
The VLDB Journal
https://doi.org/10.1007/s00778-019-00583-8

REGULAR PAPER

Efficient processing of moving collective spatial keyword queries

Hongfei Xu1 · Yu Gu1 · Yu Sun2 · Jianzhong Qi3 · Ge Yu1 · Rui Zhang3

Received: 18 February 2019 / Revised: 11 October 2019 / Accepted: 15 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
As amajor type of continuous spatial queries, themoving spatial keyword queries have been studied extensively.Most existing
studies focus on retrieving single objects, each of which is close to the query object and relevant to the query keywords.
Nevertheless, a single object may not satisfy all the needs of a user, e.g., a user who is driving may want to withdraw money,
wash her car, and buy some medicine, which could only be satisfied by multiple objects. We thereby formulate a new type
of queries named the moving collective spatial keyword query (MCSKQ). This type of queries continuously reports a set of
objects that collectively cover the query keywords as the query moves. Meanwhile, the returned objects must also be close
to the query object and close to each other. Computing the exact result set is an NP-hard problem. To reduce the query
processing costs, we propose algorithms, based on safe region techniques, to maintain the exact result set while the query
object is moving. We further propose two approximate algorithms to obtain even higher query efficiency with precision
bounds. All the proposed algorithms are also applicable to MCSKQ with weighted objects and MCSKQ in the domain of
road networks. We verify the effectiveness and efficiency of the proposed algorithms both theoretically and empirically, and
the results confirm the superiority of the proposed algorithms over the baseline algorithms.

Keywords Moving query · Collective spatial keyword query · Safe region · Query processing algorithms

1 Introduction

As a major type of moving queries, the moving spatial key-
word queries (MSKQ) have been studied extensively [1–4].
Given a set of static spatio-textual objects eachwith a location
and textual description (e.g., points of interest and geo-tagged

B Yu Gu
guyu@mail.neu.edu.cn

Hongfei Xu
xuhongfei_neu@163.com

Yu Sun
ysun@twitter.com

Jianzhong Qi
jianzhong.qi@unimelb.edu.au

Ge Yu
yuge@mail.neu.edu.cn

Rui Zhang
rui.zhang@unimelb.edu.au

1 College of Computer Science and Engineering, Northeastern
University, Shenyang, China

2 Twitter, Inc., San Francisco, CA, USA

3 The Department of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia

documents), a typicalMSKQconsiders the location of amov-
ing object and a set of keywords as arguments and aims to
continuously return a spatial-textual object that best matches
these arguments, e.g., close to the query object and contain-
ing all the query keywords. Such a query could come from
a tourist who wants to find the nearest “seafood restaurant”
while walking in a city.

In some applications, we observe that users’ needs may
be better satisfied by multiple objects collectively instead of
a single object. Consider a scenario where Alice is driving
in a foreign city. She wants to withdraw money, wash her
car, and buy some medicine. Her needs can only be satis-
fied by multiple objects, e.g., ATMs, car-washing facilities,
and pharmacies. For convenience, she would prefer loca-
tions within walking distance from each other. When her
car is being washed, she can walk to an ATM and a phar-
macy. As her needs are not very urgent, she wants to see
more candidate locations while driving until she finds a sat-
isfactory result (i.e., location set that suits her preference).
As another example, nowadays many PC games (e.g., The
Legend of Zelda1 and The Elder Scrolls2.) have large game

1 https://www.zelda.com/.
2 https://elderscrolls.bethesda.net/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00583-8&domain=pdf
http://orcid.org/0000-0002-4413-2131
https://www.zelda.com/
https://elderscrolls.bethesda.net/

H. Xu et al.

Car-washing facility

o

o o
o

q

ATM o

o

Pharmacy

o o

o

q'

RSR(o ,o ,o)

o

o
o

RSR(o ,o ,o)

Fig. 1 An MCSKQ query

maps, which include millions of spatial objects. In these
games, players need to complete gaming tasks to level-up
their gaming avatars. Game producers may provide a loca-
tion recommendation service for players, especially those
who are new to the game, to help them get an easier start
and to retain them in the game. While the game is running,
that service can continuously recommend nearby task target
locations for the players, where they can collectively go for,
e.g., gold farming, trading, and skill training.

To address the need for such collective answers toMSKQ,
in this paper, we propose a new type of queries, the moving
collective spatial keyword query (MCSKQ). As the query
object is moving, this query continuously returns a set of
objects satisfying the following conditions: (1) the union of
textual descriptions of the objects covers (i.e., contains all)
the query keywords; (2) the objects are spatially close to the
query object; and (3) the objects are also spatially close to
each other.

Figure 1 illustrates an example of theMCSKQ q for Alice.
There are 12 spatio-textual objects o0, o1, . . . , o11 repre-
sented by squares. The set {o1, o2, o3}will be returned as the
answer to the queryq since it contains all the query keywords,
i.e., ATM, car-washing facility, and pharmacy, all close to q
and close to each other. If Alice is not satisfied with the cur-
rent answer, she could continue driving. When she moves to
q ′, the answer will become {o4, o5, o6}.

Efforts [5–8] have been made to solve the static collec-
tive spatial keyword query (CSKQ) problem. Given a query
q = 〈q.λ, q.ψ〉, where q.λ is a location and q.ψ is a set
of keywords, CSKQ is to find a set S of objects such that S
covers q.ψ and has the minimum cost measured by a given
function. However, existing techniques for static CSKQ do
not suit MCSKQ. This is because when a static CSKQ algo-
rithm is used, keeping the result set up-to-datewhen the query
object is moving requires constant recomputation, incurring
expensive computation costs.

