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Abstract Given two sets of moving objects with non-zero method to find the optimal value for an important parameter
extents, the continuous intersection join query reporésyev required in our technique, the maximum update interval. As
pair of intersecting objects, one from each of the two movinga result, we achieve a highly optimized algorithm for pro-

object sets, for every timestamp. This type of queries is imeessing continuous intersection join queries on moving ob-

portant for a number of applications, e.g., in the multiii

jects. With a thorough experimental study, we show that our

dollar computer game industry, massively multiplayer on-algorithm outperforms the best adapted existing solution b

line games (MMOGS) lik&Norld of Warcraftneed to moni-

several orders of magnitude. We also validate the accuracy

tor the intersection among players’ attack ranges, ancerendof our cost model and its effectiveness in optimizing the per
players’ interaction in real time. The computational cdsto formance.

straightforward algorithm or an algorithm adapted from an-

other query type is prohibitive and answering the query ifkéywords Spatial databasesnoving objects continuous

real time poses a great challenge. Those algorithms conft€rsection join

pute the query answer for either too long or too short a )

time interval, which results in either a very large computa-l Introduction

tion cost per answer update or too frequent answer updateglanagement of moving objects has become an imperative
respectively. This observation motivates us to optimize th task recently due to the increasing need for real time infor-
query processing in the time dimension. In this study, Wemation in highly dynamic environments. In many previous

achieve this optimization by introducing the new concept okstydies, moving objects such as mobile phone users or ve-
time-constrained (TC) processing. Further, TC processingijcles have been modeled as points. The reason is that the
enables a set of effective improvement techniques on traspjects’ extents are negligible compared to the size of the
ditional intersection join algorithms. Finally, we proeid \yhole region of interest. For example, ignoring the extents
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of vehicles does not hurt much if we want to have an idea
of how many cars are in the central business district by per-
forming a window query. However, there are also many sce-
narios where the extents of objects cannot be neglected. For
example, Fig. 1(a) describes a scenario where we monitor
the movements of vessels and storms on the sea, and notify
vessels of possible encounters with the storms. As shown in
the figure, every vessel has an alert zone (a dotted rectan-
gle) and there are two regions in the sea covered by storms.
Navigation systems on vessels should continuously report
those vessels whose alert zones are intersected by the storm
regions, so that the vessels can be alerted to the possible im
pact. For another example shown in Fig. 1(b), in a massively
multiplayer online game (MMOG), two teams of players are
in a battle. Each player has a sector-shaped region in front



of her as her attack range. The MMOG server needs to con-

tinuously keep track of the intersection among players’ aty
tack ranges at about the graphics frame rate, so that cor
bats between players can be processed and then rendere [
almost real time. The high frequency of intersection resul
updates brings in a critical challenge to the server’s perfo

mance and the immediate requirement of new query pro-

cessing techniques [11,42]. The current systems only allo

dozens of players and can not handle hundreds of thousanés-

players in a battle. Military simulations have similar regu
ments as MMOGs do. In a military simulation, there can

<> storm

[JTeam A Il Team B

(b)

be up to 100,000 objects that are moving [25] and a primiFig. 1 Motivating examples

tive data management requirementrigerest management

over moving objects with updates. The only available way to

which is actua”y an intersection jOin of the interest rasge Support this query type is through extending a previous_tech

of objects [10, 25].
The above applications represent the executionoof

nigue which was designed for other types of queries such
as time-parameterized (TP) queries [39] (details are in Sec

tinuous intersection join query over moving objects (withtion 4). Our experiments show that even with a small number
nonzero extents) with updateshich monitors two sets of (1,000) of objects, this extended algorithm is still toovslo
moving objects and reports every pair of intersecting obto produce the result in real time. In this article, we adslres
jects, one from each of the two sets, for every timestamphe problem of efficiently processing continuous intersec-

Here, updates refer to changes in the spatial attributess-(po tion joins over moving objects with updates and make the
tion or velocity) of the moving objects. They cause changesollowing contributions:

in the result of the query. To help understand the nature of
this query, we express it in a SQL style as follows (for the —

MMOG example).
SELECT P1.id, P2.id, t
FROM  Player AS P.1, Player AS P2
WHERE Intersect(P.l.rg, P2.rg, t)
AND P1.tid # P2.tid

UPDATE_RATE ur ;
In this query,Pl ayer is a table of MMOG playersi d,
ti d andr g denote the ID, team ID and attack range of a
player;l nt er sect () is a boolean function that examines
whether one player intersects another player’s attackerang
at timestamg , wheret is a parameter that tells the times-
tamp when an answer update is triggered; GRBATE_RATE
ur gives the frequency that the query processor updates the
answer. The parameteg and the function nt er sect ()
are supported in spatial databases to represent a regien cov
ered by a spatial object and to determine whether two spatial
objects intersect each other, respectively. The parasieter
andur show that this is a continuous query, and they tell _
when the join results should be presented. These two param-
eters are not supported by the SQL language. However, in
a spatial-temporal database where continuous queries were
supportedt would be an intrinsic parameter and would
be an input parameter that tells the database system how
frequently the answer set should be updated. In a moving

Based on the key insight that the join result between
any two objects only needs to be valid until the next
update on any of the two objects, we propose the time-
constrained (TC) processing technique for the continu-
ous intersection join query and show how to optimize
the technique. Unlike previous studies, which optimize
from the spatial aspects, this is the first attempt to opti-
mize continuous spatio-temporal queries in the time di-
mension.

— We investigate a set of techniques to reduce the CPU

cost of traditional intersection join algorithms, enabled
by TC processing. We also provide a few technigues to
reduce the I/O cost of the algorithms.

We provide a model for estimating the cost of the con-
tinuous intersection join query. This model allows us to
find the optimal value for an important parameter of the
moving object monitoring system, tmeaximum update
interval

We performed an extensive experimental study, which
shows that our algorithm outperforms the best adapted
existing solution by several orders of magnitude. We also
validate the accuracy of our cost model and its effective-
ness in optimizing the performance.

This article is an extended version of our earlier paper.[45]

object management system, the continuous intersection joiThere we presented the TC processing technique and some
result will update very frequently. It is this frequent amsw improvement techniques to reduce CPU cost of the join al-
update that differs continuous intersection join queryrfro gorithm. In this article, we present a few new techniques to

traditional spatial join queries.

reduce the I/O cost of the algorithms. More importantly, we

To the best of our knowledge, no previous study hasnodel the cost of our join algorithm and thereby we can find
specifically addressed the continuous intersection joaryju the optimal value for the maximum update interval. As a re-



sult, we obtain a highly optimized approach to the contin-al. [1] address the problem in two and higher dimensions
uous intersection join query. We have performed additionadnd propose algorithms with good asymptotic performance.
experiments. The results show (i) the effectiveness of th&hang et al. [44] introduce the Transformed Minkowski Sum
techniques for reducing the 1/0O cost of our algorithms, ando determine whether a moving bounding rectangle inter-
(ii) the accuracy of our cost model and its effectiveness irsects a moving circular query region, which enables tradi-
optimizing the performance. tional tree traversal algorithms to process window and KNN
The rest of the article is organized as follows. Section Zjueries. While the above results are mainly theoreticagroth

reviews related work. Section 3 gives the problem definistudies aim at structures that yield good performance ic-pra
tion and a naive algorithm. In Section 4, we extend a pretice. For example, the TPR-tree [35] is an extension of the
vious technique to support the continuous intersectiom joi R*-tree [4] to manage moving objects, and later, the TPR*-
query. Section 5 presents the TC processing technique aitige [40] enhances the TPR-tree through using a set of im-
the improvement techniques for reducing CPU cost of ouproved construction algorithms. The*#ree [18] indexes
algorithms. Section 6 presents some techniques to reduceoving objects by a B-tree using space-filling curve (Hilbert,
the 1/0O cost of our algorithms. In Section 7, we provide ain particular) [6] values of the objects’ positions as kejs.
method for finding the optimal value of the maximum up-we use the TPR/TPR*-tree as the basic structure, we will
date interval. Section 8 reports the experimental study anbiave a closer look at them in Section 3.2. Besides predic-

finally, Section 9 concludes the article. tive queries, querying historical spatio-temporal datads
dressed in several studies [21,34,7]. There are also studie
2 Related Work on continuously querying the current states of moving ob-

We discuss three categories of work below: work on movind€cts. For example, Ali et al. [2] study continuously moni-
objects in general, work on spatial joins on static objects{oring the 3D objects around a moving object. Nutanong et
and work on other types of continuous spatial join queriedl- [28] study continuous detour queries on objects moving
on moving objects. in spatial networks. A number of other studies [15, 26,29,
Moving objects in general: A traditional way to rep- 30] address continuou.s kNN.queries over movin_g.objects.
resent a moving object is to use its sampled locations on it§ MOre relevant work is the time parameterized join algo-
trajectory. One of the earliest work that manages moving obithm [39], details of which are given in Section 4.
jects [27] samples object locations for each timestamp and Spatial joins on static objects:Early spatial join algo-
then indexes such location data with an R-tree. Followingithms transform objects to 1-dimensional values to avoid
this work, there are a few studies [34,38] proposing differthe difficulties in joining them because of their spatiaksut
ent index structures on sampled locations to support varioland dimensionality. For example, the first known spatia joi
queries on moving objects. algorithm [31] indexes the objects with'Btrees using ob-
The sampling based approaches require frequent pogpcts’ space-filling curve (z-ordering) values as the kaysl,
tion updates, which impose a heavy workload on the systerﬁhen performs the spatial join in a sort-merge join fashion.
Thus, instead of sampling and updating continuously, &istl  Later, Brinkhoff et al. [8] propose the R-tree Join (RJ)
et al. [37] model moving objects using a linear function ofalgorithm and investigate techniques to improve both CPU
timet: P(O,t) = P(O,tref) + (t —tref)V (O, t..;) where  and I/O time of the R-tree matching based spatial intersec-
P(O,t..f) andV (O, t,.5) are an objecO’s position and  tion join algorithm for objects indexed in R*-trees [4]. The
velocity at a reference timestamp ;. Under this represen- two relevant improvement techniques, the plane sweep and
tation, updates are only required when objects change theintersection check techniques, will be discussed in Seé&iid.
velocities. This reduces the number of updates since abjecThey were used for static object indexes like R*-trees by
tend to move in a linear fashion for short periods. CivilisBrinkhoff et al.; in this paper, we analyzed them and pro-
et al. [9] report that using such representation can rechee t posed ways to take advantage of them on moving object in-
number of updates by a factor of three for some vehicle datalexes with the consideration of constrained processing. tim
Following Sistla et al.'s work [37], many studies [18,32,35 Studies after RJ focus on joining datasets where at least
43,40] on querying moving objects model them by linearone dataset is not indexed. Lo and Ravishankar [23] pro-
functions of time. In this study, our problem considers mov-pose Seeded Trees for cases where only one of the joining
ing objects with frequent updates. Thus, we model a movinglatasets is indexed by an R-tree apriori. A Seeded Tree is
object using a linear function of time. built using the existing R-tree as a skeleton, and then gbine
Other than modeling moving objects, many studies orwith the existing R-tree. Patel and DeWitt [33] propose the
moving objects have focused on processing predictive gsieriPartition Based Spatial-Merge Join (PBSM), which is a gen-
Kollios et al. [20] use the dual transform to map a lide ( eralization of the sort merge join algorithm. The algorithm
dimensional trajectory) to a point and then exploit a spatiauses a rectangular grid to partition the space, and hashes ob
point access method to process window queries. Agarwal ¢tcts in both joining datasets into the partitions. It theng$



objects in the same partitions using the sort merge join-alggick objects from the nearest neighbor sets one at a time to
rithm. Sevcik and Koudas [36] propose the Filter Trees andorm the result set. Further, ECP join assumes small dataset
subsequently they propose the Size Separation Spatial Jdje.g., matching cars with parking slots). While the intersec
algorithm [22] for cases where no index is available. The al{ion join can be used to compute the nearest neighbor sets
gorithm organizes objects hierarchically based on thegssi for ECP join, it does not have the above assumptions. Thus,
and assigns an object into only one partition. In the joinECP join does not solve our intersection join problem.
phrase, objects in one partition are joined with objects in  lwerks et al. [17] consider continuous range joins, which
multiple partitions to form the join result. We assume ourcan be viewed as intersection joins on circles. This is proba
joining datasets are both indexed in TPR/TRRees. Thus, bly the closest work to ours. However, there are many cases
these techniques are not applicable. where ranges of objects are more tightly bounded by rect-
Other types of continuous spatial join queries on mov- angles rather than circles such as the storms, vessels-and at
ing objects: Despite many efforts devoted into moving ob- tack ranges of MMOG players in Fig. 1. Therefore, we still
jects and spatial joins, there is little work specifically- ad need to study intersection joins on rectangular ranges. The
dressing continuous intersection joins over moving okjectalgorithms proposed by Iwerks et al. [17] work as follows. A
with updates. Mokbel et al. [24] use shared computatioriange join is computed to get the initial result set. Eveims t
to process multiple continuous queries on moving objectswill cause the query result to change (i.e., an object moves
They do not address spatial join queries, but use a join ofto or moves out of the join range of another object) are
queries to achieve shared computation. If we view the gsieri€omputed and enqueued in an event queue prioritized by the
as a set of objects joining with the real data objects, thegvent time. These events are then processed to keep the join
their algorithm is very similar to NaiveJoin in our article result set updated. This approach resembles the ETP join al-
(Section 3.3). gorithm (Section 4) in that they both generate large amount
There are studies on other types of joins over movingf €vents; the difference is that this approach generatés mu
objects. Iwerks et al. [16] addressntinuous semijoinsver ~ tiple events at a time, while the ETP join only generates the
moving points. The semijoin on two datasétand B is de-  Next event after one event is processed. As the discussion in
fined as all the pairéa, b),a € ANb € B, thatare in Carte- S€ction 4 will show, these event based approaches are in-
sian productd x B, andb is one of thek nearest neighbors efficient due to the huge number of events generated con-
of a. Thek nearest neighbors af are bounded by a circle tinuously. Itis difficult for them to provide real time query
that centers at, which is named théuzzy set circleof .  results to the continuous intersection join on large dasase
The points in thefuzzy set circleof a, and the points that With frequent object updates.
will enter the circle sometime in the near future, form the3 preliminaries

fuzzy sebf a. Fuzzy sets provide answers to the continuous hi ) fine th | h .
semijoin. When there are updates in the datasets, the radf] this section, we define the problem and then describe

of the fuzzy set circles change, which in turn cause change-gpR/TPR*'trees [35,40] since we use them as the under-

of fuzzy sets. In the continuous intersection join over mov—Iylng access methods. Subsequently, we provide a naive al-

ing objects with nonzero extents, we may use the fuzzy sé°rithm for solving the problem.
circle of an objecO to bound all the objects intersectia 3.1 Problem Formulation

Hovye\(er, this cir'cle will haye a large radiug, since there iSRepresenting moving objects:We follow the most popular
no I|_m|t on _the sizes of obJ_ects._ A I<_)t o_f objectg not inter- approach of representing positions of moving objects, i.e.
sectingO will also be contained in this circle, which makes by linear functions of time. An object of irregular shape is
it inefficient to maintain the circle. Therefore, the fuzat s represented by itsIBR (minimum bounding rectangldjhe
circle based method does not apply. _ sides of an MBR are parallel to the axes of the 2-dimensional
~Arumugam et al. [3] address closest-point-of-approaclypacé. The movement of an object is represented by B&R
joins over moving object histories. They find the closeshpoi (yvelocity bounding rectangleThe VBR describes how each
pair between two historical trajectories, which is a tgtall side of the object’s MBR moves. At timestampthe MBR
different problem from the continuous intersection join.  of 3 moving object is denoted as/br(0, ).

