time. Therefore, in this section, we only present the total response
time but not the CPU cost.

In the experiments, we vary the following parameters: (i) the
numberm of query points; (ii) the value ofk; (iii) the sparsity
of the query points (defined as the spans of the s× s square that
confines the query points). The default values ofm, k ands are
40, 60 and1 respectively.

We omit the result on the effect ofn due to the fact thatn
affects both MRF and SRF in the same way. This is because the
pre-pruning strategy is applied in all MRF and SRF algorithms.

For MRF, we use Algorithm 5 forSUM-AVkNN and MAX -
AVkNN, and Algorithm 6 forMIN -AVkNN. For SRF, we use Al-
gorithm 8 for SUM-AVkNN and MAX -AVkNN, and Algorithm 9
for MIN -AVkNN. For both MRF and SRF,SUM-AVkNN and
MAX -AVkNN only differ in the aggregate function.

1) Effect ofm: We varym from 20 to 100 with an increment
of 20. Figures 17(a) and 17(c) show the result in terms of
the I/O cost. The I/O cost of MRF increases asm increases,
while the I/O cost of SRF remains stable. MRF has a higher
I/O cost than SRF. This is because MRF executes a VkNN
query on each query point while SRF executes a single query.
Figures 17(b) and 17(d) show the result in terms of the total
response time. The total response time of SRF increases asm

increases and SRF outperforms MRF. This is because changes in
the value ofm affect the AGGM INV IDIST calculation costs. The
I/O cost of MRF is always higher than the I/O cost of SRF so
we omit presenting I/O costs for the rest of the experiments.

The result for theMAX -AVkNN query is shown in Figure 18.
The total response times of MRF and SRF increase asm increases
and SRF outperforms MRF, which are similar to the results

 10

 100

 1000

 20 40 60 80 100

nu
m

be
r

of
 p

ag
es

m

MRF
SRF

(a) I/O cost (synthetic)

 0.01

 0.1

 20 40 60 80 100

tim
e

(s
ec

)

m

MRF
SRF

(b) Total response time (synthetic)

 10

 100

 1000

 10000

 100000

 20 40 60 80 100

nu
m

be
r

of
 p

ag
es

m

MRF
SRF

(c) I/O cost (real)

 0.1

 1

 10

 20 40 60 80 100

tim
e

(s
ec

)

m

MRF
SRF

(d) Total response time (real)

Fig. 17. Effect ofm on sum-aggregate VkNN query

from the SUM-AVkNN query. As discussed earlier, theMAX -
AVkNN and SUM-AVkNN queries use the same algorithm and
only differ in the aggregate distance function. Consequently, they
both produce similar results for all settings in our experiments. We
thus omitMAX -AVkNN results from the rest of the experiments.
The result for theMIN -AVkNN query is shown in Figure 19. SRF
continues to perform better than MRF.

 0.01

 0.1

 1

 20 40 60 80 100

tim
e

(s
ec

)

m

MRF
SRF

(a) Total response time (synthetic)

 0.01

 0.1

 1

 10

 20 40 60 80 100

tim
e

(s
ec

)
m

MRF
SRF

(b) Total response time (real)

Fig. 18. Effect ofm on max-aggregate VkNN query

 0.01

 0.1

 1

 20 40 60 80 100

tim
e

(s
ec

)

m

MRF
SRF

(a) Total response time (synthetic)

 0.1

 1

 20 40 60 80 100

tim
e

(s
ec

)

m

MRF
SRF

(b) Total response time (real)

Fig. 19. Effect ofm on min-aggregate VkNN query

2) Effect ofk: We vary k from 15 to 150 with an increment
of 15. According to theSUM-AVkNN and MIN -AVkNN query
results in Figures 20 and 21, respectively, the total response time
increases ask increases for both algorithms, and SRF performs
better than MRF for both datasets. However, the increase in the
total response time for MRF-SUM-AVkNN on the real dataset
(Figure 20(b)) is slower than the others. It is recorded thatthe
total response time was increased from2.635 to 3.593 seconds
as the value ofk increased from15 to 150. In this setting, the
slow increase is due to the fact that a large number of objects
(functioning as obstacles) has to be retrieved before the first
AVNN can be returned. This effect is apparent in the real dataset

15

because the distribution and sizes of data objects are less uniform
than those of the synthetic dataset.

