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1. INTRODUCTION

Many emerging database applications such as image, time series, and scientific
databases, manipulate high-dimensional data. In these applications, one of the
most frequently used and yet expensive operations is to find objects in the high-
dimensional database that are similar to a given query object. Nearest neighbor
search is a central requirement in such cases.

There is a long stream of research on solving the nearest neighbor search
problem, and a large number of multidimensional indexes have been developed
for this purpose. Existing multidimensional indexes such as R-trees [Guttman
1984] have been shown to be inefficient even for supporting range queries
in high-dimensional databases; however, they form the basis for indexes de-
signed for high-dimensional databases [Katamaya and Satoh 1997; White and
Jain 1996]. To reduce the effect of high dimensionality, use of larger fanouts
[Berchtold et al. 1996; Sakurai et al. 2000], dimensionality reduction tech-
niques [Chakrabarti and Mehrotra 2000, 1999], and filter-and-refine methods
[Berchtold et al. 1998b; Weber et al. 1998] have been proposed. Indexes have also
been specifically designed to facilitate metric based query processing [Bozkaya
and Ozsoyoglu 1997; Ciaccia et al. 1997; Traina et al. 2000; Filho et al. 2001].
However, linear scan remains an efficient search strategy for similarity search
[Beyer et al. 1999]. This is because there is a tendency for data points to be
nearly equidistant to query points in a high-dimensional space. While linear
scan is effective in terms of sequential read, every point incurs expensive dis-
tance computation, when used for the nearest neighbor problem. For quick
response to queries, with some tolerance for errors (i.e., answers may not nec-
essarily be the nearest neighbors), approximate nearest neighbor (NN) search
indexes such as the P-Sphere tree [Goldstein and Ramakrishnan 2000] have
been proposed. The P-Sphere tree works well on static databases and provides
answers with assigned accuracy. It achieves its efficiency by duplicating data
points in data clusters based on a sample query set. Generally, most of these
structures are not adaptive to data distributions. Consequently, they tend to
perform well for some datasets and poorly for others.

In this article, we present iDistance, a new technique for KNN search
that can be adapted to different data distributions. In our technique, we first
partition the data and define a reference point for each partition. Then we index
the distance of each data point to the reference point of its partition. Since this
distance is a simple scalar, with a small mapping effort to keep partitions dis-
tinct, a classical B*-tree can be used to index this distance. As such, it is easy
to graft our technique on top of an existing commercial relational database.
This is important as most commercial DBMSs today do not support indexes
beyond the BT-tree and the R-tree (or one of its variants). The effectiveness of
iDistance depends on how the data are partitioned, and how reference points
are selected.

For a KNN query centered at q, a range query with radius r is issued. The
iDistance KNN search algorithm searches the index from the query point out-
wards, and for each partition that intersects with the query sphere, a range
query is resulted. If the algorithm finds K elements that are closer than r from
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g at the end of the search, the algorithm terminates. Otherwise, it extends the
search radius by Ar, and the search continues to examine the unexplored region
in the partitions that intersects with the query sphere. The process is repeated
till the stopping condition is satisfied. To facilitate efficient KNN search, we
propose partitioning and reference point selection strategies as well as a cost
model to estimate the page access cost of iDistance KNN searching.

This article is an extended version of our earlier paper [Yu et al. 2001]. There,
we present the basic iDistance method. Here, we have extended it substantially
to include a more detailed discussion of the technique and algorithms, a cost
model, and comprehensive experimental studies. In this article, we conducted a
whole new set of experiments using different indexes for comparison. In partic-
ular, we compare iDistance against sequential scan, the M-tree [Ciaccia et al.
1997], the Omni-sequential [Filho et al. 2001] and the bd-tree structure [Arya
et al. 1994] on both synthetic and real datasets. While the M-tree and the Omni-
sequential schemes are disk-based structures, the bd-tree is a main memory
based index. Our results showed that iDistance is superior to these techniques
for a wide range of experimental setups.

The rest of this article is organized as follows. In the next section, we present
the background for metric-based KNN processing, and review some related
work. In Section 3, we present the iDistance indexing method and KNN search
algorithm, and in Section 4, its space- and data-based partitioning strategies.
In Section 5, we present the cost model for estimating the page access cost of
iDistance KNN search. We present the performance studies in Section 6, and
finally, we conclude in Section 7.

2. BACKGROUND AND RELATED WORK

In this section, we provide the background for metric-based KNN processing,
and review related work.

2.1 KNN Query Processing

In our discussion, we assume that DB is a set of points in a d -dimensional data
space. A K -nearest neighbor query finds the K objects in the database closest
in distance to a given query object. More formally, the KNN problem can be
defined as follows:

Given a set of points DB in a d-dimensional space DS, and a query point
g € DS, find a set S that contains K points in DB such that, for any p € S and
for any p’ € DB — S, dist(q, p) < dist(q, p').

Table I describes the notation used in this article.

To search for the K nearest neighbors of a query point g, the distance of the
Kth nearest neighbor to g defines the minimum radius required for retrieving
the complete answer set. Unfortunately, such a distance cannot be predeter-
mined with 100% accuracy. Hence, an iterative approach can be employed (see
Figure 1). The search starts with a query sphere about ¢, with a small initial
radius, which can be set according to historical records. We maintain a candi-
date answer set that contains points that could be the K nearest neighbors of
q. Then the query sphere is enlarged step by step and the candidate answer set
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Table I. Notation

Notation Meaning

Ceﬁc Average number of points stored in a page

d Dimensionality of the data space

DB The dataset

DS The data space

m Number of reference points

K Number of nearest neighbor points required by the query

p A data point

q A query point

S The set containing K NNs

r Radius of a sphere

dist_max; Maximum radius of partition P;

O; The ith reference point

P; The ith partition

dist(p1, p2) Metric function returns the distance between points
p1 and py

querydist(q) Query radius of g

sphere(q,r) Sphere of radius r and center g

furthest(S, q) | Function returns the object in S furthest in distance from g

KNN Basic Search Algorithm

start with a small search sphere centered at query point
search and check all partitions intersecting the current query space
if K nearest neighbors are found
exit;
else
enlarge search sphere;
. goto 2;
end KNN;

N ok e

Fig. 1. Basic KNN algorithm.

is updated accordingly until we can make sure that the K candidate answers
are the true K nearest neighbors of q.

2.2 Related Work

Many multi-dimensional structures have been proposed in the literature, in-
cluding various KNN algorithms [B6hm et al. 2001]. Here, we briefly describe
a few relevant methods.

