Incremental Evaluation of
Visible Nearest Neighbor Queries

Sarana Nutanong, Egemen Tanili, Rui Zhang
fDepartment of Computer Science and Software Engineering
University of Melbourne, Victoria, Australia
{sarana,egemen,j@csse.unimelb.edu.au
INICTA Victoria Laboratory, Australia

Abstract— In many applications involving spatial objects, we R Arc Distance
are only interested in objects that are directly visible from query e ; :mmq “’g
points. In this article, we formulate the visible k nearest neighbor Frle rom ¢ to

. . . » T 1D 3 from g to D

(VENN) query and present incremental algorithms as a solution, S

. D L 4 fromgto A
with two variants differing in how to prune objects during the) s e

. . L . T rom ¢ to visible part of D
search process. One variant applies visibility pruning to only : A
objects, whereas the other variant applies visibility pruning to i Visible Edge
index nodes as well. Our experimental results show that the S : Iso-distance Arc
latter outperforms the former. We further propose the aggregate e (P Invisible Edges
VENN query, which finds the visible & nearest objects to a set i ; : Query Point.
i : Region invisible to ¢

of query points based on an aggregate distance function. We
also propose two approaches to processing the aggregatéNN
query. One accesses the database via multiple XN queries,
whereas the other issues an aggregate nearest neighbor query

to retrieve objects from the database and then re-rank the reslts We propose more efficient ANN algorithms, based on the
based on the aggregate visible distance metric. With extensive '

experiments, we show that the latter approach consistently observation that finding thke visible NNs (VNNsjequires only a
outperforms the former one. subset of the complete visibility region. Specifically, &tefmine

the visible distance between the query pajnand an objectx,
it is sufficient to consider only the objects nearergtdhan X.
The above observation allows us to adaptramremental nearest
l. INTRODUCTION neighbor algorithm [14] to simultaneously obtain the relevant
. obstacles and VNNs. This adapted incrementaN™ algorithm
ISeI(EBrInL;'tI'rY ';n?jn Ce;r;enstlgfly rS;ug.'CEd t('zﬂp;maclor;ﬁaﬁt'oﬂglmakes use of a new distance function,INWIDIST, to rank
beengdevelop):ad 0 eﬁici%L:ltly gon?plljtz the r)(;giogrll \lisiblz to\{ge VNNs and order the tree branches during the search. The
. - .- MINVIDIST betweenX an i fin the distance from
given query point [2], [3], [13], [25], [29]. Many problemsni betwee and g is defined as the distance fro

tial datab o involve visibility. For examol st 9 to the nearest visible point o. For example (Figure 1), the
spatial databases also Involve VISIDIIIty. For-example oar MINVIDIST betweeng and D is the distance betweapandd,
can be interested in locations where views of scenes such

which is the nearest visible point an. A problem scenario that

sea or mountains are available. In an |nteract|ye onhneegan@ay benefit from the YNN query is as follows.
a player commonly needs to know enemy locations that can be

seen from his/her position. In such problems, only objettcty chtnarlo L (Placemetnttof Sth:]:'ty Ca.rtneraS)Jppos?@tk(lﬁt a
visible from a user’s location are relevant. In this artickee secunty company wants 1o attagnsecurity cameras "

investigate thevisible & nearest neighbor (MNN) query[18] ferent bgildings .to monitor .a.sitq. Clearly, it would.re'quire
which incorporates the requirement of visibility into theearest the monitored siteg to _be visible to all of these: buﬂdlngs.
neighbor ENN) query. Furthermore, the_securlty company ma}y_al_so want the disganc
A VENN query retrievest objects with the smallest visible from tht_ese secur!ty cameras goto be m'n'm'ZEd'
distances to a query point. In Figure 1, the NN of q are In this scenario, Fhe user (the. security compapy) can use
B, A and D (in order of visible distance). Object is excluded the VENN query to find these: visible nearest buildings. Our
because it is blocked bj. Object A is considered nearer tg incremental VANN algorithm also allows postconditions to be
than D because the visible part of is nearer tag than that ofp. @PPlied to query results. For example, when a security camer
Processing the MNN query requires determining the visibility Cannot be attached to some of thenearest buildings, the user
of objects. One straightforward method consists of thefathg ~ €an incrementally retrieve more results until the user iobta
steps: (i) calculating the visibility region of a query ppin buildings that can accommodate security cameras.
(i) using the query’s visibility region to “clip” data objts to Furthermore, we propose a multi-query-point generatizato
obtain the visible parts of each object, and (iii) executing\N ~ the VENN query, called theggregate ¥NN (AVkNN) query An
query on the clipped data objects. The drawback of this ampro AV kNN query findsk objects with the smallest aggregate visible

is that the visibility region computation requires accegsall distances to a given set of query points, rather than a steggey
objects in the database. point. A problem scenario for the ANN query is as follows.

Fig. 1. The kNN query

Index Terms— Geographical information systems, Spatial
databases, Query processing.

Scenario 2 (Placement of Network AntennaSuppose that a Il. RELATED WORK
telecommunication company is searching for a building 8iéit) . .
an antenna (or multiple antennas) to provide network adeess A Algorithms to Construct Visibility Regions
different sites. This bUIIdIng must have a line of Slght tcleaf Construction of a VISIbIlIty region (a|so known asv$|b|||ty
thesem sites. Furthermore, since the signal strength has a negaf¢lygor) inside a polygon with obstacles has been investigated
correlation with the distance from an antenna, the comp#Wy ajn the context of computational geometry. Asano et al. [3]
wants to minimize the worst-case distance to the sites. propose a method which requiré@(n2) time and space for
eprocessing an@(n) to compute the visibility polygon for each
lew point (» denotes the total number of edges of obstacles).
Asano et al. [2] propose an algorithm that runs@rinlogn)
time and the same result is also independently obtained by Su
and O’Rourke [25]. Heffernan and Mitchell [13] propose an
g@;orithm with the time complexity o®(n + hlogh) (Wwhereh
is the number of obstacles). Zarei and Ghodsi [29] propose an
algorithm that requires?(n®logn) time and O(n®) space for

Our investigation of the AYNN query focuses on three Preprocessing. The algorithm runsdr(1 + 1’)log(n + [V (q)|))
aggregate functionssum, MAx and MIN. By exploiting the tlm'e, where|V (q)] is the size of the visibility polygoi¥'(q), and
concept ofaggregate search regiofAGGSR), we are able to /' is bounded bwiN (h, [V (g)]).
apply an incremental retrieval strategy to the NN query. We These algorithms efficiently solve the problem of visililit
propose two incremental approaches (sets of algorithmisthéo Polygon construction, but must rely on preprocessing and/o
AVENN query. The first one uses a brute-force strategy, whi@¢cessing all obstacles. As a result, they are not suitahie f
issues a ¥NN query at each query point, although an effectivéany applications in the domain of spatial databases duketo t
pruning technique based on visible distance is applied fwore following reasons: (i) any update will invalidate the prepessed
the performance. We call this approastultiple retrieval front data; (ii) accessing all objects for each query is expensive
(MRF). The second approach issues just one aggregate query to
retrieve objects from the database and then re-rank thdtsesu
based on the aggregate visible distance metric. We call tifts
approachsingle retrieval front (SRF)Our experimental results e use the R*-tree [4], which is a variant of the popular spati
show that SRF consistently outperforms MRF. indexing structure R-tree [12] in our experiments. Our &thms
can also be applied to other hierarchical structures suctihes
quadtree [24]. An R-tree consists of a hierarchy minimum
o formalization and investigation of the AN query and the Pounding rectangles (MBRsjvhere each corresponds to a tree

MINVIDIST distance metric: node and bounds all the MBRs in its sub-tree. Data objects are
e two incremental algorithms,#STPRUNING and FRePRuUNING, Stored in leaf nodes and they are partitioned based on astieuri

for processing ¥NN queries without pre-computing visibility that aims to minimize the 1/O cost.

regions, and an optimality proof ofREPRUNING in terms of

In this scenario, the user (the telecommunication compal
can use our A¥NN algorithms to find the nearest building
visible to the m sites (if exists). In addition, similar to the
VENN algorithms, our AXNN algorithms are incremental so
postconditions can be applied to the problem. The user c
incrementally retrieve possible solutions until the firsteathat
satisfies the postconditions is found.

Distance Metrics

The contributions of this article are summarized as foltows

the 1/0 cost; b MAXDIST(q,X) = llg-all,
e a multi-query-point generalization of thekMN query (i.e., the X MINMAXDIST(¢,X) = lig-bll,
AV ENN query) with two sets of associated algorithms; ¢ \MINDIST(g,X) = lig-cll,

where llvll denotes the

magnitude of a vector v
q
MINDIST, MAXDIST, and MINMAX DIST metrics

e experimental studies on thekMN and AVKNN algorithms.

This article is an extended version of our previous pape}. [1§ig. 2
In our previous paper, we have proposed tié& query and two
approaches to processing iD®TPRUNING and FREPRUNING. In))
this article, we first provide a newRRPRUNING algorithm which ~ &'NN_search algorithms using R-trees usually depend on
is optimal in terms of the /O cost. Second, we generalize tff@me distance estimators to decide in which order to access
VENN query to a multi-query-point version, the AXN query, the treg nodes apd data objects. Figure 2 illustrates cotymon
and propose two approaches for the ™N query. Third, we used distance estimators [24], such asX\DIST, MINMAX DIST

perform a thorough experimental study on the algorithmstgh @nd MINDIST. The MINDIST between the query poin and
types of queries. an MBR X is the smallest Euclidean distance betwegn

and X. The MaxDiIST betweeng and X is the largest Eu-

The rest of the article is organized as follows. Section Blidean distance betweeg and X. The MINMAXDIST [22]
discusses related work on spatial data structures andegueror MAXNEARESTDIST [23] is the greatest possible distance
Section Ill provides preliminaries on theINV IDIST metric, the between the nearest object & and g. The MINDIST function
aggregate: nearest neighbor query and search regions. Section i/ optimistic in the sense that the INDIST of an MBR is
presents two algorithms for processingNN queries. Section V guaranteed to be smaller than or equal to the distance of the
formulates the A¥NN query and presents two approaches tnearest object in the MBR. Both AkDiST and MINMAX DIST
processing the A¥NN query. Results of our experimental studyare pessimistic [24] because theakIDIsT and MINMAX DIST of
are reported in Section VI. Finally, Sections VIl and Vllivgi an MBR are guaranteed to be greater than or equal to the déstan
the conclusions and future research directions respéctive of the nearest object in that MBR.

