Noname manuscript No.
(will be inserted by the editor)

Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

Saad Aljubayrin -
Yuan Li

Jianzhong Qi -

the date of receipt and acceptance should be inserted later

Abstract We define and study Euclidean and spatial net-
work variants of a new path finding problem: given a set of
safe or preferred zones with zero or low cost, find paths that
minimize the cost of travel from an origin to a destination.
In this problem, the entire space is passable, with preference
given to safe or preferred zones. Existing algorithms for
problems that involve unsafe regions to be avoided strictly
are not effective for this new problem.

To solve the Euclidean variant, we devise a transforma-
tion of the continuous data space with safe zones into a dis-
crete graph upon which shortest path algorithms apply. A
naive transformation yields a large graph that is expensive
to search. In contrast, our transformation exploits properties
of hyperbolas in Euclidean space to safely eliminate graph
edges, thus improving performance without affecting cor-
rectness. To solve the spatial network variant, we propose a
different graph-to-graph transformation that identifies criti-
cal points that serve the same purpose as do the hyperbolas,
thus also avoiding the extraneous edges. Having solved the
problem for safe zones with zero costs, we extend the trans-
formations to the weighted version of the problem, where
travel in preferred zones has non-zero costs. Experiments on
both real and synthetic data show that our approaches out-
perform baseline approaches by more than an order of mag-
nitude in graph construction time, storage space, and query
response time.

S. Aljubayrin, J. Qi, R. Zhang, and Y. Li

University of Melbourne, Australia

E-mail: aljubayrin@su.edu.sa, jianzhong.qi@unimelb.edu.au,
rui.zhang @unimelb.edu.au, yuanl4 @student.unimelb.edu.au

C. S. Jensen

Aalborg University, Denmark
E-mail: csj@cs.aau.dk

Z.He

Latrobe University, Australia
E-mail: z.he @latrobe.edu.au

Christian S. Jensen -

Rui Zhang - Zhen He -

Keywords Path Finding - Safest Path - Safe Zones -
Preferred Zones - Hyperbola

1 Introduction
1.1 Motivation and Contribution Overview

Shortest path computation has been studied extensively.
However, in some scenarios, the shortest path may not be the
desired one. In hazardous environments, it can be life criti-
cal to minimize the distance traveled in unsafe regions. For
example, a person who drives a long distance through the
desert may try to travel via villages (“safe zones”) because
a breakdown in an unpopulated region can be life threaten-
ing. The traditional shortest path from an origin to a desti-
nation is likely to differ substantially from a “shortest” path
that is based on a preference to travel as little as possible
outside populated regions. In a more familiar scenario, a
tourist who plans to walk to a given destination may pre-
fer a path that visits interesting streets and blocks, e.g., with
interesting houses, galleries, or other sights, as much as pos-
sible. Here, traveling in interesting regions (“safe zones”) is
merely preferred, and the tourist is unlikely to choose the
“safest path” if it comes at the cost of a very long walk.

In the first of the above two scenarios, we may assign
zero cost to travel in safe zones, while in the second, we
may assign a reduced weight & € [0,1) to travel in safe
zones in order to capture a user’s degree of preference for
“safety” versus distance. To distinguish these preferred re-
gions from safe zones, we call them preferred zones. In a
large city, the number of buildings and blocks is very large
(e.g., there are over 1 million buildings in New York City!).
Many of these buildings/blocks are regions of interests (pre-
ferred zones), and the number of preferred zones is in the

! https://www.mapbox.com/blog/nyc-buildings-openstreetmap/



Saad Aljubayrin et al.

hundreds of thousands. This problem can also help cyclists
find routes with the least distance outside of bicycle lanes
(preferred zones). According to OpenStreetMap?, Amster-
dam has over 645,000 road segments, many of which have
bicycle lanes. As we will see, a naive algorithm for this
problem has a quadratic time complexity with respect to the
number of safe or preferred zones. With quadratic complex-
ity, path computation in scenarios such as the above is very
time-consuming, and more efficient algorithms are needed.

Motivated by the scenarios just covered, we formulate
two new problems called the safest path via safe zones
(SPSZ) and the safest path via preferred zones (SPPZ),
which are to find a path that minimizes the distance trav-
eled outside a set of discrete safe zones and a set of discrete
preferred zones, respectively. We study the problems in both
Euclidean and spatial network settings. Existing studies on
finding a safe path aim to strictly avoid a set of unsafe re-
gions [4, 19,20, 23]. Our problem setting is different in that
the entire space is unsafe except for a set of safe or preferred
zones, and unsafe regions are still passable. Therefore, algo-
rithms that solve these problems do not apply.

1.2 SPSZ Solution Overview

To solve the SPSZ problem in the Euclidean setting, we first
transform the data space with safe zones into a graph where
the safe zones are represented by vertices, and paths between
them are represented by edges. As the locations and sizes of
the safe zones are relatively static (e.g., it is unlikely to have
new bicycle lanes constructed every day), the graph can be
precomputed. When an SPSZ query is issued, the query ori-
gin and destination are added to the graph as vertices. Then,
any shortest path algorithm may be applied to find the safest
path.

Note that even though the graph is precomputed, it is
still critical to have an efficient algorithm for the precompu-
tation. A naive transformation of the data space into a graph
introduces an edge between every pair of vertices with a
weight that equals the unsafe distance between the two ver-
tices. This yields N (N —1)/2 edges, where N is the number
of safe zones. As will be shown in the experimental study,
most such edges are not competitive and will never be used
in any safest path. One way to eliminate superfluous edges is
to apply the Floyd-Warshall algorithm [10] to find the short-
est paths between all pairs of vertices. However, the cost
of doing so is very high (O(IN?)). In our experiments, this
naive graph precomputation algorithm takes more than a day
to process 10, 000 safe zones. Even with an improved imple-
mentation, the algorithm takes more than a week to process
160, 000 safe zones. It is too slow to be used in practice.

2 http://www.openstreetmap.org/

L QL
5 O Vg

o Q

4
'Constructed Edge
‘/ Hyperbola Branches
Fig. 1: Pruning with hyperbola

We observe that the regions containing the vertices with
superfluous edges can be described elegantly by hyperbolas,
and we propose an algorithm that utilizes the properties of
hyperbolas to avoid such edges, thus obtaining a much more
sparsely connected graph. Figure 1 illustrates the main idea.
Assume that we are constructing edges between v, and the
other vertices in the graph. The distances between the circles
denote the unsafe distances between the vertices. First, we
construct an edge between v; and its nearest vertex v4. Then
we compute a hyperbola based on the centers of the two
vertices and the unsafe distance between them. We use the
hyperbola branch closer to vy to divide the data space into
two parts. As will be shown in Section 4, any vertex located
on the vy side of the hyperbola branch (in the shaded region)
has a shortest path to vy that goes through v4. Therefore,
we disregard vertices representing safe zones in the shaded
region when creating edges between v; and other vertices.

When solving the SPSZ problem in the spatial network
setting, straightforwardly introducing Euclidean space hy-
perbola is not possible because the hyperbola definition does
not apply to network distance. Instead, we identify a set of
critical points that bound the parts of the spatial network
where traveling directly to a safe zone v has shorter un-
safe distance than traveling to v through an intermediate
safe zone u. We call these critical points hyperbola points
in analogy with the solution for the Euclidean setting. To
identify the hyperbola points of v, we traverse the spatial
network from v in a breath-first fashion and label every net-
work vertex d by the safe zones that the path reaching d has
passed. The traversal terminates when v is surrounded by
network vertices that have been labeled by other safe zones,
and the surrounding vertices are the hyperbola points.

1.3 SPPZ Solution Overview

We generalize the safest path problem to the problem where
travel in a safe zone has a possibly non-zero fraction of



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

Fig. 2: Safest paths through a preferred zone

the cost of travel outside safe zones. With this generaliza-
tion, the safe zones become preferred zones, and we refer to
the problem as the safest path via preferred zones problem,
i.e., SPPZ. In the spatial network setting of the SPPZ prob-
lem, our hyperbola points based method applies straightfor-
wardly. We just need to add the costs of travel inside the
preferred zones to the network path lengths when comput-
ing the hyperbola points.

In the Euclidean setting, however, the hyperbola based
approach is not directly applicable. When the cost of travel
inside a preferred zone is considered, the optimal path to
travel from a point o to a preferred zone s no longer has to be
the shortest path from o to s, because the shortest path may
require a longer travel distance inside the preferred zone.
The optimal path now depends on the weight of the cost of
travel inside preferred zones, and the location of the next
destination to reach from s.

Figure 2 illustrates the problem. Assume that travel in-
side the preferred zone has a non-zero weighted cost (0 <
weight < 1). A straightforward shortest path based algo-
rithm will return o, ps, pg, d1 as the lowest-cost path from o
to d;. This is because 0, p5 and d1, pg are the shortest paths
from o and d; to the preferred zone. However, ps, pg is not
the lowest-cost path through the preferred zone. Path p, p3
has lower cost and may be used to form a path P,;, that
has lower overall cost, depending on the weight of the cost
of p1, ps. Further, when given a different destination point
dg, another path P,4, may be the lowest-cost path. For these
reasons, precomputing a graph without knowing the origin
and destination cannot produce the safest paths correctly.
We observe that, even though the shortest path from o to
s may no longer be optimal, it can provide a lower bound in
distance computations. We redefine the hyperbolas based on
this lower bound, which are then used for precomputing a
graph. This graph may contain redundant edges, but will not
miss any edge for safest path computation. When an SPPZ
query is issued, its origin and destination are added to this
graph to compute a shortest path.

Since the edges in the precomputed graph are simply
shortest paths between the preferred zones, which may not
be optimal, a shortest path between the query origin and des-
tination in this graph may not contain the optimal edges to
travel through the preferred zones on the path. We improve
this shortest path by refining the edges on the path. This is
done by computing the optimal entry and exit points be-
tween every pair of adjacent preferred zones (and the ori-
gin and destination) and introducing an edge to connect
them. Since the boundary of a preferred zone has an in-
finite number of points, each pair of preferred zones can
have an infinite number of pairs of entry and exit points.
As there is no closed-form equation to compute the optimal
edge to reach a preferred zone, we propose two heuristics
to compute approximately optimal edges. Through experi-
ments, we show that the resulting algorithms can compute
the (approximately) safest paths both effectively and effi-
ciently. Note that this edge refinement is unnecessary for the
SPSZ problem: in SPSZ the optimal edge to connect two
safe zones is simply the shortest path between them, because
travel inside safe zones has no cost.

1.4 Contributions

In summary, we make the following contributions:

1. We propose a new safe zone based path finding problem
in Euclidean and spatial network settings.

2. To solve the problem, we model the data space as a total
graph from which unnecessary edges are eliminated dur-
ing graph construction. We propose a novel edge prun-
ing algorithm based on hyperbolas to solve the problem
in Euclidean settings. We also report on a first investi-
gation on extending the idea to spatial networks, specifi-
cally proposing an edge pruning algorithm based on hy-
perbola points in spatial network settings.

3. We generalize the problem to a preferred zone path find-
ing problem. Here, a weighted distance is used for travel
in the preferred zones to capture a user’s preference for
“safety” versus distance.

4. We extend the hyperbolas and hyperbola points based al-
gorithm to solve the generalized problem. In particular,
the generalized problem in the Euclidean setting has no
closed-form equation to compute the optimal solution.
We therefore propose two heuristics to compute approx-
imate solutions for the generalized problem.

5. We perform extensive experiments to evaluate the effi-
ciency of the proposed algorithms, and the results are
summarized as follows:

(a) In the Euclidean setting and for routing through safe
zones, our graph construction algorithm is more than
an order of magnitude faster than an improved naive
algorithm and two orders of magnitude faster than



Saad Aljubayrin et al.

a naive algorithm. At query time, adding edges to
connect the query origin and destination to the graph
using our hyperbola based algorithm is up to an or-
der of magnitude faster than that using the naive or
improved naive algorithms.

(b) In the Euclidean space setting and for routing
through preferred zones, our algorithms can com-
pute efficiently paths that are constantly shorter (and
hence safer) than those computed by a straightfor-
ward shortest path algorithm.

(c) In the spatial network setting, our edge pruning al-
gorithm successfully reduces the number of edges in
the graph constructed.