 0.001

 0.01

 0.1

 1

 30 60 90 120 150

tim
e

(s
ec

)

k

MRF
SRF

(a) Total response time (synthetic)

 0.01

 0.1

 1

 10

 30 60 90 120 150

tim
e

(s
ec

)

k

MRF
SRF

(b) Total response time (real)

Fig. 20. Effect ofk on sum-aggregate VkNN query

 0.001

 0.01

 0.1

 1

 30 60 90 120 150

tim
e

(s
ec

)

k

MRF
SRF

(a) Total response time (synthetic)

 0.01

 0.1

 1

 30 60 90 120 150

tim
e

(s
ec

)

k

MRF
SRF

(b) Total response time (real)

Fig. 21. Effect ofk on min-aggregate VkNN query

3) Effect of sparsity of query points:In this experiment, we
study the effect of the sparsity of query points by varying the
spans of the query set from1 to 5 units with an increment of1
unit. Figures 22 and 23 show that SRF continues to outperform
MRF for theSUM-AVkNN andMIN -AVkNN queries. Figure 22(a)
shows that the total response time gradually increases ass

increases for theSUM-AVkNN on the synthetic dataset. This is
because a greater value ofs produces a greater difference between
sets of visible objects of the query points. Consequently, we need
to retrieve more objects and nodes in order to find thek nearest
ones visible to all query points. The result for the real dataset is
shown in Figure 22(b). The increase in total response time isless
than that of the synthetic dataset.

 0.01

 0.1

 1

 1 2 3 4 5

tim
e

(s
ec

)

span

MRF
SRF

(a) Total response time (synthetic)

 0.1

 1

 10

 1 2 3 4 5

tim
e

(s
ec

)

span

MRF
SRF

(b) Total response time (real)

Fig. 22. Effect of sparsity of query points on sum-aggregate VkNN query

The result for theMIN -AVkNN query is shown in Figure 23.
The spans has a negative correlation with the total response time
for both algorithms and both datasets. An increase ins provides a
greater difference in perspectives between query points. Agreater
difference in perspectives provides more objects visible toQ. This
is because an object needs to be to visible to only one of the
m query points to be visible toQ for the MIN -AVkNN query.
Therefore, for both MRF and SRF, the number of objects and
nodes required to be considered in order to findk visible objects
is reduced.

4) Summary: SRF is superior to MRF in terms of the I/O
cost. The difference between the total response times of thetwo
approaches is smaller than that of the I/O cost. The total response

 0.01

 0.1

 1

 1 2 3 4 5

tim
e

(s
ec

)

span

MRF
SRF

(a) Total response time (synthetic)

 0.1

 1

 1 2 3 4 5

tim
e

(s
ec

)

span

MRF
SRF

(b) Total response time (real)

Fig. 23. Effect of sparsity of query points on min-aggregate VkNN query

time for processing AVkNN queries increases ask or m increases
for all aggregate functions. The total response time decreases as
s increases for theMIN function and increases ass increases for
SUM and MAX . We conclude that SRF is a better method for
AVkNN query processing than MRF.

VII. C ONCLUSIONS

In this article, we investigated thevisible k nearest neigh-
bor (VkNN) problem and a distance function calledminimum
visible distance(M INV IDIST), which is the distance between
a query point to the nearest visible point of an object. Fur-
thermore, we presented two VkNN algorithms, PREPRUNING

and POSTPRUNING. Both algorithms build up the visibility
knowledge incrementally as the visible nearest objects arere-
trieved. POSTPRUNING uses MINV IDIST for result ranking and
M INDIST for branch ordering. PREPRUNING uses MINV IDIST

for both. It is shown in the experimental results that PREPRUNING

scales better than POSTPRUNING in terms of the CPU and I/O
costs ask becomes larger or the density of the dataset increases.

We also proposed a multiple query point generalization to the
VkNN query according to three aggregate distance functions:
SUM, MAX and MIN of the visible distances from an object to
the query points. We proposed two approaches,multiple retrieval
front (MRF)andsingle retrieval front (SRF). MRF issues a VkNN
query at each query point to retrieve objects, whereas SRF issues
just one aggregate query to retrieve objects from the database.
Both approaches use a separate priority queue to re-rank the
retrieve objects according to the aggregate visible distance metric.
We showed that SRF consistently performs better than MRF.