. U et al.. [41] propose the exclusive closest pairs (ECP) Mbr(0,t) = Mbr(O, tyeg) + (t — tres)VOr (O, tres),

join on point data and further address the problem of con- here Mbr(O — 0 0 0 0 ,
tinuous monitoring ECP pairs with updates on the datasetéf;'.1 ereb ( ’f’,‘ff) d_“< / R“'—’d foT Ryg’ 1;’U+>(§m

ECP join tries to match up the objects in two dataséts the sbu scdrlpt, —an |+ .sta?] &;;Wg oun fan up-
and B according to the distances between objects. In th@€r bound, reSpZCt'Z? y) is t eﬁ at a reference
resultant object pair set, any objectinor B will only ap- ~ UMeStamp,c; an Vor(O,trep) = (Ovae—, Ovay, Ovy,

pear in at most one pair. Thus, ECP join can first compute 1 \we focus on 2-dimensional spaces, although the proposed tech-
a set of nearest neighbors for every objectdinand then niques are applicable to higher-dimensional spaces.




Ovy+) is the VBR ofO sincet,.. ;. We call this representa- ery timestamg, a € A,b € B, t € [t.,c0), that satisfies
tion of O a Time-Parameterized Bounding Rectangle (TPBR){br(a,t) N Mbr(b, t) # (.

of O. Such representations require less updates with position - 5\ anjiew of the System: Our continuous join process-

changes since an object's VBR can usually stay unchanggfly system consists of two componentoia processorand
fora short while (e.g., a person walking on the street or a caj raq it presenters shown in Fig. 2. The join processor is

driving on the road). o responsible for producing intermediate results in the fofm
Reprgsentmg objectupdates:TheJom is performed on (01,05, t,,t.), where(0;, 0,) is an intersecting pair and
two moving object setsd and 5. Each objectird U B has [ts, te] Is the period when this intersecting pair is valid. The

a unique ID. A moving object management system maiNyyiermediate results are passed to the result presenter and

tains the information of the objects and process queries 0R,5intained in an intermediate result list (denotediby,
them. With the consideration that the size of the data may b?orted on,. A BT-tree can be used to implement it. When

large and also in line with previous studies [16,24,35,40]ere is an updated obje€t, we need to remove intersect-
we have implemented our techniques assuming the data afgy pairs involvingO from irl. To facilitate finding pairs
disk residentalthough our techniques are applicable eve”involving an object, a hash table (denoted /by is main-

?f the data are held in main memorEach set of o?jects IS tained using the object ID as the key. Every entry of the hash
indexed by a TPR-tree (actually the variant TPR*-tree) dug, e contains an object IBid and a linked list of pointers,

to TPR-trees’ efficient management of moving objects WIthpointing to the intermediate results involving objeét. At

nonzero extents. every timestamp, we check every entry from the begin-
An updateis sent to the management system when th%ing of irl to the last entry witht, equal tot (cf.Fig. 2). If

difference between the object’s actual parameters (positi , hast, < ¢ (this means: has expired), then is discarded.

or velocity) and parameters maintained in the manageme#nenyise,. is reported as an entry in the current join result.
system exceeds some threshold. It is represented in the form

of (oid, Mbr, Vbr, t,), whereoid, Mbr andVbr denote the | jqin 1.10.1, 6=

unigue ID, the new MBR and the new VBR of the updating prgcessor ::> 10,20,2. — |

object, respectively, and, denotes the timestamp when the 1,6,2,8|=—1 [106[208 K,

update is issued. 7.4,3.4 1elce K,
Following many previous studies [18,20,32,35,40,43], the last entry =0~ — 7 . K

if an object’s actual parameters do not change for a long with t5=4 4 9 5 6 g e kz

time, the system still requires the object to update at least 6.8 6.8 40|96 K,

once everyl'y, timestamps. We call’); the maximum up- hash tableft )

date interva) which is the longest time interval allowed be-

tween two consecutive updates of an object. The reason for

the maximum update interval is as follows. Updates not only intermediate Result Presenter

keep the objects’ movement information up to date, but also result list Grl )

serve as heartbeat signals in practice. Without the maximunpIg 2 System overview
update interval requirement, if an object does not commu-
nicate with the management system for a long time, it is  Since the join result has to be presented all the time, we
impossible to know whether the object keeps moving in théissume that it can always be held in main memory. Com-
same way or has disappeared accidentally without being abR&red with the result presenter, the join processor resjuire
to notify the management systef, is a system parameter, much more computation. It is the focus of this paper and will
which is the same for all objects. be investigated in detail in following sections. Procegsin
Problem definition: Orenstein [31] suggested that an the continuous join consists of two phases: computing the
intersection join on irregular shapes should be processed jnitial join pairs (nitial join) and then maintaining the join
two steps: (1)Filter Step Find all the object pairs whose result continuously as objects are updatethifitenanck
MBRs intersect each other; (Refinement StefFor all the ~ The initial join is performed only once, therefore the main-
object pairs found in the filter step, check whether the dctudenance has significantly higher weight in the total cost.
shapes of the objects intersect. We focus on the filter step. ~ As our algorithms are based on TPR-trees, we describe

A formal definition of thecontinuous intersection join them before discussing the join processing algorithms.
queryis given as follows. Table 1 summarizes the frequently used symbols.

Definition 1 Let A, B be moving object sets, be the cur- -2 The TPR/TPR*-tree

rent timestamp, and/br (o, t) be a function that returns the The TPR-tree [35] extends the R*-tree [4] by attaching time
MBR of a moving objecto at timestampt. The continu-  parameters to node regions so that the nodes can bound mov-
ous intersection join querfinds every pair(a,b) for ev-  ing objects. Following the popular linear function of time



Table 1 Frequently Used Symbols tree during[ty, 2] is first computed (a trapezoid, cf. Fig. 3),
Symbol Explanation and then comparfad with the query window to find the time
1) A moving object range when they intersect each other.

Mbr(0,t) The MBR ofO at timestamp The insertion, deletion and update procedures of the TPR-

égmﬂ SRH’ gRyf' OORy+>> me \'\;':RR Offg tree are similar to those of the R*-tree. Details are in Sisdte

Va—r YVa4, YVy— YVy+ € 0 ’ *_ :

1B Two moving object datasets et al._s paper [351. The TPR*-tree [40] use_s a set of improved

A The number of objects i glgorlthms to build the TPR-tree and achieves an almost op-

tra A TPR-tree onA timal tree.

N,e A tree node and an entry . . . . .

o Voluntary update probability 3.3 Processing Continuous Intersection Joins Naively

¢ Average per timestamp join Cost  Reca|| that processing a continuous join (we omit “inter-

/ Average per update join cost section” when the context is clear) consists of two phases:

SR(N,qr), Asr(N,ar) The region and its area swept Ry o W ! ) ortwo p :
N during time interval- the initial join and the maintenance. For the initial joirg w

te Current timestamp can use a naive algorithm described below to compute all

tu Update timestamp the possible join pairs from now to the infinite timestamp.

Tnm Maximum update interval For the maintenance, whenever there is an object update, we

need to perform aanswer updatas follows. First, we re-
move all the pairs containing the updated object from the
current result; then we join the object with the other ddtase

are indexed in the leaf nodes of the tree. A leaf node of still using the naive algorithm) from the current timesgam

TP 152 moving objec hose MER (VBR)bounds nels 12 L e a he nevy found s v e
MBRs (VBRS) of the data objects inside. A non-leaf nOdefor computingjjoin pairs. ' 9 9
of a TPR-tree is a moving object that bounds inside its chil- o

I Ving ob) y MSIee | ! Each dataset is indexed by a TPR-tree,(andtrp for

dren, either leaf nodes or other non-leaf nodes. Fig. 3 givei and 3, respectively). The basic idea is to use the bound-

an example for a nod&’ in a TPR-tree. NodéV indexes lationshio bet de of the TPR-t dth
objectsa andb at timestamp 0. Its MBR bounds the two Ing refationship between a node ot Ine -ree and the en-
tries inside it. LetN4 (Ng) be a node fromtr4 (trg). If

objects’ MBRs, and its VBR is formed by finding the maxi- ) B
) y 9 N4 does not intersecN g, then none of the entries in the

mum and minimum speeds of the two objects on each of the b-t ted aV Id int & £ th ries i
dimensions (i.e z-dimension ang-dimension). sub-tree rooted ab4 coulc Intersectany ot the entries In

the sub-tree rooted aYg, therefore we need not visit the

representation, in the TPR-tree, a moving obfeds repre-
sented by its MBR at reference timestatngy, Mbr(O, t,.r),
and its VBR sincé,..r, Vbr(O, t,.r). Moving data objects

t=2

y ) sub-trees. Otherwise, there could be intersections betwee
g t=0 L i entries in the sub-trees and we should check the entries in
B 11\1 S i trapezoid them. This intersection-or-not checking is performed recu
6F 57,4, 4 bls sweptbyN sively on both trees in a top-down manner, until all possible
L, %ES‘ [~ during [0, 2] intersections are explored. It is a synchronous travensal o

ab, A s |7 B both trees. This algorithm is naméthiveJoin and summa-
L5 rized in Fig. 4. Throughout this article, we assume that the
oL 11\ 1 \ two TPR-trees have the same height for brevity. If they do
I N Y not and the traversal reaches the leaf level of one tree first,
| | | 1? | L saytr 4, then we only read the node on the next levelgf
0 2 4 6 8 10 12 x and join this new node ofrp with the leaf node entry of
Fig. 3 A TPR-tree node tra, i.e., we perform NaiveJoin( e g .ptr).

. . . . The functionintersect t in line 2 deter-
The TPR-tree supports time-slice queries as well as time- . intersect(ea, ep, te, )

o . . ines whether two entriesy, andep (fromtr 4 andtrg, re-
range queries, i.e., queries on the status of the indexed 081— . . 1 B (. A "B
Spectively) intersect each other during time intefyaloo),

j iven tim mp an rin iven time ran :
ects at.a give .t estamp and during a given t €ra geWheretc denotes the current timestamp arddenotes the
respectively. To illustrate how these two types of queriesa . . ~.~ . . . .
. . J]nflnlte timestamp. If yes, the time interval for the inter-
processed, we use the window queries as the examples. 10 . PR : .
rocess a time-slice window querv at timestarmine MBR section, [t., t], is returned; otherwiseNULL is returned.
Ef an obiec in the TPR-treeqis cgm uted agbr(O, £) — The function is based on the observation that for two ob-
Mbr(O Jt D (b=t V(O 8 f)pand then cor,npaired jects to intersect, in every dimension, one object’'s upper
sy vre re y‘re Ll . )
with the query window to determine whether they intersecpOund must be larger than or equal to the other objects
each other. To process a time-range window query with time 2 actyally the MBRs of the entries intersect each other. We omit

range(ty, t2], the region swept by an obje€t in the TPR-  “MBR” when the context is clear.




Algorithm NaiveJoin (N4, Ng) the intersection time interval far; andb,, we first com-
1 for everyea in Na _ pute the time interval whea (b;)’s upper bound is larger
2 E‘[)tr, e;f?rfz;gf;(’gh o510, 00)) #NULL than or equal td; (a1 )’s lower bound for thex-dimension,
3 "t N is aleaf ode which is [0, c0)([0, 7]). Similarly, we compute two time in-
4 output(e, ep, t, t.); tervals for they-dimension, which ar, 5] and[0, o). Sub-
> else _ _ sequently, we compute the intersection time intervad of
; Nawesants piren gy 0T ands, , which s[0, o) 1[0, 7] 1[0, 5] 1 [0,0) = [0, 5]

End NaiveJoin APTEEEE In NaiveJoin, the time interval,, o) is input to the

function intersect() so that we find all possible join pairs
in the future in one (synchronous) tree traversal. We call th
lower bound. Thus, to compute the intersection time intertime interval for which the algorithm needs to compute the
val for objectse and b, intersect() first compute a time join pairs theprocessing time interval. Here, the process-
interval whena(b)'s upper bound is larger than or equal ing time interval igt.., 00). If e intersects:z and they are

to b(a)'s lower bound for every dimension. Then, the in- not leaf nodes, then the algorithm traverses to the next leve
tersection of all the resultant time intervals is the time in of both trees synchronously, i.e., to retrieve both the page
terval whena andb intersect. Fig. 5 shows the details of pointed to bye4 andep (through pointers associated with
function intersect(). In this function,a andb denote the them,e4.ptr andep.ptr, respectively).