The paper extends an earlier paper [2]. There, we pre-
sented the safest path finding problem through safe zones
and algorithms to solve the problem. Here, we generalize
the problem to find the safest path through preferred zones,
where a weighted distance is used for travel in preferred
zones to capture a user’s preference for “safety” versus dis-
tance. This generalized problem is non-trivial, especially in
the Euclidean setting. The optimal path to reach a preferred
zone is not simply the shortest path. Instead, the optimal
path depends on the origin as well as the next destination
to reach after passing a preferred zone. When the next desti-
nation is also a preferred zone, an infinite number of points
can be used in the path computation. No closed-form equa-
tion exists for computing the optimal path under such cir-
cumstances. Even computing an approximately optimal path
is challenging. We overcome this challenge by introducing
two heuristics to efficiently compute near optimal edges for
travel between the preferred zones (Section 5). We perform
additional experiments (Section 7.2), which confirm the ef-
fectiveness and efficiency of the proposed algorithms.

1.5 Organization

The reminder of the paper is organized as follows. Related
work is discussed in Section 2. Section 3 presents the pre-
liminaries and a solution framework. Sections 4 and 5 detail
the proposed algorithms for the SPSZ and the SPPZ prob-
lems in the Euclidean setting, respectively. Section 6 details
the proposed algorithms for the two problems in the spatial
network setting. Section 7 presents the experimental results,
and Section 8 concludes the paper.

2 Related Work

Shortest path finding (e.g., [4,10,13,14]) has been a popular
research topic in the past few decades. Most studies address
route planing in graphs (e.g., [10,13,14]). Other studies con-
sider route planing in open space, (e.g., [4]). When planing

a route in a graph, the route must follow predefined edges,
while in an open space there is no such restriction. Bast et
al. [3] present a survey on route planning. However, we are
unaware of any attempt to investigate the problem of finding
the safest path via safe zones in an unsafe space. Only a few
existing studies consider the safety aspect. Hallam et al. [13]
propose to find multicriterion shortest paths, which aim to
help submarines find shortest paths based on two factors: the
travel time and the risk of being detected by enemy sensors.
They assume the submarines to move between the vertices
(safe points) of a two or three dimensional grid. The setting
is different from ours in that it assumes safe points, where a
submarine can stop at, rather than safe zones, in that the size
of a safe point (i.e., the area it spans) is not considered, and
in that navigating through safe points does not reduce the
unsafe distance. In our problem setting, traveling through
safe zones contributes a weighted cost to the overall travel-
ing cost, and the aim is to travel as little as possible outside
safe zones to reduce the overall traveling cost. Therefore, the
solution of Hallam et al. is not applicable to our problem.

Other studies on safest path problems assume that the
majority of the data space is safe and has a number of unsafe
zones in it, which is opposite to our assumption. In robotic
path planning [4, 16, 18, 19], it is an objective to find a path
for a robot that is optimal in the sense that it avoids colli-
sions with obstacles. Existing studies have considered path
planning in both graphs (e.g., [16, 18, 19]) and open space
(e.g., [4]). Some studies assume that the obstacles are mov-
ing (e.g., [4]) while others consider uncertainty in the move-
ment of the robots (e.g., [18, 19]). The obstacles in these
studies form the unsafe regions, while the rest of the space
is safe. The A* algorithm is commonly used in these studies.
In military unit path finding (MUPFP) [20, 24], the problem
is to find an optimal path for a military unit to move from its
current location to another location. These studies also try to
avoid certain regions (e.g., obstacles and regions controlled
by an enemy). For example, Leenen et al. [20] design an ob-
jective cost function to find the shortest path for a military
unit based on a set of safety constraints. Studies of path find-
ing for unmanned aerial vehicles (UAVs) [5,23] aim to find
a path for a UAV to move to a destination safely. Here, safety
implies not flying in enemy radar detection zones that form
the unsafe regions while the rest of the space is considered
safe. The safest paths for cruise missiles problem [14] is ad-
dressed using a grid based approach. They assign a certain
safety probability to each grid edge based on its distance
from a threat region. Other works (e.g., [5]) use Voronoi
diagrams to represent unsafe polygons and find the safest
path when traveling along diagram edges. Most of the stud-
ies above assume the unsafe zones are strictly not passable,
while unsafe regions are passable in our setting. Therefore,
the existing solutions are not applicable even when the space
definition of safe and unsafe areas is flipped around.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

Table 1: Notation

Notation Explanation

S The set of closed safe zones

o The origin of an SPSZ query

d The destination of an SPSZ query
P A path fromo to d

Di, Dit1 A line segment in a path
S(Pi,Pit1) | Sub-segments within the safe zones
U(Pi,Pi+1) | Sub-segments outside the safe zones
|U(P)] The unsafe distance of P

s A safe zone

o Safe zone traveling cost weight
distgr() Spatial network distance

Lu and Shahabi [22] study the problem of finding the
most scenic path. This problem and our SPPZ problem in
the spatial network setting both consider a certain portion
of the network to be more preferable. However, the problem
settings differ. In the former problem, each network edge has
a cost and an attractiveness value, where a more attractive
edge does not necessarily have a low cost. In our problem
setting, a preferred zone has a lower cost. Thus, the solution
provided by Lu and Shahabi does not apply to our problem.

There are extensive studies on nearest neighbor or range
queries [8,9, 15, 17,21, 25,29], which find the objects in a
database that have the smallest distances to a given query
point or range. Two recent studies [27, 28] predict a trav-
eller’s destination based on her partial route. These studies
do not consider the “safety” of a path. Most of these studies
(e.g., [9, 15, 17,25]) use Euclidean distance as the distance
metric, while others (e.g., [8,21]) use network distance. In
the SPSZ problem, after transformation to a graph, we use
graph distance, and we consider the safety of a path. The
nearest neighbor or range query algorithms are not applica-
ble to our problem.

3 Preliminaries

We proceed to formalize the SPSZ and the generalized SPPZ
problems. We also describe the properties of hyperbolas in
this section. Table 1 summarizes the symbols used.

3.1 The SPSZ Problem

We assume a set of safe zones denoted by S, an origin
point o, and a destination point d. In particular, we consider
round and polygon safe zones. Let P = (0, p1, p2, ..., Dn, d)
be a path between o and d, where p; denotes a point on
the boundary of a safe zone. Then o0, p1, P1, P2, s Pn,d
each denotes a segment that is either entirely within a safe
zone or not within any safe zone at all. For example, in

Fig. 3: Paths and safe zones

path P,4; of Fig. 3, p1, p2 and D3, p4 are within safe zones
s1 and s9, respectively, while remaining segments are not
within any safe zone. We use |P| to denote the length of
P which is computed as the sum of the lengths of the seg-
ments, i.e., |P| = [0,p1| + [p1,P2| + ... + [Pn, d|. Let S(P)
and U(P) be the two sets of segments of P that are in-
side and outside of safe zones, respectively. We call |U(P)|
the unsafe distance of P and |S(P)| the safe distance of
P.In Fig. 3, |U(Poa1)| = [0,P1| + [P2, P3| + [pa, d], and
|S(Poar)| = [p1:p2| + |P3; Pl
The problem of SPSZ is defined as follows:

Definition 1 (Safest Path via Safe Zones Query) Given
an unsafe data space, a set of safe zones S in it, an origin
point o, and a destination point d, the safest path via safe
zones (SPSZ) query finds a path P from o to d, such that for
any other path P’ from o to d, the unsafe distance of P is
less than or equal to that of P', i.e., VP |U(P)| < |U(P)'|.

A straightforward solution is to compute and compare
the unsafe distance of all the possible paths and then return
the path with the shortest unsafe distance. In Fig. 3, the un-
safe distance of the path P,4; is smaller than those of the
other paths. However, in the Euclidean setting, there is po-
tentially an infinite number of paths between any two points.
Therefore, the straightforward solution may not be feasible.
To overcome this problem, we redefine the problem to con-
fine the number of candidate safest paths to a limited num-
ber, based on which we propose our problem solution.

Definition 2 (SPSZ Query (redefinition)) Given an un-
safe data space, a set of safe zones S in it, an origin point
o, and a destination point d, the SPSZ query finds a path
formed by a sequence of safe zones s1, 52, ..., Sm, Such that
lo, 81|+ |51, 82|F 4.4 |8, | is minimized, where |-, -|*
denotes the shortest unsafe distance between two objects (ei-
ther safe zones or query points o and d). If o (or d) is in s1
(Sm) then we let |0, s1|* (|Sm, d|*) be 0.

We explain the intuition of the problem redefinition be-
low after introducing some notation. Given a path P, let



Saad Aljubayrin et al.

Fig. 4: Paths via preferred zones

(0,81, ..., Sm, d) be the sequence of the origin point (o),
safe zones (s;), and the destination point (d) passed through
by P. For example, in Fig. 3, both P,;; and P,44 pass
through (o, s1, 2, d), while P,43 passes through (o, s3, d).
A segment g € U(P) connects a pair of adjacent objects
(oby,0by) in the sequence of P, where ob; is an origin
(destination) point or a safe zone. For example, Go2, ges €
U(P,q4) connects s; and so. While there may be infinite
segments that connect (0by, oby), we can identify the short-
est line segment among them, e.g., Pz, ps for (s1, s2). Given
any sequence of origin/destination points and safe zones, we
just need to consider the path formed by the shortest line
segments that connect them. As a result, the problem of find-
ing the safest path between o and d becomes one of finding
a sequence of safe zones such that the line segments con-
necting them have the shortest total length. For example, in
Fig. 3, sequence (o, s1, $2, d) has a path P,4; formed by line
segments 0, p1, D2, P3, and py4, d, which have the shortest to-
tal unsafe distance. This is the safest path between o and d.
In the spatial network setting, the problem is defined
analogously to the Euclidean definition. Here the number of
possible paths between safe zones is not infinite, but it may
be very large. Therefore, an analysis similar to the above
applies where we just need to replace “the shortest line seg-
ment” with “the shortest path in the spatial network.”

3.2 The SPPZ Problem

In the preferred zone scenario, the cost of travel inside pre-
ferred zones is added to the overall travel cost. This cost
is weighted by a factor o (0 < a < 1) representing the de-
gree of preference of travel inside preferred zones. A smaller
value of o means that travel inside preferred zones is more
preferred. A safe zone is then a special case of a preferred
zone where o = 0. Now the overall cost of a path P be-
comes |U(P)|+ «|S(P)|. The problem of finding the safest

Fig. 5: A hyperbola

path via preferred zones, SPPZ, is to find the path that min-
imizes this cost. We formalize it as the SPPZ query.

Definition 3 (Safest Path via Preferred Zones Query)
Given a data space with a set of preferred zones S in it, a
weight o, an origin point o, and a destination point d, the
safest path via preferred zones (SPPZ) query finds a path
P from o to d, such that for any other path P’ from o to d,
the overall cost of P is less than or equal to that of P’, i.e.,
VP, [U(P)| + alS(P)| < [U(P')] + alS(P)].

Paths in the SPPZ problem do not have to be formed
by shortest path between preferred zones. This is because
taking the shortest paths between preferred zones may re-
quire taking longer paths inside preferred zones, thus yield-
ing higher overall cost. Figure 4 is an example. There are
four paths between o and d. When o« = 0, the problem falls
back to SPSZ. The optimal path P,,; is formed by the short-
est paths between o and d and the preferred zones. When
a # 0, the lowest-cost paths are generally different from the
shortest paths, e.g., path P,42 may be a better path. The path
has longer travel distances outside the preferred zones, but
also shorter distances inside the two preferred zones. If « is
close to 1, travel inside and outside preferred zones has lit-
tle difference. The optimal path would become close to the
direct path P,43 between o and d (e.g., Pyq4)-

3.3 Hyperbolas

We use hyperbolas to construct algorithms to solve the SPSZ
and SPPZ problems. As illustrated in Fig. 5, a hyperbola is
a smooth curve with two branches, such that every point p
on the curve has the property that the difference between the
distance from p to a point f; and the distance from p to a
point f5 is a positive constant k [12]:

|f17p| - |f2)p| =k

Points f; and fo are the focal points of the hyperbola. A
point p; to the right of the right hyperbola branch satisfies:

|fr.01] = [f2, 01| > K



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

Fig. 6: Hyperbola for round safe zones

We exploit this property to prune paths between safe zones.
Let v. and u, be the centers of two round safe zones v
and u, respectively. We use these two centers as the focal
points to construct a hyperbola as shown in Fig. 6. The right
hyperbola branch divides the space into two sub-spaces. A
point (e.g., p3) on the u,. side of the sub-space satisfies:

‘Uwp' - ‘Uc,p| > k = ‘Uwp‘ > |u0ap| + k

By letting k& be |U, Up1| — 7, Where u,1 denotes the closest
point to v on u and r,, denotes the radius of u, we obtain:

|Uc,Pi > iucapl + ikupl‘ —Tu

Since [vg, wp1| = |v,ult + 7y, where |v,u|t denotes the
shortest distance between v and u and r,, denotes the radius
of v, we have:

|vc»p| > |u67p‘ + |U>U|J_ +ry =Ty

= ([ve,p| = 10) > (e, | — 1) + |U7U‘J_

Here, |0, p| — 1y and |ug, p| — r,, are the minimum unsafe
distances from p to v and from p to u, respectively, while
|v,u|* is the minimum unsafe distance between v and w.
As a result, we know that the unsafe distance from p to v
exceeds from p to u and then to v. It is safer to travel to
u first, and there is no need to consider any direct path be-
tween v and any vertex in the right sub-space of the hyper-
bola branch of u. We describe the algorithms to solve the
SPSZ and SPPZ problems based on this idea next.