In Weber et al. [1998], the authors describe a simple vector approximation
scheme, called VA-file. The VA-file divides the data space into 2° rectangular
cells where b denotes a user specified number of bits. The scheme allocates a
unique bit-string of length b for each cell, and approximates data points that
fall into a cell by that bit-string. The VA-file itself is simply an array of these
compact, geometric approximations. Nearest neighbor searches are performed
by scanning the entire approximation file, and by excluding the vast majority
of vectors from the search (filtering step) based only on these approximations.
After the filtering step, a small set of candidates remains. These candidates
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are then visited and the actual distances to the query point q are determined.
VA-file reduces the number of disk accesses, but it incurs higher computational
cost to decode the bit-string, compute all the lower and some upper bounds on
the distance to the query point, and determine the actual distances of candi-
date points. Another problem with the VA-file is that it works well for uniform
data, but for skewed data, the pruning effect of the approximation vectors be-
comes very bad. The IQ-tree [Berchtold et al. 2000] extends the notion of the
VA-file to use a tree structure where appropriate, and the bit-encoded file struc-
ture where appropriate. It inherits many of the benefits and drawbacks of the
VA-file discussed above and the M-tree discussed next.

In Ciaccia et al. [1997], the authors proposed the height-balanced M-tree
to organize and search large datasets from a generic metric space, where ob-
ject proximity is only defined by a distance function satisfying the positivity,
symmetry, and triangle inequality postulates. In an M-tree, leaf nodes store
all indexed (database) objects, represented by their keys or features, whereas
internal nodes store the routing objects. For each routing object O,, there is an
associated pointer, denoted ptr(T(O,)), that references the root of a sub-tree,
T(O,), called the covering tree of O,. All objects in the covering tree of O,,
are within the distance r(O,) from O,, r(O,) > 0, which is called the covering
radius of O,. Finally, a routing object O,, is associated with a distance to P(O,),
its parent object, that is, the routing object that references the node where the
O, entry is stored. Obviously, this distance is not defined for entries in the root
of the M-tree. An entry for a database object O; in a leaf node is quite similar
to that of a routing object, but no covering radius is needed. The strength of
M-tree lies in maintaining the pre-computed distance in the index structure.
However, the node utilization of the M-tree tends to be low due to its splitting
strategy.

Omni-concept was proposed in Filho et al. [2001]. The scheme chooses a
number of objects from a database as global ‘foci’ and gauges all other objects
based on their distances to each focus. If there are [ foci, each object will have /
distances to all the foci. These distances are the Omni-coordinates of the object.
The Omni-concept is applied in the case where the correlation behaviors of the
database are known beforehand and the intrinsic dimensionality (ds) is smaller
than the embedded dimensionality d of the database. A good number of foci is
[do]+1or [de] x 2+ 1, and they can either be selected or efficiently generated.
Omni-trees can be built on top of different indexes such as the B*-tree and the R-
tree. Omni B-trees used [ BT -trees to index the Omni-coordinates of the objects.
When a similarity range query is conducted, on each B*-tree, a set of candidate
objects is obtained and intersection of all the [ candidate sets will be checked
for the final answer. For the KNN query, the query radius is estimated by some
selectivity estimation formulas. The Omni-concept improves the performance
of similarity search by reducing the number of distance calculations during
search operation. However, multiple sets of ordinates for each point increases
the page access cost, and searching multiple B-trees (or R-trees) also increases
CPU time. Finally, the intersection of the / candidate sets incurs additional cost.
In iDistance, only one set of ordinates is used and also only one B*-tree is used
to index them, therefore iDistance has less page accesses while still reducing
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the distance computation. Besides, the choice of reference points in iDistance
is quite different from the choice of foci bases in Omni-family techniques.

The P-Sphere tree [Goldstein and Ramakrishnan 2000] is a two level struc-
ture, the root level and leaf level. The root level contains a series of <sphere
descriptor, leaf page pointer> pairs, while each leaf of the index corresponds
to a sphere (we call it the leaf sphere in the following) and contains all data
points that lie within the sphere described in the corresponding sphere de-
scriptor. The leaf sphere centers are chosen by sampling the dataset. The NN
search algorithm only searches the leaf with the sphere center closest to the
query point g. It searches the NN (we denote it as p) of ¢ among the points
in this leaf. When finding p, if the query sphere is totally contained in the
leaf sphere, then we can confirm that p is the nearest neighbor of ¢; other-
wise, a second best strategy is used (such as sequential scan). A data point can
be within multiple leaf spheres, so the points are stored multiple times in the
P-Sphere tree. This is how it trades space for time. A variant of the P-Sphere
tree is the nondeterministic (ND) P-Sphere tree, which returns answers with
some probability of being correct. The ND P-Sphere tree NN search algorithm
searches % leaf spheres whose centers are closest to the query point, where % is
a given constant (note that this % is different from the K in KNN). A problem
arises in high-dimensional space for the deterministic P-Sphere tree search,
because the nearest neighbor distance tends to be very large. It is hard for
the nearest leaf sphere of ¢ to contain the whole query sphere when finding
the NN of ¢ within this sphere. If the leaf sphere contains the whole query
sphere, the radius of the leaf sphere must be very large, typically close to the
side length of the data space. In this case, where the major portion of the whole
dataset is within this leaf, scanning a leaf is not much different from scan-
ning the whole dataset. Therefore, the authors also hinted that using deter-
ministic P-Sphere trees for medium to high dimensionality is impractical. In
Goldstein and Ramakrishnan [2000], only the experimental results of ND
P-Sphere are reported, which is shown to be better than sequential scan at
the cost of space. Again, iDistance only uses one set of ordinates and hence
has no duplicates. iDistance is meant for high dimensional KNN search; which
P-Sphere tree cannot address efficiently. The ND P-Sphere tree has better per-
formance in high-dimensional space, but our technique, iDistance is looking for
exact nearest neighbors.

Another metric based index is the Slim-tree [Traina et al. 2000], which is
a height balanced and dynamic tree structure that grows from the leaves to
the root. The structure is fairly similar to that of the M-tree, and the objective
of the design is to reduce the overlap between the covering regions in each level
of the metric tree. The split algorithm of the Slim-tree is based on the concept of
minimal spanning tree [Kruskal 1956], and it distributes the objects by cutting
the longest line among all the closest connecting lines between objects. If none
exits, an uneven split is accepted as a compromise. The slim-down algorithm is
a post-processing step applied on an existing Slim-tree to reduce the overlaps
between the regions in the tree.

Due to the difficulty of processing exact KNN queries, some studies, such
as Arya et al. [1994, 1998] turn to approximate KNN search. In these studies,
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a relative error bound ¢ is specified so that the approximate KNN distance is
at most (1 + ¢) times the actual KNN distance. We can specify ¢ to be 0 so
that exact answers are returned. However, the algorithms in Arya et al. [1994,
1998] are based on a main memory indexing structure called bd-tree, while the
problem we are considering is when the data and indexes are stored on sec-
ondary memory. Main memory indexing requires a slightly different treatment
since optimization on the use of L2 cache is important for speed-up. Cui et al.
[2003, 2004] show that existing indexes have to be fine-tuned for exploiting L2
cache efficiently. Approximate KNN search has recently been studied in the
data stream model [Koudas et al. 2004], where the memory is constrained and
each data item could be read only once.