NaiveJoin is also used for processing updates. When an

Fig. 4 Algorithm NaiveJoin

Functionintersect(a, b, ts, te ) . .

1 [t1_,t14] < solutions ofar, (1) > br, (1) object.O. updgtes, we f|rst.remove frqm the current answer
2 [to—,ta4] « solutions ofbr, (1) > ar, _(); those join pairs that contait. Then,O is treated as a TPR-

3 [ta—,t34] « solutions ofag, (1) > br,_(1); tree of a single node with a single object and joined with the
4 [ta—,tay]  solutions ofbr , 1) > ar, () other dataset (the dataset tidats not in) by NaiveJoin; this

5 [th,te] = [tsste] M (M [t tit]); is effectively awindow queny[35] on the other dataset using

(o]

return[¢’, t.];
End intersect

Fig.5 Function intersect 4 Extending Time-Parameterized Joins for Con-

two objects to be checked for intersectian,(t.) denotes tinuous Joins

the starting (ending) timestamp of the time interval to bein this section, we extend a previous technique, tthree-

checked, and the subscrifit ;. (t)(R.—(t)) denotes the up- parameterized joiralgorithm [39] to support the continu-

per (lower) bound of the MBR in dimensianat timestamp  ous join query. To the best of our knowledge, this is the

t, likewise for dimensiony. Lines 1 to 4 compute the time only existing way to support the continuous intersection jo

interval when one MBR’s upper bound is greater than theyuery. However, since this previous technique is origjnall

other’s lower bound for each dimension. There is only Oanesigned for some other type of queries, extending it does

interval in the solution of each of these four inequalitiesnot result in an efficient solution to our problem. Therefore

since we assume VBRs of the objects do not change untif is still important to design algorithms that can efficignt

a new update is issued. Then the time interval for MBRS'solve our problem, and this extended technique will only

intersection is the intersection of the time intervals ol#d  serve as a baseline technique.

from previous inequalities. Fig. 6 gives an example. Assum-  Tao and Papadias presented [39] a set of spatio-temporal
queries called time-parameterized (TP) queries, inclydin
the TP (intersection) join query. While the TP join query

a does not answer the continuous join query directly, it can be

8k f1 extended to support the continuous join query. Next, we first

show how a TP join query is processed, and then show how

6L it can be extended for the continuous join query.

L A TP query returns: (i) thebjectsthat satisfy a certain

at spatial query; (ii) theexpiry timeof the result given in (i);

lg 1 ] (iii) the eventthat changes the result. That is, the answers are

2t b, in the format of triples(objects, expiry time, eventyig. 7

- - shows a TP intersection join query example. Moving object

0 ‘ ‘ ‘ ‘ : set A consists of object§a, as,as,as} and moving ob-

2 4 6 8 10 x ; ) .
Fig. 6 Intersection time interval computation ect .SetB consists of objectgbs, b, bs, b4}:' The Cum.am re-
sult is{{a1,b1)}. Suppose the current timestamp is 0. The
ing that the current timestamp is timestamp 0, to computéirst result change happens at timestamp 1 whestarts

O as the window angf.., oo] as the query time interval.

y
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fluence time of all object pairs seen so far @& denotes
the corresponding object pair (the evenf at; v ¢). The pa-
rametersl’y; ;v and N E are gradually updated during the
execution of the algorithm (lines 10 and 12). When the al-

- Py Tl gorithm stops1y; v becomes the time of the next event
61 = N that changes the result addE becomes the next event. In
N S b5 Fig. 7, at timestamp G, intersectes; so nodesV; and N
ar are accessed. Assuming a depth-first traversal here, #fter a
e N, N, entries inN; are compared to those iN3, the algorithm
20 |1 obtains (i) the current join paifa;,b,) and (ii) the mini-

mum influence time of all object pairs visited so far, which
0 2 4 6 8 10 x is 1 caused byas, b2). None of the other entry pairs from

Fig. 7 A running example rootA androot B has influence time less than 1, so the al-

gorithm terminates the tree traversals and returns thdtresu

to intersectas, so the expiry time of the current result is 1
and the event causing this chang€ {82, b2)}. Therefore, ({{ar, b}, 1, {{az, ba) }).

the answer for the TP join query at the current timestamp N the same paper [39], Tao et al. suggested a way to
is the triple ({(ay,b1)}, 1, {{as, bs)}). At any timestamp, extend TP-Join to producg answers fpr the cpntmuous join
there is a “next event” that will change the result and theluery: The extended algorithir P-Join is described as fol-

corresponding timestamp is called tinfluence timeof the lows. First, TP-JomI is run to obtain the current answer and
event. In this example, when intersects, at timestamp 1 the next event. As time goes to the next event and the result

the next event i$; leavinga; at timestamp 3, denoted by changes, an answer update is performed by running TP-Join
({a1,b1),3) where 3 is the influence time. The subsequenfo get the new.next event (no need to search for the new cur-
events aré (as, bs), 4), ((as, bs), 6) and((az, bs), 8). rent answer since they can be compl_Jted from the previous
answer and the event). When there is an update on object

The TP join algorithm TP-Join) is described as fol- ) X
lows. Each set of objects is indexed by a TPR-tree. A depth?+ @ answer update is also performed by traversing the tree
to find the object’s influence timé; y »(O). If Ty (O) is

first (or best-first) traversal is performed on each tree syn- o
chronously starting from the root. Suppasg andey; are ~ Pefore the current expiry time, théfi} v (O) becomes the

two entries in non-leaf nodes, one from each TPR-tree. Th%‘%”e”t expiry time gnuD pecomes the next event; other-
traversals go down the sub-trees pointed tochyand e wise, the update .|s simply |gn.ored .(the tree has allready been
if one of the following conditions hold: (i) the MBRs ef travgrsed). By this mgans, Jo'_n pa|.rs can be thalqed for all
andey intersect; or (i)T7x (e, e5) is less than or equal the time. The ETP-J(_)m algorithm is summarlzed in Fig. 9,
to the minimum influence time of all object pairs seen soVheréwa() is a function that performs a window query on
far, whereT;nr(e4,e) means the influence time of the th'e other joining tree usmg the updgted objedts the query
pair (e, es). Condition (i) finds the current join pairs and window to compute the influence time of, 77y (0), and
condition (ii) identifies the next event. The traversalgsto € corresponding evenV£(0O) (line 8). In Fig. 7, first
when leaf levels are reached for both trees. Fig. 8 SUMME| 0 orithm ETP-Join (root A, root B)

1 NE(—@;T]\/][NF(—O(J;
2 TP-Joirfroot A,root B,NE, TaiINF);
3 whiletrue

Algorithm TP-Join (N4, Ng, NE, TapiNF)
1 for everye in Ny

g L? re ev:lrb);eg ;n ]Xﬁ)r £0 4 Wait until next answer update;

4 ‘Tf Naiis aE;éaf node 5 if the answer update is a change of the result

5 éutput(e en): 6 TP-Joir{root A,root B,NE, TajINF);

6 else A CBI 7 else// the answer update is an object update

7 ReadPage(; .ptr); ReadPage(s .ptr); S ff]\[T]fJEf?p)(bj;I JZ FT(ISBV(; wg(O, the other joining tree);

8 TP-JOinéA.ptT,eB.ptT, NE, TJ\/IINF); ’ i .

9 else ifTynr(ea,en) < Tarin e ]Ié%d ETP-JoinTMINF «— Tinp(O); NE <~ NE(O),

10 Tmine < TinF(easeB);

1 if N4 is aleaf node Fig. 9 Algorithm ETP-Join

12 NE <« (ea,eB);

13 else the answer{(a1,b1)} is obtained for continuous join for

ig $§ajdolfi’rz:1ége(4éptr), R;eatji\f’gg;(e 'p”’)j_ the period[0,1) from the TP Join result at timestamp 0,
= ptr,ep.ptr, y y . ..

End TP-Join apmhesp e {{a1,b1),1, (as, ba)}. The continuous join answer becomes

{{a1,b1), (as, ba)} attimestamp 1. At this moment, TP-Join
is run to get the next everfta,, b1),3). Then we know the
rizes the algorithm, wherg,,; y r denotes the minimum in- continuous join answer during the perifid 3) keeps to be

Fig. 8 Algorithm TP-Join



{{a1,b1), (a2,b2)} and it changes td(ao, b2) } attimestamp ject update, then it needs to process all the nodes that in-
3. Again, TP-join is run at timestamp 3 to find the next eventeersect the updated object jty, Ty n r). If TP-Join is trig-

and the influence time, which aféas, b2)) and 4, respec- gered by a change in the result, then it needs to process all
tively. During period[3, 4), the continuous join answer stays the nodes that intersect each otheftinT; ). Sincecc is

to be{(az, b2) }. At timestamp 4, TP-join is triggered again usually much larger thafi; y -, the processing time interval

by the event ob, leavinga,. The answers for subsequent of NaiveJoin is much larger than that of ETP-Join. Unless

timestamps can be obtained similarly. the velocities of the objects are highly skewed (e.g., alimo
ing in the same direction), an MBR will expand in all four
5 Our Approach directions ¢—, z+, y—, y+), so two MBRs must intersect

We first analyze the NaiveJoin and ETP-Join algorithmsSometime in the future. This causes all the tree nodes being
and then present our approach to the problem, namely tim@ccessed per answer update for NaiveJoin {igis large).

constrained query processing. Thereforep,, > p.. For the example in Fig. 7, NaiveJoin
_ comparesoot A with root B, N1 with N3 and N, with N,
5.1 Analysis while ETP-Join only comparesot A with root B and N,

Given a periodl’, the computational cost of any of the con- with N3 in its first TP-join run. For trees with more nodes,
tinuous intersection join algorithms described in thisgrap this difference will be much more significant.
is determined by the cost of processing an answer update To summarize, ETP-Join has to run TP-Join frequently
and the number of answer updatesZinHere, the cost of because updates and changes of results are frequent. The
processing an answer update is proportional to the nunproblem of ETP-Join is computing the result foo shorta
ber of nodes processed by the algorithms. hgtbe the time interval in each run, i.e., having a too short procegsin
number of nodes processed for an answer update by algtme interval. NaiveJoin has a high computation cost per run
rithm X andu, be the number of answer updates performedecause it returns the answer up to the infinite timestamp.
in algorithm X. Then, the computational cost of algorithm The problem of NaiveJoin is computing the result foo
X is O(p,u,). Using this notation, the computational cost long a time interval in each run, i.e., having a too long pro-
of NaiveJoin and ETP-Join are denoted @&, u,,) and  cessing time interval. This motivates us to optimize query
O(peu.), respectively. processing in the time domain. The crux of the problem is to

We first compare the number of answer updates of théhoose a “good” processing time interval for each join run.
two algorithms. NaiveJoin needs an answer update upon elNext, we introduce the concept of time-constrained (TC)
ery object update, while ETP-Join needs an answer updafdocessing, based on which we propose our MTB-Join al-
upon not only every object update but also evelngnge in ~ gorithm to achieve a similar per update cost to that of the
the result In highly dynamic environments, result ChangesETP-Join algorithm while retain the same small number of
happen frequently. There usually are multiple result ckang answer updates as that of the NaiveJoin algorithm.
be_tween two object updates. For the example in Fig. 7 ETP&_;.2 Time-Constrained Processing
Join performs four (synchronous) tree traversals durieg th
time interval [0,5] (at timestamps 0, 1, 3, 4) for changes inOur key insight is that the join result between any two ob-
the result, while NaiveJoin does not perform any traversajects only needs to be valid until the next update on any
since there is no object update. Therefore, ETP-Join hasgf the two objects. Actually, if an object issues an update,
much larger number of answer updates, vug.;> u,,. all the predictions about this object’s intersection withey

On the other hand, the per update computational cost aibjects in the future may become invalid immediately. We
NaiveJoin is much higher than that of ETP-Join. The reasohave to perform a join between the updated object with the
is as follows. In NaiveJoin, the algorithm in Fig. 4 is exe- other dataset anyway. In other words, an update of an object
cuted for each answer update, which is effectively a timeinvalidates the object’s join result starting from the uggda
range window query with the updated objérts the query timestamp to the future. Therefore, an ideal time interval
window and[t., o) as the processing time interval. The al- for computing join pairs for an object is from the current
gorithm needs to process all the nodes that interéest  timestamp to the object’s next-update timestamp. Thid idea
[te, o0). In ETP-Join, algorithm TP-Join (a component of case is impossible in reality because we could not know in
ETP-Join) is executed for each answer update, which peadvance an object’s next-update timestamp. However,-fortu
forms a time-range window query using the updated obnately we have an upper bound of an object’'s next-update
ject as the query window if it is triggered by an object up-timestamp, i.e.T; from now. T, is the maximum update
date, or joins two TPR-trees if it is triggered by a change ininterval described in Section 3.1. For an object, we onlydnee
the result. The processing time intervalis 77y ), where  to find its join pairs with the other dataset during the period
T;n r is the minimum influence time of all object pairs seen[t., t. + Ths]. Beforet. + Ty, this object will have to is-
so far in the algorithm. If TP-Join is triggered by an ob-sue an update and we will then find its join pairs with the
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other dataset again for anothgy; period. By this means, update (or insertion) ad, the union of all the produced join
we can obtain correct answers for this object continuouslypairs is the correct answer for the continuous join query for
One question remains: while doing this on one object seemall the time.

correct, can we do this on all objects and still get correiat jo
pairs between any two objects and for all the time? Theo
rem 1 below gives a positive answer to the question. An example for Theorem 2 is as follows. Supp@sg =

5, the current timestamp is 7, and we know that all the ob-
jects in B were updated before timestamp 4. Then for an
update onA at the current timestamp, we only need to com-

Proof Omitted due to space limit. O

Theorem 1 Let O be an object andtherset(O) be the set
O does not belong to. Let, be the update (or insertion)

timestamp ofO. For anyQ, i we always process th? join pute its join pairs withB until timestamp 9 (9=4+5), which
betweenO and all the objects iatherset(0) for the time means the processing time interval is [7,9]. This is even

'”tef"a' [ty b + TMJ whenever there is an L.deat.e (pr N" shorter than [7,12] (12=7+5)(lu(otherset(0))) is thelat-
sertion) ofO, the union of qll the p_rqduced join pairs is .the est update timestam(tut) of otherset(O) beforeO is up-
correct answer for the continuous join query for all the time dated. The smaller that, the stricter the time constraint for
Proof Omitted due to space limit. O  processing the query.