4 SPSZ Query in the Euclidean Setting

First we describe the solution framework of the SPSZ prob-
lem. Next, we discuss two straightforward solutions. Then
we present our algorithm named the HyperEdges algorithm.
We give details on how the hyperbolas work for round and
polygon safe zones. Finally we discuss how to deal with
overlapping safe zones.

4.1 SPSZ Solution Framework

In the Euclidean setting, we transform the SPSZ query to
a shortest path problem as follows. We let the set of safe
zones S plus the origin and destination points be the set of
vertices V, i.e., ¥V = S U {0, d}. For every pair of vertices
in V, we add an edge to the set of edges £, and we asso-
ciate it with a weight denoting the shortest distance between
the two vertices. After graph construction, finding the safest
path between o and d is equivalent to finding the shortest
path between o and d on a graph G = (V, ), which can
be done by a standard graph shortest path algorithm such as
Dijkstra’s algorithm. Different queries may have different
origin and destination points, but they share the same sub-
graph G° = (V°,£°), where V° = S and £° contains the
edges connecting the vertices in S. Therefore, the sub-graph
G° can be precomputed. When a query is issued, we add
edges to connect the origin and destination points to G°.

We achieve a two-stage solution framework for the
SPSZ query as follows:

— Stage 1: Precompute the graph G° on S.

— Stage 2: When an SPSZ query with an origin point o and
a destination point d is issued:
(a) Add o and d to G° to form a graph G.
(b) Perform a shortest path search on G with o as the
origin and d as the destination.

In this study, we aim to obtain a graph that contains as
few edges as possible while not missing any edge that may
appear in a shortest path between two vertices. This is be-
cause the number of edges plays a vital role in the efficiency
of graph construction and shortest path finding. The shortest
path algorithm used is orthogonal to the work in this paper.
We have used Dijkstra’s algorithm for simplicity, although
any other graph shortest path algorithms such as Contraction
Hierarchies [11] or Hub Labeling [1] may be used.

In the spatial network setting, we apply the same two-
stage framework but replace the Euclidean distance by the
network edge weights. In the following sections, we present
our graph construction algorithms for both the Euclidean
and the spatial network settings.

4.2 Baseline Algorithms

Naive algorithm: A naive algorithm for graph construction
works as follows. First, we add an edge to every possible
pair of vertices (safe zones). Second, we filter the edges by
the Floyd-Warshall algorithm [10] to compute the shortest
path between every pair of vertices. Although we used the
Floyd-Warshall algorithm, any other all shortest path algo-
rithm, e.g., PHAST [7], can be used. Only the edges appear-
ing in at least one shortest path are kept. This algorithm
produces the minimum graph in the precomputation stage.



Saad Aljubayrin et al.

(a) Improved Naive algorithm

(b) HyperEdges algorithm

Fig. 7: Constructing edges for vy

However, it is expensive in both time (O(|V|?)) and space
O(VP).

Improved Naive algorithm: The second baseline algo-
rithm improves on the naive algorithm. Instead of adding an
edge between every pair of safe zones, we only add an edge
if the line segment between two safe zones does not intersect
with any other safe zone. Omission of such edges works be-
cause the route between the two safe zones that goes via an
intersecting safe zone is safer than the direct route. As indi-
cated in Fig. 7a, for vertex vy, only the edges to vs, v3, vy,
and vg are added to the graph since edges to any other ver-
tex intersects with a safe zone. We also filter the superfluous
edges using Dijkstra’s algorithm.

Although the number of edges created by this algorithm
is significantly smaller than that of the naive algorithm, it is
still expensive to check the overlap between line segments
and safe zones to avoid unnecessary edges.

4.3 The HyperEdges Algorithm

We propose an efficient algorithm to filter out the superflu-
ous edges not used in any safest path. Our solution is based
on the observation that the regions containing the vertices
with superfluous edges can be elegantly described by hyper-
bolas, and we propose an algorithm that utilizes the prop-
erties of hyperbolas to avoid such edges, thus obtaining a
much more sparsely connected graph. We call our algorithm
the HyperEdges algorithm.

The main idea of the HyperEdges algorithm is that, for
each vertex v, we add edges connecting v with other vertices
progressively, during which we use the connected vertices
to prune part of the data space from being considered for
edge creation based on the properties of hyperbolas. Next,
we first present our graph construction and query processing
algorithms and then explain in detail how we compute the
parameters of the hyperbolas used and prove its correctness.

Graph precomputation: We start with a graph contain-
ing just vertices (the safe zones) and add edges progres-
sively. Consider again the example in Fig. 1. The circles rep-
resent safe zones that are the vertices in the graph. To add the

Algorithm 1: HyperEdges - SPSZ in Euclidean setting

Input: A set of safe zones S indexed in a quad-tree Q

Output: A precomputed graph G°

Ve« S;

// create edges

for v € V° do

u < next_nearest_neighbor(v, Q);

while u # null do

v.add_edge({v,u));

h < compute_hyperbola(v,u);

// use the created hyperbola h to
prune nodes in quad-tree Q

prune_nearest_neighbor(h, Q);

// perform best-first search that
only considers zones outside the
computed hyperbolas

u <— next_nearest_neighbor(v, Q);

// remove superfluous edges
for v € V° do
for e € v.edges do
P «+ Dijkstra(e.vy, e.v2);
if e ¢ P then
L v.remove_edge(e);

edges for a vertex vy, we first create an edge between v and
its nearest vertex, which is v,.

Then we compute a hyperbola using the two vertices as
the focal points. We use the branch of the hyperbola closer to
vy and call it the hyperbola branch of v4 (the shaded curve
in Fig. 1). This hyperbola branch divides the data space into
two parts. Any safe zone located on the v, side of the hy-
perbola branch has a shortest path to v; that goes through
vy4. A path that goes directly to v; is longer. Therefore, no
edges between v; and any vertex representing a safe zone on
the v, side of the hyperbola branch is needed. This way, we
have pruned a large number of possible edges.

Next, we find the nearest vertex of v; located on the
unpruned side of the hyperbola branch, create an edge be-
tween it and v, and compute another hyperbola branch to
prune edges. This process repeats until no vertex is left to be
connected to vy (cf. Fig. 7b). Having done the above for ev-
ery vertex, we obtain a graph that contains all the necessary
edges for safest path computation. In Section 4.4, we prove
that the hyperbola-based pruning algorithm is safe in that no
edge that can belong to a shortest path is pruned.

As will be discussed soon, although this graph construc-
tion algorithm is very effective, it may still contain a small
number of edges that will not be in any shortest path. We call
these edges superfluous edges. To filter superfluous edges,
we run Dijkstra’s algorithm for every pair of vertices that
have an edge between them, and we only keep an edge if it
is the shortest path between the two vertices.

Algorithm 1 summarizes the process described above,
with a spatial index Q to index the safe zones for fast nearest



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

vertex computation. We use the quad-tree [26] in our imple-
mentation, although any hierarchical index can be used.

Query processing: When an SPSZ query is issued, there
are three cases of the origin and destination points: (i) both
are in safe zones; (ii) one of them is in a safe zone; (iii)
both are outside safe zones. If either is in a safe zone, we
simply use the safe zone to replace the point. Otherwise, we
add edges to connect the points to the graph G°, which is
done by applying the edge creation strategy described above.
We then run Dijkstra’s algorithm to find the safest path. We
do not need to filter superfluous edges because Dijkstra’s
algorithm is run anyway.

Next we detail how the hyperbolas are used for edge
pruning for round and polygon safe zones, respectively.

4.4 Hyperbolas for Round Safe Zones

Based on the hyperbola properties described in Section 3.3,
we formalize the pruning strategy as the following theorem.

Theorem 1 Let two round safe zones v and u be given
along with a hyperbola defined by:

(17Dl = 10) = ([T Bl = ) = v, ul*

For any point p located beyond the hyperbola branch closer
to u, it is safer to travel through u rather than to travel di-
rectly from v, i.e.,

(17Dl = 70) > ([ Bl — 1) + v, ul*

Proof The correctness of the theorem is guaranteed by the
definition of hyperbola as discussed in Section 3.3.

As an example, in Fig. 6, |p1,0c| — ro = 4, |(p1,uc)| —
7. = 1and |v,u|t = 3. At py, it is the same in terms of
safety to travel to u then to v as to travel directly to v. The
same applies for point py because |(p2, ve)| — ry, = 1.5 and
|(p2,uc)| — 1 = 4.5. However, point p3 is located beyond
the hyperbola branch closer to u, and hence it is safer to
travel through u to v rather than to v directly. In contrast, py
is not located beyond the hyperbola branch. Traveling from
Py to v directly is safer than traveling through u:

|px, 0e| — 7y = 6.37 < [P, Ue| — T + |v,u\l = 6.53.

Theorem 1 guarantees no false negatives in edge cre-
ation, i.e., only superfluous edges are pruned. However, it
cannot guarantee no false positives, meaning that superflu-
ous edges can be created. While such edges do not affect
correctness, they may affect performance. Since the number
of superfluous edges is usually small due to the pruning ca-
pability of the HyperEdges algorithm (within 1% of the total
number of edges created in experiments), filtering them in-
curs small overhead.

There are two cases of superfluous edges:

— If the safe zone of a vertex spans the two sub-spaces cre-
ated by a hyperbola branch, we cannot prune the vertex
since it contains points that should not be pruned. How-
ever, it is still possible that it is safer to travel from the
vertex through w to v. Figure 1 shows an example, where
edges are being created for v;, and a hyperbola is drawn
for v; and vy. Vertex v7 spans the two sub-spaces created
by the hyperbola branch of vy, and hence it cannot be
pruned by v4. This type of vertex usually does not yield
many superfluous edges, as they may still be fully en-
closed in a sub-space pruned by some other vertices. For
example, in Fig. 7b where hyperbolas have been drawn
for v and a few more vertices, v; is pruned by vs.

— When adding an edge between v and u, our pruning
strategy essentially discards the vertices whose respec-
tive shortest paths to v contain only one intermediate
vertex u. However, we cannot prune the vertices whose
respective shortest paths to v contain additional interme-
diate vertices, even though this case is infrequent espe-
cially in the Euclidean setting.

Correctness: The correctness of using hyperbolas to
prune the edges is guaranteed as follows. Using the pro-
posed hyperbola based pruning algorithm, only when there
is a path v = v — ... — w shorter than edge v — w,
the edge v — w will be pruned. Such a path will not exist
if edge v — w appears in some shortest path. This means
that the graph constructed in the pre-computing stage keeps
the edges that appear in at least one of the shortest paths
between any two safe zones. Therefore, in the path finding
stage the correct shortest path can be found.

Complexity: The key advantage of the HyperEdges al-
gorithm is that, as Fig. 6 shows, a hyperbola branch can
prune edges to vertices representing safe zones in a signifi-
cant portion of the space. If the vertices surrounding a ver-
tex v are distributed evenly, only a few hyperbola branches
are needed to cover the whole space. Thus, only a few edges
will be created for each vertex. Roughly speaking, unless the
vertices are highly skewed, the number of edges created per
vertex is on the order of O(1), and the number of edges cre-
ated for |V| vertices is on the order of O(|V|). In the worst
case, none of the safe zones can serve as an intermediate
node in any other safe zone’s safest paths. Then no edge can
be pruned and the time complexity to generate these edges
is the same as the naive algorithm. However, this is usually
not the case for real data and our pruning algorithm is very
effective as shown by experiments. In contrast, the naive al-
gorithm always creates an edge for every pair of vertices,
i.e., the number of edges created for |V| vertices is always
on the order of O(|V|?).



10

Saad Aljubayrin et al.

4.5 Hyperbolas for Polygonal Safe Zones

For polygons, we need more than one hyperbola per pair of
vertices to prune edges. This is because a polygon does not
have a center that is equidistant to every point on the bound-
ary, and therefore we cannot define (|vg, p| — ) — (|@e, P| —
74) > |v, u|* on the centers v, and u, of two polygons v and
u. To overcome this difficulty we divide the space for each
vertex into multiple partitions and use multiple hyperbolas
for pruning the different partitions.