While more indexes have been proposed for high-dimensional databases,
other performance speedup methods such as dimensionality reduction have
also been performed. The idea of dimensionality reduction is to pick the most
important features to represent the data, and an index is built on the reduced
space [Chakrabarti and Mehrotra 2000; Faloutsos and Lin 1995; Lin et al.
1995; Jolliffe 1986; Pagel et al. 2000]. To answer a query, it is mapped to the
reduced space and the index is searched based on the dimensions indexed.
The answer set returned contains all the answers and some false positives.
In general, dimensionality reduction can be performed on the datasets before
they are indexed as a means to reduce the effect of the dimensionality curse
on the index structure. Dimensionality reduction is lossy in nature; hence the
query accuracy is affected as a result. How much information is lost, depends
on the specific technique used and on the specific dataset at hand. For instance,
Principal Component Analysis (PCA) [Jolliffe 1986] is a widely used method
for transforming points in the original (high-dimensional) space into another
(usually lower dimensional) space. Using PCA, most of the information in the
original space is condensed into a few dimensions along which the variances in
the data distribution are the largest. When the dataset is globally correlated,
principal component analysis is an effective method for reducing the number
of dimensions with little or no loss of information. However, in practice, the
data points tend not to be globally correlated, and the use of global dimension-
ality reduction may cause a significant loss of information. As an attempt to
reduce such loss of information, and also to reduce query processing due to
false positives, a local dimensionality reduction (LDR) technique was proposed
in Chakrabarti and Mehrotra [2000]. It exploits local correlations in data points
for the purpose of indexing.

3. THE IDISTANCE

In this section, we describe a new KNN processing scheme, called iDistance,
to facilitate efficient distance-based KNN search. The design of iDistance is
motivated by the following observations. First, the (dis)similarity between data
points can be derived with reference to a chosen reference or representative
point. Second, data points can be ordered based on their distances to a refer-
ence point. Third, distance is essentially a single dimensional value. This allows
us to represent high-dimensional data in single dimensional space, thereby
enabling reuse of existing single dimensional indexes such as the B*-tree.
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Moreover, false drops can be efficiently filtered without incurring expensive
distance computation.

3.1 An Overview

Consider a set of data points DB in a unit d-dimensional metric space DS,
which is a set of points with an associated distance function dist. Let p; :
(x0,X1,...,%4-1), p2 : (¥0, ¥1,..., ya—1) and ps : (29,21, ...,24_1) be three data
points in DS. The distance function dist has the following properties:

dist(p1, p2) = dist(p2, p1) Vp1, p2 € DB (1)

dist(p1,p1) =0 Vp; €DB (2)

0 < dist(p1, p2) Vpi1, p2 € DB; p1 # ps (3)

dist(pi1, p3) < dist(pi1, p2) +dist(pa, p3s) Vpi1, b2, ps € DB (4)

The last formula defines the triangular inequality, and provides a condition for
selecting candidates based on metric relationship. Without loss of generality,
we use the Euclidean distance as the distance function in our article, although
other distance functions also apply for iDistance. For Euclidean distance, the
distance between p; and ps is defined as

dist(p1, p2) = \/(xo -y + @1 —y1)2 4+ (xa-1 — ya-1)>

As in other databases, a high-dimensional database can be split into par-
titions. Suppose a point, denoted as O;, is picked as the reference point for a
data partition P;. As we shall see shortly, O; need not be a data point. A data
point, p, in the partition can be referenced via O; in terms of its distance (or
proximity) to it, dist(O;, p). Using the triangle inequality, it is straightforward
to see that

dist(O;, q) — dist(p, q) < dist(O;, p) < dist(0;,q) + dist(p, q).

When we are working with a search radius of querydist(q), we are interested
in finding all points p such that dist(p, q) < querydist(q). For every such point
p, by adding this inequality to the above one, we must have:

dist(0;, q) — querydist(q) < dist(O;, p) < dist(O;, q) + querydist(q).

In other words, in partition P;, we need only examine candidate points p whose
distance from the reference point, dist(O;, p), is bounded by this inequality,
which in general specifies an annulus around the reference point.

Let dist_max; be the distance between O; and the point furthest from it in par-
tition P;. That is, let P; have a radius of dist_max;. If dist(O;, q) —querydist(q) <
dist_max;, then P; has to be searched for NN points, else we can eliminate this
partition from consideration altogether. The range to be searched within an
affected partition in the single dimensional space is [dist(0;, q) — querydist(q),
min(dist_max;, dist(O;, q) + querydist(q))]. Figure 2 shows an example where
the partitions are formed based on data clusters (the data partitioning strategy
will be discussed in detail in Section 4.2). Here, for query point ¢ and query
radius r, partitions P; and Ps need to be searched, while partition Ps; need not.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



372 . H. V. Jagadish et al.
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Leaf nodes of B*~tree | | <] etk

A B C

Fig. 2. Search regions for NN query q.

From the figure, it is clear that all points along a fixed radius have the same
value after transformation due to the lossy transformation of data points into
distance with respect to the reference points. As such, the shaded regions are
the areas that need to be checked.

To facilitate efficient metric-based KNN search, we have identified two
important issues that have to be addressed:

(1) What index structure can be used to support metric-based similarity
search?

(2) How should the data space be partitioned, and which point should be picked
as the reference point for a partition?

We focus on the first issue here, and will turn to the second issue in
the next section. In other words, for this section, we assume that the data
space has been partitioned, and the reference point in each partition has been
determined.

3.2 The Data Structure

In iDistance, high-dimensional points are transformed into points in a single
dimensional space. This is done using a three-step algorithm.

In the first step, the high-dimensional data space is split into a set of par-
titions. In the second step, a reference point is identified for each partition.

Suppose that we have m partitions, Py, Py, ..., P,_1 and their corresponding
reference points, Oy, O1, ..., Op_1.

Finally, in the third step, all data points are represented in a single dimen-
sional space as follows. A data point p : (xg, x1,...,%4-1),0 <x; < 1,0 < j <d,

has an index key, y, based on the distance from the nearest reference point O;
as follows:

y =1 x ¢ +dist(p, O;) (5)
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Fig. 3. Mapping of data points.

where c is a constant used to stretch the data ranges. Essentially, ¢ serves to
partition the single dimension space into regions so that all points in partition
P; will be mapped to the range [i x ¢, (i +1) x ¢). ¢ must be set sufficiently large in
order to avoid the overlap between the index key ranges of different partitions.
Typically, it should be larger than the length of diagonal in the hypercube data
space.

Figure 3 shows a mapping in a 2-dimensional space. Here, Oy, O1, Oz and O3
are the reference points; points A, B, C and D are data points in partitions asso-
ciated with the reference points; and, ¢y, c1, ¢2, ¢3 and ¢4 are range partitioning
values that represent the reference points as well. For example Oy is associated
with ¢g, and all data points falling in its partition (the shaded region) have their
distances relative to cg. Clearly, iDistance is lossy in the sense that multiple
data points in the high-dimensional space may be mapped to the same value in
the single dimensional space. That is, different points within a partition that
are equidistant from the reference point have the same transformed value. For
example, data points C and D have the same mapping value, and as a result,
false positives may exist during search.
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KNN Search Algorithm iDistanceKNN(q, Ar, maz_r)

r=0;

Stopflag = FALSE;

initialize Ip[ ], rp[ ], oflag[ |;

while Stopflag == FALSE
r=r+ Ar;

. SearchO(g, 7);

end iDistanceKNN;

S NS

Fig. 4. iDistance KNN main search algorithm.