This theorem indicates that, whenever we process the Theorem 1is a special case of Theorem 2. If there is at
join, either for the initial answer or for the updates, we carléast one object update emherset(O) at every timestamp,
use the processing time intervl,,t, + T)] instead of ~we gett(lu(otherset(0))) = t,. Therefore, in this case,
[t., 00]. It effectively imposes a constraint on the query pro-t.. + T is the optimal upper bound of the time intervals for
cessing in time. Therefore, we caltitme-constrained (TC) ~ which the join betwee® and all the objects intherset(O)
query processing. To apply it on the NaiveJoin algorithm s processed whenever there is an update (or insertion) of

we simply changéntersect(ea, eg, t.,00) in line 2 of the The problem now is how to reduce the for a set of
algorithm tointersect(ea, eg, tu, t. + Tar). We call the — objects. Given a set of objects, we cannot changéduthef
resultant algorithnTC-Join. it. However, part of the set could have smallgrand if we

TC-Join has the advantages of both ETP-Join and Naivesan separate them from those that have largehen we can
Join, i.e., it has a small computation cost per object updatstill achieve stricter time constraint for processing tpatt
([tu, tu + Thr] is much smaller thaft,,, oo]) and only needs of the set. We propose to group objects into time buckets
to update the answer when there is an object update. For th@sed on their latest updates; therefore the set of objects i
example in Fig. 7, supposg,, = 5. During the time inter- each time bucket (except the last one) has a smiali¢han
val [0,5], TC-Join only performs one tree traversal; fossthi that of the whole dataset. To group objects into time buck-
traversal, it only comparesot A with root B andN; with  ets for TPR-trees, a similar idea as used in tfetiee [18]

N3 (TC-Join does not acce$$, and N, because it knows can be exploited. Particularly, we divide the time axis into
they will not intersect in the time interval [0,5] by compar- equi-length time buckets; for each time bucket, a TPR-tree
ing e ande,). TC-Join is better than both ETP-Join, which is used to index all the objects whose latest update time fall
has four tree traversals, and NaiveJoin, which performs oni@ the bucket. This results in a group of TPR-trees based on
tree traversal but with all nodes accessed. This clearwsho multiple time buckets, which we call tddTB-tree Updates

the benefit of TC processing. in the MTB-tree are handled as follows. When an object up-
dates, we first identify which time bucket the object is cur-
rently indexed from its last update timestaingve delete
SinceT), is the maximum time interval between two Up- the object from the TPR-tree in that time bucket and insert it
dates of an object, the actual time interval between two Upmto the current TPR-tree. The cost of updating an object in
dates may be much shorter thak; . If we consider a uni-  the MTB-tree is almost the same as the cost of updating an
form distribution, the average update time interval betwee object in a regular TPR-tree, because even if the objects are
two updates is3-. Therefore, one may ask: can we obtainindexed by a regular TPR-tree, an object update still ireslv
better processing time interval thén + T,]? The answer  geleting an object from the tree first and then insert the up-
is again positive based on Theorem 2 below. We reuse th@ated object. The only overhead of an MTB-tree object up-
notation for Theorem 1. In addition, if there is an update oryate compared to a TPR-tree object update is identifying the
any object in setZ, we say that there is an update 40 time bucket in which the updated object is currently indexed
Let u(Z) denote the latest update Ghbefore the current \hich is done by a simple modulus operation and hence the
timestamp. overhead is negligible. Typically the length of a time buicke
can divideT; exactly. Fig. 10 shows an example where the

5.3 Improving TC Processing with the MTB-tree

Theorem 2 For anyO, if we always process the join be-

tweenO and all the objects intherset(O) for the time in- 3 We assume that the last update timestamp is sent together with the
terval [t,,, t(lu(otherset(0))) + Ths] whenever there is an update information.
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length of a time bucket i% and the current timestamp ~ As shown by our experiments; = 2 gives the best perfor-
is in the third time buckefTy, 22]. Updates result in dele- mance and this result accords with the result of the previous
study [18].
5.4 Computational Improvements Enabled by TC Pro-
MTB-tree cessing
TPR-trees Besides cutting the workload in the time dimension, TC pro-

) cessing enables a set of techniques that can help the tradi-
tional intersection join algorithm perform better by reduc
ing the number of entry pairs to be checked for intersec-

X tion when joining two nodes. We explore these improve-

N ment techniques below. First, we adopt the plane sweep (PS)

0 Itv | Tw gTM 2T time technique, which sorts the entries with respect to their-coo
update upddte  insert dinates in a certain dimension and can prune some of the
ingert entry pairs from being checked for intersection according t
Fig. 10 The MTB-tree the sorting result. Then we provide a method to choose the

dimension for entry sorting based on entry speed. Adding
to the PS technique, another improvement technique called
Intersection Check is explored to filter the non-intersesti
entries from entering the PS process, and hence fewer entry
pairs are required to be checked for intersection.

tions fromtr; or tro and insertions térs. Here,lut for the
whole dataset i, (¢, > Tar), while thelut for the objects
in tr; andtr, are % and T, respectively. Thereby we
reducdut for many objects in the set.

The continuous join is processed as follows. The initial
join is still performed on two single TPR-trees. After the 5-4.1 Plane Sweep
maintenance phase begins, we start to divide the time axiéarious studies [8,33] have shown that the plane sweep (PS)
into time buckets and change the single TPR-tree into afechnique provides a good order of accessing two sets of
MTB-tree. When there is an object update dnit is first ~ rectangles and hence saves computation for processing spa-
updated on the MTB-tree od; then it is joined with the tial joins on static rectangles. However, no study has shown
MTB-tree onB. Specifically, the object is joined with each how to apply this technique to moving rectangles. The tra-
TPR-tree ofB using the TC-Join algorithm, but for an even ditional PS is not applicable since the rectangles not-inter
shorter periodt,, t., + Ta], Wheret,, denotes the end of Secting each other at a timestamp may intersect later due
the time bucket of the TPR-tree. Since the join is between aff their movements. In what follows, we will first describe
object and a TPR-tree, it is effectively a time-range windowPS for static rectangles and then discuss how to adapt PS to
query on the TPR-tree using the MBR of the updated objedioving rectangles for a constrained time interval.
as the query window anf,, t., + 7] as the query time First, the two sets of rectangles are sorted respectively
range. Suppose the MTB-tree in Fig. 10 is f8r then we based on their lower left corners in a dimension,sgp ob-
join the updated object withr;, tr, andtrs for the time  tain two sorted sequenc8s=(ay, as, ...) andS,=(by, bz, ...).
interval[t,,, 37;”1], [tw, 2Tas) @nd(t,,, 5T2M}, respectively. We Then, all the rectangles in both sequences are processed in
call the above methos TB-Join. increasing order of their-coordinates of the lower left cor-

We usem to denote the number of time buckets tligt ~ ner. Letc be the current rectangle to be processedclet
is divided into. Then there are at mast1 TPR-trees inthe (c.z+) denote the lower (upper) bound of rectangie di-
MTB-tree. The choice of the value of affects the perfor- mensionz. Supposé;.z— < a;.x+, theninitiallycis set to
mance of join operation, i.e., time-range window queries beb: . The rectangles i, are scanned until a rectanglevith
tween updated objects and TPR-trees. A largean reduce e.z— > by.z+ is found. The scanned rectanglesSipnmust
the cost of a single time-range window query since it reducegverlapb; in dimensionz, so they are further checked for
the processing time interval. However, it also increases thoverlap withc in dimensiory. If any of them also overlaps
number of time-range window queries to process an update dimensiony, it is added to the join answer set. Néwis
because it increases the number of TPR-trees in an MTBIone and marked as processed. Tlgnpves on to the next
tree. Also, more TPR-trees in an MTB-tree means less obectangle with the smallest--value inS, U S;, say,a;. At
jects in a tree, which may lead to worse clustering of objectshis time, S;, is scanned and compared witrsimilarly as
and hence worse performance. Due to the various complibove. This process continues until a sequence is processed
cated factors affected by the valuesefand many of these completely.
factors being system dependent, it is difficulty to have an  We find that essentially PS needs two parameters to work,
accurate theoretical model to determine an optimal value od lower boundb and an upper boundb. Lower boundb is
m. Following a previous study [18], we take an empirical ap-used to keep two sets of objects sorted in two sequences;
proach and find a suitable value nf through experiments. and then they are accessed in increasing ordéb. dMvhile
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Algorithm PSintersection(Sq, Sy, to, t1 ) their movements as time goes fragto ¢;. Line 1 corre-
1ie1,j¢ 15«0 sponds to entry;; from nodeN4; Lines 2, 3 and 4 cor-
2 while(i < [Sa| andj < |Spl) respond to entried,, b3 and by, respectively, from node

3 if a;.lb < bj;.lb :

4 while(;' < |Sy| andb.lb < a;.ub) Ng. For Fig. 12 (a)a1.ub > ba.lb, a1.ub < bs.lb, bs.lb,

5 if ([t4,t.] < intersect(as;, bj, to,t1) # NULL therefore, we only check whethey intersect$, during PS.

6 A AppGﬂd(%%i@J@ to Se; For Fig. 12(b),a;.ub > by.lb, b3.1b, by.lb, thus, we need to

; “_]l:f* L check whether, intersectshs, b3 andb, during PS. Sup-

9 else ’ posea; intersects, bs andb, in dimensiony. Hence,a,

10 while(i < |S,| anda;.lb < b;.ub) actually only intersects, in both cases. However, the en-

1 QLA AR interf@fﬁf(aubyto,tl) # NULL tries in Fig. 12(b) have an intersection test cost threedime
ig i:grf;'q<“i’bf’t5’te> 10 5e; that of Fig. 12(a). This cost difference is caused by the dif-
13 JEIE ' ference of their speeds. The larger the speed, the larger the
End PSintersection region the entry moves, and hence the greater the chance that

b;.lb is smaller tharu;.ub, and hence the more the intersec-
tion test costs. Based on this observation, we first compute
an object is accessed, ii$ is checked againgb of the ob-  the sum of the absolute values of the speed of all entries in
jects from the other sequence. Two obje@tsandOz may  each dimension. Then the dimension with the smallest sum
not intersect ifO;.ub < O,.lb. This is the fundamental re- s selected as the sorting dimension.
quirement for choosing the two parameters. As seen from )
the previous sections, our join algorithm has a time con—5'4'3 Intersection Check
straint(to, ¢1] as part of the input. This means we need toOnly the entries ofV, and Nz that intersectV4.mbr N
consider the movements of the rectangleggnt; |. Suppose  Ng.mbr could intersect each other. Therefore, before com-
we decide to sortin dimensian LetOg,_(t) (or Og,+(t))  puting intersections of the entries from two nodes usingiPSI
denoteO’s lower (or upper) bound at timestampWe can  tersection, we first test whether the entries intergégtn
usemin(Oprg—(to), Ors—(t1)) aslb andmaz(Ore+ (o),  Np. We only run PSintersection on entries that pass this
Orq+(t1)) asub since they satisfy the requirement describedest. This intersection check technique has been used be-
above. The algorithm to compute intersections of two setfore on static datasets [8]. Here, intersection is moreceffe
of moving objects using PS, calld®bl ntersection, is pre-  tive because of the constrained processing time. Note that
sented in Fig. 11. In this algorithns,, (S5) is the sequence N,NNp is a rectangle that moves in the constrained time in-
of entriesa; (b;) from nodeA (B) sorted orlb values|to, t1]  terval[tg, t;]. Suppose they intersect durifig, t.]. Interval
is the time interval the join is processed for, aidis a se- [t t.] is actually an even stricter time constraint imposed
quence to keep the join results in the output order. on the intersection check. As we traverse the tree to a lower
Note that the constrained processing tiffet,] is nec-  level, [ts, t.] here serves agy,t;] to the lower level. Be-
essary to enable the lower/upper bound property for PS. Otleausd,, t.] C [to, t1], the time constraint becomes stricter
erwise, if[tg, oc] is the time interval for processing the in- and stricter. Therefore, the intersection check on moving o
tersection, then we will not be able to useix(Or.+(tg), jects have a stronger pruning power than that on static ob-
Orz+(t1)) asub because of the infinite timestamp. Further, jects.
the time constrainfty, t1| greatly reduces the chance of in- . . . .
tersection and maEes P]S more effective than the static cas‘re>'.4'4 A Join Algorithm with the Improvement Techniques
All the techniques discussed above are integrated into one
join algorithmImprovedJoin, shown in Fig. 13. Compared
We need to sort the entries (moving rectangles) before run-
ning PSintersection. The choice of sorting dimension alsg'90rithm ImprovedJoin (N4, N to, t1)
has an impact on the computation cost. Consider the twé for all entriesinV4 andNp
examples in Fig. 12. Lines 1, 2, 3 and 4 are the projec? ;r:]tgrlsefgzc&c)hsg fﬁ;iﬁ;ﬁéﬁgmﬁf ,(t]%g;;),
tions of some entries on dimensionThe dashed lines show 3 petermine sorting dimension;
4 sort(S,); sort(Sy);