C. Nearest Neighbor Query Processing are inserted intaPQ. In Step 2,5 is retrieved fromP@Q and its

The k nearest neighborkNN) query findsk objects nearest two_ child entriesX andW are inserted intc_PQ. In S_tep 3,Ris
to a given query point. A formal definition of the query can béetrieved fromPQ, and noded/ andV’ are inserted inta’Q. In
given as follows. Step 4,V is retrieved fromPQ and it is the first NN. If another

Definition 1 ¢ Nearest NeighboriNN) Query): Given a set NN is needed, the process continues until another data toisjec
S of objects and a query poinj, the kNN of ¢ is a set.4 discovered. In this manner, an arbitrary number of NNs can be
of objects such that: ()4 containsk objects froms; (ii) for ~incrementally obtained.
any objectX € A and objectY” € (S — A), MINDIST(q, X) <
MINDIST(g,Y). T RISIT

Two well known algorithms for processingNN queries are B
depth-first (DF) kNN [22] and best-first (BF)kNN [14]. They
differ in the order of tree traversal. DENN visits tree nodes in a
depth-first manner and meanwhile maintains khreearest objects

I
wivl]l wix[] [xlz]]

Step Priority Queue PQ NNs
1 <S.R.T>

- 0
. i i ! 2 R,W,T.X ()
discovered so far as candidates. & nearest object’s distance M S 3 SYWTXUs]
to ¢ is used as a pruning distance to discard subsequent tree node, R 657 - p Pt
and objects. When every node is either visited or discariied; [z 1 ’ 1 6 <Y X,UZ> {(V.W}
) L . LU Z 7 X,U.Z VWY
objects remaining in the candidate set are the resultargarest ' = {)
neighbors (NNs). (a) R-tree of objects with MBR¢b) R-tree and execution steps of a

BF-kNN visits tree nodes and data objects in the order of theif; 3 an example run of BRNN BF-kNN search

distances to the query point. Farther nodes are never prouted

scheduled to be visited later on, and they may not be visited

at all if the & NNs are discovered first. The main benefit of)

BF-kNN is threefold: (i) the value of: need not be specified in D- Reélated Spatial Problems

advance; (ii) the results are ranked according to theiadists by ~ Ferhatosmanoglu et al. [9] propose tenstrainediNN query
default; (iii) the number of visited nodes is minimal (that the which finds the NNs inside a polygon defined as linear constai
algorithm is 1/0 optimal.) Since our ANN algorithms are based (or a disjunction of linear constraints). Although the ikty
on BF%NN, we further elaborate the discussion as follows. region can be represented as a disjunction of constraints, i
inefficient to use the constrainekNN algorithm to solve the

Algorithm 1 BF-kNN(T'ree, g, k) VENN problem. This is because the visibility region depends on
1: CreatePQ with T'ree.ROOT as the first entry the location of the query point, i.e., each query point hasrique
2: Create an empty sed of answers visibility region. Solving kNN using the constrained NN query
2 repg:—i PQ.PoPHEAD() requires an additional step of visibility region compuaati
5. if E contains an objedhen The nearest surrouqder (NS) querg proposed by 'Llee et
6: Insert £.08BJ into A al. [16]. An NS query finds the nearest object for all orieiotad
7. else if E contains a nodéhen around the query poing. Consequently, only objects visible &
8: Children « Tree.GETCHILDNODESE.NODE) can be an NS. The main difference between the NS query and the
9: for all C'in Children do VENN query is that an NS query finds all “visible” objects around
10: D — Calculate MNDIsT(g, C') the query point whereas the number of visible objects foNM
1L CreateNewEntry from C' and D is user-determined. Two NS algorithms were proposed: tigeean
12: Insert New Entry into PQ o . ; .
13: end for basedsweepalgorithm and the distance-basegdple algorithm.
14: end if Since both of our ¥NN algorithms are distance-based, we further
15: until & objects inA or PQ is empty discuss the ripple algorithm as follows.
16: return A The ripple algorithm retrieves NS candidates in the order of

MINDIST using a priority queue. The algorithm keeps track of
Algorithm 1 gives the detailed steps of BINN. We start with the NS set and the associated orientation of each NS caadidat
a priority queueP@ with the root node as the first entry and ardiscovered so far. Upon retrieval of each object, the NS set i
empty setA that will contain the resultarit NNs (Lines 1 and 2). accordingly updated. The algorithm halts when the priagitgue
If the entry retrieved fromP(Q is an object, the object is the nextis exhausted or it satisfies the followihs termination check (NS-
NN (Lines 5 and 6); otherwise (the entry contains a tree nod&y) conditions: (i) each orientation has an associated NSal(ii)
(Line 7), we retrieve the child nodes stored in the node (I8he objects in the priority queue are outside the smallest eitbht
For each of its child nodes, a new entry is created, tielDAsTis encloses all NS answers (centeredzat
calculated and the entry is then inserted imQ (Lines 9 to 13). Papadias et al. [20] propose a generalization tacti query,
The repeat-until loop stops when theNNs has been discoveredcalled theaggregatekNN (AkNN) query An AkNN query finds
or PQ is exhausted (Line 15). Finally, the sdt of resultantk & objects with the smallest aggregate distances to aOseff
NNs is returned (Line 16). query points. Papadias et al. investigate three types aeggte
An example run of the algorithm is given in Figure 3. The uppdunctions: sum, MAX andMIN; and propose two approaches for
part of Figure 3(b) shows the R-tree for the dataset in Fi@¢a¢. processing ANN queriesmultiple-andsingle query They have
The lower part of Figure 3(b) lists the execution steps ofdN. shown that the single query algorithm is more efficient thae t
The priority queueP@ keeps all the nodes and data objects to baultiple-query one in terms of I/O cost and response timéas Th
visited in the order of their distances 4o In Step 1,R, S andT study however does not address NN queries.

The closest-pair queryn spatial databases [6] involves finding I1l. PRELIMINARIES
two objects from two different datasets where the distarge by TheMINVIDIST Metric
tween them is minimized. The similarity between the clogedt
and aggregate NN problems is that they both involves comgari
distances of objects from different reference points (@Bje function, whose definitions are given as follow,
However, the two problems differs in the following ways: tfie : '

number of aggregate query points is much smaller than thF&The visibility clipping function Q@ip is based on the polygon
cardinality of the dataset, while the two datasets in a clopair Clipping algorithm proposed by Vatti [28]. In Vatti's algtm,

query may have similar sizes; (ii) the aggregate query paang clipping two pc_)lygons is done by partmonl,ng th_e space atty .
. . : to the y-coordinates of the two polygons’ vertices. These parti-
usually localized, while the two closest-pair datasets repgn .. : . .
tions are then processed in an orderly fashion. For eachipast
the same dataspace.

a partial resultant contour is obtained by scanning for iptess

The ViSi.bi”ty graph [11] involveg prqblems related t_o the Ob'interections between the two polygons.)/After all g|c])zjlrrlli$ig‘fr5e
struct_e_d distance between tWO. points in a 2D space W'th olles_ta processed, the complete resultant polygon is obtainedowith
Specifically, the obstructed distance between two pointhés post-processing, e.g., sorting the edges.

!eng';h of the path between th? tW(,) F’O‘,”ts that (i) doe.s.nosxrras In this paper, we define IGP as a function that returns the
|nte.r|(.)r.qf any obstacle, and (ii) minimizes the travelllldugtance‘. visible part of an objeci with respect to a query point and a
A visibility graph can be constructed by conn_ec_tm_g Obﬂ_ml given setS of objects (functioning as obstacles). That is,
corners that are visible to each other. The visibility graph

turn allows the problem of obstructed distance calculatitm CLIP(q, X,S) =X — U SHADOW(q,Y).

be solved in a spatial-network manner [21]. YeS

Zhang et al. [30] propose a database-oriented solution toThe shadow of an objedt is the region obscured by from
spatial problems with obstacles. Their solution does ngiire a the perspective of a given query poipt That is,
complete visibility graph to be constructed beforehanddoeiates L
alocal visibility graphon the fly. Among a wide range of spatial SHADOW(q,Y) = U {s:yegs},
queries in presence of obstacles, tiestructed NN (ONN) query YEINTERIOR(Y')
is proposed. The ONN query retrieve®bjects with the smallest where NTERIOR(Y') denotes the set of points iri that are not
obstructed distanceis a setting of polygonal obstacles and poinbn the edges. Using only the interior Bfinstead of the complete
data objects. objectY means that” cannot block itself.

Although both \kNN and ONN are NN variants that involve MINVIDIST is the distance between the query point and the
obstacles, they require different techniques. FOeNW, any nearest visible point of an object, formally defined as folo
object blocked by obstacles has the distance of infinity,lavhi Definition 2 (Minimum Visible Distance -MINVIDIST):

ONN instead uses the distance of the shortest detour. Sirigwen a setS of objects (functioning as obstacles), the
blocked objects could be returned as ONN results, the lityibi MINVIDIST betweeng and X given as
culling strategy used in NN algorithms is inapplicable to { MINDIST(q, X'), if X' #0

In order to formally define MNVIDIST, we first need to define
two functions: thevisibility clipping function and theshadow

ONN. The emphasis of the ONN algorithm is the use of a local MINVIDIST(g, X, S) =

visibility graph to calculate obstructed distances viakBlija's

algorithm [7]. For VLNN, the MINVIDIST betweeng and an whereX’ is equal to CIP(q, X, S).

object X is the Euclidean distance betwegnand the nearest Our incremental processing technique allows us to use only

visible point onX. One may generalize MVIDIST as a single- a small subset of to calculate the MVIDIST of an object.

hop variant of the obstructed distance measure. Spedjfiealy Detailed discussion on MVIDIST calculations in the context of

object unreachable by a single hop frgnhas the MNVIDIsT of incremental query processing will be given in Section IV.

infinity and is ignored. This property of MVIDIST eliminates ~ According to Definition 2, MNVIDIST calculations in 3D can

the need for Dijkstra’s algorithm. As a result, a visibiliggaph e achieved by replacing the polygon clipping algorithm][28

is not needed for MV IDIST calculations in WNN. with a 3D volume clipping algorithm [8]. Discussion on the
Tung et al. [27] propose an obstacle-aware clustering fqaen €ffect of MINVIDIST calculations in 3D on the proposed:MN

The technique can be used to construct a spatial data seubat 2/gorithms is given in Section IV-C.

is more suitable for spatial queries that use the obstrutitgdnce

as the proximity measure [30] than the R-tree [12]. HoweveB. Aggregate Nearest Neighbor Query

the technique requires the visibility graph to be constdct An aggregatekNN (AKNN) query findsk objects with the

beforehand. As pointed out by Zhang et al. [30], this requéet smallest aggregate distances to a@edf query points. A formal

incurs additional effort to maintain the visibility graphhen definition of the ANN query can be given as follows.

updating the set of obstacles. Definition 3 (Aggregat&NN Query): Given a setQ of query
Recently, Gao et al. [10] propose thasible reversekNN points and a sef of objects, the aggregateNN of Q is a set

(VRENN) queryin a setting of point data objects and rectangulad of objects such that: (i)4 containsk from S; (ii) for any

obstacles. A VRNN query finds all objects with the query poiit given X that is in 4 andY in (S — A), the aggregate MIDIST

as a member of the ANN [18] set. They also propose a WRN betweenQ and X, AGGMINDIST(Q, X), is less than or equal to

algorithm which applies the visibility culling concept toveell AGGMINDIST(Q,Y).

known RkNN algorithm, the TPL algorithm [26]. Similar to our The AGGMINDIST function is defined as follows.