To overcome the drawbacks, our initial focus is to reduce
the frequency of recomputing a static CSKQ as much as pos-
sible, which has the following challenges:
Challenge 1 Existing safe regionmodels for moving queries
are inapplicable. The safe region technique is commonly

used in processing moving queries as it can reduce the
recomputation frequency effectively [9–11]. As long as the
query is still in the safe region, it is guaranteed that the cur-
rent query answer remains correct. However, to the best of
our knowledge, existing safe region models are defined for
individual objects. They are not suitable for the sets of spatio-
textual objects collectively covering the query keywords.
Specifically, existing approaches use the concept of domi-
nant region3 to compute the safe region. Suppose that object
o∗ is the top-1 query answer. The safe region of o∗ is the
intersection of the dominant region of o∗ to all other objects
(think of a Voronoi cell). Nevertheless, it is much expensive
to compute the dominant region of two object sets when each
set contains several objects (think of a higher-order Voronoi
cell). Therefore, it may be too expensive to compute the safe
region for MCSKQ following existing approaches straight-
forwardly.
Challenge 2 The MCSKQ algorithms are required to work
with both exact and approximate static CSKQ algorithms.
Recently, many effective algorithms for static CSKQ [7,12]
have been proposed to cope with different application pri-
orities (reviewed in Sect. 2.1), which can be divided into
exact algorithms and approximate algorithms. An exact
algorithm aims to compute the exact result set while an
approximate algorithm can efficiently compute an approx-
imate result set with precision bounds (e.g., 3-, 1.8-, and
1.375-approximation ratios). Since exact results and approx-
imate results are generated by different strategies, to reduce
the recomputation frequency, both exact and approximate
incremental approaches forMCSKQare required tomaintain
these results (i.e., to retain exactness of the result). Also, the
approximate incremental algorithm needs to be sufficiently
generic to be adapted to various approximate algorithmswith
different approximation ratios.
Challenge 3 Object weights and the underlying road net-
works add further challenges. The object weight can be a
user-contributed rating or the text relevance of the object to
the query. In this case, we need to consider object weights
when evaluating a set of objects. In many real-life appli-
cations, the objects are located on a road network where we
need to use the road network distance to object distance com-
putation. Therefore, the approaches for MCSKQ need to be
general and flexible and can be easily adapted to these two
variants.

To address the above challenges, we propose novel
approaches including the following key techniques:

(1) We propose the concept of relaxed safe region (RSR),
based on which we devise two exact algorithms for

3 Given a query q and two objects, oi and o j , the dominant region of
oi to o j is a region such that if q is in the region, oi is a better answer
than o j .

123

Efficient processing of moving collective spatial keyword queries

MCSKQ. We call a set of objects a feasible set if it
covers the query keywords. Given a query q, we derive
the RSR of the exact result set using the top-k feasi-
ble sets of q. When q moves to q ′, as long as q ′ is in
this RSR, the exact result set of q ′ remains to be one of
the top-k feasible sets of q. It is only when the query
object moves out of the RSR that a query recomputation
is needed. This greatly reduces the recomputation fre-
quency. We present an example of RSR in Fig. 1 where
the gray elliptic regions are the RSRs for {o1, o2, o3}
and {o4, o5, o6}, respectively. Based on RSR, we devise
two exact algorithms forMCSKQwhich adopt the exact
algorithms in recomputation and return the exact result
set continuously when the query moves: One uses a sin-
gle RSR to maintain the exact result set and the other
uses multiple RSRs to collectively maintain the exact
result set which further reduce the recomputation fre-
quency. The two algorithms also work for MCSKQwith
weighted object and MCSKQ on road networks.

(2) We propose the concept of keyword-based Voronoi
neighbor set (KVNS), based on which we devise two
approximate algorithms for MCSKQ with precision
bounds. Given a query q, an approximate CSKQ algo-
rithm computes a result set S that consists of the nearest
neighbors of q for each query keyword and gives a 3-
approximation result. We use KVNS to maintain these
nearest neighbors when the query moves. Specifically,
for an object o containing keyword t , the t-Voronoi
neighbor set of o consists of the objects which are near
to o and containing keyword t . When the query moves,
as long as o is closer to the query object than the objects
in the t-Voronoi neighbor set of o, o is still the near-
est neighbor for keyword t . Conceptually, the t-Voronoi
neighbor set of o defines a safe region as large as the
order-1 Voronoi cell on keyword t for o. Thus, when
q moves to q ′, if each object in S is closer to q ′ than
the object’s KVNS, S is still valid. Based on KVNS, we
propose an approximate algorithm for MCSKQ adopt-
ing the aforementioned approximate CSKQ algorithm
in recomputation. This algorithm uses an incremen-
tal maintenance strategy to continuously maintain an
approximate result with a precision bound. This algo-
rithm also works for the two variants of MCSKQ (i.e.,
weighted object and road networks). In addition, com-
bining KVNS and RSR techniques, we design another
approximate algorithm with higher precision bounds
(i.e., 1.8- and 1.375-approximation ratios), which uses
other approximate CSKQ algorithms in recomputation.
The two approximate algorithms can simultaneously
reduce the cost of recomputation and the recomputation
frequency, and hence achieve even higher efficiency.

In summary, we make the following contributions:

– We propose a new query type, the moving collective spa-
tial keyword query (MCSKQ). This query continuously
returns a set of objects that collectively cover the query
keywords when the query moves. The returned objects
are also close to the query object and meanwhile close to
each other.

– We approach MCSKQ by reducing the frequency of
recomputing static CSKQ. We propose two exact algo-
rithms and two approximate algorithms comprising the
aforementioned key techniques to achieve this goal.

– We adapt the proposed algorithms to further handle
MCSKQ with weighted objects and MCSKQ on road
networks, respectively.

– We conduct extensive experiments using real-world data
sets to evaluate the performance of the proposed algo-
rithms. The results confirm the effectiveness and effi-
ciency of the proposed algorithms.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 formulates the MCSKQ
problem. Sections 4 and 5 present the proposed algorithms
for MCSKQ. Section 6 adapts the proposed algorithms to
variants of MCSKQ. Section 7 reports experiments and Sect.
8 concludes the paper.