Fig. 11 Algorithm PSintersection

5.4.2 Dimension Selection Based on Speed

t t 5 S¢ <« PSIntersection(Sa, Sy, ts,te);
t, ‘ 6 for every entry(a;, b;, tsi,tei) € Se
IRV T 7 if N4 is aleaf node
\\ \\\\ N\ \\ \‘ : : 8 OUtpUt<ai: bi: tsi, tei):

L] B SN N S R 9 else

1 2 3 4 1 10 ReadPage(.ptr); ReadPage(.ptr);

X 1 X 11 Impro_vedJoinii .ptr, bi.ptr, tsi, tei);
(a) (b) End ImprovedJoin

Fig. 12 Selecting sorting dimension Fig. 13 Algorithm ImprovedJoin
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with NaiveJoin, ImprovedJoin takes two additional parame-predicate during the period., t. + Tas]. Beforet. + Ti,
tersty andty, which reflect the constrained processing time this object will have to issue an update and we will then up-
First, we perform the intersection check. It retufnst¢.] as  date the query result for anoth€s, period. By this means,
the time interval during whichV, intersectsNg. We can  we can obtain correct answers for the query continuously.
compute the sum of the absolute values of the speed at the The above query processing procedure can be applied
same time as the intersection check. Therefore, we can avoid a wide range of continuous query types on moving ob-
accessing the entries again for selecting the sorting dimefects such as continuous window queries and kNN queries.
sion. After the sorting dimension is selected, we sort botiTake continuous window queries as an example. It is essen-
sequences of entries and perform PS to obtain join pairs. tially computing the intersection between objects and guer
5.5 Computational Cost Comparison between NaiveJoin, Windows. Again, a naive algorithm would compute the in-

ETP-Join and MTB-Join tersection for the time intervéd.., oo]. We can apply the TC

) i ) o . processing technique and only compute the intersection for

Followmg' the discussion and.nqtatlon in Section 5.1, the{tc,tc + Tyy]. Further, we can index the objects by a MTB-
computational cost of MTB-Join is denoted@tp, un)- _tree and use even tighter time constraints for each TPR-tree

The number of answer updates performed by MTB-Joiryg \we do in MTB-Join. Similarly, we can imagine applying

is the same as that by NaiveJoin because both MTB-Join anfl> o cessing to other queries and may enable other algo-
NaiveJoin only have an answer update upon every Obje(fhhmic improvements

update, sar,,, = u,. As discussed in Section 54, < u,.

TC processing can also be easily grafted onto many ex-
Thereforeu,, = u,, < ue. P g Y9 y

isting continuous query algorithms on moving objects. This

b :Ar']reB r:]umbg ' qf .r:Ode t[:r)]rclcgssg_?gcgr an ObjeCtI quzt]% because previous studies have focused on how to improve
y ~-omn Is simiar 1o that ,y ~Join as explaine Igorithms in the spatial aspects. Our work is the first at-
below. On one hand, ETP-Join’s processing time mtervaial

) , empt to optimize the processing in anthogonal aspect,
(te, Ty r]) is smaller than that of MTB-Joirite, te +Tw]) 6 time dimension. For example, the continuous kNN algo-
becausd’; v is the time for the next result change, which

. . . _ rithm proposed by Benetis et al. [5] needs to compute kNN
is usually earlier than the time for the next object update prop y 5] b

The shorter processing time interval of ETP-Join means aé:andidates for a time interval, t.] as traversing a TPR-
. A ree. Ift. > t, + Tar, we can apply TC processing and re-
cessing fewer tree nodes. However, on the other hand, c N M bRl b 9

ETP-Joi ds 1o ioin two t hil MTB-J  Ylce the time interval s, ts + Tar]. The continuous kNN
~-oin funh needs 1o join two trees while an ~OMNand range join algorithms proposed by Iwerks et al. [17] put

only performs a window query using the updated object a3l events in a gueue and process them one by one. We can
the query window. Joining two trees obviously requires ac-

. : . apply TC processing here and only process events that hap-
cessing much more nodes than window querying one tre 22 ?/n[t tp + Tl g yp P

The above two aspects results in similar numbers of nodes Generallv. TC processing can be anplied to anv continu-
processed for an object by MTB-Join and by ETP-Join, so Y, P 9 PP y

o~ po. As discussed in Section 54, < p,,. Therefore ous query algorithm as long as the data objects get updated
pm N p@'<< ) i " " and we can find an upper bound for the update time.

In summaryum, = u, andp,, < pn, S00(pnun) < 6 Improvements on Node Access Performance

O(pntin); Pm & pe @NAuy, <K Ue, SOO(Prntiy) <K O(pette). | . . have f q hni hich
The computational cost of MTB-Join is much smaller than” Prévious sections, we have focused on techniques whic

that of both NaiveJoin and ETP-Join. We will further vali- IMProve computational efficiency of the intersection join a

date the performance comparison in the experimental stud§CMthm. In this section, we present two techniques to im-
prove node access performance. The first one provides better

5.6 Applicability of TC processing pruning performance during Intersection Check; the second
The core idea of TC processing is that the result of a conene achieves node access reduction by processing updates
tinuous query on moving objects determined by an olgject in a group fashion.

only needs to be valid unth’s next update. AfteO up- .. 6.1 Improved Node Accessing Order in Intersection Check
dates, the query result has to be updated anyway. We utilize
this forced result updating property and propose that, wheRuring Intersection Check, even if nodé, intersectsVp,

an object updates, we compute the result of a continuousis still possible that no entry oWV 4 intersects any entry of
query only to the object’s next-update timestamp instead oN . For example, in Fig. 14, entries of nodg do not inter-

to the infinite timestamp. Since we can not predict an obsectNao.mbr N Ny.mbr. Thus, we can discard this pair with-
ject’s next-update timestamp, we use the maximum updateut accessingV, and hence save one node access. However,
interval Th,, which is the longest time period between anthis pruning strategy dose not work if we che¥k first.
object’s two consecutive updates. For an object that update The above pruning strategy motivates us to modify the
at timestamp., we compute whether it satisfies the querynode accessing order as follows when joining two intersect-
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ing nodes(N 4, Ng). BetweenN 4 and N, we always ac-  Algorithm IOImprovedJoin (N4, Nz, to, t1)
cess first the one which is most recently accessed. Since this ReadPage( ,);
node is most recently accessed, its probability of stilhgei 2 for all entries inN 4 ‘
in buffer is high (we consider an LRU buffer due to its popu-3 '”;‘??‘?CI'O” Chtgsk' "ﬂba be]\tfhe ezt”es froni 4
larity). Thus, we can perform Intersection Check on it with-, SW:'(; s oAb L mer
out any additional I/O cost and find out whether it satisfiess ReadPage(y); ’
the pruning criterion. If it does, we then successfully avoi 6 for all entries inN _
accessing the other node and hence save one node accesé. '“;?VE?CI'O“ Cht:ffk' 'Gib %ejg‘e er;t”es fromV
. . wnich intersec . g . ;

To find out the node betweeN, and N thatis most g it 6" & return: S
recently accessed, we consider the process of generating i Determine sorting dimension;
tersecting node pairs by PS. Take Fig. 14 as an example. P8 s0rtS.); sort(S);
generates intersecting node pairs in the ordeff, Ny),  115c < PSIntersection(Sa, Sy, ts, te);

. 12for every entry(a;, b, tsi, tei) € Se
(N2, Ny) and (N3, Ny). Between every two adjacent node ;5 ¢ N1 is a leaf node
pairs, there is a node in common. We call this nodeas- 14 output(a;, bi, tsi, tes);
ter node For example, nodéV, is a master node for the 15 else _
first two node pairs. Finding a master node can be easily® if a;.ptr is @ master node
done by comparing two adjacent node pairs. When joining - lOlmprovedJoi(t; ptr, bi.ptr, tsi, tei);
. y P 9 ! P ) J_ 9s elseifb,.ptr is a master node

a pair of nodes, we always access the master node first. e IOImprovedJoith; .ptr, a; ptr, tsi, tei);
name such node accessing orderithproved accessing or- End IOImprovedJoin
de_r. This guarantees that the node_ acpessed fir_st_within Bg. 15 Algorithm I0ImprovedJoin
pair is in the buffer (the only exception is when joining the
first node pair generated by PS). By using this order in conset.S,, of S for every nodeV in the other joining tree and

junction with the aforementioned pruning strategy, nodes ijoin S,, with IV, where the sef,, only contains all the ob-

Fig. 14 are accessed in the order®f, Ny, N, and N,,  jects inS that intersectV. We describe the detailed process
while without using these improvement techniques, the oref constructings,, in the algorithmGroupJoin as shown in
derisNy, Ny, No, Ny, N3 andN,. Fig. 16, which is also used for the group processing of ob-
ject updates. This algorithm is a modified version of IOIm-
A provedJoin. While 10ImprovedJoin is used in the phrase of
N, 1 N, initial join, GroupJoin is used in the phrase of maintenance
a i & ™ GroupJoin resembles I0ImprovedJoin in tisatis viewed
by as a tree node and joined wifl. The difference is that,
N b ] instead of joining an entry; of N with every one of its in-
5 tersecting objects ii¥,, separately, GroupJoin constructs a
a|N, subsetS? of S,,, which contains all the objects i}, inter-
sectingb;, and then usesS!, as a new subset ¢fto join with
Fig. 14 Example for IOImprovedJoin the child node pointed to by .ptr (lines 8 to 18). When con-

structingS?, for b;, we also progressively compute an MBR

The above described improvement techniques are int% bound all the objects ii? , denoted asqbr; (line 15), and
grated into ImprovedJoin algorithm and result in the algo- " ! '

: : : X an interval[min{ts; }, max{te;}], in which b;.mbr inter-
rithm | Ol mprovedJoin (cf. Fig. 15), where the improved ac- sects at least one object § (line 16). These are then used

cessing order is achlgved by puttlng amaster node as thg f'rt%t perform Intersection Check on the child node pointed to
parameter of a function call (lines 16 to 19) and performin

Int tion Check on the first functi ter at the fi goy b;.ptr. We do not perform Intersection Check 8p since
T erse|<_: lon 2t eg on the firstiunction parameter & "Sts construction process guarantees that every objeaouitl it
place (lines 2 to 3). pass this check.

6.2 Group Processing of Updates

In the phase of maintenance, we need to find new intersec7- Choosing the Maximum Update Interval

tion pairs for updated objects, which is processed as windown previous sections, we have assumed that the maximum
queries and requires traversals on the MTB-trees. To reduagpdate intervall’,, is a given parameter. In practice, a sys-
the number of traversals and hence improve node access pasm may allow to sef’,; to any value within a reasonable
formance, we process updates in a group fashion as followsange based on the application requirements. In this sgctio
At every timestamp, we group all updated objects of ave examine the problem of finding an optim&l; value
dataset into a set and join it with the other joining tree. in the sense that it minimizes the average query processing
During this joining process, we recursively construct a-subcost. Towards that end, we first model the cost of our contin-
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Algorithm GroupJoin (S», N, to, t1, mbr) untarily afterT); consecutive timestampsiis; (1 — p, ).

1 ReadPageX): In other words, there ane, (1 — p, )™ forced updates dur-

2 for all entries inNV ing Ths. Adding the number of voluntary updates iy,

3 Intersection check, lef, be the entries fronv nap»Thr, We obtain the total amount of objects updated dur-

which intersectsnbr

40 S, = ¢ return: ingTar, napyTar+na(1—p,) ™. Itis reasonable to assume

5 Determine sorting dimension; that, after a long time, the system will reach a stable state i

6 sortSy); sort(S,); which the number of forced updates is distributed uniformly
7 Sc « PSintersection(Sn, Sy, ts, te); in each timestamp. Thus, the average cost for processing all

8 for everyb; in entries ofs. the updated objects i 4 per timestamp, denoted I8y, is

8 find a subses’, of S., which includes all entries containirbg; . " .

9 St < 0, mbr; + (0,0,0,0); given by the following equation.

10  for every entry(a;, bi, tsj,te;) € S, T

11 if NV is aleaf node Ci=[n + na(l—p,)"™ ¥ (1)

12 output(a;, b;, tsj,tej); A= AP T 4

13 else .

14 sn < S U{a;}; _ The average cost for processing all the updated objects in
15 Enlargenbr; with a;.mbr Nb;.mbr duringlts;, tejl; ¢ per timestamp, denoted hi, follows a similar for-

16 Updatenin{ts;}, max{te;}; .

17 it st £0 mula. Then we have the total average per timestamp cost
18 GroupJoin@i, b, ptr, min{ts; }, maz{te; }, mbr; ); C = C4 + Cp. We focus on how to obtain the value Gf;

End GroupJoin in the remainder of this section ard can be obtained in

the same way.

In Equation (1) p, is determined by parameters in real
uous intersection join algorithm for a given valuelgf, and  applications such as the road network and traffic conditions
then provide methods to find the optin¥al; value based on which do not change dramatically in a short time. Thus, we
the cost analysis. can derivep, from the statistics on updates in a recent time

We use the number of node accesses to estimate the cogindow. We also know: 4. ThereforeC4 is a function of
of query processing due to two reasons: (i) the node acceds, multiplied by f4. Next, we show how to derivg ,
cost is a significant part of the total cost; (ii) the CPU cest i which is also a function of',.
roughly proportional to the number of node accesses, sincg 5 Average per Update Cost
the same routine will be executed on similar number of en- .
tries for every accessed node. We focus on the maintenantf Order to estimatg,, we make use of the cost model for
phase of the continuous join since this part dominates th¥indow queries on the TPR-tree [40], which is explained in
total cost. The maintenance phase essentially deals with u|§ect|on 7.2.1. We use this cost model to estimate the cost

dates of objects (insertions and deletions can also be diew® @n individual object update. Based on this, we then show
as updates). We aim at minimizing theerage per times- how to derive the average cost for processing all the object

tamp costC, which is the average cost for processing all theUPdates during a span @k, timestamps in Section 7.2.2.