VENN algorithms, the VR:NN algorithm retrieve obstacles using Definition 4 (Aggregate Minimum Distance AGGMINDIST):

a best-first search to construct the region visible to Given a setQ of query points and a selection on the aggregate

0, otherwise,

function, AGGMINDIST(Q, X) returns either the minimum Lemma 1:The SUMSR of asuM-AkNN query is convex.

(MINMINDIST(Q, X)), maximum (MaxMINDIST(Q, X)) or Proof: According to Definition 5, the SMSR of a setQ

sum (SYUMMINDIST(Q, X)) of MINDIST(gq, X) for all ¢ in Q. of query points and the coveragecan be expressed as follows.
An example ANN query is given in Figure 4. According to the _

sum-aggregate distancel M INDIsT) function, the aggregate SUMSR(Q,¢) = {p: Z lg —pll < c}.

NNs of g1 andqg areX, Y andZ, in the order of SMMINDIST. acQ
To prove that such a region is convex, we show that all points

on the line segmentd has to be in the region for any two points
S — a andb in the region, i.e.,

(leq—a|§c>/\<2|q—b|§c).

Let 2 be any point orub. That is,x is Aa+ b, whereX and
are nonnegative real numbers andy is 1. The sum of distances
betweenr and all query points iQ is > ||Aa-+ub—g]|, which is

q€Q . .
also smaller than or equal tobecause of the following relations.

Fig. 4. Aggregate query example with the query @et {q1, g2} and data Z [Aa + pb —q|| = Z IA(a —q) + pn(b—q)||

objects X, Y and Z. The ellipses show the boundaries of the search regions gco geQ

SUMSR(Q, SUMMINDIST(Q, X)), SUMSR(Q, SUMMINDIST(Q,Y)) and

SUMSR(Q, SUMMINDIST(Q, Z)). < Z (IMa—a@)|| + lud—q)|l) < Ac+pc=c
qeQ

We can adapt the BENN algorithm (Algorithm 1) to ob-
tain an algorithm to process KAIN queries by changing the
distance function (Line 10 of Algorithm 1) from MDIST to
AGGMINDIST. The BF-search principle in the BENN algorithm
is still applicable to ANN queries. It is becauseGGMINDIST is
optimistic for all aggregate functions (i.esUM, MAX andMiIN).

Therefore, any point on ab is also in the SMSR.]
Applying the same principle to thetax function, we will
also obtain the same result. By exploiting the convexity of
SUMSRs and MXxSRs, we can determine whether we have

obtained enough obstacles to calculate the aggregat®&/NDIST
(AGGMINVIDIST) of an object. Consequently, we will see that
C. Search Region both _data _retrieval and visibility region construction c{m

' done in an incremental manner. For thex aggregate function,

For each nearest neighbor retrieved from the priority queug;nSRs do not share the same property of convexity. This will
there is a corresponding search region (SR) which delirhiés tpe further discussed in Section V-B.

current coverage of the search. According to the examplengiv
in Figure 3(a), the region enclosed by Circle{$,: ||lg — p|| <

MINDIST(q,V)}, corresponds toV/. We define an SR as a V. VISIBLE NEARESTNEIGHBOR QUERY

function of ¢ and a coverage as SRq,c) = {p: |la — p| < c}. A Visible k Nearest Neighbor (MNN) queryfinds k nearest
Similarly, for an A:NN query, an aggregate SR ¢SR) can objects visible to a query point. We consider theNN problem
be formally defined as follows. in a setting where (i) data objects are represented as pudygo

Definition 5 (Aggregate Search Regior(hiven a set Q of and (ii) each data objects is also an obstacle. A formal digfimi
query points, the search regiorcASR(Q, ¢) is a set of pointg ~ Of the query is given as follows.
such that AAGMINDIST(Q,p) ! is less than or equal tg i.e., Definition 6 (Visiblek Nearest Neighbor (MN) Query):
Given a setS of objects (represented by polygons), the visible
.) . kNN of q is a set.A of objects such that: (i)4 containsk
Since we consider three aggregate functiossiM, MAX visible objects fromS (given that the number of visible objects

and MIN; there are three _types of GGSRs: SJMSR’ is greater than or equal t9); (ii) for any given X that is in A
MAXSR and MNSR respectively. For_ example, Figure 4, 4y that is not inA, Y € S — A, MINVIDIST(q, X, S) is less
shows three 8MSRs of the three objectsX, Y and Z. a1 or equal to MVIDIST(q, Y, S).

The region ®IMSR(Q,SUMMINDIST(Q, X)) is a set of
points p where SIMMINDIST(Q,p) is less than or equal
to SUMMINDIST(Q, X). Any object that is overlapped with ignored. Calculating the MiVIDIST between an objeck and a
SUMSR(Q, SUMMINDIST(Q, X)) has a AsGMINDIST smaller guery pointqg does not require the complefe Lemma 2 can be

than or equal toX. The reverse however does not hold. INsed to determine a subgebf S such that MNVIDIST(g, X, S)
other words, 8MSR(Q, SUMMINDIST(Q, X)) may not over- yields the same result asINVIDIST(g, X, B).

lap with all objects that have aggregate distances smdiken t Lemma 2:If MINVIDIST(q,7,S) is greater than

SUMMINDIST(Q, X). For example, BMMINDIST(Q, X) i,s MINVIDIST(q, X,S) then MINVIDIST(q,X,S) is equal to
smaller than BMMINDIST(Q,Y), but X does not overlap with MINVIDIST(q, X, S — {Z})

SUMSR(Q, SUMMINDIST(Q,Y)). Proof: Let v be a point such thajjq — v| is equal to

1To avoid an excessive number of distance functionsgMINDIST(Q, p) MINVIDIST(_‘L).(’ S). The line S.egmemfu can be one of the
also denotes the aggregate value{fiy — p|| : g € Q}. two cases: (ijv is the nearest point oX to g (the MINVIDISTS

AGGSR(Q,c) = {p : AGGMINDIST(Q, p) < c}.

Using MINVIDIST (Definition 2) to rank \kNN results means
that invisible objects, which has the distances of infinaye

of B and A in Figure 1 for examples), which means that thé&. ThePOSTPRUNING Algorithm
MINVIDisT of the object does not depend on any other objects; The RosTPRUNING algorithm (Algorithm 2) is based on the
(i) gv is determined by a corner or an edge of an object. Singg-_.\N algorithm (Algorithm 1). In Line 6, the distance of
such object needs to at least have a comnergenthe object he opject entry is set to MVIDIST. If the newly assigned
has to be nearer tg than X. (For the example in Figure 1, the\;,\vpisT is still smaller than the distance of the head of
MINVIDIST of D is determined by the top-left corner 6f) B e priority queud the object is added tol as the next VNN
Lemma 2 implies that only objects with the INVIDIST (1jnes 7 and 8). Otherwise, the entry is inserted back into th
greater tharX can be safely ignored (as obstacles) when calcul.:-gﬁority queue for reassessment if the distance is not igfini
ing the MINVIDIST betweenX andq. Thus, a subsef of S that (| jnes 9 and 10). In terms of node processing (Lines 12 to 19),
makes MNVIDIST(q, X, B) equivalent to MNVIDIST(¢g, X,S) MminDisT is used as the estimator for each child node which is
can be given as follows. the same as the BENN algorithm. The MNDIST metric can be
B={Y:Y € S,MINVIDIST(g,Y,S) < MINVIDIST(¢q, X,S)}. used as a ¥NN estimator because MDIST is also optimistic
for VENN, i.e., the MNDIST of a node is always less than or

This lemma allows us to incrementally retrieve VNNs andqual to the object with the smallestivW1DIST in the node.
construct the visibility region at the same time. Consetjyen

the required amount of visibility knowledge is optimizedn A Algorithm 2 POSTPRUNING(Tree, q, k)
optimistic estimator is used to rule out objects withN\W IDIsTs - CreatePQ with Tree.ROOT as the first entry
greater than that of the object being considered. For ex@nifpl 5. Create an empty set of answers

the MINDIST of X is greater than: the MINVIDIST of X has 3: while PQ is not emptyand | A| is less thark do
to be greater thar as well. Let us consider Figure 5, where 4. E «— PQ.POPHEAD()

objects in the figure are considered according to the order ¢t if E contains an objedhen

MINDIST. In Step 1, we know that MiVIDIST of B is equal & £.DsT « Calculate MNVIDIsT(q, E, A)
. 7: if E.DST< PQ.HEAD().DST then

to MINDIST(q, B), because no other object has aN®IST Insert £.OBJ into A

smaller thanB. In Step 2,C is obscured byB so C is not g else if £.DST is not infinity then

a VNN of g. In Step 3,D is found to be partially blocked 10: Insert E back into PQ

by B. As B is the only know obstacle, MV IDIsT(q, D,{B}) 11 end if

becomes the tentative MVIDIST of D. Since Q.IP(q, D,{B}) 12: else if E contains a nodéhen

is farther than4 (which is the next object in line)D may not 13 Children — Tree.GETCHILDNODES(E.NODE)
be the next VNN and we have to considdrfirst. In Step 4, % for all € in Children do

The MINVIDIST of A is calculated. The visible part oft is 12 gr;tec]slecsgirh;h}zﬁTéqé%D
nearer than CpP(q,D,{B}), so A becomes the second VNN. ;7. Insert New Entry into PQ
In Step 5, the NNV IDIST of D is recalculated (withA taken in 1s: end for
to consideration this time). The MVIDIST of D is unaltered 19: end if
and D becomes the third VNN. 20: end while
Figure 5(b) also shows how the visibility clipping (@) 2% retun A
function is used to calculate the INMIDIST. The MINVIDIST
betweenD and q is is equivalent to the MiDIST between Modifying the NS (nearest surrounder) ripple algorithm:
CLip(q,D,{B,A}) andgq. PosSTPRUNING-NS-TC. In the original definition of the NS ripple
algorithm [16], data objects are retrieved from the priogtieue
5 SHADOW(q.A) according to the MNDIST metric. The NS ripple algorithm can
Crip(g,D,{B}) 4 Al be modified to incrementally retrieve VNNs and to stop after
XV_/ CLIP(g.D.(BA) 7 obtaining thek VNN_s. This rr_lodific_ation i_s done by applying
5 Lo the MINVIDIST metric and reinserting objects that may not be
D d the next VNN into the priority queue. This modification will
7 o result in an algorithm similar to ®TPRUNING (Algorithm 2)
with the termination check NS-TC (Section II). We hence call
‘) j this modification BSTPRUNING-NS-TC.
=9 SHADOW(q,B) q SHADOW(q,B)
B. ThePREPRUNING Algorithm
(a) Steps 1, 2 and 3 (b) Steps 4 and 5

The RREPRUNING algorithm (Algorithm 3) is an optimiza-
Fig. 5. MINVIDIST calculations using the visibility clipping function tion of POSTPRUNING (Algorithm 2) in terms of the 1/O cost.
Unlike POSTPRUNING, PREPRUNING applies MNVIDIST to
objects as well as index nodes. Index nodes are hence “pre-
ZHrémed” according to their visibilities before being vsit At
each iteration, we first retrieve the head Bf) (Line 4) and
calculate its MNVIDIST (Line 5). We then check whether the
updated distance is larger than the distance of the new hiead o

We now describe two incremental algorithms to proceksIN
queries. In our presentation, we assume that all objects
indexed in an R-tree [12], although our algorithms are apblie
to many hierarchical spatial indices such as the k-d-trg¢eof5
the quadtree [24]. We propose two variation$)SRPRUNING
(Algorithm 2) and REPRUNING (Algorithm 3), which differ in

the distance estimator used to order entries in the prigugue 2gor previty, we omit the handling of a marginal case whex@ is empty.
but produce the same results. This omission is also applied to the rest of algorithms.