2 Related work

2.1 Collective spatial keyword queries

The collective spatial keyword query (CSKQ) finds a set
of the objects that collectively cover the query keywords
and have the minimum cost measured by a case-specific
cost function [5,8,13,14]. The MaxMax cost function [5] is
one of the most popular used in CSKQ, which defines the
cost to be a linear combination of the maximum distance
between the query object and any returned object and the
maximum pairwise distance among the returned objects. In
this paper, we mainly focus on the MaxMax cost function.
Effective algorithms for CSKQ with MaxMax have been
proposed, which can be divided into three categories: exact
algorithms, low-approximation (L-Appro) algorithms, and
high-approximation (H-Appro) algorithms.
Exact algorithms The state-of-the-art exact algorithms are
MaxMax-Exact [12] and MaxSum-Exact [7], which use dif-
ferent branch-and-bound strategies to enumerate feasible sets
in the object space.
L-appro algorithms The MaxMax-Appro1 algorithm [12]
is the only L-Appro algorithm. It computes query’s near-
est neighbors (NNs) for each query keyword and returns the
result set containing all these NNs as an approximate solu-
tion, which gives a 3-approximation result.

123

H. Xu et al.

H-appro algorithms The state-of-the-art approximate algo-
rithms for CSKQ are MaxMax-Appro2 [12] and MaxSum-
Appro [7], which produce approximate result sets under
1.8- and 1.375-approximation ratios, respectively. The two
algorithms both mainly consist of two procedures. The first
procedure is to use the aforementioned L-Appro algorithm to
find a feasible set as a candidate. The second procedure finds
the set having the minimum cost among all special feasible
sets and treats it as another candidate. For MaxMax-Appro2,
a special feasible set consists of an object containing themost
infrequent query keyword and its NNs covering the other
query keywords. For MaxSum-Appro, a special feasible set
instead consists of an object containing at least one query
keyword and its NNs. The final result set is the better one of
the two candidates. Therefore, this result set is guaranteed to
be no worse than that returned by the L-Appro algorithm.

Many studies [8,13,15,16] have worked on CSKQ with
other cost functions. Long et al. [7] investigate a new instan-
tiation of CSKQ with the cost function diameter, which
defines the cost to be the diameter of the query object and
the returned objects. Chan et al. [13] propose a new type of
CSKQ with the cost function maximum dot size which cap-
tures both some spatial distances between objects and a query
and the inherent costs of the objects (e.g., the admission fee
of a POI). Zhang et al. [17] study the level-aware collective
spatial keyword (LCSK) query. The keyword level can be
used to capture the level of tourist attractions, hotels, or the
rescue ability of equipments. The LCSK query asks for a
group of objects that cover the query keywords collectively
with keyword level constraints and minimize the cost func-
tion, which takes into account both the cost of objects and
the spatial distance. Gao et al. [14] define CSKQ on road
networks. Based on connectivity-clustered access method
(CCAM) index [18], they develop two approximate algo-
rithms with approximation bounds and one exact algorithm
to support CSKQ processing. Su et al. [8] address a group-
based collective keyword (GBCK) query problem on road
networks. It aims to find a region containing a set of POIs
that covers the query keywords where the POIs are close to
the group of users and also close to each other.

All these studies related to CSKQ are static queries.
None of the above techniques takes into account continuous
queries, and our focus, i.e., effectively reducing the recom-
putation frequency for a continuously moving query, has not
been studied.

2.2 Moving queries

Moving queries or continuous queries have attracted much
attention with the popularity of location-based services. For
a continuous query, the query position is moving while the
objects can be either static or moving. Our study focuses on
the former case.

Previous studies [9,19–21] haveworked onmoving k near-
est neighbor (MkNN) query, which handles a moving query
object q and a set of static data objects O. When q is mov-
ing, the MkNN query reports its k-nearest neighbors (kNN)
continuously. Nutanong et al. [9] exploit both the query loca-
tion and data objects to construct a safe region. Li et al.
[20] propose the influential neighbor set approach, which
is the state-of-the-art MkNN algorithm. This approach uses
safe guarding objects rather than safe regions, which are a
small set of data objects surrounding the current kNN set.
Other studies [22,23] investigate the continuous reverse kNN
queries, which continuously retrieve all the data objects that
have the query object as one of their closest object when the
query and data objects move freely. The continuous range
query [24–26] is also an important typeof continuous queries,
which continuously retrieves all the data objects in a query
region. However, these previous studies do not take into
account the keyword information of objects as in MCSKQ.

Previous studies [27–29] have worked on continuous
queries over spatial-textual streams, which continuously
report the objects from streaming spatial-textual data that
satisfy the query’s spatial and textual predicates. Mahmood
et al. [27] propose a distributed system Tornado to process
spatial keyword data streams in real time. Salgado et al. [30]
propose the continuous range spatial keyword queries over
moving spatio-textual objects (CRSK-mo queries), which
continuously monitor moving spatio-textual objects (e.g.,
customers) for multiple long running range queries with
respect to query objects (e.g., restaurants and hospitals). The
authors use the spatial and textual upper bounds between
queries and objects to form safe zones (at the client-side) and
buffer regions (at the server-side) to reduce both communi-
cation and computational overhead. Guo et al. [31] study the
continuousmoving rangequeries over dynamic event streams
which are continuously published by local businesses. In
these studies, the spatio-textual objects are incoming ormov-
ing. This differs from our work where the query object is
moving and the spatio-textual objects are static.

Wu et al. [4] propose the moving top-k spatial keyword
(MkSK) query, which considers both spatial locations and
keywords, and enables a mobile user to be continuously
aware of the k spatial web objects that best match a query
with respect to both location and text relevancy. Huang et
al. [2] propose a more general ranking function for MkSK
query. They use hyperbolas to represent the safe region and
devise efficient incremental algorithms to compute the safe
region with effective pruning techniques and indexing struc-
tures, e.g., IR-tree. Guo et al. [1] propose the notion of safety
road segment and design a framework to process MkSK on
road networks using a similarity function formed by spatial
proximity and textual relevance. Zheng et al. [32] study the
keyword-aware continuous k nearest neighbor (CkNN) on
road networks, which is to find the kNN results that sim-

123

Efficient processing of moving collective spatial keyword queries

Table 1 Frequently used symbols

Notation Description

q An MCSKQ

q ′ A new MCSKQ

Se The exact result set

Sa An approximation result set

Sk The k-th feasible set of q

C(q, S) The cost value for S in q

P(S) The maximum distance between two objects in S

CP(S)
o The corresponding circle of o for a set S

γe The value equals to C(q, Se)

γk The value equals to C(q, Sk)

Cγe
q The circle centered at q with a radius of γe

Cγk
q The circle centered at q with a radius of γk

RSR(S) The relaxed safe region of a set S

o f The furthest object from q ′ in Sa

Nt (o) The t-Voronoi neighbor set of o

ply contain the query keywords and return the results in a
continuous manner.