We observe that the above inequality for round safe
zones essentially defines a region where the unsafe distance
from a point p to v (|Tg, p| — r,) exceeds the sum of the un-
safe distance from p to u (|@g, p| — 7,,) and the minimum
unsafe distance between v and u (|v, uH). We rewrite this
inequality as follows:

lvap|l - |uap|l > |’U7u|l

Here, |v,p|* and |u,p|* denote the minimum unsafe dis-
tance from p to v and u, respectively.

We relax this inequality as follows to obtain the hyper-
bola for two polygon safe zones v and u:

|Up17p| - |up1ap| > |U7u|l

Here, v;,1 and u,; are two points from v and u that serve as
the focal points (cf. Fig. 8, where the dashed line connecting
vand uis |v, u|). We need to find the two points that satisfy
the following for every point p:

1, | < |v,pl* and [T p| > |u,p|*,

so that the original inequality is also satisfied, and we guar-
antee the correctness of pruning using the hyperbola. By def-
inition, |1, p| > |u, p|* is satisfied for any point u,; on u.
Meanwhile, [7,1,p| > |v,p|* holds for any point v,; on
v. Thus, to satisfy [0,1,p| < |v,p|*, we need a point v,
such that [v,1,p| = |v, p|*. This means that v,; must be the
closest point on v to any point p. Since different points have
different closest points on v, no single point v,; can satisfy
[v,1,p] = |v,p|* for every point p. To overcome this lim-
itation, we divide the space into multiple partitions, where
points in each partition share the same closet point on v.
We extend the edges of the minimum bounding rectangle
(MBR) of v across the space to divide the space into 8 par-
titions s, S2, ..., Sg as shown in Fig. 8. We use the MBR of
v rather than v directly to simplify the finding of the closest
point on v for the points in each partition. This does not in-
troduce false negatives because any point outside the MBR
must be at least as close to the MBR as it is to v. It may result
in superfluous edges, but the number of these is expected to
be small as the MBR is usually a good approximation.
After the space division, every shaded partition has only
one point in the MBR of v as its closest point, which is the

| e B A
Vos Vo1
S, ’ v s,
3 Vp}
N A
N2
S5 S, 3y

<

Fig. 8: Hyperbolas for three partitions

corresponding corner point. For example, in Fig. 8, v, is the
closest point among the points in partitions s; to the MBR.
Similarly, v,2, vp3, and vy are the closest points for the
points in partitions s3, S5, and sy, respectively. We use the
corner point and a point from u to compute a hyperbola for
pruning in a shaded partition. The non-shaded partitions still
do not have a unique point that is the closest to all the points
in the partition. This causes a problem which we call the
blind region problem. A blind region is a small region with
uncertain safety that therefore cannot be used straightfor-
wardly for edge pruning. Blind regions are covered shortly.

Since there are multiple partitions to be used for prun-
ing, we compute multiple hyperbolas, each with a different
pair of focal points. In Fig. 8, three hyperbola branches are
computed for partitions s, s3, and s5. When w is in differ-
ent partitions, we use different sets of hyperbolas, which is
straightforward and hence omitted.

Blind region: As mentioned above, for an unshaded par-
tition, there is no single point that can serve as a focal point.
This is because different points in an unshaded partition
have different closest points on the MBR of v. For exam-
ple, in Fig. 8, points in s, may view v, v, Or some other
point in-between as their closest point on the MBR, depend-
ing on the positions of the points. As a result, there is no
single hyperbola for pruning in so. However, we can still
achieve some pruning in this type of partitions.

Assume that we can find all the points on 1, vp2 and
compute hyperbolas for them with a focal point on u, such
as up1. Then the intersection of the pruning regions of these
hyperbolas is a pruning region. Since this is impossible, we
relax the pruning by only using the hyperbola of v,; and
up1. Because vy is farthest from u,,; among all the points on
Tp1, Upz, We know that Hyp(vp1, up1) must have the right-
most intersection point on the extended edge of Tp4, Up1.
Any point in so to the right of the intersection is enclosed
by the pruning region defined by the hyperbola of any other
point on Tp1, Up2. In contrast, we cannot infer that it is safe



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

11

(b) Different overlapping sets

(a) Same overlapping set

Fig. 9: Hyperbolas for overlapping round safe zones

to use the region to the left of the intersection for pruning;
thus, we call it a blind region and do not use it for pruning.

4.6 Overlapping Safe Zones

Until now we have implicitly assumed that safe zones do not
overlap. This assumption may not hold in the Euclidean set-
ting. Thus, the minimum unsafe distance between two safe
zones may not be the direct distance between them, but a dis-
tance through some other safe zones they overlap with. We
thus adjust the HyperEdges algorithm to handle this case.

Overlapping round safe zones: We first group the ver-
tices (safe zones) to form subsets of vertices Vq, Vs, ..., V),
as follows. For each vertex v, if it has not been assigned to
any subset, we find the subset that contains at least one ver-
tex that overlaps v assign v to the subset. If no such subset
is found, we create a new subset and assign v to it. Then for
any subset V;, traveling between any two points in V; can
always occur within safe zones, and the minimum unsafe
distance between any two vertices in V; is 0. For example,
in Fig. 9a, all the vertices belong to the same subset, while
in Fig. 9b, there are two subsets {v1, v2, v3,v4} and {v5}.

In edge creation, if two vertices v and u are in the same
subset, the minimum unsafe distance between them is O,
which is then used as the constant k in hyperbola compu-
tation, i.e., we compute the hyperbola as:

(|Ucap| - r’U) - (|’U’C7p‘ - T’U«) =0

If v and w are in two subsets V; and V;, we use the min-
imum unsafe distance between the two subsets as the con-
stant k rather than the minimum unsafe distance between the
two vertices. This is because the former may be shorter as
there is no cost of travel in the same subset. Formally,

(‘Ucvp‘ —Ty) — (|u07p| —Tu) = min{|vi,vj|l},

where v; € V; and v; € V;. For example, in Fig. 9b, to
compute the hyperbola for vs and v4, we use the distance
between vy and vy (instead of vy) as k.

Overlapping polygonal safe zones: Handling overlap-
ping polygonal safe zones is simpler. When two polygonal
safe zones v and u overlap, we simply merge them and gen-
erate a new polygon m, ,. This newly generated polygon
My, then replaces v and w in all subsequent computations.

5 SPPZ Query in the Euclidean Setting

The SPPZ problem generalizes the SPSZ problem in that it
assigns a cost to travel in preferred zones that is a non-zero
fraction of the cost of travel outside preferred zones. As ex-
emplified in Fig. 4, different paths that enter and exit the
same preferred zones at different points can all be the opti-
mal path, depending on the cost of travel inside the preferred
zones. To solve the SPPZ problem, we need to not only iden-
tify the optimal sequence of preferred zones to go through,
but also the optimal entry and exit points to go through these
preferred zones. In Section 5.3 we show that even for a
single preferred zone, there is no closed-form equation for
computing the optimal entry and exit points. This makes it
impossible to compute precisely the optimal entry and exit
points for a whole sequence of preferred zones. Further, this
means that it is impossible to compute precisely the optimal
sequence of preferred zones to go through.

In the following we present a heuristic based approxi-
mate solution for the SPPZ problem.

5.1 SPPZ Solution Framework

We adapt the two-stage solution framework presented in
Section 4.1 to compute a sequence of preferred zones as an
approximate solution. We add an extra step to this frame-
work to optimize the entry and exit points of the preferred
zones on the (approximately) optimal path found.

The modified framework becomes as follows:

— Stage 1: Precompute an approximate graph G° on the
set S of preferred zones based on parameter o, which in-
troduces a weighted cost of travel inside preferred zones
when computing the hyperbolas and creating the edges
in G°. We detail this stage in Section 5.2.

— Stage 2: When an SPPZ query with an origin point o and
a destination point d is issued:

(a) Add o and d to G° to form a graph G.

(b) Perform a lowest-cost path search between o and d
on G while considering the weighted cost of travel inside
preferred zones.

(c) Optimize the shortest path found by computing the
(approximately) optimal entry and exit points of the pre-
ferred zones on the path, which is detailed in Section 5.3.

Here, the reason for adding Stage 2 (c) is that the optimal
entry and exit points of preferred zones are query points de-
pendent. Precomputing a graph G° without the query points



Saad Aljubayrin et al.

Fig. 10: Preferred zones with multiple edges

may not produce the safest path in query processing. Fig-
ure 10 illustrates the problem. There are two query origins
01 and o, and two destinations dy and ds. If s1 and so were
safe zones, the safest path between them is always exs, eng,
regardless of the origin and destination points. However,
when s; and sy are preferred zones with weighted costs,
the safest path between them might be exy, ens, exs, eng,
or ex3, eny, depending on the origin and destination used.

Using this adapted framework, an SPPZ query based on
Fig. 10 (o # 0) is processed as follows. At Stage 1, we
precompute an approximate graph G° consisting of the two
preferred zones and the edge ex3, eng. At Stage 2, when an
SPPZ query is issued, e.g., from o7 to dy, the two query
points are added to G° to form the graph G through the
edges 01, eny and exs,d;, which are their corresponding
shortest paths to reach any preferred zone (Stage 2 (a)).
Next, a shortest path algorithm is run, which returns the path
P consisting of the computed edges (Stage 2 (b)). The entry
and exit points of the preferred zones are optimized (Stage
2(c)), with the entry and exit points ens, exa, eng, and exs
being replaced by en1, ex1, ens, and ex,, respectively. This
yields an optimized path P; returned as the query result.

We detail only Stages 1 and 3 (c) in the following sub-
sections, as the other stages are straightforward.

5.2 Precomputing an Approximate Graph

We first consider the case where a single preference level o
is used and then consider the case of a varying preference
level.

5.2.1 Single Preference Level

We show how to adapt HyperEdges to produce an approxi-
mate graph for the SPPZ problem. We need to integrate the
cost of travel inside preferred zones into the definition equa-
tion of hyperbolas.

Let u be a circular preferred zone, u., r,, be the center
and radius of u, and en;, ex;1 be points on the boundary of
u. The weighted distance for travel inside « from en; to ex
is denoted by S(eny, exy), which equals a|emy, ezy]. Since
eny, ez is a line segment inside w, |em, exy| cannot exceed
the diameter of u, i.e., |eny, ex1| < 2r,. Thus:

S(eny, ex1) = aleny, ex1| < 2ary, (1

Let v be another circular preferred zones, with center v,
and radius 7,,. Let |v, u|* be the shortest distance between
u and v. We integrate the weighted cost of travel inside the
preferred zones based on the following theorem.

Theorem 2 Given two circular preferred zones v and v and
the hyperbola defined by:

(|Ump‘ - Tv) - (|u0ap| — Tyt ZQTu) = |7]a “|J_

For any point p located beyond the hyperbola branch closer
to u, it is preferable to travel through u rather than to travel
directly to v.

Proof Given a hyperbola as defined in the theorem, any
point p beyond the hyperbola branch closer to u satisfies

(|'Uc7p‘ - T’U) > (|U‘Cvp‘ —Tu + 20[Tu) + |v7u|l

Here, |0, p| — r is the cost of traveling directly to v from p;
[z, p| + |v,u|* is the cost of traveling directly to u from p
and to v from u; 2ar,, is the upper bound of the cost of travel
inside u as shown in Equation 1. The inequality implies that
there is at least one path travel to v through w that is shorter
than travel directly to v. Therefore, it is preferable to travel
through u than to travel directly to v.

Note that there may be even shorter paths through u, de-
pending on the weight o and positions of p, u, and v.