PQ (Line 6). If that is the case, we check whether the entry is used for search ordering3 is searched beforel because

visible, i.e., the distance is not infinity (Line 7). If thetenis

MINDIST(q, B) is smaller than NNDisT(q, A). In Step 3,7,

visible, it is reinserted intd°@ (Line 8). The entry is discarded H and G are inserted into the priority queuB@. In Step 4,

if it is found to be invisible. If the updated distance is athise

the nearest entry i?Q is I and it is retrieved from the priority

smaller than the new head &fQ, we check if the entry is an queue. Ther is discarded because it is invisible. Nodgs now
object (Line 10). If yes, the object is inserted intbas the next the nearest. Objects, D and £ from A are inserted intd’Q in
VNN (Line 11); otherwise (an index node), for each child nod8tep 5. Next,D is discovered as the second VNN in Step 6.

of the index node, a new entry is created and inserted o
(Lines 12 to 19).

Algorithm 3 PREPRUNING(T'ree, q, k)

1: CreatePQ with Tree.ROOT as the first entry
2: Create an empty sed of answers
3: while PQ is not emptyand |A| is less thank do
E — PQ.PoPHEAD()
E.DST « Calculate MNVIDIST(q, E, A)
if £.DST> PQ.HEAD().DST then

if E£.DST is not infinity then

Insert £ back into PQ

9: end if

NG

10: else if E contains an objedhen

11: Insert E£.OBJ into A

12: else if E contains a nodéhen

13: Children <« Tree.GETCHILD NODES(E.NODE)
14: for all C in Children do

15: D < Calculate MNDiIsT(q, C)
16: CreateNew Entry from C and D
17 Insert NewEntry into PQ

18: end for

19: end if

20: end while

21: return A

Note that another possibleRBPRUNING variant is to use

MINVIDIST(q, C, A) as the distance of a child nodgin Line 15.
However, the MNVIDIST of C calculated based oA could be
inaccurate, sincgl may not contain all objects with MVIDISTS

Let us now consider the search order (Figure 7(b)) produged b
PREPRUNING (Algorithm 3), where MNVIDIST is also applied
to nodes. In Step 2F is discovered as the first VNN. In
Step 3, we examin® and find out that NNV IDIST(q, B, {F'})
is greater than M\DIST(q, A) so B is inserted back inta°Q
and NodeA becomes the nearest entry. ObjeCtsD and E, are
inserted intoPQ (Step 4), then Objecb which currently has the
smallest MNVIDIST is discovered as the second VNN (Step 5).
PREPRUNING visits fewer nodes than ¢5TPRUNING, because
PREPRUNING is in fact /0O optimal (Theorem 1).

MINVIDisT(g,B, {F})

MINVIDisT(q,A, {F}),
MmDist(q,A)

Fig. 6. An R-tree of{C,D, E, F,G, H,I}; ObjectsC, D and E are in
Node A; H, G andI are inB; F'is by itself.

less than that ofC. We thus cannot avoid recalculating the 1heorem 1:The I/O cost of the REPRUNING algorithm is

MINVIDIST for every entry retrieved fronPQ (Line 5). Since
MINVIDIST is significantly more expensive thaniNDIST, this

optimal.
Proof: According to Lemma 2, the MIVIDIST assigned

modification introduces a higher computational overheade P the head entry based on the obstacles retrieved so fag @in

will not further consider this REPRUNING variant in this article.

C. Comparison BetweeROSTPRUNING and PREPRUNING

We analyze the WNN query cost in two major components
the 1/0 and CPU costs. The I/0O cost concerns the number y imal
pages retrieved from the disk. The CPU cost is dominated &y ¢ /O optimal.

MINVIDIST computation.

Generally, we expect®STPRUNING to be more expensive than
PREPRUNING in terms of both 1/0 and CPU costs for large value
of k due to the following reasons.d3TPRUNING does not prune

invisible nodes so it has a higher 1/0 cost thaREPRUNING.
In terms of the CPU cost, although theiWiDisT function
(which is much more expensive thanivDIsT) is only applied
to objects (not to R-tree nodes) fobBTPRUNING, the algorithm
ends up with more entries to compute theNW IDIST. This is

because the lack of pruning eventually creates more objects 4
consider. Furthermore, MVIDIST also provides a better search 5 (p G, C, H, E) {F}
ordering than MNDIST on visible nodes. An example comparing g

the difference that ®sTPRUNING and RREPRUNING have in
terms of search orders are given in Figures 6 and 7.

Assume thatF is recently discovered as the first VNN (afterrig. 7.

Step 2 in Figure 7(a)). According to Algorithm 2 wheraMDIsT

of Algorithm 3) is the correct MNVIDIST. This implies that the
algorithm strictly visits the node with the smallest IMVIDIST
before any other nodes. Since the next VNN cannot be rettieve
without exploring the node with the current smallesNM IDIST,

'tQ]e algorithm visits the minimum number of nodes and hence it

[|
This however does not mean thaREPRUNING always per-
forms better than ®sTPRUNING. The 1/O cost reduction comes
gvith an additional processing cost, i.e., the computatidn o

POSTPRUNING

Step PO 7 Sterl?REP;éNING -
1 (FBA) {3 1 (F.B,A) 0
2 (B, A) {F} 5 (,B 1’4> (F}
3 (I,A,G,H) {F} 3 (A:B) (F}

(4.G H) {F} 4 (D,B,C,E) {F}
5 (B,C,E) {F, D}

(G,C,H,E) {F,D}

b
@ (b)

Search orders of theoBTPRUNING and RREPRUNING algorithms
for the example in Figure 6

MINVIDIST for every node visited. The MVIDIsT function ization to the \kNN query. A formal definition of the A¥NN
is more expensive than IMDIST due to the polygon clipping query is given as follows.
operations. We will further investigate their practicatfpemance Definition 7 (Aggregate MNN (AVENN) Query): Given a set
especially for different values of in our experimental study S of objects (represented by polygons) and a €ebf query
(Section VI-A). points, the aggregate visibleNNs of Q is a set4 of objects such
The NS adaptation, #TPRUNING-NS-TC, has a similar that: (i) A containsk objects fromS that are visible taQ; (ii) for
behavior to BSTPRUNING when k is smaller than the number any givenX in 4 andY in (S —.A), AGGMINVIDIST(Q, X, S)
of VNNs. When using the two variants to rank all VNNs inis less than or equal to @GMINVIDIST(Q,Y, S).
the dataset, ®sTPRUNING always visits all R-tree nodes due The AGGMINVIDIST function is defined as follows.
to the absence of termination checlo$TPRUNING-NS-TC, on Definition 8 (AggregateM INVIDIST — AGGMINVIDIST):
the other hand, terminates when (i) the query point is cotalyle Given a set Q of query points, the distance function
surrounded by VNNs, and (i) the next entry in the priorittege AGGMINVIDIST(Q, X,S) is the aggregate distance of
is outside the minimum circle centered @tthat encloses all MINVIDIST(q, X,S) for all g in Q.
current VNNs candidates (termed as #mclosing circlg. Fig- We focus on three aggregate functiosgim, MAX and MIN,
ure 8 shows the visibility region (as the white area) in tweesa which correspond to three distance functionsM31INVIDIST,
Figure 8(a) shows a case where the query point is surroungledNdax MINVIDIST and MINMINVIDIST, respectively. Figure 9
VNNSs. In this cases, ®sTPRUNING-NS-TC terminates when the shows the visibility regions generated from the s@t of
next entry in the priority queue is outside the enclosingleir query points{q1,92} and the datasets, {U,V,W, X,Y, Z}.
Figure 8(b) shows a case where there exists an angular gaprhé SUMMINVIDIST between Q@ and X can be given
VNNSs. In this case, the enclosing circle is inapplicable #ke as (MINVIDIST(q1, X,S) + MINVIDIST(g2, X,S)), which is
POSTPRUNING, POSTPRUNING-NS-TC visits all nodes in the in turn equal to (|[g1 — 1] + |lgz2 — «=2|). Similarly,
R-tree. In both cases,REPRUNING visits only nodes overlapped MAXxMINVIDIST and MINMINVIDIST of the same object and
with the visibility region. Therefore, REPRUNING incurs a lower query points are equal taAX {|lq1 — z1||, ||lg2 — z2||} = |lq1 —
I/O cost than the two @STPRUNING variants. z1|| andMIN{|lq1 — z1]|,|lg2 — @2||} = |lg2 — =2 respectively.
, _ In the same way as the MV IDIST metric is defined (Def-
O n—F inition 2), an object X is invisible to Q iff the distance
AGGMINVIDIST(Q, X, S) is infinity. This implies the following
DE properties.
D D (i) For SUMMINVIDIST and MAXMINVIDIST, X is in-
q
|

visible to Q iff there exists a query poinig in
Q such that MNVIDIST(g, X,S) is infinity. Figure 9
:” C] gives an example where both sum and maximum of
MINVIDIST(q1,U,S) and MINVIDIST(g2, U, S) are infin-
[] ity because NNVIDIST(q1,U, S) is infinity.
(i) For MINMINVIDIST, X is invisible to Q Iff
MINVIDIST(q, X,S) is infinity for all query pointsq

Enclosing circle

(a) Fully surrounded query point (b) Visibility region with a VNN Gap

Fig. 8. Visibility region in two different cases in Q. Figure 9 gives an example where the minimum
of MINVIDIST(q1,U,S) and MNVIDIST(g2,U,S) is
A setting that could be favorable tctoOBTPRUNING-NS-TC is non-infinity because MiV1DIST(gz2, U, S) is non-infinity.
when the query point is fully surrounded by VNNs and all olkgec
in the enclosmg circle are V|§|ble. This could hz.a_ppen Wh)etﬁ(e y
number of visible of objects is low enough, or (ii) the quenjrt K X|—
is situated in the middle of a circle formation of objects.sbrch R X, / -
cases, BSTPRUNING-NS-TC could have a smaller response time) Bea)
than RREPRUNING, since no benefits can be gained from pruning ~ 7
index nodes beforehand. Do
In a 3D application, the cost of MVIDIST calculations L -t ,q_z,
is higher than the 2D one. This may affect the preference) " -
between the BSTPRUNING-NS-TC and REPRUNING algo- = Arca Tnvisible 10— Area Tnvisible
rithms. In a setting of centralized processing, the cost of | ‘Db"‘h query points — one query point o

MINVIDIST calculations could outweigh the 1/0 cost. As a result,
POSTPRUNING-NS-TC could be the preferred option. In contrast;i9. 9. Visibility regions generated from two query poirs and g2 with
in a distributed setting, ®EPRUNING could perform better than the data se of {U,V,W, X,Y, 2}
POSTPRUNING-NS-TC, since the 1/0 cost is determined by the the pronlem of ANN cannot be solved using conventional
network Iaten_cy anq bandwidth. Experimental studies aiNM aggregateNN (AkNN) query algorithms, since each query point
in 3D will be investigated as future work. has a different set of visible objects and each visible dhjezy
have a different visible part for each query point, as ilat&d in
V. AGGREGATEVISIBLE NEARESTNEIGHBOR QUERY Figure 9. Therefore, we propose two incremental approathes
In Section I, we have motivated the aggregate visibleearest processing A¥NN queries:multiple retrieval front (MRF)and
neighbor (AVkNN) query, which is a multi-query-point general-single retrieval front (SRF)for the three aggregate functions.