These studies retrieve single objects that are close to the
query object and are relevant to the query keywords when the
query moves. In contrast, we retrieve a set of objects that are
close to the query object and collectively meet the keywords
requirement. Hence, the above methods cannot be directly
applied to our MCSKQ problem.

3 Preliminaries

We define the moving collective spatial keyword query. We
summarize the frequently used symbols in Table 1.

Let O be a set of two-dimensional static spatio-textual
objects. Each object o ∈ O has a location o.λ and a set of
keywords o.ψ . We denote by d(o1, o2) the Euclidean dis-
tance between two objects o1 and o2.

A query q = 〈q.λ, q.ψ〉 also has a location q.λ and a set of
keywords q.ψ . Given a subset S of objects inO, if the union
of all keywords in S covers q.ψ , i.e., q.ψ ⊆ ⋃

o∈S o.ψ , we
call S a feasible set. The collective spatial keyword query
(CSKQ) is to find a feasible set S having the minimum cost
measured by a given cost function C(q, S). In this paper, we
mainly focus on the MaxMax cost function Cmax2(q, S) [5],
which computes a weighted sum of the maximum distances
(i) between q and objects in S and (ii) between any two
objects in S, i.e.,

Cmax2(q, S) = α · max
o∈S d(q, o)

+ (1 − α) · max
o1,o2∈S

d(o1, o2), (1)

o3 (3.5,1)q=<(0,0),{t1,t2}>
o0.ψ={t1} o1.ψ={t1}
o2.ψ={t2} o3.ψ={t1}
o4.ψ={t2} o5.ψ={t2}
o6.ψ={t1} o7.ψ={t2}
o8.ψ={t1} o9.ψ={t2}
o10.ψ={t2}

o0 (0,-1)
o4 (3.5,0)

o7 (3,-3)

o6 (2.5,-4)
o9 (-2.5,-3)

o10 (-3,-2)

o1 (-2,0)

o2 (-2.5,0)
o5 (0,2)

o8 (-1,3)

(a) locations (b) descriptions

Fig. 2 An example of MCSKQ

where α ∈ [0, 1] balances the relative importance of the
two distances. The CSKQ problem using the MaxMax cost
function is called MaxMax-CSKQ. For ease of presentation,
we will simply use C(·) to denote Cmax2(·), CSKQ to denote
MaxMax-CSKQ, and omit the parameter α for the rest of
this paper. The MaxMax cost function thus can be simply
denoted as:

C(q, S) = max
o∈S d(q, o) + max

o1,o2∈S
d(o1, o2). (2)

Note that the algorithms introduced in this paper are valid
for different α values.

We use an example in Fig. 2 to illustrate the above con-
cepts. Figure 2a shows the locations of a set of objects O =
{o0, o1, . . . , o10}, and Fig. 2b shows the keywords of each
object. For ease of illustration, each object is associated with
one keyword, although our proposed algorithms can sup-
port multiple keywords. Given a CSKQ q = 〈(0, 0), {t1, t2}〉
as represented by the small gray triangle in Fig. 2a, the
query result set is {o1, o2}, because the union of keywords
from o1 and o2 is {t1, t2} which covers the keyword set
q.ψ = {t1, t2}of the query, ando1 ando2 have close locations
with d(o1, o2) = 0.5 and the maximum distance between q
and o1 or o2 is only d(q, o2) = 2.5. This gives the minimum
cost C(q, {o1, o2}) = 2.5+ 0.5 = 3 among any feasible sets
of O.

CSKQ assumes that the query location is static. When
the query q moves, q is at different locations at different
time. This essentially constitutes a moving collective spatial
keyword query, i.e., moving CSKQ orMCSKQ.We formally
define the MCSKQ problem as follows.

Definition 1 [Moving Collective Spatial Keyword Query
(MCSKQ)] Given a set of static objects O and a moving
query q = 〈q.λ, q.ψ〉. As the query is moving to a new loca-
tion q ′.λ, the MCSKQ continuously returns the result of the
CSKQ q ′ = 〈q ′.λ, q.ψ〉.

When an MCSKQ q is issued, we first process the query
as if it were a static CSKQ. Since the static CSKQ prob-
lem is NP-hard [5], it will result in high computation costs

123

H. Xu et al.

Table 2 Summary of algorithms

Problem Static algorithm Approximation ratio Our maintenance algorithm Section

MCSKQ MaxMax-exact [12], MaxSum-exact [7] N.A. SRSR/MRSRad 4

(Euclidean space) MaxMax-appro1 (L-Appro) [12] 3 AIM 5.1

MaxMax-appro2 [12], MaxSum-appro [7] 1.8, 1.375 AAM 5.2

MCSKQ with wMaxMax-exact [12] N.A. wMRSRad 6.1

weighted objects wMaxMax-appro [12] 1 + 2e wAIM 6.1

MCSKQ Sliding window algorithm [14] N.A. rMRSRad 6.2

on road networks NEB algorithm [14] 3 rAIM 6.2

if we recompute and process one CSKQ at every timestamp
to return the query result continuously. Therefore, we pro-
pose efficient algorithms for MCSKQ, which achieve high
query efficiency by maintaining the query result with auxil-
iary information and reducing the recomputation frequency.
Specifically, when q moves to q ′, we first try to recompute the
result using the auxiliary information. Onlywhen this recom-
putation fails, we recompute a new CSKQ q ′ and update the
auxiliary information.