SearchO(q, )

1. Pfurthest = furtheSt(S’q)

2. if diSt(pfu'r't,hesh Q) <rand |[S|==K

3. Stopflag = TRUE;

4. /* need to continue searching for correctness sake before stop*/
5. fori=0tom—1

6. dis = dist(O;, q);

7. if not oflag[i] /* if O; has not been searched before x/

8. if sphere(O;, dist_-max;) contains ¢

9. oflag[i] = TRUE;

11. Inode = LocateLeaf(btree, i x c + dis);

12. lp[t] = SearchInward(Inode, i * ¢ + dis — )3

13. rpli] = SearchOutward (Inode, i x ¢+ dis +1);

14. else if sphere(O;, dist_maz;) intersects sphere(q, )

15. oflagli] = TRUE;

16. Inode = LocateLeaf(btree, dist_max;);

17. Ip[i] = SearchInward (lnode, i * c + dis — r);

18. else

19. if Ip[i] not nil

20. Ip[i] = SearchInward(lp[i] — leftnode, i *x c + dis — r);
21. if rp[i] not nil

22. rp[i] = SearchOutward(rp[i] — rightnode, i * c + dis + 1);

end SearchO;

Fig. 5. iDistance KNN search algorithm: SearchO.

In iDistance, we employ two data structures:

—A BT-tree is used to index the transformed points to facilitate speedy re-
trieval. We choose the B*-tree because it is an efficient indexing structure
for one-dimensional data and it is also available in most commercial DBMSs.
In ourimplementation of the B*-tree, leaf nodes are linked to both the left and
right siblings [Ramakrishnan and Gehrke 2000]. This is to facilitate search-
ing the neighboring nodes when the search region is gradually enlarged.

—An array is used to store the m data space partitions and their respective
reference points. The array is used to determine the data partitions that
need to be searched during query processing.

3.3 KNN Search in iDistance

Figures 4-6 summarize the algorithm for KNN search with the iDistance
method. The essence of the algorithm is similar to the generalized search
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SearchInward(node, ivalue)

1. for each entry e in node (e = e;,j =1,2,..., Number_of _entries)
2. if S| == K

3. Pfurthest = furtheSt(qu)§

4. if dist(e, q) < diSt(p.fur[,hesL’ )

5. S=385 — Pfurthest;

6. S =SUe;

7. else

8. S =SUe;

9. if e1.key > tvalue

10. node = SearchInward(node — leftnode, i * c + dis — r);
11. if end of partition is reached

12. node = nil;

13. return(node);

end SearchInward;

Fig. 6. iDistance KNN search algorithm: SearchInward.

strategy outlined in Figure 1. It begins by searching a small ‘sphere’, and incre-
mentally enlarges the search space till all K nearest neighbors are found. The
search stops when the distance of the furthest object in S (answer set) from the
query point g is less than or equal to the current search radius r.

Before we explain the main concept of the algorithm iDistanceKNN, let
us discuss three important routines. Note that routines SearchInward and
SearchOutward are similar to each other, so we shall only explain routine
SearchInward. Given a leaf node, routine SearchInward examines the entries
of the node towards the left to determine if they are among the K nearest neigh-
bors, and updates the answers accordingly. We note that because iDistance is
lossy, it is possible that points with the same values are actually not close to
one another—some may be closer to g, while others are far from it. If the first
element (or last element for SearchOutward) of the node is contained in the
query sphere, then it is likely that its predecessor with respect to distance from
the reference point (or successor for SearchOutward) may also be close to g. As
such, the left (or right for SearchOutward) sibling is examined. In other words,
SearchInward (SearchOutward) searches the space towards (away from) the
reference point of the partition. Let us consider again the example shown in
Figure 2. For query point g, the SearchInward search on the partition P; will
search towards left sibling as shown by the direction of arrow A, while the
SearchOutward will search towards right sibling as shown by the direction of
arrow B. For partition Py, we only search towards left sibling by SearchInward
as shown by the direction of arrow C. The routine LocateLeafis a typical BT -tree
traversal algorithm, which locates a leaf node given a search value, hence the
detailed description of the algorithm is omitted. It locates the leaf node either
based on the respective value of ¢ or maximum radius of the partition being
searched.

We now explain the search algorithm. Searching in iDistance begins by scan-
ning the auxiliary structure to identify the reference points, O;, whose data
spaces intersect the query region. For a partition that needs to be searched, the
starting search point must be located. If ¢ is contained inside the data sphere,
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the iDistance value of ¢ (obtained based on Equation 5) is used directly, else
dist_max; is used. The search starts with a small radius. In our implementation,
we just use Ar as the initial search radius. Then the search radius is increased
by Ar, step by step, to form a larger query sphere. For each enlargement, there
are three cases to consider.

(1) The partition contains the query point, ¢. In this case, we want to traverse
the partition sufficiently to determine the K nearest neighbors. This can
be done by first locating the leaf node whereby ¢ may be stored (Recall that
this node does not necessarily contain points whose distance is closest to
g compared to its sibling nodes), and searching inward or outward of the
reference point accordingly. For the example shown in Figure 2, only P; is
examined in the first iteration and q is used to traverse down the BT -tree.

(2) The query point is outside the partition but the query sphere intersects the
partition. In this case, we only need to search inward. Partition Py (with
reference point Oz) in Figure 2 is searched inward when the search sphere
enlarged by Ar intersects Ps.

(3) The partition does not intersect the query sphere. Then, we do not need to
examine this partition. An example in point is P5 of Figure 2.

The search stops when the K nearest neighbors have been identified from the
data partitions that intersect with the current query sphere and when further
enlargement of the query sphere does not change the K nearest list. In other
words, all points outside the partitions intersecting with the query sphere will
definitely be at a distance D from the query point such that D is greater than
querydist. This occurs at the end of some iteration when the distance of the
furthest object in the answer set, S, from query point g is less than or equal to
the current search radius r. At this time, all the points outside the query sphere
have a distance larger than querydist, while all candidate points in the answer
set have distance smaller than querydist. In other words, further enlargement
of the query sphere would not change the answer set. Therefore, the answers
returned by iDistance are of 100% accuracy.

4. SELECTION OF REFERENCE POINTS AND DATA SPACE PARTITIONING

To support distance-based similarity search, we need to split the data space
into partitions and for each partition, we need a reference point. In this section
we look at some choices. For ease of exposition, we use 2-dimensional diagrams
for illustration. However, we note that the complexity of indexing problems in
a high-dimensional space is much higher; for instance, the distance between
points larger than one (the full normalized range in a single dimension) could
still be considered close since points are relatively sparse.