A retrieval front is a sub-query used to access the databaddgorithm 4 GETNEXTVNN(T'ree, q, PQ, B)

Figure 10 shows how the two approaches differ in the wayl: while PQ is not emptydo

they access the database. MRF executes multiple instafities o 2
GETNEXTVNN algorithm (Algorithm 4), which is an algorithm
to incrementally retrieve VNNs based on theRHPRUNING

algorithm (Algorithm 3), at each query point. The resultsnfr g
different query points are combined in a priority queue. SRF7:
in contrast, accesses the database via a singfeERED-IANN 8:
query (Algorithm 7). Both approaches havepast-processing -
component. For MRF, the post-processing component is Ltsedl'Pf
reorder objects retrieved from the query points according to E
their AGGMINVIDIST to Q. For SRF, the post-processing com- 5.
ponent is used to reorder objects retrieved fromr ERED-IANN
according to &AGMINVIDIST. For both approaches, we maintains:

arw

E — PQ.PoPHEAD()
E.DST+— MINVIDIST(q, E, B)
if £.DST> PQ.HEAD().DsT then
if £.DST is not infinity then
Insert £/ back into PQ
end if
else if £ contains an objedhen
return (E.OBJ, E.DST)
else if E contains a nod¢éhen
Children «— Tree.GETCHILDNODES(E.NODE)
for all C in Children do
D — Calculate MNDisT(q, C)

all retrieved objects as obstacles to calculate teesMINVIDIST
of the objects in the priority queueMainPQ). The priority
gueueMainPQ uses the AGMINDIST metric as an optimistic

estimator and AGMINVIDIST as the actual ranking distance

metric. Therefore, objects retrieved from the head\VddinPQ
are in the increasing order ofGesMINVIDIST. As a result, both
approaches can be used to incrementally retréggregate VNNs
(AVNNSs)from the database.

Query Processing

Data Retrieval |

> GETNEXTVNN §_ |

>'| GETNEXTVNN }\ PQ
Obstacle

’|‘| GETNEXTVNN P i §

__

Post Processing |

/ Main _\

q:

Database

&—> Result

Gn

(a) Multiple Retrieval Front (MRF)

Query Processing
P\

Data Retrieval

Post Processing |
Main
-/ PQ \ i

List H

7

Database FILTERED-IANN

»—> Result

(b) Single Retrieval Front (SRF)
Fig. 10. Structural comparison between MRF and SRF

A. Multiple Retrieval Front (MRF)

In the MRF approach, the query processing is divided into
two components: data retrieval and post-processing as rshow

in Figure 10(a). The data retrieval component consistsmof

retrieval fronts, wheren is the number of query points. Each

retrieval front is an instance of ENEXTVNN (Algorithm 4),

14: CreateNewFEntry from C and D
Insert New Entry into PQ

16: end for

17: end if

18: end while

19: return (nwll, infinity)

We first explain Algorithm 5. The initialization steps
(Lines 1 to 8) of the algorithm involves: (i) creating a piigr
gueueMain PQ, the list£ of all discovered obstacles and the set
A of results; (ii) retrieving the first VNN for each query pagint
(iii) initializing the minimum coverage X/inCov) to zero.

The main part of query processing takes place in the repeat-
until loop (Lines 9 to 30). For each iteration, we check wieeth
the head object of/ainPQ is contained by all SRs (Line 10).
Consequently, for every;; in Q, we ensure that any object
that may block any part of the head object is discovered. As a
byproduct, this condition also ensures that any objecthatthe
AGGMINVIDIST smaller than the head objectsG&MINVIDIST
is discovered. As a result, each iteration of the repeat-ioap
can be one of the two cases:

(i) The AcGMINVIDIST of the head object can be calculated
(Lines 11 to 17). For this case, we retrieve the head
object from MainPQ and calculate the AGMINVIDIST
of the head object (Lines 11 and 12). Then we check
whether the newly calculated distance is smaller than the
distance/estimate of the next head object (Lines 13). If yes
the head object is the next AVNN (Line 14). Otherwise,
the object is reinserted intd/ainPQ, or discarded if its
AGGMINVIDIST is infinity (Lines 15 to 17).

More objects need to be retrieved (Lines 19 to 28)For

this case, we select the query with the minimum coverage
MinCov (Lines 19 and 20) and insert its corresponding
object X; into MainPQ if it is not a duplicate of a previ-
ously retrieved object (Lines 21 to 26). Object is replaced
and the coverage of the corresponding query is updated
(Line 27). The newX; is inserted intaB; (Line 28).

The loop repeats untik AVNNs are found or all VNNs from

(i

which is an incremental VNN retrieval performed at each yueeach ofq; in Q have been considered (Line 30). Finally, is

point. The post-processing component consists of a priquieue
MainPQ and a list£ of obstacles. We usé/ainPQ to rank
objects according to their @&cMINVIDIST to Q, where the
AGGMINVIDIST of each object is calculated based 6n

returned as the result (Line 31).

An example run of Algorithm 5 with the aggregate function of
suMm is shown in Figure 11. The sétof objects is{ X,Y, Z, W},
and the setQ of query points is{q1,g2}. In the initialization

In what follows, we present two MRF algorithms: Algorithm 5

and Algorithm 6. Algorithm 5 can be used to processkNN

queries for thesum, MAX and MIN aggregate functions. An
optimization can be applied for th&iN aggregate function, which

results in Algorithm 6.

SFor brevity, we omit the handling of a marginal case where all
Covy, Cova, ..., Covy, are infinity and X1, Xo, ..., X, are null. This
omission is applied to all MRF algorithms.

4We again here omit the handling of a marginal case whérds null.
This omission is also applied to all MRF algorithms

Algorithm 5 MRF-AVENN(T'ree, Q, k)
1: CreateM ainP(Q, an obstacle listC and an answer sed

10

Step 6: [MainPQ = (X,Y, Z,W).] ObjectY is discovered via

q1 but discarded.

2: for all gi in Q = {q1,q2;...,gm } do Step 7: [MainPQ = (X,Y, Z,W).] Object Z is discovered via
Create a list3; of obstacles _ g2 but discarded.
CreateP(Q; with T'ree.ROOT as the first entry Step 8: [MainPQ = (X,Y,ZW)] At this point, we

3

4

5 (X5, Cov;) «— GETNEXTVNN(Tree, qi, PQi, B;)
6: InsertX; into B;
7: end for

8: MinCov «— 0

9: repeat

0: if MainPQ is not emptyand Vg; € Q,
MainPQ.HEAD().OBJ C SR(g;, MinCov) then

11: E — MainPQ.POPHEAD()

12: E.DsT « Calculate ASGMINVIDIST(Q, E.OBJ, L)
13: if E.DST< MainPQ.HEAD().DST then
14: Insert £.OBJ into A

15: else if E.DsST is not infinity then

16: Insert E back into MainPQ

17: end if

18: else

19: MinCov «— MINJ~; Cov;

20: 1 « the indexi such thatCov; = MinCov
21: if X; is not in L then

22: Insert X; into £

23: D « Calculate SGMINDIST(Q, X;)
24: Create an entryr from X; and D

25: Insert £ into MainPQ

26: end if

27: (X;,Cov;) «— GETNEXTVNN(T'ree, qi, PQi, B;)
28: Insert X; into B;

29: end if

30: until k objects inA or dataset exhausted

3L return A

steps (Lines 1 to 8)7 is discovered as the first VNN of1

and Y is discovered as the first VNN of2. The minimum Fig.

coverage {/inCov) of each step is illustrated as two circles,
each corresponding to one query point. Each pair of circtes a

have obtained enough obstacles to calculate the

SUMMINVIDIST of X, the head object o ainPQ,
based on the obstacle list ofX,Y,Z W). Object
X is retrieved and its SMMINVIDIST is calculated
(Lines 11 and 12). Since theu®IMINVIDIST of X is
smaller than the next nearest item (Line 1%)js added
to A (Line 14).

(b) Steps 5to 7

11. MRF example

labelled according to its step number. A solid circle desdtee Algorithm 6 MRF-MIN-AVENN(T'ree, Q, k)

case where an object is discovered via its correspondingyques:
point, and a dotted circle denotes the opposite case. Fon@ga 2:
MinCov at Step 1 is denoted as two circles with the labels oB:
“1”. The circle centered ag; is solid because the discovered 4
object Z is retrived viaq;. The execution steps are as follow: o
Step 1: Since MainPQ is still empty, we go to Line 19 and 7.

calculateMinCov; then we select the indexsuch that s:

Cov; is equal toMinCov, i.e., i is one in this case. 9:

The VNN of q1, Z, is inserted intaM ainPQ (Line 25). 10

We retrieve the next VNN of; to replaceZ and the 11

. . . 12:

corresponding coverag€ouv; is updated (Line 27). 13

Step 2: The priority queueMainPQ has only one objectZ, ,.

in it (MainPQ = (Z)). We still cannot determine the 1s.
SUMMINVIDIST of Z becauseZ is not yet contained 16:
by all SRs. As a result, we need to retrieve more objecis:
to expand the SRs. Objett which is the next VNN of 18

Create an empty sed of answers
for q; in Q do
Create a list3; of obstacles
Create PQ; with T'ree.ROOT as the first entry
(X5, Cov;) — GETNEXTVNN(T'ree, qi, PQ;, B;)
Insert X; into B;
end for
MinCov «+— 0
repeat
MinCov «— MIN[~L; Cov;
i «— the indexi such thatCov; = MinCov
if X; is notin A then
Insert X; into A
end if
(X5, Cov;) — GETNEXTVNN(T'ree, qi, PQ;, B;)
Insert X; into B;
until k objects inA or dataset exhausted
return A

g2, is inserted intaM ainPQ. We then retrieve the next
VNN of g2 to replaceY.