In the following sections, we present the proposed algo-
rithms for MCSKQ, which can use either the exact algo-
rithms, or the L-Appro algorithm, or the H-Appro algorithms
(cf. Sect. 2.1) in recomputation. We also adapt the pro-
posed algorithms to solve MCSKQ with weighted objects
and MCSKQ on road networks, etc. Table 2 summarizes the
proposed algorithms.

4 MCSKQ algorithms for exact result
maintenance

In this section, we discuss how to use the safe region-based
techniques to maintain the exact result set. In particular, we
first introduce the concept of relaxed safe region in Sect. 4.1,
based on which two algorithms SRSR and MRSRad are pro-
posed in Sect. 4.2. SRSR uses a single relaxed safe region
to maintain the exact result set Se, while MRSRad computes
multiple relaxed safe regions and uses them to maintain Se
collectively.

4.1 Relaxed safe region

A straightforward method to compute a safe region for the
exact result set Se is that: For any feasible set Si (except
Se), we compute a dominant region of Se for Si , within
which when the query moves the cost of Se is still not
larger than that of Si . Thus, the intersection of all the
dominant regions is a safe region of Se. However, this
method will bring in two overheads: construction over-
head and validation overhead. Construction overhead: Let

us assume that both Se and Si contain two data objects,
i.e., Se = {oe1, oe2} and Si = {oi1, oi2}. The dominant
region D(Se, Si) = {q ′|max

o∈Se
d(q ′, o) + max

o1,o2∈Se
d(o1, o2) ≤

max
o∈Si

d(q ′, o) + max
o1,o2∈Si

d(o1, o2)}. Given two feasible sets

Sm and Sn , and two objects oi ∈ Sm and o j ∈ Sn , we define
the dominant region of oi to o j , denoted by D(oi , o j), as
D(oi , o j) = {q ′|d(q ′, oi)+ max

o1,o2∈Sm
d(o1, o2) ≤ d(q ′, o j)+

max
o1,o2∈Sn

d(o1, o2)}. Then, the dominant region D(Se, Si) can

be derived as:

D(Se, Si) = (D(oe1, oi1) ∩ D(oe2, oi1))

∪ (D(oe1, oi2) ∩ D(oe2, oi2)).

It will be costly to compute D(Se, Si) because of the inter-
section and union operations included in above function, and
evenmore costly to intersect all the dominant regions to com-
pute the safe region; Validation overhead: the safe region that
we obtain adopting this method will have an irregular shape
result from intersection and union operations. The irregular
shape adds extra costs to check whether the query object is
still in this region.

To overcome these limitations, in this section, we first dis-
cuss how to compute a local safe region of the exact result
set Se only using the objects in Se. The underlying idea is to
transform themaintenance of Se intomaintaining each object
in Se separately. As we will see, the safe region forms a line
segment. Since the query can move along any possible direc-
tions, it is very easy for the query to exit this safe region and
thus invoke recomputation frequently. Therefore, we further
propose to use the top-k feasible sets to extend the local safe
region, which we call relaxed safe region. When the query q
moves to q ′, as long as q ′ is in the relaxed safe region, the
exact result set of q ′ remains to be one of the top-k feasible
sets of q.
Local safe regionGiven a feasible set S of query q, letP(S)

denote the maximum distance between any two objects in
S, which does not change when the query moves. The cost
function (2) can then be rewritten as:

123

Efficient processing of moving collective spatial keyword queries

Fig. 3 An example for Lemma 1

C(q, S) = max
o∈S {d(q, o) + P(S)}. (3)

We can see that if we treat each object o ∈ S as a circle
CP(S)
o that centers at o and has a radius of length P(S),

then d(q, o) + P(S) is the furthest distance from q to circle
CP(S)
o . Thus, the cost of S is the maximum furthest distance,

i.e., max{d(q, o)+P(S)| o ∈ S}. Based on this property, we
propose the following three lemmas to compute a safe region
for Se, which we call the local safe region.

Lemma 1 Given a feasible set S of query q and let Cγ
q be the

circle centered at q with a radius of γ . We have C(q, S) ≤ γ

if and only if the circle CP(S)
o for each o ∈ S is inside Cγ

q .

Proof According toEq. (3),weknow thatC(q, S) ≤ γ means
maxo∈S{d(q, o) + P(S)} ≤ γ , i.e., ∀o ∈ S, d(q, o) ≤ γ −
P(S). Therefore, the circle CP(S)

o for each o ∈ S is inside
Cγ
q , and vice versa. �

For example, in Fig. 3, using the example illustrated in Fig.

2, for the query q = 〈(0, 0), {t1, t2}〉, we have two feasible
sets SI = {o1, o2} and SII = {o3, o4}. The cost C(q, SI) of
SI is 3 with P(SI) = d(o1, o2) = 0.5. The cost C(q, SII) of
SII is 4.64 with P(SII) = d(o3, o4) = 1. For the four circles
CP(SI)
o1 ,CP(SI)

o2 ,CP(SII)
o3 , andCP(SII)

o4 , given a circleCγ
q , when

γ = 5, we have C(q, SI) < C(q, SII) < γ . From Fig. 3 we
see that the four circles are all inside Cγ

q . When γ = 4, we

have C(q, SI) < γ < C(q, SII), and only CP(SI)
o1 and CP(SI)

o2
are inside Cγ

q .
For ease of presentation, in the rest of this paper, we will

use the datasetO and query q = 〈(0, 0), {t1, t2}〉 presented in
Fig. 2 as a running example.We denote the set {CP(S)

o |o ∈ S}
of circles asCircles(S). Also,we say a feasible set S is inside
the circle Cγ

q if all the circles in Circles(S) are inside Cγ
q .

Here, we suppose that for any feasible set S �= Se,
C(q, S) > C(q, Se). Let C

γe
q be the circle centered at q with

a radius of γe = C(q, Se). The following Lemma 2 shows
that the exact result Se is the only feasible set inside Cγe

q .

Lemma 2 Se is the only feasible set inside C
γe
q .