4.1 Space-Based Partitioning

A straightforward approach to data space partitioning is to subdivide the space
into equal partitions. In a d-dimensional space, we have 2d hyperplanes. The
method we adopted is to partition the space into 2d pyramids with the center
of the unit cube space as their top, and each hyperplane forming the base of
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Fig. 7. Using (centers of hyperplanes, closest distance) as reference point.

each pyramid.! We study the following possible reference point selection and
partition strategies.

(1)

(2)

Center of Hyperplane, Closest Distance. The center of each hyperplane
can be used as a reference point, and the partition associated with the point
contains all points that are nearest to it. Figure 7(a) shows an example in a
2-dimensional space. Here, Oy, O1, O and Oj are the reference points, and
point A is closest to Oy and so belongs to the partition associated with it (the
shaded region). Moreover, as shown, the actual data space is disjoint though
the hyperspheres overlap. Figure 7(b) shows an example of a query region,
which is the dark shaded area, and the affected space of each pyramid,
which is the shaded area bounded by the pyramid boundary and the dashed
curve. For each partition, the area not contained by the query sphere does
not contain any answers for the query. However, since the mapping is lossy,
the corner area outside the query region has to be checked since the data
points have the same mapping values as those in the area intersecting with
the query region.

For reference points along the central axis, the partitions look similar to
those of the Pyramid tree. When dealing with query and data points, the
sets of points are however not exactly identical, due to the curvature of
the hypersphere as compared to the partitioning along axial hyperplanes
in the case of the Pyramid tree.

Center of Hyperplane, Furthest Distance. The center of each hyper-
plane can be used as a reference point, and the partition associated with
the point contains all points that are furthest from it. Figure 8(a) shows
an example in a 2-dimensional space. Figure 8(b) shows the affected search

1We note that the space is similar to that of the Pyramid technique [Berchtold et al. 1998a].
However, the rationales behind the design and the mapping function are different; in the Pyramid
method, a d-dimensional data point is associated with a pyramid based on an attribute value, and
is represented as a value away from the center of the space.
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Fig. 8. Using (center of hyperplane, furthest distance) as reference point.

area for the given query point. The shaded search area is that required by
the previous scheme, while the search area caused by the current scheme
is bounded by the bold arches. As can be seen in Figure 8(b), the affected
search area bounded by the bold arches is now greatly reduced as com-
pared to the closest distance counterpart. We must however note that the
query search space is dependent on the choice of reference points, partition
strategy and the query point itself.

(3) External Point. Any point along the line formed by the center of a hyper-
plane and the center of the corresponding data space can also be used as a
reference point.? By external point, we refer to a reference point that falls
outside the data space. This heuristic is expected to perform well when
the affected area is quite large, especially when the data are uniformly
distributed. We note that both closest and furthest distance can be sup-
ported. Figure 9 shows an example of the closest distance scheme for a
2-dimensional space when using external points as reference points. Again,
we observe that the affected search space for the same query point is
reduced under an external point scheme (compared to using the center of
the hyperplane).

4.2 Data-Based Partitioning

Equi-partitioning may seem attractive for uniformly distributed data. However,
data in real life are often clustered or correlated. Even when no correlation
exists in all dimensions, there are usually subsets of data that are locally corre-
lated [Chakrabarti and Mehrotra 2000; Pagel et al. 2000]. In these cases, a more
appropriate partitioning strategy would be used to identify clusters from the
data space. There are several existing clustering schemes in the literature such

2We note that the other two reference points are actually special cases of this.
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as K-Means [MacQueen 1967], BIRCH [Zhang et al. 1996], CURE [Guha et al.
1998], and PROCLUS [Aggarwal et al. 1999]. While our metric-based indexing
is not dependent on the underlying clustering method, we expect the clustering
strategy to have an influence on retrieval performance. In our implementation,
we adopted the K-means clustering algorithm [MacQueen 1967]. The number
of clusters affects the search area and the number of traversals from the root
to the leaf nodes. We expect the number of clusters to be a tuning parameter,
which may vary for different applications and domains.

Once the clusters are obtained, we need to select the reference points. Again,
we have two possible options when selecting reference points:

(1) Center of cluster. The center of a cluster is a natural candidate as a reference
point. Figure 10 shows a 2-dimensional example. Here, we have 2 clusters,
one cluster has center O; and another has center Os.

(2) Edge of cluster. As shown in Figure 10, when the cluster center is used, the
sphere areas of both clusters have to be enlarged to include outlier points,
leading to significant overlap in the data space. To minimize the overlap,
we can select points on the edge of the partition as reference points, such as
points on hyperplanes, data space corners, data points at one side of a cluster
and away from other clusters, and so on. Figure 11 is an example of selecting
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0,: (0.20,0.70)

Fig. 11. Cluster edge points as reference points.

the edge points as the reference points in a 2-dimensional data space. There
are two clusters and the edge points are O; : (0, 1) and Oq : (1, 0). As shown,
the overlap of the two partitions is smaller than that using cluster centers

as reference points.
In short, overlap of partitioning spheres can lead to more intersections by
the query sphere, and more points having the same similarity (distance) value

will cause more data points to be examined if a query region covers that area.
Therefore, when we choose a partitioning strategy, it is important to avoid or
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Fig. 12. Histogram-based cost model.

reduce such partitioning sphere overlap and large number of points with close
similarity, as much as possible.

5. ACOST MODEL FOR IDISTANCE

iDistance is designed to handle KNN search efficiently. However, due to the
complexity of very high-dimensionality or the very large K used in the query,
iDistance is expected to be superior for certain (but not all) scenarios. We there-
fore develop cost models to estimate the page access cost of iDistance, which
can be used in query optimization (for example, if the iDistance has the number
of page accesses less than a certain percentage of that of sequential scan, we
would use iDistance instead of sequential scan). In this section, we present a
cost model based on both the Power-method [Tao et al. 2003] and a histogram
of the key distribution. This histogram-based cost model applies to all parti-
tioning strategies and any data distribution, and it predicts individual query
processing cost in terms of page accesses instead of average cost. The basic idea
of the Power-method is to precompute the local power law for a set of represen-
tative points and perform the estimation using the local power law of a point
close to the query point. In the key distribution histogram, we divide the key
values into buckets and maintain the number of points that are in each bucket.

Figure 12 shows an example of how to estimate the page access cost for a
partition P;, whose reference point is O;. q is the query point and r is the query
radius. k1 is on the line ¢ O; and with the largest key in the partition P;. kg is
the intersection of the query sphere and the line q O;. First, we use the Power-
method to estimate the Kth nearest neighbor distance r, which equals the
query radius when the search terminates. Then we can calculate the key of kg,
g O;| —r + i-c, wherei is the partition number and c is the constant to stretch
the key values. Since we know the boundary information of each partition and
hence the key of 21, we know the range of the keys accessed in partition P;, that
is, between the keys of k5 and k. By checking the keys distribution histogram,
we know the number of points accessed in this key range, N, ;; then the number
of pages accessed in the partition is [N, ;/C.y]. The summation of the number
of page accesses of all the partitions provides us the number of page accesses
for the query.
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Fig. 13. Histogram-based cost model, query sphere inside the partition.