Step 3: [MainPQ = (Y, Z).] ObjectX is discovered viajz and
is inserted intoM ainPQ.
Step 4: [MainPQ = (X,Y, Z).] ObjectX is discovered viagy

but it is discarded because it is a duplicate.
[MainPQ = (X,Y,Z).] Object W is retrieved viagz
and inserted intd\/ainPQ.

Step 5:

For themMIN-AV kKNN query, we can improve the algorithm by
removing the post-processing part. This is becauseX ifs a
VNN of g; and has never been previously discovered as a VNN
of anyg; in Q (wherei is not equal tgj), MINVIDIST(g;, X, S)
must be smaller than or equal to anyNW1DIST(g;, X, S). That
is, MINVIDIST(g;, X, S) is equal to MNMINVIDIST(Q, X, S).
This improved algorithm is shown in Algorithm 6. In order to

11

find the next AVNN, it is sufficient to always look fok; that that any object that may obscure any part of the head object
has the smallest MVIDIST to g; (Lines 10 and 11) and ensureis discovered. Therefore, thecSMINVIDIST of an object is
that its not a duplicate (Lines 12 to 14). After that, we repléhe calculated only when all relevant obstacles are known.

currentX; by the next VNN ofg; and then updat€ov; (Line 15). Each iteration of the repeat-until loop (Lines 4 to 21) can be
Object X; is then inserted into its corresponding obstacleist one of the two cases:

(Line 16). The loop (Lines 9 to 17) repeats uritiheighbors are (i) The AGGMINVIDIST of the head object can be calculated

discovered or the dataset is exhausted for all query points. (Lines 6 to 12).For this case, we first retrieve the objdct
at the head of\fainPQ and calculate its AGMINVIDIST

B. Single Retrieval Front (SRF) (Lines 6 and 7). Second we check if thesBMINVIDIST

In this section, we present twsingle retrieval front (SRF) of E is still smaller than the distance of the current head
algorithms: (i) Algorithm 8 for thesum and MAX aggregate object (Line 8). The object becomes the next NN if that is
functions; (ii) Algorithm 9 for themin aggregate function. the case (Line 9). The object is otherwise inserted back into

Algorithm 8 accesses the database via a siffidfiered incre- MainPQ if the distance is not infinity (Line 11).
mental aggregate NMlgorithm (FLTERED-IANN, Algorithm 7), (i) More objects need to be retrieved (Lines 14 to 19)For
which adapts a similar strategy to BRN (Algorithm 1). How- this case, we retrive a new objeat and updateCov via
ever, Algorithm 7 has following differences from Algorithtn FILTERED-IANN (Line 14). If the objectX is notnull then
(i) visibility filtering (Lines 3 and 4) is applied to avoid adlessly X is inserted intoB (Line 16) and an entry is created ac-
processing entries (nodes/objects) invisible to all qyeints, and cording toX andCov, which is AGGMINDIST(Q, X) (Line
(i) M INDIST is replaced by AGMINDIST. 17). The new entry is inserted inte ain PQ (Line 18).

Although Algorithm 7 contains visibility filtering, objest ~ The loop (Lines 4 to 21) repeats untiof AVNNs are retrieved
retrieved via the algorithm are still ranked according te thor the dataset is exhausted.
AGGMINDIST metric. The post-processing component is used

to re-rank objects according to thecAMINVIDIST metric. Algorithm 8 SRF-AVENN(T'ree, Q, k)
1: CreatePQ with Tree.ROOT as the first entry
Algorithm 7 FILTERED-IANN(Tree, O, PQ, B) 2: CreateMainP@, an obstacle lis3 and an answer sed
3: Cov 0

1: while PQ is not emptydo

2: E < PQ.PoPHEAD() 4: repeat

5. if MainPQ is not emptyand

i if gi;;rlchked byB for all g in Q then Vq € Q,q € AGGSR(Q, Cov) and
- . . MainPQ.HEAD().OBJ C AGGSR(Q, Cov) then
5: else if E contains an objedhen . B« MainPO PorH
6: return (E.OBJ, E.DST) & MainPQ.POPHEAD()
7 else if E contains a nodéhen 7: E.DST — AGGMINVIDIST(Q, E.OBJ, B)
: 8: if E.DST< MainPQ.HEAD().DST then
8: Children <« Tree.GETCHILDNODES(E.NODE) : :
9: for all C in Children do o Ins_ertE.OB_J Into A .
. 10: else if £.DsST is not infinity then
10: D « Calculate ASGMINDIST(Q, C) : : .
: 11: Insert £ back into M ainPQ
11 CreateNewEntry from C and D : .
. 12: end if
12: Insert New Entry into PQ 13 else
= enfj“i? for 14 (X,Cov) — FILTERED-IANN(Tree, Q, PQ, B)
15 end while 15: if X is notnull then
16: return (null, infinity) 16: Insert X" into B
: ' Y 17: Create an entryf from X andCov
18: Insert £/ into MainPQ
The initialization steps (Lines 1 to 3) of Algorithm 8 invals: 19: end if

(i) creating a priority queuéQ for the ALTERED-IANN query 20: endif

(Line 1), MainPQ, an obstacle lisB and an answer set for ;; ‘rjermlmk c;tl)jects inA or dataset exhausted
post-processing of the retrieved objects (Line 2); (iitiaizing -

the coverage®'ov to zero (Line 3).

Similar to the MRF counterpart, the query-processing loop Figure 12 shows how Algorithm 8 runs on the example in
(Lines 4 to 21) of the algorithm consists of the data retliewal Figure 11. The aggregate function $&m. The execution steps
the post-processing components. Whifuin PQ is not empty are as follow:

(Line 5), we process the retrieved object by calculating thHgtep 1: Since MainPQ is initially empty, we skip to Line

AGGMINVIDIST of the head object oM ain PQ if the following 14. ObjectX is retrieved via an ETERED-IANN call
two criteria are satisfied. and inserted inta3 and MainPQ with the distance of
(i) The head objectMainPQ.HEAD().OBJ is confined in SUMMINDIST(Q, X) (Lines 14 to 19).
AGGSR(Q, Cov) (Definition 5). Step 2: [MainPQ = (X).] We cannot yet calculate the
(ii) All query pointsg in Q are contained by AGSR(Q, Cov). SUMMINVIDIST of X because a part of{ is still
Specifically, Cov is greater than or equal to the mini- outside the current AGSR (Ellipse 1). We continue to
mum coverage bound, that makes &GSR(Q, ¢,) con- retrieve the next ANNY, and insert it intoM ain PQ.
fine all query points inQ. The value ofc, calculated as Step 3: [MainPQ = (X,Y).] ObjectZ which is the next aggre-
MAX {AGGMINDIST(Q, q) : q € Q}. gate NN toQ is retrieved and inserted int®/ ain PQ.

For the sum and MAX aggregate functions, the G&SRs are Step 4: [MainPQ = (X,Y,Z).] Object W is retrieved and
convex (Lemma 1). By imposing these two criteria, we ensure inserted intoM ainPQ.

12

Step 5: [MainPQ = (X,Y, Z,W).] The UIMMINVIDIST of X, (iii) the sparsity of the query points (defined as the spanf the
the current head object, can be calculated because s x s square that confines the query points).
inside the ASGSR. We calculate the 3AMINVIDIST Our analysis includes both 1/0 and CPU costs. The I/O cost
based on the four obstacles we have retriev€dY, Z s the cost for accessing nodes in the R-Tree. The CPU cost is
andW). The SUIMMINVIDIST of X is smaller than the dominated by the visibility computation.
SUMMINDIST of Y, the next head o ainPQ, so X The numbern of query points has a positive correlation to the
is the first AVNN of Q. I/0 cost of MRF because MRF executes aNN query for each
e guery point. Since SRF uses a single query to retrieve ahject
should have no effect on the 1/O cost of SRF. The CPU costs of
both SRF and MRF are proportional ta, because the cost of
AGGMINVIDIST computation is proportional te:.
A larger kK means more nodes to retrieve and distances to
compute. Hence, both 1/0 and CPU costs increask iasreases
i regardless of whether the algorithm is MRF or SRF based. The
@ incremental 1/0 and CPU costs for retrieving the next VNNbals
’ has a positive correlation with. This is because there are more
obstacles involved in the MVIDIST computation and more
invisible objects or nodes to prune due to more obstacles as
4 increases.
Fig. 12. SRF example The effect of the sparsity of the query points depends on the
aggregate function. Fasum and MAX aggregate functions, the
qguery has to consider more objects in order to obta#lNNs
for a more scattere@. The effect is opposite fomin-AV kNN,
i.e., the query has to consider fewer objects in order toiobia
function. The distance MIMINVIDIST betweenX and Q is AVNNS fqr a more scattere@. This is because more '.scatte.red
- . . query points means that there are less common objects in the
the minimum of MNVIDIST(q, X,S) for all query points in - - . . .
. 7 . - ets of visible objects from different query points. Acdogdto
Q, where § is the set containing all objects in the dataseE finiti bei isibl S b letel
It is therefore sufficient to use only objects nearer @to _e_lnltlon 8, X being visi etqQ requires: ()X to e_comp_e_tey
determine the MUMINVIDIST between an object an@. In visible to © for sum andMAX; and (ii) X to be pa_rually visible
Fﬁ)eg for MIN. As Q becomes more scattered, it is harder for an

other words, the query processing can be done in the Sao ject to be visible to all query points i@ but easier to be visible
manner as REPRUNING (Algorithm 3). Specifically, the A¥NN to at least one of query points i@. This affects MRF and SRF

algorithm for mIN (Algorithm 9) is obtained by replacing: lqorithms in th
(i) MINVIDIST by MINMINVIDIST (Line 5), and (ii)) MNDIST algonthms in the same manner.
by MINMINDIST (Line 15).

For the MIN aggregate function, MISR is concave. Algo-
rithm 8, which relies on the BGSR convexity, is thus no longer
applicable. In this case, we have formulated an alternatige-
rithm which exploits a special property of theiMMINVIDIST

Algorithm 9 SREMIN-AVENN(Tree, O, k) VI EXPERIMENTAL STUDY

1: CreatePQ with T'ree.ROOT as the first entry In this section, we report the result of our experimentatigtu

2: Create an empty sed of answers We use both synthetic and real datasets. We generate dataset
3: while PQ is not emptyand |.A] is less thark do with different cardinalities. The default cardinality weeuin the

4: FE «— PQ.PoPHEAD() . . .