Proof Since C(q, Se) ≤ γe, by Lemma 1 we have that Se
is inside Cγe

q . For any feasible set S �= Se, since C(q, S) >

C(q, Se) = γe, by Lemma 1, there is at least one object
o ∈ S whose corresponding circle CP(S)

o is not inside Cγe
q .

Therefore, Se is the only feasible set inside Cγe
q . �

Suppose that the query q moves to q ′ within the circleCγe
q

where γe = C(q, Se). Let C
γe−d(q,q ′)
q ′ be the circle centered

at q ′ with a radius of γe − d(q, q ′). When the current Se
is inside Cγe−d(q,q ′)

q ′ , the following Lemma 3 shows that the
current Se is still the answer to the query q ′.

Lemma 3 When Se is inside C
γe−d(q,q ′)
q ′ , Se is still the answer

to q ′.

Proof (1) When Se is inside Cγe−d(q,q ′)
q ′ , by Lemma 1 we

have C(q ′, Se) ≤ γe − d(q, q ′);
(2) Since the distance d(q, q ′) is not larger than the radius

difference between Cγe
q and Cγe−d(q,q ′)

q ′ , i.e., d(q, q ′) ≤
γe−(γe−d(q, q ′)), we haveCγe−d(q,q ′)

q ′ is insideCγe
q . By

Lemma 2, the exact result set Se is the only feasible set

insideCγe
q . Thus, when Se is also insideC

γe−d(q,q ′)
q ′ , Se is

the only feasible set inside Cγe−d(q,q ′)
q ′ . For any feasible

set S �= Se, since S is not insideC
γe−d(q,q ′)
q ′ , by Lemma 1

we have

C(q ′, S) > γe − d(q, q ′);

Combining (1) and (2), we have C(q ′, S) > C(q ′, Se) for
any feasible set S �= Se, which completes the pf. �

For example, in Fig. 4, the exact result set Se = {o1, o2}
which is the answer to the query q.When q moves to q ′, since
CP(Se)
o1 and CP(Se)

o2 are both inside Cγe−d(q,q ′)
q ′ , Se = {o1, o2}

is still the answer to q ′.
One important usage of Lemma 3 is that we can use it

to construct a safe region of Se. For any object o ∈ Se, the

corresponding circle CP(Se)
o is inside Cγe−d(q,q ′)

q ′ if and only
if:

d(q ′, o) ≤ γe − d(q, q ′) − P(Se),

which can be written as:

d(q ′, o) + d(q, q ′) ≤ γe − P(Se).

123

H. Xu et al.

Fig. 4 A local safe region of Se

Therefore, the possible locations of q ′ form an ellipse with q
and o being its two foci and γe −P(Se) its major axis length.
We denote this ellipse by

Eγe
o = {q ′|d(q ′, o) + d(q, q ′) ≤ γe − P(Se)}. (4)

The intersection of all the ellipses Eγe
o for o ∈ Se forms a

safe region of Se, within which when q moves Se remains
the same. We call this a local safe region (LSR), i.e.,

LSR(Se) =
⋂

o∈Se
Eγe
o . (5)

Suppose that there is only one object o ∈ Se having
d(q, o) = maxo′∈Se d(q, o′). We show with Theorem 1 that
LSR(Se) is a line segment, which means that the exact result
set Se is valid only when the query object moves in a partic-
ular direction.

Theorem 1 LSR(Se) is a line segment

Proof Recall that γe = C(q, Se). By Eq. (2), we have γe =
maxo∈Se {d(q, o) +P(Se)}. Let om be an object in Se having
γe = d(q, om)+P(Se). By Eq. (4), the corresponding ellipse
of om is

Eγe
om = {q ′|d(q ′, om) + d(q, q ′) ≤ γe − P(Se)}.

Using d(q, om) to replace γe − P(Se), we have

Eγe
om = {q ′|d(q ′, om) + d(q, q ′) ≤ d(q, om)}.

By the triangle inequality, we have

d(q ′, om) + d(q, q ′) ≥ d(q, om).

Thus, we have Eγe
om = {q ′|d(q ′, om)+d(q, q ′) = d(q, om)},

which is the line segment qom . For each object o ∈ Se−{om},

since γe > d(q, o) +P(Se), E
γe
o is an ellipse containing the

line segment qo. Because LSR(Se) is the intersection of E
γe
o

for each object o ∈ Se, LSR(Se) is a line segment. �

For example, in Fig. 4 (recall that the exact result set

Se = {o1, o2}), Eγe
o1 is the gray ellipse with q and o1 being

its two foci and γe − P(Se) the major axis length, and
Eγe
o2 = {q ′|d(q ′, o2) + d(q, q ′) = d(q, o2)}, which is the

line segment qo2. Point u is the boundary point of the inter-
section of Eγe

o1 and qo2, and LSR(Se) is the thick line segment
qu, because LSR(Se)=E

γe
o1

⋂
qo2 = qu. Since the query q

can move in any direction, LSR(Se) is quite restrictive and
q can easily move out of this safe region. This motivates us
to find a larger safe region to more effectively reduce the
recomputation frequency.
Relaxed safe region By Eq. (4), if γe increases, the ellipses
Eγe
o for each o ∈ Se will become larger and so will their

intersection. Thus, we increase γe to expend the safe region.
Let S1, S2, . . . , Sk be the top-k feasible sets of a query

q. Since Se is the exact result set, we have S1 = Se. Here-
after, we will use S1 and Se interchangeably. Let Cγk

q be a
circle centered at q with a radius of γk = C(q, Sk). Since the
costs of the other (non-top-k) feasible sets are larger than γk ,
by Lemma 1, only the top-k feasible sets S1, S2, . . . , Sk are
inside Cγk

q .
For an object o ∈ Se, we use γk to replace γe in Eq. (4)

and have the ellipse Eγk
o , i.e.,

Eγk
o = {q ′|d(q ′, o) + d(q, q ′) ≤ γk − P(Se)}. (6)

We call the intersection of all the ellipses Eγk
o for each o ∈ Se

the relaxed safe region (RSR) of Se, i.e.,

RSR(Se) =
⋂

o∈Se
Eγk
o . (7)

For example, in Table 3, S1 = {o1, o2}, S2 = {o5, o8}, and
S3 = {o3, o4} are the top-3 feasible sets of query q. For the
objects o1, o2, o3, o4, o5, and o8, their corresponding circles
are shown in Fig. 5,which are inside the circleCγ3

q centered at
q with a radius of γ3 = C(q, S3). The gray region is RSR(Se),
which is the intersection of the two ellipses Eγ3

o1 and Eγ3
o2 .