Note that, if the query sphere is inside a partition as shown in Figure 13,
both k1 and k4 are intersections of the query sphere and the line q O;. Different
from the above case, the key of k21 is |qO;| +r + i - ¢ here. The number of page
accesses is derived in the same way as above.

The costs estimated by the techniques described above turn out to be very
close to actual costs observed, as we will show in the experimental section that
follows.

In Jagadish et al. [2004], we also present cost models purely based on
formula derivations. They are less expensive to maintain and compute, in that
no summary data structures need be maintained, but they assume uniform data
distribution and therefore are not accurate for nonuniform workloads. Where
data distributions are known, these or similar other formulae may be used to
advantage.

6. A PERFORMANCE STUDY

In this section, we present results of an experimental study performed to
evaluate iDistance. First we compare the space-based partitioning strategy
and the data-based partitioning strategy and find that the data-based parti-
tioning strategy is much better. Then we focus our study on the behavior of
iDistance using the data-based partitioning strategy with various parameters
and under different workloads. At last we compare iDistance with other met-
ric based indexing methods, the M-tree and the Omni-sequential, as well as
a main memory bd-tree [Arya et al. 1994]. We have also evaluated iDistance
against iMinMax [Ooi et al. 2000] and A-tree [Sakurai et al. 2000], and our
results, which have been reported in Yu et al. [2001] showed the superiority of
iDistance over these schemes. As such, we shall not duplicate the latter results
here.

We implemented the iDistance technique and associated search algorithms
in C, and used the B*-tree as the single dimensional index structure. We
obtained the M-tree, Omni-sequential, and the bd-tree from the authors or their
web sites, and standardized the codes as much as we could for fair comparison.
Each index page is 4096 Bytes. Unless stated otherwise, all the experiments
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Fig. 14. Distribution of the clustered data.

were performed on a computer with Pentium(R) 1.6 GHz CPU and 256 MB RAM
except the comparison with bd-tree (the experimental setting for this compari-
son would be specified later). The operating system running on this computer
is RedHat Linux 9. We conducted many experiments using various datasets.
Each result we show was obtained as the average (number of page accesses or
total response time) over 200 queries that follow the same distribution of the
data.

In the experiment, we generated 8, 16, 30-dimensional uniform, and clus-
tered datasets. The dataset size ranges from 100,000 to 500,000 data points.
For the clustered datasets, the default number of clusters is 20. The cluster
centers are randomly generated and in each cluster, the data follow the nor-
mal distribution with the default standard deviation of 0.05. Figure 14 shows
a 2-dimensional image of the data distribution.

We also used a real dataset, the Color Histogram dataset. This dataset
is obtained from http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.
data.html. It contains image features extracted from a Corel image collection.
HSV color space is divided into 32 subspaces (32 colors: 8 ranges of H and 4
ranges of S). And the value in each dimension in a Color Histogram of an image
is the density of each color in the entire image. The number of records is 68,040.
All the data values of each dimension are normalized to the range [0, 1].

In our evaluation, we use the number of page accesses and the total response
time as the performance metric. Default value of Ar is 0.01, that is, 1% of the
side length of the data space. The initial search radius is just set as Ar.
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Fig. 15. Space-based partitioning vs. data-based partitioning, uniform data.

6.1 Comparing Space-Based and Data-Based Partitioning Strategies

We begin by investigating the relative performance of the partitioning strate-
gies. Note that the number of reference points is always 2d for the space-based
partitioning approach, and for a fair comparison, we also use 2d reference
points in the data-based partitioning approach. Figure 15 shows the result of
10NN queries on the 100,000 uniform dataset. The space-based partitioning
has almost the same page accesses as sequential scan when dimensionality
is 8 and more page accesses than sequential scan in high dimensionality. The
data-based partitioning strategy has fewer page accesses than sequential scan
when dimensionality is 8, more page accesses when dimensionality is 16, and
almost the same page accesses when dimensionality is 30. This is because the
pruning effect of the data-based strategy is better in low dimensionality than
in high dimensionality. The relative decrease (compared to sequential scan)
of page accesses when dimensionality is 30 is because of the larger number
of reference points. While iDistance’s page access performance is not attrac-
tive relative to sequential scan, the total response time performance is better
because of its ability to filter data using a single dimensional key. The total
response time of the space-based partitioning is about 60% that of sequential
scan when dimensionality is 8, same as sequential scan when dimensional-
ity is 16, but worse than sequential scan when dimensionality is 30. The total
response time of the data-based partitioning is always less than both of the oth-
ers, while its difference from the sequential scan decreases as dimensionality
increases.

Figure 16 shows the result of 10NN queries on the 100,000 clustered dataset.
Both partitioning strategies are better than sequential scan in both page
accesses and total response time. This is because for clustered data, the Kth
nearest neighbor distance is much smaller than that in the uniform data. In this
case, iDistance can prune a lot of data points in the searching. The total response
time of the space-based partitioning is about 20% that of sequential scan. The
total response time of data-based partitioning is less than 10% that of sequen-
tial scan. Again, the data-based partitioning is better than both of the others.

In Section 4.1, we discussed using external point as the reference points of
the space-based partitioning. A comparison between using external points and
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Fig. 17. Effect of reference points in space-based partitioning, uniform data.

the center point as the reference point on the uniform datasets is shown in
Figure 17.

Using an external point as the reference point has slightly better perfor-
mance than using the center point, and using a farther external point is slightly
better than using the external point in turn, but the difference between them
is not big, and all of them are still worse than the data-based partitioning
approach (compare with Figure 15). Here, the farther external point is already
very far (more than 10 times the side length of the data space) and the perfor-
mance using even farther points almost does not change, therefore they are not
presented.

From the above results, we can see that the data-based partitioning scheme
is always better than the space-based partitioning approach. Thus, for all subse-
quent experimental study, we will mainly focus on the data-based partitioning
strategy. However, we note that the space-based partitioning is always better
than sequential scan in low and medium dimensional spaces (less than 16).
Thus, it is useful for these workloads. Moreover, the scheme incurs much less
overhead since there is no need to cluster data to find the reference points as
in the data-based partitioning.
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Fig. 18. Effects of number of reference points, uniform data.

6.2 iDistance Using Data-Based Partitioning

In this subsection, we further study the performance of iDistance using a
data-based partitioning strategy (iDistance for short in the sequel). We study
the effects of different parameters and different workloads. As reference, we
compare the iDistance with sequential scan. Although iDistance is better than
sequential scan for the 30-dimensional uniform dataset, the difference is small.
To see more clearly the behavior of iDistance, we use 16-dimensional data
when we test on uniform datasets. For clustered data, we use 30-dimensional
datasets since iDistance is still much better than sequential scan for such high
dimensionality.