Fig. 16 Algorithm GroupJoin

updates per timestamp. In what follows, we will first show  yp  sweeping
i i i : region of WQ Mbr(wWQ.0) y sweeping
thatC' is a function ofT’;. Then we discuss how to find the - Lo regionof O
optimal value ofT’y;. ’fg;?ggigf’o n
8~ 1 8~
7.1 Average per Timestamp Cost o L [1E
2? MbrwQ,1) © U ’
At each timestamp, an object may need to update itself due 4 |2 = CCURNE 2 1z |
to the change of speed or moving direction. We call thistype - 2% 0.0 | a ’
of updatewoluntary updatedt is reasonable to assume that L " i ) ! T Nfbr(ojo)

the probability of performing a voluntary update is congtan 204 65 8 10 x % 2 4 6 8 10 X

since we are modeling the average behavior of a large num- (&) Moving object®0, W@  (b) Transformed rectangle’

ber of objects whose movements are random and indepeEi-g. 17 Sweeping region of moving rectangle

dent of each other. We denote the probability of a voluntary

update ag,. On the other hand, if an object has not updated’-2-1 Cost Model

voluntarily in the lasfl’; timestamps, it is forced to perform Consider a moving objeed and a moving window query

an update to satisfy the requirement of the maximum updatg/ () for the time interval [0,1] as shown in Fig. 17(a). The

interval. We call this type of updatésrced updates sweeping regionsf O and WQ are the regions swept by
Letn4 be the number of objects ir4 and f4 the av- O andW@Q during the time interval [0,1] (the gray regions

erage cost of updating one objecttef;. Consider a period shown in Fig. 17(a)). To determine whether objéxinter-

of T, timestamps. The amount of objects not updated volsectsiV @, we first define théransformed rectangl®’ with
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respect td¥’ @ as follows: the MBR o)’ in thei'” dimen-  to its own object updates at different timestamps. Theegfor
sionis(Or;— — [WQRril/2,0ri+ + |WQg;|/2); the VBR  we need to treat each timestamp differently. We will show
of O’ in the it" dimension is(Ov;— — WQv, Oviy — later in this subsection how to derive the processing time
WQy ;). To check whether objed intersects¥’@ dur- interval gr for a given timestamp and,, value. To obtain

ing the time interval [0,1] is equivalent to check whetherthe average per timestamp update cost, we compute the total
the transformed rectangl@’ intersects the center #(@Q  update cost at each timestamp, sum it up for infinite times-
(which is a point) during the time interval [0,1]. Therefpre tamps ingr and then divide it by the number of timestamps
the probability ofO intersectingi’ @ (which is the proba- in gr. Since it is infeasible to derive the update costdbr

bility of object O being accessed by the qudiyQ) during  timestamps, we consider orily; timestamps assuming that
the time interval [0,1] is the same as the probability®f when the system reaches a stable state, the average update
intersecting the center &% @ during the time interval [0,1], behavior will occur periodically every,, timestamps.

which equals the area of the sweeping regior06fin the A second challenge lies in how to estimate the total cost
time interval [0,1] (the gray region shown in Fig. 17(b)) as-of all the updates occurring at a given timestamp. Note that
suming that the MBR o/’ @ uniformly distributes in the to use Equation (2) to estimate the cost of an object update,
data space and the data space has a unit extent in each @i need to check whether the updated object intersects with
mension. Adding up this probability for every node of the each of the tree nodes and this requires a tree traversal. The
tree, we obtain the expected number of node accesses fest of performing the check is too high if we do it on all

the window quenyv’ @ as the updated objects. To reduce this cost, we propose to es-
timate the cost of a set @quivalent object updatewrhich
Z Asr(N',qr) (2)  has a small cardinality and approximates the average update
every node N in the tree behavior of all the objects in terms of the number of node

accesses. We will explain how to construct the equivalent

object updates later in this subsection.

time interval; Asg(N’, ¢r) is the area of the sweeping re- With the above d|§gu35|on, now we can give an overview

gion of N’ during g of our method of deriving the average update cost of all the
objects inTy;. At every timestampg; in T, we (i) derive

In the continuous join, when an objegtis updated, we h I . AT (i ‘ iree |
first remove from the current answer those join pairs tha{ € gr value givent; and T}y, (i) perform a tree traversa

containO. Second is treated as a window query with the and compute the number of node accesses through Equa-

processing time intervaty, t;] on the other joining dataset tion (2) for every update in the set of equivalent object up-
to find new join pairs containin@ (recall that[ty, ¢1] is the

dates, and (iii) record the average value as the average per
processing time interval used in the join algorithms). TheUpdate COS: at;, ;jer?oted aghi. After Ty 'gmestamps, the
first step, finding join pairs containing, can be done very gveragde value of t ese a\t/_erage pt_arrhup atehcoztsf }Ctk)e
efficiently by looking up the object in the hash tahlen the IS USEd as an approximation gh. The over ead ot our
result presenter (cf. Fig. 2). Moreover, all the join pais i approach is only one tree traversal at each timestamp, re-
the answer are always held in main memory. In compariso

ngardless how many updates there are. Next, we show how
the second step is much more expensive, which involves a

é’c_) deriveqr and how the set of equivalent object updates is
cessing tree nodes and searching for all the new intersect&d nstructed.

objects. Therefore, we focus on the cost of the second step. D€rving ¢r as a function of Ty, First, we consider
As discussed above, the second step is essentially a winddi#® case where the MTB-trees for setsand B are single
query, so we can use Equation (2) to estimate the cost of aff’ R-Irées. As Theorem 2 shows, at a given timestamp
individual update withyr being[to, t1]. the processing time interval for an update on objet [¢,,,
) . t(lu(otherset(0)))+Tas], i.€..qr = [tu, t(lu(otherset(O)))

7.2.2 Update Cost for All Objects inT}y + T]. We assume large datasets and there are updates on
We have shown that Equation (2) can be used to estimate tieyery timestamp. Therefore, the latest update timestamp of
cost of an individual update. However, there are still saver otherset(O) is the update timestamp, i.é(ju(otherset(0)))
challenges if we want to estimate the average per update costt, andgy = [t., tu + Taz).
for all object updates. Next, we derivegr for the case where there are multi-

First, the cost of an object update should be estimated uple TPR-trees in the MTB-trees for setsand B. Follow-
ing different parameters for Equation (2) at different tsme ing the previous notation, suppose the length of each time
tamps due to the following reasons. Based on our MTB-treducket is%” and the current time is in th@n + 1) time
scheme, the processing time interyal for joining the up-  bucket as shown in Fig. 18. Suppose objedn ¢r 4 is up-
dated object with the other dataset is different at differendated, at timestamg,. Among the firstn TPR-trees of the
timestamps, and the other dataset may change over time diT B-tree, thei*" one indexes objects updated in the time

where N denotes a node in the TPR-tre¥! is the trans-
formed rectangle oV with respect tdV Q; ¢r is the query
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An equivalent

MTB-tree \
TPR-trees @ {0 @
sweeping v \

region of N/ .
g Ny object update
- —\*— - - - N with the Zero-VBR
| |
|
try [oeeo| trm \ trme : W
0 | itwmiy Ty Ty time
update upd%e insert N1’ Na’ NZI
insert V7
Fig. 18 An MTB-tree with n buckets sweeping sweeping v |
region of N/ region of N, | :

interval (=T}, - Th]. Hencelut for the i'" TPR-tree is
LTy, andgr on thei™ sub-tree ist,, LTy + Th] ac-
cording to Theorem 2. Then + 1)** TPR-tree indexes ob- ) )
jects updated in time intervdlly/, t,.]. Hence itslut is ¢, and N/ is much larger than the area d¥,. This shows that

andgr on itis [t,, t, -+ Ths]. More generally, at timestamp the_ Zero-VBR mgthoq is n_ot accurate. The reason is that ve-
te (te € (KThs + %TM,I@TM + %TM], k,j=1,..m), locities of opposite directions cancel out each other in the
we can deriveyr for the it TPR-tree among the firsiu Zero-VBR method, but actually they both add to the area of

TPR-trees ofrp as[t,, ©2=Ty, + kT, andgr for the ~ the transformed rectangles.

Fig. 19 Problem of the Zero-VBR method

(m +1)"" TPR-tree a$tu7¥; + T]. For example, ther’s A lesson we learn here is that velocities in different di-
for try, tro andtrs in Fig. 10 arelt,, 2 + Tyy), [t,,2T]  rections should be reflected (instead of cancelled out)én th
and[t,, t, + T, respectively. set of equivalent set of object updates. Therefore, we may
Based on the above derivation, we can see that, given@onsider setting the VBR of the above described equiva-
timestampt,,, ¢r is a function ofT’;. lent object update t¢—wv,,vq, —v,,v,), Wherev, denotes

Equivalent object updates: We construct a set of equiv- the average speed of the objects in the dataset. We call this

alent object updates to approximate the average behavior §f2¥ Of constructing the set of equivalent object updates the
all the object updates iy, in terms of the number of node E*Panding-MBR method. However, this method has the

accesses. Assume that the objects (and hence also the {@llowing problem. The size of the updated object keeps in-

dates) are uniformly distributed in the data space and theff"¢2S!ng which IS not a truthful reflection of th? average
velocities are also uniformly distributed within a range. A Pehavior of the object updates: actually some objectsssize
straightforward way of constructing the set of equivaldst o increase an_d some others’ sizes decrease, so the avemge siz
ject updates is to have just one object update which is posPf @l the objects should stay almost unchanged.

tioned at the average location (i.e., the center of the data The reason the two previous methods fail is that they try
space), has the average MBR size of all the objects, antth capture the average behavior of a large number of updates
has the VBR with the average velocity. Since the velocitiesy just one object, which is hard to reflect all characteris-
are uniformly distributed, the average is 0, so the VBR oftics such as size and speed at the same time. To address the
the above constructed object updatd(s0,0,0). We call  problem, we propose to use eight object updates as the set of
this way of constructing the set of equivalent object upslateequivalent object updates. Each of these eight updatés stil
the Zero-VBR method. However, this method has a prob- has the average MBR size and are positioned at the cen-
lem as illustrated by the example in Fig. 19. Supp6se ter of the data space, but has a VBR different from others.
andO- are two object updates with the same MBR size inThe VBRs of these eight object updates &vg, v,,0,0),

tra, and nodeV isin trp. The VBRs 0ofO1, O; andN are  (vq, Vg, —Va, —Va), (0,0, =04, —Va), {(—Va, —Va, —Va, —Va),
(0,0, —v, —v), (0,0,v,v) and(0, 0,0, 0), respectively. Ac- (—vq, —Vqa,0,0), {(—Va, —Va, Vg, Va), (0, 0,04, va) and{vq,
cording to the cost model, the transformed rectangle¥ of wv,, v, v,). We call this way of constructing the set of equiv-
with respect ta0; (O2) is Nj (IV5), which has the VBR of alent object updates thgight-VBR method. By using this

(0,0, v,v) ({0,0,—v, —v)). If we use the Zero-VBR method method, velocities of opposite directions all contribatéte

to construct an equivalent object updéig thenO3; hasthe sum area of the transformed rectangles. At the same time,
same MBR size a9, andO,, and the zero VBR. The trans- their average size remains unchanged. Therefore, the-Eight
formed rectangle olV with respect ta@D; is N4, which also  VBR method addresses the problems of both of the previ-
has the zero VBR. Recall that the area of the transformedus methods. At every timestamp, one tree traversal is per-
rectangle corresponds to the probability of an object updatformed to evaluate Equation (2) for these eight object up-
intersecting a node. We can see that the average ai®¥a of dates concurrently and the average of their numbers of node
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accesses is used as the estimate of the per update cost foal 75, value is a balance between optimizing, and f 4.
that timestamp. The impact of a system parameter on the optimal value of
7.3 Finding the Optimal Value for T, Ty is determined by whether this parameter makgsor

Revisiting Equation (1){4 is a function ofZ’; multiplied fa the dominating factor in system optimization. For exam-
by f4. We then find thaf 4 is also a function of’y; in Sec-  Ple, theobject update probability p, has a more significant
tion 7.2. Therefore( 4 is a function ofT,;. However, the influence onu,,. If p, is small, then a largefy, value can
method of obtaining the value gf, requires tree traversals reduce the number of forced updates and thus rediyce
and the result off4 depends on the actual updates over £Lonsider an extreme case where objects never change their
span of time. Consequently, we do not have a simple closedooving directions or speed at all (e.g. all static objedts),

form formula for C4 as a function ofT’y;. Therefore, we Pv = 0. Then, Ty = oo is optimal because the join result is
adopt the following empirical approach to find the optimalnot changing anyway. On the other hand, whemecomes
value of T);. We compute the values &, (andC in a larger, the optimal value df; gets smaller. Also consider
similar way) for a set of candidatg,; values at the same @an extreme case where objects update voluntarily at every
time, and the candidate value with the smallést + Cp  timestamp, i.e.p, = 1. In this case Iy = 1 is optimal
value is chosen as the optini&l, value. These candidate Pecause there is no forced update. Any laffgrvalue can
values are chosen from a rangeTof; values allowable by ©Only increasef4 but not reduce,,,. The influence obbject

the real system. For example, the system may requjréo ~ Moving pattern is shown by its impact on the object update
be less than 3 minutes. Then we may hése, 60, 90, 120, probability. In a moving pattern where the objects change

150, 180} as the set of candidat®,; values. their moving directions or speed very frequently, (e.g- par
7.4 Overhead ticles in Brownian motion), there are a lot of voluntary up-

dates and thus the optim&l, value goes smaller. In a mov-
ing pattern where objects have unified moving routes (e.g.
an army marching), objects do not update much, then the

every timestamp, we need to traversg; (andtr,) once | )
to compute the value of Equation (2) for the set of (eight)f)pt'mal Ty goes larger. Unlike the above two factors, the

equivalent object updates and perform this computation f0||n|fluence ofthe nt:}mber o; mO\fnng O.bJeCt;‘,'S more COT'_
all the candidaté’,; values. Please note that evaluating Equé2 ex. Increasing t ? humber of moving objects not on y.m'
tion (2) needs the MBRs and VBRs of all thee nodes creases,, but also increaseg, because the TPR-trees will

which only requires traversing the non-leaf nodes of the: tre have larger number' of nodes and node SIZEs. Therefore, In