Using the following Theorem 2, we show that when q
moves to q ′, as long as q ′ is in RSR(Se), the current Se is still
better than any non-top-k feasible sets and thus the answer
to q ′ is the one having the minimum cost among the top-k
feasible sets of q.

Theorem 2 Given the top-k feasible sets S1, S2, . . . , Sk of
q, when q moves to q ′ within RSR(Se), for any non-top-k
feasible set S j for j > k: C(q ′, S j) > C(q ′, Se).

Proof (1) Whenq ′ is inRSR(Se), byEqs. (6) and (7), for each
object o ∈ Se, we have d(q ′, o)+d(q, q ′) ≤ γk −P(Se),

123

Efficient processing of moving collective spatial keyword queries

Table 3 The top-3 feasible sets of q

Feasible set Cost value Maximum distance

S1 = {o1, o2} C(q, S1) = 3 P(S1) = 0.5

S2 = {o5, o8} C(q, S2) = 4.57 P(S2) = √
2

S3 = {o3, o4} C(q, S3) = 4.64 P(S3) = 1

Fig. 5 Relaxed safe region of Se

which can be written as

d(q ′, o) + P(Se) ≤ γk − d(q, q ′).

By definition, we have

C(q ′, Se) ≤ γk − d(q, q ′).

(2) It is easy to see that the circle Cγk−d(q,q ′)
q ′ is inside Cγk

q

as d(q, q ′) ≤ γk − (γk − d(q, q ′)). Since only the top-

k feasible sets are inside the circle Cγk
q , and Cγk−d(q,q ′)

q ′
also locates inside Cγk

q , any non-top-k feasible set S j for

j > k, S j cannot be inside the circle C
γk−d(q,q ′)
q ′ , i.e.,

C(q ′, S j) > γk − d(q, q ′).

Combining (1) and (2), we have C(q ′, S j) > C(q ′, Se) for
any non-top-k feasible set S j for j > k. �

4.2 MCSKQ algorithms based on relaxed safe region

In this section,wepresent two algorithms forMCSKQ,which
use relaxed safe region to continuously return the exact result
set.

4.2.1 Single relaxed safe region algorithm

First, we discuss the algorithm that continuously returns the
exact result set Se using a single relaxed safe region RSR(Se).

Query updates Suppose that we have computed the top-k
feasible sets of q, and use a prioritized queue Q to store them
by ascending order of their costs. When q moves to q ′, we
checkwhether q ′ is in RSR(Se). If not, thenwe recompute the
top-k feasible sets and return the new Se. If so, we compute
the new Se and update Q as follows: For any feasible set Si
in Q, if Si is inside the circle Cγk−d(q,q ′)

q ′ (recall that γk =
C(q, Sk)), i.e., C(q ′, Si) ≤ γk −d(q, q ′) (cf. Lemma 1), then
we put Si into a new queue Q′ prioritized by the updated
cost value. The queue Q′ becomes the new Q and the first
entry S′

1 is the new Se. The correctness of this algorithm is
discussed using the following theorem.

Theorem 3 Let S|Q′| be the last entry in queue Q′, i.e.,
C(q ′, S|Q′|) is the maximal cost among all the entries in Q′.
Then ∀S /∈ Q′ that is a feasible set: C(q ′, S) > C(q ′, S|Q′|).

Proof (1) From the update process, we know that the cost of
any feasible set in Q′ is not larger than γk −d(q, q ′), i.e.,
C(q ′, S|Q′|) ≤ γk − d(q, q ′);

(2) For any feasible set Si ∈ Q\Q′, since its cost is larger
than γk − d(q, q ′), we have C(q ′, Si) > γk − d(q, q ′);

(3) For any feasible set S j /∈ Q, it holds that C(q ′, S j) >

γk − d(q, q ′) (cf. step 2 of the pf of Theorem 2);
Combining (1), (2), and (3), we have ∀S /∈ Q′ that is a

feasible set: C(q ′, S) > C(q ′, S|Q′|). �

For example, we store the top-3 feasible sets of q, S1 =
{o1, o2}, S2 = {o5, o8}, and S3 = {o3, o4} in queue Q. In
Fig. 5, q moves to q ′ which is still in RSR(Se). ByTheorem2,
the answer to q ′ can be found in Q. In the update process,

since S1 and S2 are inside the circle C
γ3−d(q,q ′)
q ′ , we insert S1

and S2 into Q′ and return the first entry in Q′ as the answer
to q ′.
The SRSR Algorithm Algorithm 1 summarizes the query
processing procedure. This algorithm uses a single relaxed
safe region RSR(Se) to maintain Se, so we call it the single
relaxed safe region (SRSR) algorithm.When a query comes,
we first compute the top-k feasible sets S1, S2, . . . , Sk and
keep them in Q. The current Se is the first entry of Q. We
compute RSR(Se) and return Se as the answer (Lines 1–3).
Then, we start query maintenance (Lines 4–15). When q
moves to q ′, we check whether q ′ is in RSR(Se). If not then
Q becomes invalid and we recompute the top-k feasible sets
(Lines 6–7). If q ′ is still in RSR(Se), then Q is valid, i.e., the
new Se is still in Q. We update Q with queue Q′ to obtain
the new Se (Lines 9–12). When this is done, we replace Q
and q by Q′ and q ′, respectively. We recompute the relaxed
safe region of the new Se and return the new Se as the answer
(Lines 14–15).