5. E.DsT — Calculate MNMINVIDIST(Q, E, A) expe_rlments |§ 150,000. Each de_ttaset contains rectarigieare

6: if E.DST> PQ.HEAD().DST then distributed uniformly at random in a space uf, 000 x 10,000

7: if E.DST is not infinity then square units. The width and height of each rectangle vam fro

8: Insert £ back into PQ 0.5 to 10 units randomly. The real dataset ha%6, 696 census

9 end if blocks from lowa, Kansas, Missouri and Nebraska in a space of

10: else if E contains an objedhen
11: Insert E.OBJ into A
12: else if E contains a nodéhen

10,000 x 10,000 square units. Each dataset is stored in a disk-
based R*-tree with a disk page size4KB. Each R*-tree has the

13: Children « Tree.GETCHILD NODES(E.NODE) buffer capacity ob6% of its size. Each experiment is conducted on
14: for all C in Children do 20 randomly located queries and the reported result is ttrage

15: D «— Calculate MNMINDIST(Q, C) result of the 20 queries.

16: CreateNewFEntry from C and D

17: Insert New Entry into PQ

18: end for A. Experiments on the®NN Algorithms

19: end if

20: end while This subsection presents a performance comparison be-
21: return A

tween the two BSTPRUNING variants (Section IV-A) and the
PREPRUNING algorithm (Section IV-B). The two ®STPRUNING
variants are the (standardpBTPRUNING algorithm described in
C. Analysis on the MRF and SRF Approaches Algorithm 2 and the modification of the NS ripple algorithm,

We analyze the two approaches using three parameterse(i) ROSTPRUNING-NS-TC. We vary two parameters, the numiger
numberm of query points; (ii) the numbet of AVNNs required; of VNNs and the cardinality: of the dataset.

100 T T T T T T 1200 T T T T T T T 0.04 T T T T T T T
o 90 PostPruning —— . PostPruning —+— 0.035 PostPruning —+—
9 80 PostPruning-NS-TC ------ & 1000 -~ PostPruning-NS-TC ------ 0.03 PostPruning-NS-TC ---%--- /|
A] & ST __ o ST
g 70 PrePruning ---x £ s00 | PrePruning ---x i 2 0.025 PrePruning ---x E
S S 600 | A < 002 .
2 2 400 | 2 £ 0015 8
£ £ = 001 o
=1 =1 N
c £ 200 - 3 o 1 0.005 i
== Il Il Il Il Il Il O

0
15 30 45 60 75 90 105120135150

k
(a) I/O cost

(b) Visibility computation (CPU) cost

0
15 30 45 60 75 90 105120135150

k

Fig. 13. The effect o on a synthetic dataset a50, 000 rectangles

15 30 45 60 75 90 105120135150
k

(c) Total response time

13

450 T T T T T T 5000 T T T T T T T T 016 T T T T T T T T
400 | PostPruning —+— «» 4500 [PostPruning —+— 0.14 + PostPruning —+—
0350 [PostPruning-NS-TC ---%*--- 7 @ 4000 - PostPruning-NS-TC ------ / 4 012 PostPruning-NS-TC ---*--- /|
%300 L PrePruning ---%--- 4 03500 | PrePruning ---x<-—-* o < PrePruning ---%--3
2250 |] 23000 1 g olf g
2200 [i 22500 - 1 2008 [i
2 82000 |- 1 £ 0.06 [E

150 i £ 1500 g = o4 |]
29[NI 210 oK 0.02

. S SR >\< L 508 = S 0l >\< Lo 0 O e et S

0
15 30 45 60 75 90 105120135150 15 30 45 60 75 90 105120135150 15 30 45 60 75 90 105120135150
k k k

(a) I/O cost (b) Visibility computation (CPU) cost (c) Total response time
Fig. 14. The effect of on a real dataset containirigh6, 696 census blocks from lowa, Kansas, Missouri and Nebraska

T T T T T 10 T T T
¢ 10000 ¢ E $ 100000 f f i
> PostPruning —+— & PostPruning ——3)
g ing-NS-TC ---%--- PostPruning-NS-TC ---:-- o C PostPruning —+— |
o PostPruning-NS-TC --- = R 9 1 N
S 1000 *-- PrePruning ---x--- 4 s 5 PrePruning ---x-- b PostPruning-NS-TC ------
° e © 10000 Eo , o N . PrePruning ---x---
3 . ke 2 T *}é E e oo
e e = | Sl s]
E o0 f TR 4 5 Ko 01 g e
€ B 3 € 1000 F e .
Il Il Il Il Il Il Il Il Il
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Number of objects (x 1000) Number of objects (x 1000) Number of objects (x 1000)
(a) /0O cost (b) Visibility computation (CPU) cost (c) Total response time

Fig. 15. The effect of» on synthetic datasets

1) Effect ofk: In this experiment, we study the effect &f that the two algorithms perform similarly wheris small. Wherk
on the 1/0 cost, CPU cost and total response time. For bdthgreater than35 the benefit of pruning invisible nodes becomes
datasets, we vary the value from15 to 150 with an increment notable and REPRUNING outperforms BSTPRUNING more and
of 15. Figure 13 shows the result for the synthetic dataset withore. In summary, REPRUNING has a better performance and
the default cardinality. For all cost measures,SRPRUNING and scales better thandsTPRUNING.
POSTPRUNING-NS-TC do not produce any noticeable difference The same experiment is conducted on the real dataset and the
whenk is smaller than the number of VNNs. The NS terminatiofesylt is shown in Figure 14. Similar to the results from the
check provides benefit only when we use theNW query to synthetic dataset,FEPRUNING scales better thandBTPRUNING
rank all visible objects. We therefore focus our comparison for all measures. The cost difference between the two ahyos
POSTPRUNING and FREPRUNING in this experiment. is much larger than that of the synthetic dataset. This is be-
For all cost measures,0dBTPRUNING and FREPRUNING per- cause the real dataset has a greater density than the synthet
form similarly when k is small. As k increases, the cost of dataset. The higher density consequently accents thediffe
POSTPRUNING increases more rapidly than that GREPRUNING. between the results produced by theN®isT and MINVIDIST
This is because, as more VNNs are retrieved, the ratio betwetistance functions.
visible and invisible nodes becomes greater. These irgisitades
are pruned by REPRUNING but not by RPSTPRUNING.

In terms of the 1/0 cost (Figure 13(a))RBPRUNING always

2) Effect ofn: In this experiment, we study the effect ofby
using FOSTPRUNING, POSTPRUNING-NS-TC and REPRUNING
to rank all visible objects for eachvalue. We vary: from 50,000
performs better than &STPRUNING because REPRUNING is to 250,000 with an increment of 50,000. Figure 15 shows tiat t
optimal in terms of the 1/O cost (Theorem 1). I/O cost, CPU cost and total response time afSPPRUNING in-

In terms of the CPU (visibility computation) cost (Fig-crease as increases, while the costs fooBTPRUNING-NS-TC
ure 13(b)), fork values unde0 PREPRUNING has a slightly and RREPRUNING decrease. This is becaused$TPRUNING
higher cost than ®sTPRUNING. This is because REPRUNING Visits every node. Increasing the number of objects means a
applies the MNVIDIST function to nodes as well as objectdarger R*-Tree and more nodes foroBTPRUNING to visit.
while the MINVIDIST function is applied to only objects for POSTPRUNING-NS-TC has lower costs than OBTPRUNING
POSTPRUNING. As more VNN are retrieved, d5TPRUNING has because BSTPRUNING-NS-TC terminates the search when all
more entries to consider thamRPPRUNING because many nodespossible VNNs candidates are considered.

are pruned by REPRUNING. For PREPRUNING, although the NS-TC is not applied, the
The total response time is shown in Figure 13(c). We obseratgorithm achieves lower costs than ®TPRUNING-NS-TC. This

14

is because, REPRUNING visits only nodes overlapped with
the visibility region. The costs of ®STPRUNING-NS-TC and
PREPRUNING reduce as increases because of the negative corre-
lation between the number of VNNs andas shown in Figure 16.

In summary, REPRUNING visits fewer nodes, performs less

1000 V

o
S

._.
o
o
T
L
time (sec)

MRF —+—

number of pages

=
o
o
o
=3

visibility computation and has a smaller total responseettivan 2040 fno 80 100 20 4 fno 80 100
the two POSTPRUNING variants. Specifically, REPRUNING has)))
(a) I/O cost (synthetic) (b) Total response time (synthetic)

a threefold smaller response time thaOsRPRUNING-NS-TC.

100000 ‘ ‘ ‘ 10 \ T
3 MRF —+——
1000 T T T £ 10000 fSRF oems———F o
g 5 8 1F 5
s S 1000 k i = }
2 2 g k=T e
° £ 100 F 4 =1l * MRF —+—
< 2 SRF ---x---
£ 10 1 1 1 1 1 1
2 20 40 60 80 100 20 40 60 80 100
100 1 1 1 m m
50 100 150 200 250
Number of objects (x 1000) (c) /O cost (real) (d) Total response time (real)
Fig. 16. Number of VNNs vs dataset size Fig. 17. Effect ofm on sum-aggregate ANN query

3) Summary: PREPRUNING has a better performance than
POSTPRUNING and ROSTPRUNING-TC-NC. When the number
of obstacles is small, the twod3TPRUNING variants may have a from the sumM-AVENN query. As discussed earlier, theax-
smaller total response time thamEPRUNING, however, the cost AVANN and sum-AV kNN queries use the same algorithm and
difference is negligible. only differ in the aggregate distance function. Consedygtftey
both produce similar results for all settings in our expeits. \We
thus omitmAXx-AV kNN results from the rest of the experiments.
The result for theviN-AV kNN query is shown in Figure 19. SRF

This subsection presents performance comparisons betwegRtinues to perform better than MRF.
two sets of AkNN algorithms, MRF and SRF, in terms of the
I/O cost and total response time. For both MRF and SRF, the
total response time is significantly dominated by the CPU,cos
and thus the CPU cost can be deduced from the total response
time. Therefore, in this section, we only present the taaponse
time but not the CPU cost.

In the experiments, we vary the following parameters: (§ th m m
numberm of query points; (ii) the value ofk; (iii) the sparsity (a) Total response time (synthetic) (b) Total response time (real)
of the query points (defined as the spaof the s x s square that Fig 18 Effect ofm on max-aggregate ANN query
confines the query points). The default valuesgfk and s are
40, 60 and 1 respectively.