VIII. F UTURE WORK

Moving query points form our current research direction for
VkNN. Our approach is to adapt the safe-region concept, which is
widely used in variants of NN problems with moving queries [15],
[17], [19], [31], to formulate a region that the visiblek NNs do not
change (VkNN safe region). In order to solve this problem, the
first subproblem to address is maintenance of a visibility region of
a moving query point. This subproblem was addressed by Aronov
et al. [1]. Their technique is however not suitable for regions
with holes/obstacles in the middle (which is commonly the case
for VkNN). The second subproblem to address is maintenance
of the MINV IDIST between an object and a moving query point.
These two subproblems will be investigated in order to derive a
safe-region solution for moving VkNN queries.

Another possible research direction involves deriving an alter-
native distance measure to MINV IDIST. In some applications, it
could be more meaningful to rank visible objects based on how
large they appear according to the perspective of the user atthe
query pointq. For example, a distant mountain would be more

16

prominent than a flower right next to the user. An alternative
measure could be formulated based on the size of the projected
image of each visible object on a unit-circle (or a unit-sphere
in 3D) centered atq. Using this measure, the object with the
largest projected image is considered to be the most preferred or
the nearest.

REFERENCES

[1] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility
queries and maintenance in simple polygons.Discrete & Computational
Geometry, 27(4):461–483, 2002.

[2] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility-
polygon search and Euclidean shortest paths. InFOCS, pages 155–164,
1985.

[3] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility
of disjoint polygons.Algorithmica, 1(1):49–63, 1986.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
an efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[5] J. L. Bentley. Multidimensional binary search trees usedfor associative
searching.CACM, 18(9):509–517, 1975.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos.
Closest pair queries in spatial databases. InSIGMOD, pages 189–200,
2000.

[7] E. W. Dijkstra. A note on two problems in connection with graphs.
Numeriche Mathematik, 1:269–271, 1959.

[8] K. Engel, M. Hadwiger, C. Rezk-Salama, and J. M. Kniss.Real-time
volume graphics. A K Peters Ltd., 2006.

[9] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abbadi. Con-
strained nearest neighbor queries. InSSTD, pages 257–278, 2001.

[10] Y. Gao, B. Zheng, G. Chen, W.-C. Lee, K. Lee, and Q. Li. Visible
reverse k-nearest neighbor queries. InICDE, 2009.

[11] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for
computing visibility graphs.SIAM J. Comput., 20(5):888–910, 1991.

[12] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[13] P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing
visibility in the plane.SIAM J. Comput., 24(1):184–201, 1995.

[14] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM Trans. Database Syst., 24(2):265–318, 1999.

[15] L. Kulik and E. Tanin. Incremental rank updates for movingquery
points. InGIScience, pages 251–268, 2006.

[16] K. C. K. Lee, W. C. Lee, and H. V. Leong. Nearest surrounder queries.
In ICDE, pages 85–94, 2006.

[17] K. C. K. Lee, J. Schiffman, B. Zheng, W.-C. Lee, and H. V. Leong.
Round-eye: A system for tracking nearest surrounders in moving object
environments. Journal of Systems and Software, 80(12):2063–2076,
2007.

[18] S. Nutanong, E. Tanin, and R. Zhang. Visible nearest neighbor queries.
In DASFAA, pages 876–883, 2007.

[19] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-Diagram: A
query dependent approach to moving kNN queries. InVLDB, pages
1095–1106, 2008.

[20] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest
neighbor queries in spatial databases.ACM Trans. Database Syst.,
30(2):529–576, 2005.

[21] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. InVLDB, pages 802–813, 2003.

[22] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD, pages 71–79, 1995.

[23] H. Samet. Depth-first k-nearest neighbor finding using the MaxNearest-
Dist estimator. InICIAP, pages 486–491, 2003.

[24] H. Samet.Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, San Francisco, CA, 2006.

[25] S. Suri and J. O’Rourke. Worst-case optimal algorithms for construct-
ing visibility polygons with holes. InSymposium on Computational
Geometry, pages 14–23, 1986.

[26] Y. Tao, D. Papadias, X. Lian, and X. Xiao. Multidimensional reversek
nn search.VLDB J., 16(3):293–316, 2007.

[27] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence
of obstacles. InICDE, pages 359–367, 2001.

[28] B. R. Vatti. A generic solution to polygon clipping.Commun. ACM,
35(7):56–63, 1992.

[29] A. Zarei and M. Ghodsi. Efficient computation of query point visibility
in polygons with holes. InSymposium on Computational Geometry,
pages 314–320, 2005.

[30] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial queries in
the presence of obstacles. InEDBT, pages 366–384, 2004.

[31] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based
spatial queries. InSIGMOD, pages 443–454, 2003.