As the number of non-leaf nodes is much smaller than th&3S€S Where ‘?hang'”g the number of moving objects affect

total number of the tree nodes and the non-leaf nodes ustfz» MOr€ significantly than _'t ?ﬁec#f" a Ty value that

ally reside in the buffer since they are frequently accessefPtiMmizesu,, more can opt|m|ze the system performance

in the query processing, the overhead of the tree traversQF_tter' On the other hapd, if the change aff‘?"@fm_m? SIg-

is actually not large. The CPU cost involved in the aboven'f'cantly' then the optimal’y, value should optimizef,

process is constant for each visited node and therefore aldgere:

quitellimited'. We hav_e also performed experir.nent's (set_e reg Experimental Study

sults in Section 8) which show that the cost estimation lsring

a negligible overhead compared to the cost of processing tHe this section, we report the results of our experimental

intersection join query, but it leads to a good choice of thestudy. First, in Section 8.2, we evaluate the impact of the

T, which significantly reduces the overall query processhumber of time buckets iy, m, on MTB-Join, and choose

ing cost. a best value ofn for system implementation. Then, we eval-

uate the impact of TC processing, computational improve-

ment techniques and node access improvement techniques

In this subsection we discuss how the system parameters iron join algorithms in Sections 8.3, 8.4 and 8.5, respegtivel

pact the optimal value df’,. After that, we compare the overall performance of MTB-
According to Equation (1), the average per timestamploin with NaiveJoin and ETP-Join in Section 8.6. We inves-

costCy4 is determined by the average number of updatesigate the validity of our cost model, the choice of an optima

at a timestampuy,, wym = (nap, + W) and the T value and the overhead it may incur in Section 8.7.

average per L_deate cogf. With the increase of the value 8.1 Experimental Setup
of T, u,, will decrease because a longer maximum up-
date interval leads to fewer forced updates, wifilewill All the experiments were conducted on a desktop computer
increase because a longer processing time interval leads with 3GB RAM and 2.66GHz CPU. The disk page size is
larger processing cost per update. Thug)a value can 4KB. We use the TPR*-tree [40] to index moving objects,
not minimizew,, and f4 at the same time, and the opti- and an LRU buffer with 50 pages is used (suggested by

Our scheme of finding the optimdl,, value involves esti-
matingC'4 (andCpg) for a set of candidaté’,; values. At

7.5 Impacts of System Parameters
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Tao and Papadias [39] for TPR-trees). We measure both thary update, i.e., the object issues a voluntary updateyever

number of node accesses and CPU time. 30 seconds. When reaching one end of the trajectory, the
We conduct experiments on both synthetic datasets amebject changes its direction and continues moving.

real datasets. Synthetic datasets are generated with @ SP&» The Number of Time Buckets inTy, m

domain of1000 x 1000 using the data generator developed _ _ _

by Saltenis et al. [35]. We perform joins on two datasetsThe_C_hoIce of the number of time bucketsin T affects

with the same cardinality ranging from 1K to 100K. Ob- the jon performancg. A largen can red_uce the cost of a

jects are of square shape. We use the following three typeséngle time-range W'”O,'OW qugry since it reduces the qgery

of datasets: (niform datasetwhere object positions and time range. However, it also increases the number of time-

moving directions are generated randomly according to Lange window queries to process an object update because

uniform distribution; the speed of the objects is randoml;ﬁ increases the qumber of TPR-trees in an MT'B—treg. Also,
distributed between 0 and a maximum object speed. Fiyore TPR-trees in an MTB-tree means less objects in a tree,
maximum speeds, 1, 2, 3, 4 and 5, are used3&i)ssian which may lead to worse clustering of objects and hence

dataset where object positions follow the Gaussian distri- WO'S€ performance. This experiment is to estimate a best

bution. The speed of the objects are generated as in ()). (iiivalue ofm for the experimental setting considered. To ob-

Battlefield datasetwhere objects of two datasets are first S€TVE only the effect ah values, no proposed improvement

clustered on opposite sides of the space and then move tga_chmques or buffer pages is used in this experiment.

ward the opposing party, simulating the scenario of a battle 13000 0.7

field. By default, we use the uniform dataset. o D000 6 120 « 180 +] 2 %9305 120 - 180 1]
For each dataset, we build a TPR*tree at timestamp § 0001 £ 0% E ]

and then keep updating it as follows. At every timestamp, wq‘i gggg g 0‘043 i 8

randomly change directions or speed of some objects to ge@— 6000 Fo=ye% a7 2 03By 3

erate updates. Every object is required to be updated atleas o9 . . . SRS .

once during the maximum update interi&);. The continu- 1 2 3 4 5 6 12 3 4 5 6

L. . . Number of Time Buckets Number of Time Buckets
Ous join processing starts from tlmestamp 0.The parametel’s (a) Number of node accesses (b) Total response time

used in the experiments are summarized in Table 2, wherﬁg. 20 Performance for varying: andTy,

values in bold denote default values used. ] ) o
Fig. 20 shows the average per timestamp cost for joining

Table 2 Parameters for synthetic datasets and their settings two 10K datasets with: ranging from 1 to 6 and’,; rang-
Parameter Setting ing from 30 to 180. From the figure, we can observe that
Node capacity 113 MTB-trees withm = 2 perform the best at most times (only

Maximum update interval 30,60, 90, 120, 150, 180

- - at some points, the performance of MTB-treesfor= 1
Maximum object speed 1,2,3,4,5 d — 2is simil Theref — 9 d th
Object size (% of space) | 0.5%, 1%, 2%, 4%, 8% andm = 2 is similar). Thereforemn = 2 is used as the
Voluntary update probability 1%, 2%, 4%, 8%, 16% default setting in the following experiments.

Dataset size 1K, 10K, 50K, 100K _ 8.3 Effect of TC Processing
Dataset Uniform, Gaussian, Battlefield

To evaluate the impact of imposing time constraints on query

We adopt two real-world trajectory datasets, a fleet oprocessing, we do not use any join improvement techniques
trucks and a fleet of school buses [13]. They consist of 27@resented in Section 5.4 or Section 6. Fig. 21 shows the per-
and 145 trajectories, respectively. Each trajectory aimdi  formance for the initial join computation with and without
location information for a truck/bus within a day, colledte imposing time constraints. The one denoted as “Non-TC”
every 30 seconds. Because the number of trajectories in eachmputes all possible join pairs from timestamp 0 to the
dataset is small, following previous studies [12,14,19, w infinite timestamp, which is NaiveJoin. The “TC” version
generate more objects moving on these trajectories as fatomputes join pairs for only the time intenjal 60]. MTB-
lows. Two groups of datasets are generated. One is basddin uses a single tree before getting the initial resulft so
on the truck trajectories (Truck datasets), and the other isorresponds to the “TC” join in this figure.
based on the bus trajectories (Bus datasets). Each dataset We observe that both the number of node accesses and
generated contains 10K moving objects. To generate a mothe total response time of NaiveJoin are much higher (up to
ing object, we first randomly pick a trajectory from the real 10 times) than those of MTB-Join, which clearly shows the
dataset. Then, starting from a randomly picked location irhuge benefit we gain from TC processing. NaiveJoin per-
the trajectory and with a randomly picked direction, a newforms worse mainly because it returns join pairs from the
object with the size of 0.5% (the default object size) of thecurrent timestamp to the infinite timestamp. Every node in
space is generated to move on the trajectory. Every time thene index overlaps with almost all nodes in the other index
object reaches a location in the trajectory, it issues anvolu in some future time. For maintenance, the join processing is



10 10° chooses the dimension that needs less intersection compar-
@ 105 2 0 isons for entries in two nodes. IC provides both space and
0 . . . . .
8 104 E o time constraints to prune entries to be compared. This is
§103 2 100 also the reason why “IP” improves the performance more

o . . .

§1oz g 10t than “DP” does. Again, the impact of these techniques on

10t . 102 ‘ ‘ maintenance cost follow similar behavior and is omitted.

1k 10k 50k 100k 1k 10k 50k 100k .
Dataset Cardinality Dataset Cardinality 8.5 Effect of Improvement Techniques on Node Access
(2) Number of node accesses (b) Total response time Performance

Fig. 21 Effect of TC processing The impact of the improvement techniques on node access

almost the same as the initial join, but on a smaller numbeperformance is examined in this section. We join two 50K
of objects (the updated objects), so the impact of TC prodatasets usin@; = 60 and maintain the join result for
cessing is very similar. The experiments on other setting360 timestamps, during which updates are processed. MTB-
(such as different data distributions, the object speest) al join algorithms with and without node access improvement
give similar results, and hence we omit them here. techniques are used independently to process the join and
their performance in both phase of initial join and mainte-
8.4 Effect of Computational Improvements Enabled by  ance are presented in Fig. 23, where “NA-Imp” and “Non-

TC Processing Imp” means using and not using node access improvement
In this section, we examine the impact of the computationatechniques, respectively. From this figure, we observe that

improvement techniques on join algorithms independently , 10t

of the effect of TC processing. We use the same time inter; NI e 2 m”ﬁf\::mg o

val [0, 60] for all techniques so that the time constraint doesj ™ f 1 Bk B ]

not have an effect on the relative performance. Fig. 22 showg 10 - E

the join performance when we use different combinationsg 102 b ] g 107 f 3

of the three techniques: PS(Plane Sweeping), DS(dimensioZn ) % 58 : 2 E%ﬁ

selection) and IC(Intersection Check). “DP” means the com- *° nt Maint 10 Maint

bination of DS and PS, while “IP” means the combination Join Phase Join Phase
(a) Number of node accesses (b) Total response time

of IC and PS. “None” means using none of the techniques
and “All” means all techniques are used. The focus of thiézig' 23 Effect of node access performance improvement techniques

section is not in buffer utilization efficiency and thus no the number of node accesses and the total response time de-
buffer is used in these experiments. From Fig. 22(a), Wereases as node access improvement techniques are applied.

In the phase of maintenance, group update processing re-
3300

0 2290 , 2 12 _ sults in a significant decrease in both the number of node
o 3280 MTB-Join = o 1 MTB-Join mmmm .
g %80 £ 08 accesses and the response time. Compared to that of group
[ B . . .
§ 3260 $ 06 update processing, the effect of improvement on Intersecti
g g 04 Check is relatively small (please note the logarithmiceycal
Z 3230 g 02 this technique still saves about 10% of initial join cost)isT
3220 T 9 . ) . I ;
None IC PS DP IP Al None IC PS DP IP Al is because in a dataset of uniformly distributed objects, th
Techniques Techniques probability for two intersecting nodes to have no entryiinte
(@) Number of node accesses  (b) Total response time secting the intersection area of these two nodes is small.

Fig. 22 Effect of computational improvement techniques .
g P P g 8.6 Overall Performance Comparison

observe that no technique reduces the number of node agge now compare our technique, MTB-join (using all im-
cesses. From Fig. 22(b), we find that the total response timg,yement techniques) with NaiveJoin (Section 3.3) and-ETP

decreases as more and more techniques are applied. Thefigi, (section 4) by evaluating two phases of the continuous
fore, we can conclude that all these techniques only affe%in processing: initial join and maintenance.

the total response time. When all techniques are applied, . ,
the total response time is improved by the factor of abouf-6-1 Initial Join

5. Such behavior can be explained as follows. Despite P®/e compare the initial join computation cost of the three
provides a better order for comparing nodes in two treesgpproaches by varying the dataset size, data distribugfon,
which saves CPU costs, it does not affect the number of inject speed and object size, respectively. When we vary one
tersection node pairs. Likewise, DS and IC can only reducearameter, the other parameters are set to default values.
the CPU time since both of them aim at reducing the num-  Fig. 24 shows the effect of varying the dataset size. We
ber of entries to be compared in two nodes. Specifically, D®bserve that NaiveJoin has extremely high cost compared
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1k 10k 50k 100k 1k 10k 50k 100k 1 2 3 4 5 1 2 3 4 5
Dataset Cardinality Dataset Cardinality Maximum Speed Maximum Speed
(2) Number of node accesses (b) Total response time (@) Number of node accesses (b) Total response time
Fig. 24 Initial join cost when varying dataset size Fig. 26 Initial join cost when varying the maximum object speed
. . . 14
to MTB-Join and ETP-Join, and the gap between their to-, 1‘2‘88 i 3 12
tal response time increases as dataset size increases. Wrgenmoo g 1
the dataset size is 100K, the initial join time of NaiveJoing 80 o g o0
. . . 600 AT X
is about 6 minutes, which is intolerable. Due to suchanung /|~ i g 04 P
. . . . T [V
competitive fact of NaiveJoin, we do not consider it in the® 200 | 1 g 02pTTH 1
. . . « _age . . | | | 1 1 1
remaining experiments of the phase of initial join on syn- % 1 2 1 s %5 1 2 4 3
thetic datasets. Compared to Fig. 21, here MTB-Join per- \ bObjeFtSizg (%) - OlbjectSize %)
forms far better than NaiveJoin because of the use of all the (2) Numberof node accesses  (b) Total response time

It is interesting to see that the total response time of The results of the experiments where we vary the maxi-
MTB-Join is still much less (please note the logarithmicmum object speed and the object size are shown in Fig. 26
scale) than that of ETP-Join even though MTB-Join mayand Fig. 27, respectively. MTB-Join outperforms ETP-Join
need to compute join results for a longer time interval injn all cases for the same reasons as stated above.
each tree traversal. In particular, MTB-Join outperforfi®E e also conduct initial join experiments on real datasets,
Join by up to 4 times in total response time, which is mainlyanq the results shown in Fig. 28 confirm that MTB-Join
due to the improvement techniques on join algorithms.  shows better performance than NaiveJoin or ETP-Join does