Figure 11 gives an example where a = 0.5. Point p is
on the right branch of the hyperbola defined according to
Theorem 2:

[Dyve| —ry =T7= \p,uc|—ru—|—|v,uH+2aru =2+34+2

This equation assumes that when traveling inside wu, one
travels from en; to u. and then to ex;. In reality, one can
travel directly from en; to exr; to obtain a shorter path.
Travel through w is preferred over travel directly to v. For
point p’ that is beyond the right branch of the hyperbola, the
following inequality always holds:

|07 ve| — T > P75 e — 70 + v, ult + 20,

Thus, there is no need to create any edge to connect v and the
preferred zones beyond the right branch of the hyperbola.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

13

Fig. 11: Hyperbolas for SPPZ (o = 0.5)

5.2.2 Varying Preference Level

In a setting where the preference for travel inside safe zones,
i.e., parameter «, varies, precomputation faces the challenge
that it is impossible to precompute graphs for all possible «
values. Instead, we can precompute graphs for a few « val-
ues (e.g., « = 0,0.2,0.4,0.6,0.8). When a user issues an
SPPZ query with preference value o/, we use the precom-
puted graph with the smallest & no smaller than o to an-
swer the query. This works because hyperbolas defined with
a larger a value have narrower curves and hence smaller
pruning power in creating the edges. A graph constructed
with a larger o value includes all the edges for any graph
constructed with a smaller « value. This also enables incre-
mental computation of the safest path. If the user later uses
another preference value o’ for the query and o' falls in
the same range as «, we can reuse the preferred zones in
the shortest path computed for o', and we need only to re-
compute the entry and exit points for them. If o’ falls in a
different range then we need to recompute the shortest path
with a different precomputed graph.

Our problem definition uses a universal preference
weight o on all preferred zones. However, when different
zones have different user preference levels, our algorithms
still apply, but with possibly lower efficiency. There are two
cases to consider: (i) If all different user preference levels are
pre-known, we can use the largest preference level of all the
adjacent preferred zones of a preferred zone v to compute
hyperbolas for v. Extra edges may be created since larger
values create narrower hyperbolas, which have lower prun-
ing power. This may impact the path finding efficiency, but
the correctness of the hyperbola based pruning still holds.
(i1) If the preference levels are only known at query time, we

need to at least know an upper bound of any preference level
allowed. Then we may use this upper bound to precompute
a graph. Similar to Case (i), extra edges may be created, but
the correctness of the hyperbola based pruning still holds.

5.2.3 Algorithm Correctness

The correctness of pruning with hyperbolas in the SPPZ
problem is guaranteed by Theorem 2, and there are no false
negatives in edge creation. However, superfluous edges can
still be created due to the use of an upper bound on the cost
of travel inside preferred zones in Theorem 2. We can fil-
ter the superfluous edges using Dijkstra’s algorithm. Mean-
while, in Theorem 2 we assume that the edge between two
preferred zones or between a point and a preferred zone is
simply the shortest line segment between them. This may
not be true as discussed in Section 5.2. Next, we describe
two optimization techniques that aim to alleviate the possi-
ble negative impact of this assumption.

5.3 Optimizing the Preferred Zone Entry and Exit Points

We optimize the entry and exit points for each preferred
zone on the approximate safest path using a greedy ap-
proach. Starting from the first preferred zone reached from
the origin, for each preferred zone, we optimize its entry
and exit points for the local path from the exit point of the
preceding preferred zone (or the origin if no preceding pre-
ferred zone) to the entry point of the following preferred
zone (or the destination if no subsequent preferred zone).
This process is repeated until we reach the destination.

We use the path from o; to d; in Fig. 10 to illustrate
the process. The shortest path computation in the previous
stages returns P, as the path from o; to d;, which consists
of preferred zone entry and exit points ens, eng, exs, and
exs. We start with optimizing the local path from the origin
01 to the entry point eng of so. This results in new entry and
exit points for s1, namely enq and ex;. Next, we perform the
local path optimization from ex; to d, which results in new
entry and exit points for sy, namely ens and ex,. Now we
have reached the destination, and the optimization process
terminates. The new path P, formed by the new entry and
exit points is then returned as the query answer.

This approach reduces the optimization of a series of en-
try and exit points to a simpler problem: given two points A
and D outside a circle .S, find two points B and C on S so
that |P| = |AB| + a|BC| + |CD| is minimized.

We use the polar coordinate system to formulate this re-
duced optimization problem. As exemplified in Fig. 12, the
pole O is located at the center of the circle S. The coor-
dinates of A, B, C, and D are (pa,04), (R,05), (R,0c),
and (pp,0p), respectively. Here, R is the radius of S; pa
and pp are the Euclidean distance between O and A and



Saad Aljubayrin et al.

Fig. 12: Preferred zone entry and exit points optimization

D, respectively; 6 4 and 0 are the angles of A and D from
the polar axis, respectively. These parameters can be consid-
ered as known. Without loss of generality, we assume that
0 < 04 < 0p < w. The unknown parameters are 5 and
Oc, which are the angles of B and C from the polar axis.
They satisfy 0p,0c € [04,0p] and 05 < 6.. The goal is
find values for them that minimize | P|:

min |P| = [AB|+ a|BC| + |CD|,
05,0c

0<04<0p<bc<Op<m

According to the law of sines and the law of cosines:

|AB| = \/p% + R2 —2paRcos(0p — 04)
|BC| = 2Rsinw
|CD| = +/p% + R* —2ppRcos(0p — Oc)

To derive the optimal values of g and 0, we first com-
pute the partial derivatives:

olP)
00p .
~ paRsin(0p —0,) — aRcos ¢~ 05
VT a0~ ) :
paRsin(0p —04) bc —0s
_ WYE — aRcos ———
43| ?
9|P|
00
Oc — 05 ppRsin(0p —6¢)
= aRcos -
2 VPh + 1% —2ppReos(fp — Oc)
0c — 0 ppRsin(@p —0¢)
= aRcos - Yoi»)
2 |CD|

2

Fig. 13: The optimization condition

By letti lid = oP| =0 have:
y letting 90 ~ 900 , we have:
pARSin(ﬁg - QA) — aRcos QC — 93
|AB| 2 3)
_ ppRsin(fp —6c)

[CD|

The first and last expressions in Equation 3 are the
heights of two triangles AAOB and ACOD. This can
be seen from Fig. 13, where |OB| = R and ZAOB =
05 — 64. Then Rsin(fp — 64) is the height on edge OA,
denoted by BG. Further, the length of OA is p4. Thus,
paRsin(0p — 04) is twice the area of AAOB. Divided
by |AB], this gives the height of AAOB on edge AB. We
denote this height by OF in the figure. A similar analysis
applies to ACOD, and the last expression in the equation is
the height on edge C' D, denoted by OF. Therefore,

_ paRsin(0p —04) ppRsin(fp —0c)

|OFE)| = |OF]

) Oc -0 .
For the second expression aR cos B — since

ABOC is an isosceles triangle (|(OB| = |OC| = R), we

: bc —0p . . =
can derive that R cos —g I8 the height on edge |BC|.

_ S O0c — 0p
Letr = |OFE| = |OF| and h = Rcos — Then
we have:
r = ah “)

We draw a circle centered at O with radius r in Fig. 13.
Then AE and DF are two tangent lines of this circle. We



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

15

can rewrite O and 0. as functions of r:

0p =04+ /AOFE — /BOFE
r r
= 04 + arccos — — arccos —
pA R

0c =0p — LFOD + /FOC

r r
= 6fp — arccos — + arccos —
PD R

We replace 65 and 6¢ in Equation 4 and obtain:

0c — 0
:h:Rcosu:

r
«

Rcos [ 22204 4 arccos & — 1 arccos = — L arccos =

2 R 2 pA 2 pD

®)

Equation 5 can be transformed into an equation with-
out the cos and arccos functions. However, the transformed
equation contains many square root computations and is a
polynomial equation with degree greater than five. Accord-
ing to the Abel-Ruffini Theorem [6], there is no general al-
gebraic solution to polynomial equations of degree five or
higher with arbitrary coefficients. Thus, this equation can-
not be solved with a precise solution.

We thus proceed to propose two approximate solutions
to the equation.

5.3.1 Iterative Optimization

Let f(r) = r—«aH(r), where H(r) represents the h term in
Equation 5 that is a function of r. Then solving Equation 5
becomes finding the root for f(r) = 0. Since r = ah and
h < R, aR is an upper bound on r. Further, we have:

Op — 04
2
f(aR) =a(R—h) >0

f(0) =0—aH(0) = —cos( ) <0

Thus, there must exist one root in [0, «R).

Several common root-finding methods may be used,
e.g., Bisection, False Position, Newton-Raphson, and Se-
cant. All are iterative methods. Newton-Raphson and Secant
offer quadratic and superlinear convergence rates. However,
they both require the initial guess of the root to be close to
the root. Otherwise, they may fail to converge. In contrast,
Bisection and False Position both converge linearly but al-
ways keep the root bracketed and shrink the bracket at every
iteration. In practice, False Position often converges faster
than Bisection, but may converge slower in some cases. To
avoid such cases, one option is, when such cases are recog-
nized, to fall back to Bisection for several iterations and then
resume with False Position.

Taking both speed and reliability into account, we use
False Position with the fall back option to find the root.

In our experiments, we find that False Position converges
quickly and offers high accuracy, which is due to the steep
shape of the function curve.

5.3.2 Polynomial Degree Reduction

In this second method, we transform Equation 5 by Taylor
expansion to obtain a polynomial of degree three, which is
solvable. Thus, we call this method the polynomial degree
reduction optimization method. We first expand h based on
the priority that given two angles = and y, we have cos(x +
y) = cosx cosy + sinx sin y.

0p — 0
h = Rcos (DQA + arccos%

1 r 1 r )
— — arccos — — — arccos —
pa 2 pPD

= R- X cos (arccos %) — R-Ysin (arccos %)

2 _ 2
:R~X%—R~Y7VRT:7~X—Y\/R2—T2

R
where

(GD 79,4 1 T 1 T )

X =cos | ———— — — arccos — — — arccos —

2 2 PA 2 PD
. <9D —04 1 T 1 r )

Y =sin | ———— — — arccos — — — arccos —

2 2 pa 2 PD

Squaring both sides of X — h = Yv/R? — r2 and sub-
stituting h by T and v? by 1 — X2, we have
a

2 1
(1-X?)R? = <1 - =X+ 2) r? (6)
o o
Then we approximate X by its first order Taylor expansion.
X
X ~ X|T:0 —+ 87 T,
or r=0
where
0X . (0p—04 1 T 1 r
—— =sin | ———— — ~ arccos — — - arccos —
or 2 2 pA 2 PD

it .t 1
2 2 2 2
/1_ (L) PA /1_ (L) PD
PA PD

Further reduction requires the assumptions that r < p4
and r < pp. As shown in Fig. 13, these assumptions can
hold when A and D are not too close to S. Under the as-

T

sumptions, —— = 0 and == & 0. Therefore, we can further
PA pPD

simplify the equation as follows.

Op — 0 —
X ~sin <DA> 41 (T+T’> cos (M)
2 2\pa  pp 2



Saad Aljubayrin et al.

9
8 O L 2 * - ----X © ¥1Safe vertex
1
7 . Vs | viLabelled
6 ; E s Safe vertex
® :. % 0w Labelled
] 1
4 sz E i 72 Safe vertex
3 i- -:II( & 72 Labelled
2 (V; X Pruned vertex
1 * * R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 189 20 21

5 Labelled search 2 Labelled search

Safe Edge

V1 Labelled search Pruned Edge

Fig. 14: HyperEdges in spatial networks

Now X is a linear function of r. The degree of the left
hand side of Equation 6 is 2, and the degree of the right
hand side is 3. Using the root formula for cubic equations,
we can solve Equation 6 to obtain an approximate value of
r. In Section 7.2, we investigate the effectiveness of this ap-
proximation empirically.

6 SPSZ and SPPZ Queries in the Spatial Networks

We consider a spatial network R represented by a graph
Gr = (Vg, ER), where vertices Vi represents the set of
network vertices (e.g., intersections) and edges Er repre-
sents the set of segments connecting the vertices. A safe
(preferred) zone s in the spatial network is represented by
the set of network vertices sy and the set of edges sg cov-
ered by the safe (preferred) zone, i.e., s = (sy,sg). If an
edge is partly covered by a safe (preferred) zone, a new
vertex is introduced at the safe (preferred) zone intersection
point, and the edge is replaced by a safe and an unsafe edge.
We call these network vertices and edges safe vertices and
safe edges, respectively. In Fig. 14, every circle represents a
safe (preferred) zone that covers the safe vertices and edges
denoted by the gray points and dashed line segments.

6.1 SPSZ Query

To solve the SPSZ problem in a spatial network R, we con-
struct a graph G° where the safe zones serve as the vertices.
To connect the vertices we add the paths in G to G°. A
naive approach to connect the vertices is to compute the
shortest path between every pair of safe zones in Gr and
add the (safe and unsafe) edges and vertices used by each

such path to Gr. However, this would result in searching
the whole graph G for each safe zone, which is expensive.