Experiments on Uniform Datasets

In the first experiment, we study the effect of the number of reference points
on the performance of iDistance. The results of 10NN queries on the 100,000
16-dimensional uniform dataset are shown in Figure 18. We can see that as the
number of reference points increases, both the number of page accesses and
total response time decrease. This is expected, as smaller and fewer clusters
need to be examined (i.e., more data are pruned). The amount of the decrease
in time also decreases as the number of reference points increases. While we
can choose a very large number of reference points to improve the performance,
this will increase (a) the CPU time as more reference points need to be checked,
and (b) the time for clustering to find the reference points. Moreover, there will
also be more fragmented pages. So a moderate number of reference points is
fine. In our other experiments, we used 64 as the default number of reference
points.

The second experiment studies the effect of K on the performance of
iDistance. We varied K from 10 to 50 at the step of 10. The results of queries
on the 100,000 16-dimensional uniform dataset are shown in Figure 19. As
expected, as K increases, iDistance incurs a larger number of page accesses.
However, it remains superior over sequential scan. In terms of total response
time, while both iDistance’s and sequential scan’s response times increase lin-
early as K increases, the rate of increase for iDistance is slower. This is because
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Fig. 20. Effects of dataset size, uniform data.

as K increases, the number of distance computations also increases for both
iDistance and sequential scan. But, iDistance not only has fewer distance com-
putations, the rate of increase in the distance computation is also smaller (than
sequential scan).

The third experiment studies the effect of the dataset size. We varied the
number of data points from 100,000 to 500,000. The results of 10NN queries
on five 16-dimensional uniform datasets are shown in Figure 20. The number
of page accesses and the total response time of both iDistance and sequential
scan increase linearly as the dataset size increases, but the increase for se-
quential scan is much faster. When the dataset size is 500,000, the number of
page accesses and the total response time of iDistance are about half of that of
sequential scan.

The fourth experiment examines the effect of the Ar in the iDistance KNN
Search Algorithm presented in Figure 4. Figure 21 shows the performance when
we varied the values of Ar. We can observe that, as Ar increases, both the num-
ber of page accesses and total response time decrease at first but then increase.
For a small Ar, there will be more iterations to reach the final query radius and
consequently, more pages are accessed and more CPU time is incurred. On the
other hand, if Ar is too large, the query radius may exceed the KNN distance at
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Fig. 22. Effects of number of reference points, clustered data.

the last iteration and redundant data pages are fetched for checking. We note
that it is very difficult to derive an optimal Ar since it is dependent on the data
distribution and the order in which the data points are inserted into the index.
Fortunately, the impact on performance is marginal (less than 10%). Consid-
ering that, in practice, small K may be used in KNN search, which implies a
very small KNN distance. Therefore, in all our experiments, we have safely set
Ar = 0.01, that is, 1% of the side length of the data space.

Experiments on Clustered Datasets

For the clustered datasets, we also study the effect of the number of the
reference points, K, and dataset size. By default, the number of reference points
is 64, K is 10 and dataset size is 100,000. Dimensionality of all these datasets
is 30. The results are shown in Figures 22, 23 and 24 respectively. These
results exhibit similar characteristics to those of the uniform datasets except
that iDistance has much better performance compared to sequential scan. The
speedup factor is as high as 10. The reason is that for clustered data, the Kth
nearest neighbor distance is much smaller than that in uniform data, so many
more data points can be pruned from the search. Figure 22 shows that af-
ter the number of reference points exceeds 32, the performance gain becomes
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Fig. 24. Effects of dataset size, clustered data.

almost constant. For the rest of the experiments, we use 64 reference points as
default.

Each of the above clustered datasets consists of 20 clusters, each of which
has a standard deviation of 0.05. To evaluate the performance of iDistance on
different distributions, we tested three other datasets with different numbers
of clusters and different standard deviations, while other settings are kept
at the default values. The results are shown in Figure 25. Because all these
datasets have the same number of data points but only differ in distribution,
the performance of sequential scan is almost the same for all of them, hence we
only plot one curve for sequential scan on these datasets. We observe that the
total response time of iDistance remains very small for all the datasets with
standard deviation o less than or equal to 0.1 but increases a lot when the
standard deviation increases to 0.2. This is because as the standard deviation
increases, the distribution of the dataset becomes closer to uniform distribution,
which is when iDistance becomes less efficient (but is still better than sequential
scan).

We also studied the effect of different Ar on the clustered datasets. Like the
results on the uniform datasets, the performance change is very small.
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Fig. 26. Comparative study, 16-dimensional uniform data.

6.3 Comparative Study of iDistance and Other Techniques

In this subsection, we compare iDistance with sequential scan and two other
metric based indexing methods, the M-tree [Ciaccia et al. 1997] and the
Omni-sequential [Filho et al. 2001]. Both the M-tree and the Omni-sequential
are disk-based indexing schemes. We also compare iDistance with a main mem-
ory index, the bd-tree [Arya et al. 1994] in the environment of constrained
memory. In Filho et al. [2001], several indexing schemes of the Omni-family
were proposed, and the Omni-sequential was reported to have the best aver-
age performance. We therefore pick the Omni-sequential from the family for
comparison. The Omni-sequential needs to select a good number of foci bases
to work efficiently. In our comparative study, we tried the Omni-sequential
for several numbers of foci bases and only presented the one giving the best
performance in the sequel. We still use 64 reference points for iDistance.
Datasets used include 100,000 16-dimensional uniformly distributed points,
100,000 30-dimensional clustered points and 68040 32-dimensional real data.
We varied K from 10 to 50 at the step of 10.

First we present the comparison between the disk-based methods. The re-
sults on the uniform dataset are shown in Figure 26. Both the M-tree and the
Omni-sequential have more page accesses and longer total response time than
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Fig. 28. Comparative study, 32-dimensional real data.

sequential scan. iDistance has similar page accesses to sequential scan, but
shorter total response time than sequential scan. The results on the clustered
dataset are shown in Figure 27. The M-tree, the Omni-sequential and iDistance
are all better than sequential scan because the smaller Kth nearest neighbor
distance enables more effective pruning of the data space for these metric based
methods. iDistance performs the best. It has a speedup factor of about 3 over
the M-tree and 6 over the Omni-sequential. The results on the real dataset are
shown in Figure 28. The M-tree and the Omni-sequential have similar page
accesses as sequential scan while the number of page accesses of iDistance is
about 1/3 those of the other techniques. The Omni-sequential and iDistance
have shorter total response times than sequential scan while the M-tree has
a very long total response time. The Omni-sequential can reduce the number
of distance computations, so it takes less time while having the same page
accesses as sequential scan. The M-tree accesses the pages randomly, therefore
it is much slower. iDistance has significantly fewer page accesses and distance
computations, hence it has the least total response time.