(please note the logarithmic scale).
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Fig. 25 Initial join cost when varying data distribution
Fig. 25 shows the effect of the data distribution. “BF”, Fig. 28 Initial join cost when using different real datasets
“UF” and “GS” represent using the Battlefield datasets, Uni-
form datasets and Gaussian datasets, respectively. We c%
see that MTB-Join is superior to ETP-Join for datasets of allThe maintenance cost is amortized by the number of updates
the three types of distribution in terms of total responseti  at each timestamp. In all the subsequent experiments, we
The total response time saving is high (up to 90% for the batstart measuring the average maintenance cost from times-
tlefield dataset). These improvements are again attriloted tamp7’,,, assuming that the timestamp for the initial join is
the improvement techniques on join algorithms. ETP-JoirD. The intension is to wait for the TPR-trees for the first few
shows better performance in the number of node accesstime buckets to be built up so that we are comparing a fully
for battlefield datasets. This is mainly because for bagdleéfi functioning MTB-Join with NaiveJoin and ETP-Join.
datasets, experiment starts with objects of the two dataset The first set of experiments evaluates the performance
clustering on opposite sides of the space, which means theith respect to dataset size. Fig. 29 shows the average main-
first condition for ETP-Join’s traversal to continue is nat-s  tenance cost per timestamp during [60, 360] (by default,
isfied. Thus, the traversal ends quickly. Even in this exaeem 7,,=60). NaiveJoin and ETP-Join have smaller numbers of
case, MTB-Join’s node access efficiency is close to ETProde accesses for 1K datasets because their tree nodds are al
Join and MTB-Join still has a much better total responséduffered while MTB-Join keeps removing and creating tree
time due to the computational improvement techniques. nodes so that the nodes can not be entirely buffered. Even so,

.2 Maintenance
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MTB-Join has a smaller response time. Other than this spe- 1’
cial case, MTB-Join achieves significant improvement overy 10°
NaiveJoin and ETP-Join in terms of both the number of nodég 10°
accesses and the total response time. The gap among thq‘jﬁPZ
increases with the increase of dataset size. g 122
Further, we observe that even for very small datasets | &
(1K objects), the per-timestamp response time of ETP-Join BF UF  GS UF
is not small (0.23 seconds). Considering the capability of (5 Number of node accesses  (b) Total response time
human perception, 0.1 seconds may be a preferable choiE

. . ) - . |eg 30 Maintenance cost with the effect of data distribution
for atimestamp [25]. Then ETP-Join is far inferiorand isun-

108
5 [ MTB kXXX
10, FNaive Eeszom

Response Time (s)

able to produce the result in time. What's more, the responsgm6 2 184 E

time of ETP-Join grows so dramatically with the increase of3 105 2 N 182 F N
dataset size that it is unable to be measured accurately, ThL@j 104 i MIB a3l qgrE L MTB e
there is no experimental result presented for ETP-Joirgusing® %7777 ¢ 1100_2 1 3
50K or 100K datasets. For NaiveJoin, thoughitcanproducé **° f .~ 1 & ip2% b
the result at each timestamp for 1K datasets within about ™, —— >, . ' > =+ ., .
0.07 second, its processing time also rises rapidly with the Maximum Speed Maximum Speed

increase of dataset size. It requires about 5 seconds for 10K (&) Number of node accesses  (b) Total response time

datasets, which is not acceptable. As for MTB-Join, it onlyFig- 31 Maintenance cost with the effect of maximum object speed

takes about 0.9 milliseconds to produce the join result at 10’ _ 103
. 10" ¢ E
each timestamp for 1K datasets. Even for 100K datasets, '[ré)ﬂelo6 M tg’ 10° W
processing time is only about 0.3 seconds. With some upg 10° | Nae "4 E 100F Naive -5
. . L - 2 2 10 & MTB oo
grade in hardware and slightly longéyy, it is still realistic 3 10* - Brooee s R E
. . . ° _
for MTB-Join to produce the result in real time. Therefore, 2 103 L 1 2 18; ,,,,,,,, N N
. . . e . Y O S W N o 3
we reach the following conclusion. While it is impossible to 2 i Y 10° w w w
obtain the continuous join result in real time using Naive- ®* % 2 4 8 05 1 2 4 8
Object Size (%) Object Size (%)

Join or ETP-Join, MTB-Join makes this difficult task real-  (a) Number of node accesses (b) Total response time
istic, even for large datasets. The reasons for MTB—Join’q‘:ig. 32 Maintenance cost with the effect of object sizes
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Fig. 33 Maintenance cost with the effect of voluntary update probkabi

ity

huge performance gain are highly constrained processing ) ) S

time (through grouping objects into different time buckets cost means more than their comparison in initial join. Based
and the improvement techniques. Further, ETP-Join has o' this rationale and_ the _results above,_ we say that MTB-
perform a synchronous traversal on the trees whenever the?@in outperforms NaiveJoin and ETP-Join by several orders

is a result change or an update, while MTB-Join only need§ magnitude.

Fig. 29 Maintenance cost with the effect of dataset sizes

to perform constrained joins upon updates. o
. . : Naive KX XX
We varied other parameters in the experiments such as ot %,’;ﬁ; e

data distribution, maximum object speed, object size and HOAMTE me— o
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voluntary update probability. We also conduct experiments, 10 b E
. Q O c
on real datasets. The results of all these experiments shog'\/w3 5 g 3
very similar behavior, as shown in Fig. 30, 31, 32, 33, and *° g E
34 ST E—
. ruc us
Recall that maintenance has significantly higher weight Dataset Group Dataset Group
(a) Number of node accesses (b) Total response time

in the total cost of a continuous join. Therefore, how MTB- ' o
Join compares to NaiveJoin and ETP-Join in maintenanc@d- 34 Maintenance cost with different real datasets
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8.7 The Optimal T}, Value the minimum estimated per timestamp cost will be chosen
as the optimall,; value.

Experimental results for our test system running on dif-
ferentT’, values are similar. Therefore, we only present two
typical ones here. Fig. 36(a) is the experimental result of
8.7.1 Cost Model Validation running the system witty; value being 60, and Fig. 36(b)

To validate the cost model presented in Section 7.2.1, wis that of settind’y; value to be 90. In these figures, “ZRV”,
measure the average value of per update cost estimated ByXM” and “ETV” stand for computing the estimated per
Equation (2). We denote this value Asnd compare it with timestamp cost with equivalent object updates defined by
the average value of actual per update cost, which is denoté@e Zero-VBR method, the Expanding-MBR method and the
by af. This means, when an update is issued, we Corm)utl,gight-VBR method, respectively. “ACT” means the average
a cost value with Equation (2). Meanwhile, we record thevalues of actual per timestamp cost. These values are de-
number of actual node accesses for updating the intersectiéived directly from the average values of actual per update
result set. We sum these cost values up during a maximui§Pst recorded in the experiments of the last subsection.

In this subsection, we empirically verify our cost model for
the join process and evaluate its effectiveness for findieg t
optimal value ofl’y,.

by pe, pe = If—}zf\, is presented. accuracy. They also show that under our experimental set-

To observe the stable state of the system, we collect dafi!9s: theZ’s, optimization approach will suggegh, to be
during time interval Ta; +1, 27]. Fig. 35(a) shows the ex- 90, which is the actual optim&l,,; value, as shown by the
perimental results for running the system under diffefapt ~ ACT" curve.
values. In the figure, “MOD” means the model estimated per 7500 7500

K N 7000 7000 f, ZRY —+—
update cost valueg] and “ACT” means the actual per up- 6500 es00 o1 EM T

@
date cost values:ff). It shows that, with the same datasets, § 229 [\,
f andaf have very close values. They are both rising withf iggg
the increase of th&",; value. Fig. 35(b) is the values pt

4000
when varying the value df’y;. We can see thate is less
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than 8%, which demonstrates the validity of the cost model. 30 60 90 120 150 180 30 60 90 120 150 180
Maximum Update Interval Maximum Update Interval
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S 7 ERR -G s . . . I
¢ 2 s 6l - ] Fig. 36 The optimall’; value for uniformly distributed datasets
3 g 5t 7 .
g 15 3 4f ! . We have further performed experiments on non-uniformly
2 ol 2 S0 ] distributed datasets. Fig. 37, 38, 39 and 40 show the com-
= L § 1r Em T parison between the actual numbers of node accesses and the
5 0 . . .
30 60 90 120 150 180 30 60 9 120 150 180  estimated numbers of node accesses using the Eight-VBR
Maximum Update Interval Maximum Update Interval method, for the battlefield datasets, Gaussian datasetk, Tu
() Model accuracy vel'y, (b) Percent error vy,

datasets and Bus datasets, respectively.
Fig. 35 Verification of the cost model
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8.7.2 Finding the Optimal T, Value

We implement the approach proposed in Section 7 to find a
optimal T, value among a set of candidate valy8s, 60,
90, 120, 150, 180}. For each candidate valugy, we run our

Node ABcesses
Node Accesses

1000

1000

500 | | | | 500 | | | |

test system once as follows. We initiate the test system by 30 60 90 120 150 180 30 60 90 120 150 180
setting the current’,; value to bef,,;. While the system is Maximum Update Interval Maximum Update Interval
9 M M y (@) C whenTy; = 150 (b) C whenTy; = 180

running, at every timestamg, we compute the estimated
per update costf;, for each of the candidate values. To ob-
serve the stable state of the system, we start collectirmpthe  We notice that in these results, the gaps between the ac-
cost data at timestamify,; and continue fofl,; timestamps. tual values and the estimated values are larger than those of
After that, we will have an average value of estimated peexperiments on uniform datasets. This is because the-distri
update cost for each candidate value. Since we also knotwtion and the moving pattern of the objects in these dataset
the average number of updates per timestamp, we then cado not follow the assumption of the cost model. However,
compute an average value of estimated per timestamp coste also observe that the trends of the curves ascendingfuttisg
C, for every candidate value. The candidate value yieldingre the same, and the optinigl, value chosen using our

Fig. 37 The optimalT’,, value for battlefield datasets



24

observe that this overhead is almost negligible compare to

12000 E 12000 | E . .
2 10000 | ACY o 1 2 ool ST | the cost of processing the join query. For example, the over-
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Fig. 38 The optimalT’,; value for Gaussian datasets 1k 10k 50k 100k 30 60 90 120 150 180
. . . Dataset Cardinality ) Maximum Update Interval
cost model still matches the actual optimiaJ; values for (a) Varying dataset cardinality (b) Varying T}, value

these datasets of different distributions due to the saemeltr  Fig. 41 Total response time overhead
Note that in the real dataset experiments, we Tige . D
values ranging from 10 to 60. This is because the real datasg ad for the 100K datasets is 0.016 seconds, which is about

objects are issuing voluntary updates every 30 timestamp % of the time for processing the join query. Fig. 41(b)

If we only useT), values that are larger than 30, then therepresents the overhead for the _10K da.ltaset_s while varying the
will be no forced updates and thus a largey value will T value that the test system is running with. For allThe

always result in larger per timestamp update cost. Thefeforyalues used, the overhead is less than 0.004 seconds, which

0 ) . .
we need to test our system performance vith values that is less than 6% of the time for processing the join query. We

are smaller than 30 to see whether we can find a value thg mpare this overhead with the performance gain that a well
has better performance than 30 has chosenTl; value can bring. From the experimental results

of the last subsection, we can see that for the 10K datasets
20000 20000 (cf. Fig. 36(a), the “ACT"curve), if the test system runshvit
oot ! oy arandomly chosefiy; value, say, 30, the average number of
14000 14000 node accesses per timestamp is about 54% larger than that of
o oo running the system with the optim@}, value, 90. In terms

8000 8000 of response time, th&),; value optimization process brings
provd IR proies IR a much larger performance gain compared to the overhead.
1020 30 40 50 60 10 20 30 40 50 60  Therefore, optimizing thé&); value is worthwhile.

Node Accesses

Node Accesses

Maximum Update Interval Maximum Update Interval
(@) C whenTy, =20 (b) C whenT,; = 30 9 Conclusions

Fig. 39 The optimalT,, value for the Truck datasets . . )
In this article, we addressed the problem of processing con-

tinuous intersection joins over moving objects by introduc
ing the time-constrained (TC) query processing technique.
Instead of processing the query for an overlong time, we
only process it to a time point necessary to guarantee the
e iogo o correctness of the result. TC processing can be further opti
6000 E mized by grouping objects into time buckets. We also showed

20000 20000
18000 18000
16000 | 16000 [
14000 g 14000 p

12000 12000

Node Accesses
Node Accesses

6000
00 {o 35 45 55 60 4000 2 20 ;0 4‘0 50 60 a set of techniques enabled by TC processing to reduce the
Maximum Update Interval Maximum Update Interval CPU cost of traditional intersection join algorithms and a
(&) 'whenT)y = 10 (b) C'whenTy =20 few techniques to reduce the 1/O cost of the algorithms. All
Fig. 40 The optimalT’s, value for Bus datasets these techniques are integrated together. Moreover, we de-

rived a cost model for the continuous intersection join guer
and showed that it can accurately predict the cost of pro-
We measure the response time overhead of our approach fogssing the query and suggest optifigd values for mov-
finding the optimall’,; value. In the following experiments, ing object monitoring systems. We also performed an exten-
we record and compare the average per timestamp resporsiee experimental study. The results show the effectivenes
time of the test system with and without tlig; optimiza-  of TC processing and the various improvement techniques
tion process. The comparison results are shown in Fig. 4k&nabled by it. Our algorithm outperforms the best adapted
where “OPT” and “MTB” denote the response time of theexisting solution by several orders of magnitude, making it
test system with and without tHE,,; optimization process, realistic to process continuous intersection join queiies
respectively. real time. The experiments also validates the accuracy of
Fig. 41(a) presents the overhead of g optimization  our cost model and its usefulness in choosing the optimal
process performed on datasets of different cardinalities; 77, value for our algorithm, which may provide significant

8.7.3 Overhead of Finding the Optimal Value forT},
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performance gain compared to using a badly chosen valuez1.
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