6.1.1 The HyperEdges Algorithm

We again consider using hyperbolas to reduce the edge
creation cost. However, straightforwardly applying the Eu-
clidean hyperbolas does not guarantee correct edge pruning.
This is because the Euclidean distance between two points
in a spatial network is usually different from the network
distance. To overcome this problem, we use network hyper-
bola. A network hyperbola is a set H of points in a spatial
network, where every point p in the set satisfies:

|distr(f1,p) — distr(f2,p)| =k

Here, distg() returns the network distance between two
points, i.e., the length of the shortest path in the spatial net-
work. The two points f; and fo are the focal points of the
network hyperbola, and & is a given positive constant. A net-
work hyperbola contains a set of points that partition the
network into two. In one partition, the shortest path to f;
of every point passes through f5. In the other partition, the
shortest path to f of no point passes through f5. Given two
safe zones s, and s,, their network hyperbola is computed
by testing whether the points in the network vertices satisfy
the hyperbola inequality®. When a point p is to be tested,
we use two safe vertices of s, and s,, that are the closest to
p as fi and fs, respectively. The network distance between
sy and s,, is used as the constant k. For example in Fig. 14,
for the two safe zones v; and v5, the minimum distance be-
tween them (4 distance units) is k. The network vertex at

3 We do a best-first traversal on the spatial network and hence only
a limited number of points are tested.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

17

(5,7), denoted by ns 7, is a network hyperbola point:
diStR(TL5’7, 71414) - dZ‘StR(TL5,7, TL317) =6—-2=4=k

We use Fig. 14 to illustrate the HyperEdges algorithm
using network hyperbolas:

1. For every safe zone vertex v (e.g., v1), perform a single
source shortest path search on G starting from all of
v’s border safe vertices (vertices inside v with an edge
ending outside v, e.g., n3 3, n4.4). This is to find a path
to connect v with every neighboring safe zone w.

2. For every safe zone u (e.g., vs), use the network distance
distg(v,u) as k (e.g., 4) along with two safe vertices f1
and f5 from v and u to form a hyperbola equation. We
do this for all the neighboring safe zones at the same
time using a graph vertex labeling technique, which is
detailed below.

3. The search of paths to neighboring safe zones continues
until v is fully surrounded by network hyperbola points.
The remainder of the spatial network is pruned (e.g., the
‘X’ vertices).

Finding the network vertices satisfying the network
hyperbola condition: In the graph pre-computation stage,
we need to identify the network vertices in v’s partition of
the spatial network as defined by a network hyperbola. A
query starting at any of these network vertices towards v
should go directly to v rather than going through any in-
termediate safe zones. We use a labeling technique to iden-
tify these network nodes. We attach a variable [ to each net-
work vertex n to store the id of the safe zone that is passed
through by the search before reaching n. The labeling tech-
nique works as follows:

1. For every safe zone v (e.g., v1), use Dijkstra’s algorithm
to search the neighboring network vertices in all direc-
tions. Every found network vertex (e.g., the black dots
in Fig. 14) is labeled with the id of v and added to a pri-
ority queue ). When a new neighboring safe zone u is
reached by the search (e.g., vs), we continue the search
beyond u, but omit the distance to travel through .

2. Label every network vertex reached through u with the
id of u (e.g., the hollow dots for v5) and add it to Q.

3. Continue the search as long as there are vertices labeled
with v’s id in @Q. The search stops when () becomes
empty or contains no vertex labeled with v’s id.

Here, the termination condition means that either all net-
work vertices have been accessed or any path from the safe
zone v has reached a network vertex that is labeled by some
other safe zone. In the latter scenario, a network vertex n
labeled by another safe zone u has a safer path through w to
v than going directly to v. Since any network vertex reached
from n should also go through n first, it should also go
through u first, and hence a direct path to v is unnecessary.

At query time, we treat the origin and destination points
as safe zones and label the network vertices for them simi-
larly to build edges from them to the neighboring safe zones.
Then the origin and destination points are connected to the
precomputed graph G°, and we can apply Dijkstra’s algo-
rithm to find the safest path. Note that when the query origin
and destination are close, there may not be a safe zone be-
tween them. In this case, the problem falls back to a classic
graph shortest path problem. Any graph shortest path algo-
rithm may be used to solve the problem.

6.2 SPPZ Query

For the SPPZ query, we introduce a weight o € [0,1) and
add the cost of traveling in preferred zones to the formaliza-
tion of network hyperbola as follows:

|distgr(v,p) — distg(u,p) + (o - distg(u))| =k

Here, distg(u) denotes the length of the shortest path
to travel through a preferred zone u. To accommodate this
cost in the HyperEdges algorithm, we just need to change
the computation of the network hyperbolas in the algorithm
to use the equation above.

Discussion: We have shown how the HyperEdges al-
gorithm works in spatial network settings. We emphasize
that this is an initial attempt at demonstrating the feasibility
of applying Hyperbola based edge pruning in spatial net-
work settings, thus making this paper complete and self-
contained. A more extensive study that fully maps out the
advantages and limitations of the algorithm us beyond the
scope of this paper.

7 Experimental Study

In this section, we study the empirical performance of the
proposed algorithms. In the experiments for the Euclidean
setting, we compare HyperEdges with both the naive and
the improved naive (here denoted as Im-Naive) algorithms
described in Section 4.2. We observe that the naive algo-
rithm is significantly less efficient in terms of running time
and the number of created edges (and hence memory con-
sumption) than both Im-Naive and HyperEdges: the naive
algorithm takes more than a day and 500 MB memory to
construct a graph for a dataset of 10,000 safe zones. It cannot
handle larger datasets (e.g., with 160,000 safe zones) with
feasible time and memory consumption. This is expected,
as the initial graph contains an edge for every pair of safe
zones. Therefore, we omit the results of the naive algorithm.
In the experiments for the spatial network setting, we com-
pare HyperEdges with the naive algorithm as described at
the beginning of Section 6.



Saad Aljubayrin et al.

(b) Im-Naive

(a) HyperEdges

Fig. 15: Edges created in graph construction

We conducted the experiments on a desktop PC with
8GB RAM and a 3.4GHz Intel ™ Core("™) i7 CPU. The
disk page size is 4KB. For the Euclidean setting experi-
ments, we use a real dataset containing the locations of 1042
villages in Saudi Arabia*. The coordinates of the villages
form the base safe zone dataset, and we generate additional
safe zones following a Gaussian distribution (¢ = 0.166)
centered at the real villages. By default, we use 10,000 safe
zones covering 0.8% of the total area of the data space. We
call this the default dataset. For the spatial network set-
ting experiments, we use the London road network extracted
from OpenStreetMapS, which contains 515,120 vertices and
838,702 edges. We also extracted the location of 192 police
stations in London and use them as safe zone centers. We
call this the Police Station dataset.

We vary parameters such as dataset size, safe zone den-
sity, and data distribution to gain insight into the algorithm
performance in different settings. The detailed settings are
given in the individual experiments.

7.1 SPSZ Experiments - Euclidean Setting

First, we evaluate the effectiveness of the HyperEdges algo-
rithm in constraining the number of edges created in both
graph construction and query processing. Then we evaluate
the algorithm efficiency, also in both stages.

7.1.1 Edge Pruning Effectiveness

We measure the number of edges created by the different
algorithms. We make the following observations. (i) Hyper-
Edges creates a much smaller number of edges before fil-
tering. The graph constructed by HyperEdges has almost no
superfluous edges (less than 1%), while more than 90% of
the edges created by Im-Naive are superfluous edges and

4 http://www.s13sl.com/vb/showthread.php?t=7032
5 http://metro.teczno.com/# london

100

-o-HyperEdges

£ 75 Im-Naive

Q

E 50

-

&

= 25

c

=]

e 0 v—*——*/‘
20K 40K 80K 160K

Fig. 16: Effect of safe zone cardinality (graph construction)

25.6 -o-HyperEdges
—~12.8 -

Im-Naive

2 64 -

£ 3.2

E 16

2 08

£ g'lz‘ %/
= .2 -

“ 01 :

20K 40K 80K 160K

Fig. 17: Effect of safe zone cardinality (query processing)

need to be filtered. (ii) HyperEdges creates the same set of
edges as the improved naive algorithm does after filtering.

To give a more intuitive view of the algorithm perfor-
mance on edge pruning, we generate 200 round safe zones
with random distribution as shown in Fig. 15. We ran Hy-
perEdges and Im-Naive to create the edges, and the figure
shows the edges produced before filtering. We can see that
HyperEdges creates a much smaller number of edges, which
demonstrates the effectiveness of our hyperbola based edge
pruning technique.

7.1.2 Algorithm Efficiency

We measure the running time in both graph construction and
query processing over different dataset size, safe zone distri-
bution and safe zone density level. In addition, we measure
the memory consumption of the two algorithms for storing
the graphs created.

Effect of dataset cardinality: We used the base safe
zone dataset to create datasets of different sizes. Figure 16
shows the running time on graph construction for the gen-
erated datasets. HyperEdges is more than an order of mag-
nitude faster than Im-Naive when the dataset size is within
80,000. At the 160,000 dataset, the Im-Naive algorithm can-
not finish within 7 days, and no result is reported. This again
confirms the advantage of our hyperbola based edge prun-
ing techniques in reducing the graph construction time. Also
the running time of HyperEdges increases much slower with
the increase in dataset cardinality in the graph construction
stage, while that of Im-Naive increases dramatically. This
demonstrates the scalability of HyperEdges.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

2.5 -o-HyperEdges
= 2 Im-Naive
g 15
£
w1
£
£ o5
3 —o—
& o < 4

O T

3.2% 1.6% 0.4% 0.1%

Fig. 18: Effect of density level

g 50 1 -@-HyperEdges

— 40 4

S Im-Naive

2 30

£ 2

w

5

i .___./
>

° 0 T T

g 20K 40K 80K 160K
2

Fig. 19: Effect of memory consumption

We further compare the average running time of Hy-
perEdges with that of Im-Naive for processing 100 queries
where each query has randomly generated origin and des-
tination points. Note that in these experiments the precom-
puted graphs for both algorithms are the same as both algo-
rithms produce the same graph after filtering.

Figure 17 illustrates the query processing time, which
is the time taken to add the origin and destination points to
the graph and to find the safest path. We observe that, Hy-
perEdges can be more than 50 times faster than Im-Naive
in query processing. This is because HyperEdges inserts the
query origin and destination points into the graph using the
hyperbola based technique, which is more efficient. The to-
tal query processing time of HyperEdges is at least 90%
smaller than that of Im-Naive for the various datasets tested.

Effect of safe zone density: Figure 18 shows the graph
construction time where we vary the percentage of the data
space covered by the safe zones from 3.2% to 0.1% by
varying the radii of the safe zones. Again, HyperEdges out-
performs Im-Naive constantly and it is at least seven times
faster for all density levels tested. Note that the size and den-
sity of the safe zones do affect the efficiency of both algo-
rithms. For HyperEdges, the decrease in the radii of the safe
zones leads to narrower hyperbolas. Thus, fewer regions can
be pruned and more edges are created. When the density is
0.1%, the running time of HyperEdges is about three times
that of when the density is 3.2%. This difference is not too
observable in the figure due to the large range of the Y-axis.

Memory consumption: Figure 19 shows the maximum
memory consumption (in MB) of the two algorithms in
graph construction on the datasets of different sizes. As the

19
2 . M HyperEdges
- Im-Naive
< 15
[
£
Eo
oo
£
£ 05 -
=
[
o0 - -
Zipfian Uniform Gaussian

Fig. 20: Effect of distribution

6 W HyperEdges
Im-Naive
= 5
GJ
£’
= 3
g
.E 2
s
21
0 |
Circles Polygons

Fig. 21: Effect of zone shape

figure shows, HyperEdges constantly consumes less mem-
ory comparing with Im-Naive. This is because HyperEdges
creates much fewer edges. Meanwhile, the advantage of Hy-
perEdges grows as the dataset cardinality increases. This
is in accordance to our discussion at Section 4.4 that Hy-
perEdges creates edges whose number increases approxi-
mately linearly to the number of safe zones, while the num-
ber of Im-Naive increases approximately quadratically. For
the 160,000 dataset, the Im-Naive algorithm cannot finish
within 7 days and no result is obtained.

Effect of safe zone distribution: Figure 20 shows the
graph construction time when the safe zone distribution is
varied. We use i = 0.5 and o = 0.166 for the Gaussian dis-
tribution and p = 0.1 for the Zipfian distribution to generate
10,000 safe zones covering 0.8% of the data space, where
the safe zone centers follow the given distributions around
the safe zones in the base dataset. As the figure shows, Hy-
perEdges outperforms Im-Naive in all distributions tested.