Next we compare the iDistance with the bd-tree [Arya et al. 1994]. The
bd-tree was proposed to process approximate KNN queries, but it is able to
return exact KNNs when the error bound ¢ is set to 0. All other parameters
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Fig. 29. Comparison with a main memory index: bd-tree.

used in the bd-tree are set to the values suggested by the authors. The bd-tree
is a memory resident index that loads the full index and data in memory, while
iDistance reads in index and data pages from disk as and when they are re-
quired. To have a sensible comparison, we conducted this set of experiments
on a computer with a small memory, whose size is 32M bytes. The CPU of the
computer is a Pentium 266 MHz and the operating system is RedHat Linux 9.
When the bd-tree runs out of memory, we let the operating system do the pag-
ing. As the performance of a main memory structure is affected more by the size
of the dataset, we study the effect of dataset size instead of K. Since the main
memory index has no explicit page access operation, we only present the total
response time as the performance measurement. Figure 29(a) shows the results
on the 16-dimensional uniform datasets. When the dataset is small (less than
200,000), the bd-tree is slightly better than iDistance; however, as the dataset
grows beyond certain size (greater than 300,000), the total response time
increases dramatically. When the dataset size is 400,000, the total response
time of the bd-tree is more than 4 times that of iDistance. The reason is
obvious. When the whole dataset can fit into memory, its performance is better
than the disk-based iDistance, but when the data size goes beyond the available
memory, thrashing occurs and impairs the performance considerably. In fact,
the response time deteriorates significantly when the dataset size hits 300,000
data points or 19M bytes. The reason is that the operating system also uses up
a fair amount of memory so the memory available for the index is less than the
total. Figure 29(b) shows the results on the 30-dimensional clustered datasets.
As before, the bd-tree performs well when the dataset size is small and degrades
significantly when the dataset size increases. However, the trend is less intense
than that of the uniform datasets, as the index takes advantage of the local-
ity of the clustered data and hence less thrashing happens. The results on the
32-dimensional real dataset are similar to that of the 30-dimensional clustered
dataset up to the point of dataset size of 50,000. Since the real dataset has a
much smaller size than the available memory, the bd-tree performs better than
iDistance. However, in practice, we probably would not have so much memory
available for a single query processing process. Therefore, an efficient index
must be scalable in terms of data size and be main memory efficient.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



iDistance: An Adaptive B*-Tree Based Indexing Method . 393

500 T T T 70 T T T
S 60
2
” E 507
2 E
? o ]
g g 40 with updates —+— —
S 250 - with updates —+— g © no updates ---x---
° L no updates ---%--- i 2 30 | 7
= 200 S
& 150 - . 8 20} J
100 - 8 3
= 10 | 1
50 B
0 1 1 1 0 1 1 1
80 85 90 95 100 80 85 90 95 100
Percentage of data inserted Percentage of data inserted
(a) Page accesses (b) Total response time

Fig. 30. iDistance performance with updates.

6.4 On Updates

We use clustering to choose the reference points from a collection of data points,
and fix them from that point onwards. It is therefore important to see whether
a dynamic workload would affect the performance of iDistance much. In this
experiment, we first construct the index using 80% of the data points from
the real dataset. We run 200 10NN queries and record the average number
of page accesses and total response time. Then we insert 5% of the data to
the database and rerun the same queries. This process is repeated until the
other 20% of the data are inserted. Separately, we also run the same queries
on the index built based on the reference points chosen for 85%, 90%, 95% and
100% of the dataset. We compare the average number of page accesses and
total response time of the two as shown in Figure 30. The difference between
them is very small. The reason is that real data from the same source tends to
follow a similar distribution, so the reference points chosen at different times
are similar. Of course, if the distribution of the data changes too much, we will
need choose the reference points again and rebuild the index.

6.5 Evaluation of the Cost Models

Since our cost model estimates page accesses of each individual query, we show
the actual number of page accesses and the estimated page accesses from 5
randomly chosen queries on the real dataset in Figure 31. Estimation of each
of these 5 queries has the relative error below 20%. For all the tested queries,
the estimations of more than 95% of them achieve a relative error below 20%.
Considering that iDistance often has a speedup factor of 2 to 6 over other
techniques, the 20% error will not affect the query optimization result greatly.

We also measured the time needed for computing the cost model. The
average computation time (including the time for retrieving the number from
the histogram) is less than 3% of the average KNN query processing time. So
this cost model is still a practical approach for query optimization.

6.6 Summary of the Experimental Results

The data-based partitioning approach is more efficient than the space-based
partitioning approach. The iDistance using the data-based partitioning is
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always better than the other techniques in all our experiments on various
workloads. For uniform data, it beats sequential scan in dimensionality as high
as 30. Of course, due to the intrinsic characteristics of the KNN problem, we
expect iDistance to lose out to sequential scan in much higher dimensionality
on uniform datasets. However, for more practical data distributions, where data
are skew and clustered, iDistance shows much better performance compared
with sequential scan. Its speedup factor over sequential scan is as high as 10.

The number of reference points is an important tunable parameter for
iDistance. Generally, the more the number of reference points, the better the
performance, and at the same time, the longer the time needed for clustering
to determine these reference points. Too many reference points also impairs
performance because of higher computation overhead. Therefore, a moderate
number is fine. We have used 64 as the number of reference points in most of our
experiments (the others are because we need to study the effects of number of
reference points) and iDistance performs better than sequential scan and other
indexing techniques in these experiments. For a dataset with unknown data
distribution, we suggest 60 to 80 reference points. Usually iDistance achieves a
speedup factor of 2 to 6 over the other techniques. We can use a histogram-based
cost model in query optimization to estimate the page access cost of iDistance,
which usually has a relative error below 20%.

The space-based partitioning is simpler and can be used in low and medium
dimensional space.

7. CONCLUSION

Similarity search is of growing importance, and is often most useful for objects
represented in a high dimensionality attribute space. A central problem in
similarity search is to find the points in the dataset nearest to a given query
point. In this article we have presented a simple and efficient method, called
iDistance, for K-nearest neighbor (KNN) search in a high-dimensional metric
space.

Our technique partitions the data and selects one reference point for each
partition. The data in each cluster can be described based on their similarity
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with respect to a reference point, hence they can be transformed into a single
dimensional space based on such relative similarity. This allows us to index
the data points using a B*-tree structure and perform KNN search using a
simple one-dimensional range search. As such, the method is well suited for
integration into existing DBMSs.

The choice of partition and reference points provides the iDistance technique
with degrees of freedom that most other techniques do not have. We described
how appropriate choices here can effectively adapt the index structure to the
data distribution. In fact, several well-known data structures can be obtained
as special cases of iDistance suitable for particular classes of data distribu-
tions. A cost model was proposed for iDistance KNN search to facilitate query
optimization.

We conducted an extensive experimental study to evaluate iDistance
against two other metric based indexes, the M-tree and the Omni-sequential,
and the main memory based bd-tree structure. As a reference, we also com-
pared iDistance against sequential scan. Our experimental results showed
that iDistance outperformed the other techniques in most of the cases.
Moreover, iDistance can be incorporated into existing DBMS cost effectively
since the method is built on top of the B*-tree. Thus, we believe iDistance is a
practical and efficient indexing method for nearest neighbor search.
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