We omit the result on the effect of due to the fact that
affects both MRF and SRF in the same way. This is because the
pre-pruning strategy is applied in all MRF and SRF algorghm

For MRF, we use Algorithm 5 forsum-AV AKNN and MAX -

AV kNN, and Algorithm 6 formiN-AV KNN. For SRF, we use Al-
gorithm 8 forsum-AV kNN and MAX -AV kNN, and Algorithm 9

for MIN-AVENN. For both MRF and SRFsuM-AVANN and m m

MAX-AV kNN only differ in the aggregate function. (a) Total response time (synthetic) (b) Total response time (real)

1) Effect ofm: We varym from 20 to 100 with an increment Fig. 19.
of 20. Figures 17(a) and 17(c) show the result in terms of
the 1/0O cost. The I/O cost of MRF increases wasincreases,
while the 1/O cost of SRF remains stable. MRF has a higher2) Effect ofk: We vary k from 15 to 150 with an increment
I/O cost than SRF. This is because MRF executes NN of 15. According to thesuM-AV kNN and MIN-AVENN query
query on each query point while SRF executes a single quemgsults in Figures 20 and 21, respectively, the total respadime
Figures 17(b) and 17(d) show the result in terms of the totalcreases ag increases for both algorithms, and SRF performs
response time. The total response time of SRF increases adetter than MRF for both datasets. However, the increashdn t
increases and SRF outperforms MRF. This is because chamgetofal response time for MREuM-AVENN on the real dataset
the value ofm affect the AGGMINVIDIST calculation costs. The (Figure 20(b)) is slower than the others. It is recorded that
I/O cost of MRF is always higher than the 1/O cost of SRF stotal response time was increased fram35 to 3.593 seconds
we omit presenting 1/O costs for the rest of the experiments. as the value of increased fromi5 to 150. In this setting, the

The result for thewax-AV kNN query is shown in Figure 18. slow increase is due to the fact that a large number of objects
The total response times of MRF and SRF increase axreases (functioning as obstacles) has to be retrieved before ths fir
and SRF outperforms MRF, which are similar to the resul®/NN can be returned. This effect is apparent in the real skdta

B. Experiments on the AWN Algorithms

1 10

(sec)
time (sec)
T

ime
o
i
T
X
i

i

o
o
=

time (sec)
time (sec)

o
=

Effect ofrn on min-aggregate M\NN query

15

because the distribution and sizes of data objects are ifefssm 1 ‘ ‘ 1 ‘ ‘

. MRF —+— MRF —+—
than those of the synthetic dataset. 2 SRF ——x-—- 7 SRF
Solp—+—o 4
10 T T T T g [. > ------4 g ?‘\’\"
E] B
s - 1 0.01 L L L 01 L 1 X
& s 'f e 1 2 3 4 s 1 2 3 4 5
e e 1L e X 1 span span
= = el MRE —+—) . .
X SRE —— (a) Total response time (synthetic) (b) Total response time (real)
0001 30 60 90 120 150 001 30 60 90 120 150 Fig. 23. Effect of sparsity of query points on min-aggregateN¥ query
k k

a) Total response time (synthetic) (b) Total response time (real . . L .
@ P (¥) () P (real) time for processing A¥NN queries increases &sor m increases

Fig. 20. Effect ofk on sum-aggregate ANN query for all aggregate functions. The total response time deeas

s increases for tha1IN function and increases asincreases for
sumM and MAX. We conclude that SRF is a better method for
AV ENN query processing than MRF.

2 ® VIlI. CONCLUSIONS
0001 [SRF = ONE S In this article, we investigated theisible & nearest neigh-
30 60 90 120 150 30 60 90 120 150 bor (VENN) problem and a distance function calledinimum
k k visible distance(MINVIDIST), which is the distance between
(a) Total response time (synthetic) (b) Total response time (real) a query point to the nearest visible point of an object. Fur-
Fig. 21. Effect ofk on min-aggregate MNN query thermore, we presented twokMN algorithms, REPRUNING

and POSTPRUNING. Both algorithms build up the visibility

3) Effect of sparsity of query pointdn this experiment, we knowledge incrementally as the visible nearest objectsrase
study the effect of the sparsity of query points by varying thirieved. ROSTPRUNING uses MNVIDIST for result ranking and
spans of the query set fronl to 5 units with an increment of \|NDisT for branch ordering. REPRUNING uses MNVIDIST
unit. Figures 22 and 23 show that SRF continues to outperfofg} poth. It is shown in the experimental results tha&EPRUNING
MRF for thesum-AV kNN andmIN-AV kNN queries. Figure 22(a) scales better thandSTPRUNING in terms of the CPU and 1/0
shows that the total response time gradually increases agosts ask becomes larger or the density of the dataset increases.
inCI‘eaSGS fOI’ thSUM'AVkNN on the Synthe“c dataset ThIS iS We also proposed a mu|t|p|e query point generalization 59 th
because a greater value0produces a greater difference betweety ;NN query according to three aggregate distance functions:
sets of visible objects of the query points. Consequentiyneed sym, max and MIN of the visible distances from an object to
to retrieve more ObjeCtS and nOdes in Order to ﬁndl{hmarest the query points_ We proposed two approacheslytip|e retrieva|
ones visible to all query points. The result for the real sietas front (MRF)andsingle retrieval front (SREMMRF issues a ¥NN
shown in Figure 22(b). The increase in total response tin€ss query at each query point to retrieve objects, whereas SRfess

than that of the synthetic dataset. just one aggregate query to retrieve objects from the daéaba
Both approaches use a separate priority queue to re-rank the
Rl v ‘ 10 fure w] retrieve objects according tc_> the aggregate visible distametric.
3 W 5 SRR e We showed that SRF consistently performs better than MRF.
% 0.1F - % 1F E
£ mmmm e * S
= = VIIl. FUTURE WORK
1 1 [U S o >‘6 7777777)) . -
R T Moving query points form our current research direction for
span span VENN. Our approach is to adapt the safe-region concept, whkich i
(a) Total response time (synthetic) (b) Total response time (real) widely used in variants of NN problems with moving querieS][1

Fig. 22. Effect of sparsity of query points on sum-aggregat®iN query [17], [19], [31], to formul_ate aregion that the ViSimﬂ\lNS do not
change (MNN safe region). In order to solve this problem, the

The result for themIN-AV KNN query is shown in Figure 23. first subproblem to address is maintenance of a visibiligyae of
The spans has a negative correlation with the total response tineemoving query point. This subproblem was addressed by Arono
for both algorithms and both datasets. An increaseprnovides a et al. [1]. Their technique is however not suitable for regio
greater difference in perspectives between query poinggeater with holes/obstacles in the middle (which is commonly theeca
difference in perspectives provides more objects visibl@.tThis for VENN). The second subproblem to address is maintenance
is because an object needs to be to visible to only one of tbkthe MINVIDIST between an object and a moving query point.
m query points to be visible t@ for the MmIN-AVENN query. These two subproblems will be investigated in order to deav
Therefore, for both MRF and SRF, the number of objects am@fe-region solution for moving ANN queries.
nodes required to be considered in order to findsible objects Another possible research direction involves deriving kera
is reduced. native distance measure toIMVIDIST. In some applications, it

4) Summary: SRF is superior to MRF in terms of the I/Ocould be more meaningful to rank visible objects based on how
cost. The difference between the total response times ofwbe large they appear according to the perspective of the ustreat
approaches is smaller than that of the 1/O cost. The totglorese query pointg. For example, a distant mountain would be more

16

prominent than a flower right next to the user. An alternativie9] A. Zarei and M. Ghodsi. Efficient computation of query movisibility

measure could be formulated based on the size of the prdjecte In PO'Vg‘;EsVZVth%%SS- I'Symposium on Computational Geometry
; i ; o . pages , .
image of each visible object on a unit-circle (or a unit-gghe 30] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spajigeries in

in 3D) centered alg. Using this measure, the object with the ~ the presence of obstacles. BEDBT, pages 366-384, 2004.

largest projected image is considered to be the most peefenr [31] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Liocabased
the nearest. spatial queries. 'BIGMOD, pages 443-454, 2003.

REFERENCES

[1] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visipi
queries and maintenance in simple polygdbiscrete & Computational
Geometry 27(4):461-483, 2002.

[2] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and Hi. I¥sibility-
polygon search and Euclidean shortest pathd=@CS pages 155-164,
1985.

[3] T.Asano, T. Asano, L. J. Guibas, J. Hershberger, and Hi. INiaibility
of disjoint polygons.Algorithmica 1(1):49-63, 1986.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. Thérde:
an efficient and robust access method for points and rectngdle
SIGMOD, pages 322-331, 1990.

[5] J. L. Bentley. Multidimensional binary search trees umdassociative
searching.CACM, 18(9):509-517, 1975.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vas&iopoulos.
Closest pair queries in spatial databasesSIBMOD, pages 189-200,
2000.

[7] E. W. Dijkstra. A note on two problems in connection withaghs.
Numeriche Mathematjkl:269-271, 1959.

[8] K. Engel, M. Hadwiger, C. Rezk-Salama, and J. M. Kni$%eal-time
volume graphics A K Peters Ltd., 2006.

[9] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abba€on-
strained nearest neighbor queries.98TD pages 257-278, 2001.

[10] Y. Gao, B. Zheng, G. Chen, W.-C. Lee, K. Lee, and Q. Li. iMis
reverse k-nearest neighbor queries.|@DE, 2009.

[11] S. K. Ghosh and D. M. Mount. An output-sensitive algamit for
computing visibility graphsSIAM J. Comput.20(5):888-910, 1991.

[12] A. Guttman. R-trees: a dynamic index structure for spatéarching.
In SIGMOD, pages 47-57, 1984.

[13] P.J. Heffernan and J. S. B. Mitchell. An optimal algomitfor computing
visibility in the plane.SIAM J. Comput.24(1):184-201, 1995.

[14] G. R. Hjaltason and H. Samet. Distance browsing in spdtatabases.
ACM Trans. Database Sys4(2):265-318, 1999.

[15] L. Kulik and E. Tanin. Incremental rank updates for moviggery
points. InGlScience pages 251-268, 2006.

[16] K. C. K. Lee, W. C. Lee, and H. V. Leong. Nearest surrourgigeries.
In ICDE, pages 85-94, 2006.

[17] K. C. K. Lee, J. Schiffman, B. Zheng, W.-C. Lee, and H. V.obg.
Round-eye: A system for tracking nearest surrounders in mgoobject
environments. Journal of Systems and Softwarg0(12):2063-2076,
2007.

[18] S. Nutanong, E. Tanin, and R. Zhang. Visible nearesjhi®r queries.
In DASFAA pages 876-883, 2007.

[19] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-Biam: A
query dependent approach to moving KNN queries.VUDB, pages
1095-1106, 2008.

[20] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggaég nearest
neighbor queries in spatial databaseACM Trans. Database Syst.
30(2):529-576, 2005.

[21] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query gssing in
spatial network databases. WLDB, pages 802-813, 2003.

[22] N. Roussopoulos, S. Kelley, and F. Vincent. Nearesghgor queries.
In SIGMOD, pages 71-79, 1995.

[23] H. Samet. Depth-first k-nearest neighbor finding usirggMtaxNearest-
Dist estimator. InNICIAP, pages 486—-491, 2003.

[24] H. Samet.Foundations of Multidimensional and Metric Data Structure
Morgan Kaufmann, San Francisco, CA, 2006.

[25] S. Suri and J. O'Rourke. Worst-case optimal algorithnrscianstruct-
ing visibility polygons with holes. InSymposium on Computational
Geometry pages 14-23, 1986.

[26] Y. Tao, D. Papadias, X. Lian, and X. Xiao. Multidimens&meversek
nn searchVLDB J, 16(3):293-316, 2007.

[27] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering ie fresence
of obstacles. IHCDE, pages 359-367, 2001.

[28] B. R. Vatti. A generic solution to polygon clippingCommun. ACM
35(7):56-63, 1992.