Effect of safe zone shape: Both HyperEdges and Im-
Naive can process round and polygon shaped safe zones.
We test their performance with the default dataset (round
safe zones) and a dataset of the same parameters but with
polygon safe zones. Figure 21 shows that the running time
of HyperEdges in the different safe zone shapes is signifi-
cantly less than that of Im-Naive. We notice that HyperEges
is about three time faster in the round safe zone experiment
than in the polygon safe zone experiment. This is expected
as for polygon safe zones we need more hyperbolas for each
pair of safe zones to constrain the edges created.



20

Saad Aljubayrin et al.

1000
8 -o-HyperEdges
2 100
x Im-Naive
w
[
T 10 /.__—o/‘
©
]
g 1 ‘
o a=0 a=02 a=04 a=0.8

Fig. 22: Edges created in graph construction

25.6
=128
6.4
3.2
L6
0.8
0.4
0.2
0.1

Running Time

-o-HyperEdges

Im-Naive

/__,/o

20k 40k 80k 160k

Fig. 24: Effect of preferred zone cardinality (query proc.)

100 - -0-HyperEdges
= 75 Im-Naive

g

&
e 25

c

S .
© 0 - * *

20k 40k 80k 160k

Fig. 23: Effect of preferred zone cardinality (graph const.)

Experiments where these settings are varied for the
query processing stage show similar results. To summarise,
HyperEdges is more than an order of magnitude faster than
Im-Naive for the different density levels and distributions
tested. When polygonal safe zones are used, both algorithms
become slower (by three times) because more edges are cre-
ated. However, HyperEdges is still significantly faster. We
omit the figures for conciseness.

7.2 SPPZ Experiments - Euclidean Setting

In the SPPZ experiments, we also first evaluate the effec-
tiveness of the adapted HyperEdges algorithm in reducing
the number of edges created in graph construction. Then
we evaluate the efficiency of the algorithm in both graph
construction and query processing. Finally, we add the op-
timization of the preferred zone entry and exit points to the
algorithm and evaluate both the effectiveness and efficiency
of the two optimization techniques. In the experiments, the
improved naive algorithm is used as the baseline algorithm.

We use the same default dataset of 10,000 safe zones
(now treated as preferred zones) that is used in Section 7.1.
By default, the cost weighting parameter o = 0.5.

7.2.1 Edge Pruning Effectiveness

We vary the value of « to obtain different graphs for the de-
fault dataset. We measure the number of edges created by the
different algorithms before filtering. Figure 22 shows the re-
sult. We see that as « increases, the number of edges created

25 -o-HyperEdges
= 2 Im-Naive
g 15 -
£
g1
€05 -
=]
E .’__.___,/0
0 T T T
3.2% 1.6% 0.4% 0.1%

Fig. 25: Effect of preferred zone density

by HyperEdges increases. This is because a larger « leads
to narrower hyperbola curves and hence smaller pruned re-
gions in edge construction. Im-Naive is not affected by «,
as it does not consider « at all. The number of edges cre-
ated by HyperEdges is always smaller than that of Im-Naive
by more than an order of magnitude. This demonstrates the
effectiveness of the adapted HyperEdges algorithm at reduc-
ing the graph size for the SPPZ problem.

7.2.2 Algorithm Efficiency

Similar to the SPSZ experiments, to evaluate the efficiency
of the adapted HyperEdges algorithm, we measure the run-
ning time of both graph construction and query processing
on datasets with different cardinality, preferred zone distri-
bution, and preferred zone density. In addition, we measure
the impact of the value of « on the algorithm running time,
as well as the memory consumption of the two algorithms
for storing the graphs created.

Effect of dataset cardinality: Figure 23 shows the re-
sult on varying dataset cardinality. HyperEdges is more than
an order of magnitude faster than Im-Naive when the dataset
cardinality is within 80,000. No result is obtained for Im-
Naive on 160,000 preferred zones as the running time ex-
ceeds 100 hours. This confirms the effectiveness of the hy-
perbola based edge pruning techniques in reducing the graph
construction time. The figure also shows that even with a
weighted cost of travel inside preferred zones, the running
time of HyperEdges increases only moderately with the in-
crease in dataset cardinality. This demonstrates the scalabil-
ity of HyperEdges when applied to SPPZ.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones 21
2 . MHyperEdges g 50 -&-HyperEdges
— Im-Naive = 40
< 15 § Im-Naive
g 2 30 -
= £
W 1 2 20
£ g
£ 05 S 10 - .’.//
2 z
o 0 T T
0 - - = ) 5 20k 40k 80k 160k
Zipfian Uniform Gaussian s
Fig. 26: Effect of preferred zone distribution Fig. 28: Memory consumption
2.5 | _¢-HyperEdges Table 2: Effect of the number of iterations
= 2 Im-Naive
g 15 Iteration | Path cost
i; . 0 477.256624603370
£ 1 460.825490733940
=
2o ———" 2 460.824809874138
Oy acos acos aos 3 460.824809874117
@zt a=he a=nd e=h 1 460.824809874116
5 460.824809874115
Fig. 27: Effect of 100 460.824809874080
. Table 3: Effect of the optimization techniques
In the query processing stage, we compare the average
running time of HyperEdges (without the path optimization) Density 20Kk 20Kk 80K 160K
with that of Im-Naive for processing the same 100 queries No optimization 49224 | 4772 | 441.07 | 373.52
used in the SPSZ cardinality experiments. Figure 24 shows Poly. degree reduction | 485.29 | 462.79 | 409.69 | 306.06
the result. We observe that HyperEdges can be 50 times Iterative (2 iterations) | 484.39 | 460.82 | 406.41 | 298.95

faster than Im-Naive when processing the SPPZ queries.
This is because HyperEdges inserts the query origin and
destination points into the graph using the hyperbola based
technique, which is more efficient.

When comparing the performance of HyperEdges for
SPSZ (Fig. 17 and Fig. 16) and HyperEdges for SPPZ
(Fig. 23 and Fig. fig:Safest2A2), we see that HyperEdges
for SPSZ is faster than HyperEdges for SPPZ in both graph
construction and query processing. This is because when
there is a cost of travel inside preferred zones, the hyper-
bola curves become narrower. This leads to smaller pruned
regions and hence higher costs in graph construction and
query processing.

Effect of preferred zone density: Figure 25 shows the
graph construction time where we vary the percentage of
the data space covered by the preferred zones from 3.2%
to 0.1% by varying the radii of the preferred zones. Again,
HyperEdges outperforms Im-Naive consistently, and it is
at least five times faster. Similar to the experiment on safe
zones, the performance of HyperEdges decreases as the den-
sity level of the preferred zones decreases. This is because
smaller preferred zones also lead to narrower hyperbolas and
hence fewer regions being pruned. Further, taking the cost of
travel inside preferred zones into consideration affects the
pruning capability of HyperEdges. Comparing Fig. 18 with
Fig. 25 at density level 0.1%, we see a 20% performance

decrease of HyperEdges when the cost of travel inside pre-
ferred zones is considered.

Effect of preferred zone distribution: Figure 26 shows
the graph construction time when the preferred zone distri-
bution is varied. We use p = 0.5 and 0 = 0.166 for the
Gaussian distribution and p = 0.1 for the Zipfian distribu-
tion when generating 10,000 preferred zones covering 0.8%
of the data space, where the preferred zone centers follow
the given distributions around the preferred zones in the base
dataset. The figure shows that, HyperEdges outperforms Im-
Naive for all distributions tested.

Effect of o: Figure 27 shows the graph construction
time, where we vary o from O to 0.8. Again, HyperEdges
outperforms Im-Naive consistently and is at least three times
faster for all « values tested. We also observe that the run-
ning time of HyperEdges increases with «. This is because
a larger « yields narrower hyperbola curves and smaller
pruned regions. The running time of Im-Naive is not affected
because it does not consider that cost of preferred zones.

Experiments where these settings are varied for the
query processing stage show similar results. For the differ-
ent density levels and distributions tested, HyperEdges only
takes less than 100 milliseconds to process a query on av-
erage while Im-Naive takes more than half a second. For all



Saad Aljubayrin et al.

22
0.7 Optimization
+ 06 | mHyperEdges
ﬁ_ 05 | yperedg
g 04
= 03 -
w 0.2 II
£ 01 -
e AN
e 53 5% i3 i3
- la - la a - la
K K

20 80K

H

0

Fig. 29: Path optimization efficiency

the values of « tested, Hyperedges is at least five times faster
than Im-Naive. We omit the figures for conciseness.

Memory consumption: Figure 28 shows the maximum
memory consumption (in MB) of the two algorithms in
SPPZ graph construction on the datasets of different car-
dinality. As the figure shows, HyperEdges constantly con-
sumes less memory. This is because of the pruning power
of the hyperbolas when creating edges. When the dataset
cardinality increases, the memory consumption of both al-
gorithms increases, as more edges are created. The in-
crease is only moderate for the HyperEdges algorithm. For
the 160,000 dataset, the Im-Naive algorithm cannot finish
within 7 days, and no result is reported.

7.2.3 Path Optimization

Next, we evaluate the performance of the two proposed tech-
niques to optimize the entry and exit points of the preferred
zones. First we study the effect on path optimality of the
number of iterations in the iterative method. Then we com-
pare the costs of the paths obtained with and without op-
timization. We also evaluate the impact on the query pro-
cessing time when the optimization techniques are applied.
We measure the average path cost (in kilometer) of 100 ran-
domly generated queries.

Effect of the number of iterations: In Section 5.3.1 we
use an iterative method (i.e., False Position) for the opti-
mization. Table 2 shows the average path cost obtained by
different numbers of iterations on a dataset of 40,000 pre-
ferred zones. We see that after two iterations, the path cost
is reduced by 16.43 kilometer. This shows that the optimiza-
tion technique can effectively reduce the overall path cost.
However, performing additional iterations yields little im-
provement. This is because the function to optimize has a
steep curve. Therefore, we can early terminate the iterative
optimization for better query processing efficiency. In the
following experiments, we use 2 iterations.

Effect of optimization techniques: Here we test the ef-
fectiveness of the optimization techniques by varying the
dataset cardinality. Table 3 shows the average cost of the
safest paths obtained by three different versions of the Hy-
perEdges algorithm: no optimization, optimization with the

% 600 u Hy!)erEdges

o Naive

_§ 500 -

E 400 -

8 300

S 200

T 100 -

g o N -

E Graph Construction Query Processing

Fig. 30: Number of vertices accessed

iterative method, and optimization with the polynomial de-
gree reduction method.

We see that both optimization techniques can reduce the
path cost in the datasets tested. As the dataset cardinality
increases, the superiority of the optimization techniques be-
comes more significant. For the 160,000 dataset, the cost
reduction is up to 20%. This indicates that when there are
more preferred zones, paths will go through more preferred
zones, which brings more opportunity for the optimization.
The iterative method obtains the lowest path cost, meaning
that it obtains the most accurate solution for the optimiza-
tion problem. The polynomial degree reduction also is able
to reduce the path cost but not as much. This is because the
assumption it relies on does not always hold. We also ob-
serve that path costs are lower when there are more preferred
zones. This is because a larger number of preferred zones
yields more opportunities for travel in the preferred zones.

Figure 29 shows the average query processing time
when applying the two optimization techniques. Here the
gray segment denotes the time for running the optimization
techniques. We see that the optimization techniques only in-
crease the overall query processing time by a small fraction
(up to 10% for the iterative method on the 160, 000 dataset).
The iterative method with two iterations runs faster than the
polynomial degree reduction method. Overall, the iterative
method has the best performance in both cost reduction and
running time and so is the recommended method.

7.3 SPSZ and SPPZ Experiments - Spatial Network Setting

First we validate the effectiveness of HyperEdges in reduc-
ing the number of network vertices accessed in both graph
construction and query processing. Then, we evaluate the
algorithm efficiency. The default setting is 192 safe zones
(all police stations) where each safe zone has a radius of 2
kilometers and o« = 0, and the spatial network used is the
London road network.



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

M Vertices acceesed by HyperEdges
Vertices acceesed by Naive

Fig. 31: Query point search range

50 -

-&-HyperEdges
- 40 - Naive
g 30 -
£
w 20
£
€ 10 -
e ,__——0-”‘——.
0 T T T
24 48 96 192

Fig. 32: Effect of zone cardinality (graph construction)

7.3.1 Network Pruning Effectiveness

We measure the number of network vertices accessed by
both HyperEdges and the naive algorithm and show that Hy-
perEdges accesses a much smaller number of network ver-
tices. This leads to the better performance of HyperEdges in
graph construction and query processing.

Figure 30 shows the average number of vertices accessed
for each safe zone (query) on the London road network. We
see that the average number of vertices accessed by Hyper-
Edges in both graph construction and query processing is
about 85% less than that of the naive algorithm. Figure 31
illustrates the search range needed by the two algorithms to
add a random query point to the constructed graph in the
London network. As the figure shows, the naive algorithm
accesses about nine times more vertices.

7.3.2 Algorithm Efficiency

We measure the running time in both graph construction and
query processing using different number of safe zones, safe
zone sizes and « values. In the query processing stage in the
following experiments, we further compare the running time
of HyperEdges with that of running Dijkstra’s algorithm on
the original road network where the cost of travel on the
edges in safe (preferred) zones is weighted by a.

Effect of safe zone cardinality: We randomly sample
the Police Station dataset to obtain safe zone datasets of dif-
ferent sizes. Figure 32 shows that the running time of Hy-
perEdges is up to 85% less than that of the naive algorithm
in graph construction. This is due to the advantage of using

23
0.35 HyperEdges

= 03 -4-Naive
2 0.25 -¢Dijkstra’s
£ 02 *—————————X
r 0.15
£ 01
5 0.05

0

24 48 96 192

Fig. 33: Effect of zone cardinality (query processing)

60 - -@-HyperEdges

—~ 50 - Naive
C)
g 40
i= 30
2 20 -
c
S 10 - o— ® o

T

0.5 km 1km 2km 4 km

Fig. 34: Effect of zone size (graph construction)

the hyperbola labeling technique to prune the edges consid-
ered. Figure 33 shows that, the average running time of Hy-
perEdges is again up to seven times faster than those of the
naive and Dijkstra’s algorithms. An important observation is
that the performance of HyperEdges improves as there are
more safe zones, while the naive and Dijkstra’s algorithms
are almost unaffected. This is because HyperEdges termi-
nates the search earlier when it reaches enough neighboring
safe zones, while the naive and Dijkstra’s algorithms may
search the entire network.

Effect of safe zone size: We vary the radius of each safe
zone from 0.5 to 4 kilometers. As Fig. 34 and Fig. 35 show,
HyperEdges again outperforms the naive and Dijkstra’s al-
gorithms consistently. We notice that when the safe zone
size is 4, both HyperEdges and naive algorithms achieve
the best performance. This is due to overlapping of the safe
zones, which yields fewer safe zones, as discussed in Sec-
tion 4.6. This in turn, reduces the graph construction time.
On the other hand, running Dijkstra’s algorithm on the orig-
inal road network is not affected by the size of the safe zones
as the edges in the safe zones are not treated differently by
the algorithm. We also observe from Fig. 35 that the naive
algorithm outperforms Dijkstra’s algorithm as the size of the
safe zones increases. This is because, when the safe zones
are larger, the query points have a higher probability to be
in safe zones, making it sufficient for the naive algorithm to
use the precomputed (smaller) graph for query processing.

Effect of a: We further evaluate the effect of the value of
« for the SPPZ query, which controls the weight of the cost
of traveling inside the preferred zones. We vary the value of
a from 0 to 0.75. As Figs. 36 and 37 show, the running time



24

Saad Aljubayrin et al.

0.35 HyperEdges

0.3 1 -A-Naive
0.25 -¢Dijkstra’s

0.2 % 3
0.15

0.1

Running Time (s)
o
=
o ¢
X

0.5 km 1km 2 km 4 km

Fig. 35: Effect of zone size (query processing)

60 -9-HyperEdges
— 50 Naive
)
g 40
Z 30
?_:n 20 /
c
5 10

0 T T T

a=0 a=025 «o=0.5 a=0.75

Fig. 36: Effect of « (graph construction)

of HyperEdges increases as the value of « increases, which
is expected because when the cost of traveling within the
preferred zones has a higher weight, the labeling technique
needs to access more vertices to ensure finding the safest
path. However, HyperEdges still outperforms the naive and
Dijkstra’s algorithms in all cases considered.

Number of created edges: We further measure the number
of edges created in the graph precomputed by HyperEdges
in the spatial network setting. First, we increase the dataset
cardinality from 24 to 192. As Fig. 38 shows, the number
of edges increases moderately. Also, as the number of safe
zones increases, the average number of edges per safe zone
decreases. This is because having more safe zones in the
network increases their pruning effectiveness, and hence re-
duces the number of competing edges among the safe zones.
Second, we increase the size of the safe zones. As the same
figure shows, the number of created edges decreases. This
is natural as larger safe zones need fewer connecting edges.
Third, we evaluate the effect of increasing the value of a.
Figure 38 shows that the number of created edges increases.
This occurs because intermediate preferred zones become
less effective in creating better paths as « increases. How-
ever, even with the increasing numbers of edges, Hyper-
Edges achieves better performance than the naive and Di-
jkstra’s algorithms, as shown in Figs. 33, 35, and 37.

8 Conclusions and Future Work

We proposed a new path finding problem, safest path via
safe zones (SPSZ), which finds the path between two points

0.35 HyperEdges

— 03 -A-Naive

% 0.25 -¢Dijkstra’s

E 02 %%
—

e 0.15

c

€ 0.1

n‘:: 0.05

0 T T )
a=0 a=025 «o=05 a=0.75

Fig. 37: Effect of a (query processing)

~ e
83.37
X 25
24,21
& 15 -
g1 I
20 wmill o nl
= < 0V N E ES E O N 1N |n
i NI R E-)) ] ~
& - B35S s°ls
=]
Cardinality Size a

Fig. 38: Number of created edges

with the shortest unsafe distance. We modeled the problem
in both Euclidean and spatial network settings as a graph
shortest path problem and proposed a solution framework,
which contains a precomputed graph construction stage and
a path finding stage at query time. This framework uses the
properties of hyperbolas to prune the search space and re-
duce the number of edges created. We further solved a gen-
eralized version of the problem (SPPZ), where there is a
non-zero fractionally weighted cost for travel inside the safe
zones (now preferred zones). We propose two techniques to
optimize the entry and exit points for preferred zones. As
shown by the experimental study, our algorithm outperforms
both the naive and the improved naive baseline algorithms in
the Euclidean setting in three aspects. First, the number of
edges created by our algorithm before filtering is an order
of magnitude smaller than that of the improved naive algo-
rithm. This successfully reduces the memory consumption.
Second, the time taken for edge creation by our algorithm
is an order of magnitude smaller than that of the improved
naive algorithm and two orders of magnitude smaller than
that of the naive algorithm. Third, our algorithm in query
processing is up to an order of magnitude faster than the
naive and improved naive algorithms. In addition, the two
proposed entry and exit point optimization techniques can
reduce the overall path cost in the SPPZ problem by 20%.
Similarly, in the spatial network setting, our algorithm con-
sistently outperforms the baseline algorithm in term of the
running time and the number of vertices accessed in both
graph construction and query processing stages.

This study has put forward a new formulation of re-
gional preference in path finding problems. We have con-



Finding Lowest-Cost Paths in Settings with Safe and Preferred Zones

25

tributed pertinent solutions in both Euclidean and spatial
network settings. However, it remains an open challenge to
obtain an approximate algorithm for the SPPZ problem with
a bounded approximation ratio. It is also of interest to inves-
tigate how polygonal preferred zones can be handled. Fur-
ther, support for a setting where different preferred zones
have different « values would further enhance the applica-
bility of the SPPZ problem.

9 Acknowledgment

This work is supported by Australian Research Coun-
cil (ARC) Discovery Project DP130104587, Australian
Research Council (ARC) Future Fellowships Project
FT120100832, and partially supported by the National Nat-
ural Foundation of China (Nos. 61402155). Saad Aljubayrin
is sponsored by Shagra University, KSA. Jianzhong Qi is
supported by University of Melbourne Eearly Career Re-
searcher Grant (project number 603049).

References

1. Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F
Werneck. A hub-based labeling algorithm for shortest paths in
road networks. In SEA, pages 230-241, 2011.

2. Saad Aljubayrin, Jianzhong Qi, Christian S Jensen, Rui Zhang,
Zhen He, and Zeyi Wen. The safest path via safe zones. In ICDE,
pages 531-542, 2015.

3. Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Miiller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato F Werneck. Route planning in transportation networks.
Algorithm Engineering, 9220, 2016.

4. Jur Berg and Mark Overmars. Planning the shortest safe path
amidst unpredictably moving obstacles. In Algorithmic Founda-
tion of Robotics VII, pages 103-118, 2008.

5. Scott A Bortoff. Path planning for UAVs. In American Control
Conference, pages 364-368, 2000.

6. Edgar Dehn. Algebraic equations: An introduction to the theories
of Lagrange and Galois. Courier Corporation, 2012.

7. Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Re-
nato F Werneck. PHAST: Hardware-accelerated shortest path
trees. Journal of Parallel and Distributed Computing, 73(7):940—
952, 2013.

8. Alexandros Efentakis and Dieter Pfoser. ReHub: Extending hub
labels for reverse k-nearest neighbor queries on large-scale net-
works. J. Exp. Algorithmics, 21:1.13:1-1.13:35, 2016.

9. Mohammed Eunus Ali, Rui Zhang, Egemen Tanin, and Lars Ku-
lik. A motion-aware approach to continuous retrieval of 3d ob-
jects. In ICDE, pages 843-852, 2008.

10. Robert W Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345, 1962.

11. Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel
Delling. Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In SEA, pages 319-333, 2008.

12. Alfred Gray, Elsa Abbena, and Simon Salamon. Modern Differen-
tial Geometry of Curves and Surfaces with Mathematica. Chap-
man and Hall/CRC, 2006.

13. Christina Hallam, KJ Harrison, and JA Ward. A multiobjective op-
timal path algorithm. Digital Signal Processing, 11(2):133-143,
2001.

15.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

RV Helgason, JL Kennington, and KH Lewis. Shortest path algo-
rithms on grid graphs with applications to strike planning. Tech-
nical report, DTIC Document, 1997.

HV Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui
Zhang. idistance: An adaptive B+-tree based indexing method for
nearest neighbor search. TODS, 30(2):364-397, 2005.

Rahul Kala, Anupam Shukla, and Ritu Tiwari. Fusion of proba-
bilistic A* algorithm and fuzzy inference system for robotic path
planning. Artificial Intelligence Review, 33(4):307-327, 2010.
Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang.
Approximate NN queries on streams with guaranteed er-
ror/performance bounds. In VLDB, pages 804-815, 2004.

Alain Lambert, S Bouaziz, and R Reynaud. Shortest safe path
planning for vehicles. In Intelligent Vehicles Symposium, pages
282-286, 2003.

Alain Lambert and Dominique Gruyer. Safe path planning in an
uncertain-configuration space. Robotics and Automation, 3:4185—
4190, 2003.

Louise Leenen, Alexander Terlunen, and Herman Le Roux. A
constraint programming solution for the military unit path finding
problem. Mobile Intelligent Autonomous Systems, 9(1):225-240,
2012.

Chuanwen Li, Yu Gu, Jianzhong Qi, Ge Yu, Rui Zhang, and
Qingxu Deng. INSQ: an influential neighbor set based moving
knn query processing system. In /ICDE, pages 1338-1341, 2016.
Ying Lu and Cyrus Shahabi. An arc orienteering algorithm to find
the most scenic path on a large-scale road network. In SIGSPA-
TIAL, pages 46:1-46:10, 2015.

Shashi Mittal and Kalyanmoy Deb. Three-dimensional offline
path planning for UAVs using multiobjective evolutionary algo-
rithms. Congress on Evolutionary Computation, 7(1):3195-3202,
2007.

Antonio Miguel Mora, Juan Julian Merelo, Cristian Millan, Juan
Torrecillas, Juan Luis Jiménez Laredo, and Pedro A Castillo. En-
hancing a MOACO for solving the bi-criteria pathfinding problem
for a military unit in a realistic battlefield. In Applications of Evo-
lutionary Computing, pages 712-721. 2007.

Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik.
The V*-diagram: a query-dependent approach to moving KNN
queries. PVLDB, 1(1):1095-1106, 2008.

Hanan Samet. The quadtree and related hierarchical data struc-
tures. ACM Comput. Surv., 16(2):187-260, 1984.

Andy Yuan Xue, Jianzhong Qi, Xing Xie, Rui Zhang, Jin Huang,
and Yuan Li. Solving the data sparsity problem in destination
prediction. VLDB J., 24(2):219-243, 2015.

Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, and
Zhenghua Xu. Destination prediction by sub-trajectory synthesis
and privacy protection against such prediction. In /CDE, pages
254-265, 2013.

Rui Zhang, Beng Chin Ooi, and Kian-Lee Tan. Making the pyra-
mid technique robust to query types and workloads. In ICDE,
pages 313-324, 2004.