123

H. Xu et al.

Algorithm 1: SRSR
Input : an MCSKQ q
Output: the new Se

1 Q ← topK SetsSearch()

2 ComputeRSR()

3 report Result(Se)
4 while query continues do
5 q moves to q ′
6 if q ′.λ is not in RSR(Se) then
7 Q ← topK SetsSearch()

8 else
9 while not Q.empty() do

10 Si ← Q.dequeue()
11 if C(q ′, Si) ≤ γk − d(q, q ′) then
12 Q′.enqueue(Si , C(q ′, Si))

13 q ← q ′, Q ← Q′, Q′.clear()
14 ComputeRSR()

15 report Result(Se)

16
17 procedure ComputeRSR()

18 Se ← f irst entr y of Q
19 k ← |Q|, γk ← C(q, S|Q|)
20 for each object o ∈ Se do
21 RSR(Se) ← RSR(Se)

⋂
Eγk
o

4.2.2 Multiple relaxed safe region algorithm

In order to further reduce the recomputation frequency, in
this section, we introduce another algorithm that computes k
RSRs from the top-k feasible sets and uses these k RSRs to
collectively maintain the exact result set Se. As long as the
query moves in one of these RSRs, the new Se remains to be
one of the top-k feasible sets.

Since there are multiple RSRs need to be maintained, we
propose two optimizations. One is to change the access order
of the k RSRs to early terminate the checking process, and the
other is to delete some of the top-k feasible sets that cannot
be the new Se in the subsequent query maintenance.
Compute more RSRs Similar to obtain the relaxed safe
region of the exact result set RSR(Se), we can compute the
relaxed safe regions of the other top-k feasible sets RSR(Si)
for i ∈ [2, k] with the function

RSR(Si) =
⋂

o∈Si
Eγk
o , (8)

where Eγk
o = {q ′|d(q ′, o) + d(q, q ′) ≤ γk − P(Si)} is an

ellipse and γk = C(q, Sk).
For example, in Fig. 6, RSR(S2) is the red region which is

the intersection of the two ellipses Eγ3
o5 and E

γ3
o8 , and RSR(S3)

is the thick line segment qu which is the intersection of Eγ3
o4

and the line segment qo3 (cf. Theorem 1).
Using the k RSRs, we can further reduce the recomputa-

tion frequency, which is based on the following Theorem 4.

Fig. 6 Multiple relaxed safe regions

Theorem 4 Given the top-k feasible sets S1, S2, . . . , Sk of
q, when q moves to q ′ within any RSR(Si) for i ∈ [1, k],
for any non-top-k feasible set S j for j > k: C(q ′, S j) >

min{C(q ′, Si), i ∈ [1, k]}.

Proof Suppose q ′ is in RSR(Sm) (1 ≤ m ≤ k), we can
use similar steps as the pf of Theorem 2 to show that for any
non-top-k feasible set S j for j > k, we have that C(q ′, S j) >

C(q ′, Sm). Thus, it holds that C(q ′, S j) > min{C(q ′, Si), i ∈
[1, k]}. �

By Theorem 4, when q moves to q ′, as long as q ′ is in any
RSR(Si) for i ∈ [1, k], the answer to q ′ is the one having
the minimum cost among the top-k feasible sets of q. For
example, in Fig. 6, when q moves to q ′ within RSR(S2), by
Theorem 4, the query answer of q ′ is the best one among S1,
S2, and S3.

For the query update process, we also use a queue Q to
store the top-k feasible sets of q. When q moves to q ′, for
each feasible set Si in Q, we check whether q ′ is in the
corresponding relaxed safe region RSR(Si). If so, Si is still
the top-k feasible set of q ′ and we insert it into a new queue
Q′. After that, if Q′ is not empty, then the top entry S′

1 in
Q′ is the new Se and Q′ is used in the subsequent query
maintenance. In order to improve the update efficiency, next,
we show two optimizations.
Access order optimization

Pruning rule Let the top-k feasible sets Si for i ∈ [1, k]
be stored in a queue Q prioritized by γk − P(Si), and we
retrieve each feasible set in descending order of γk −P(Si).
Once we encounter an S j having d(q, q ′) > γk −P(S j), we
can stop and ignore the remaining feasible sets.

The correctness of this pruning rule is straightforward. If
d(q, q ′) > γk − P(S j), for each object o ∈ S j , we have

d(q ′, o) + d(q, q ′) > γk − P(S j).

123

Efficient processing of moving collective spatial keyword queries

Since RSR(S j) is the intersection of all the ellipses Eγk
o for

each o ∈ S j where Eγk
o = {q ′|d(q ′, o) + d(q, q ′) ≤ γk −

P(S j)}, q ′ is not in RSR(S j).
For ease of presentation,weuse νk,i to denoteγk−P(Si) in

the rest of paper. Continue with the above example in Fig. 6
(recall that γ3 = C(q, S3)), if we store the top-3 feasible
sets in a max-heap Q prioritized by ν3,i (i.e., γ3 − P(Si)),
the access order of the feasible sets will be S1, S3, and S2.
Suppose q moves to q ′′, in the query update process, when
we check S3, since d(q, q ′′) = 4 > ν3,3 = 3.64, based on
the pruning rule, there is no need to check whether q ′′ is in
RSR(S3) and RSR(S2) any more.
Dominance-based optimization For any two feasible sets Si
and S j , if C(q, S j) ≥ C(q, Si) always holds when q moves in
thewhole space,we say Si dominates S j , denoted by Si ≺ S j .
Thus, if a client–server-based system is used, before sending
the top-k feasible sets to the client, we can delete the feasible
sets dominated by others, which will reduce communication
cost as well as improve the efficiency of the query update
process. In the following, we introduce a sufficient condition
for Si ≺ S j : If there exists an object om ∈ S j with d(om, o) ≤
P(S j) − P(Si) for ∀o ∈ Si , then Si ≺ S j .

The sufficient condition holds because by the triangle
inequality, for o ∈ Si , we have

d(q, o) − d(q, om) ≤ d(om, o).

Since d(om, o) ≤ P(S j) − P(Si), it holds that

d(q, o) + P(Si) ≤ d(q, om) + P(S j).

By Eq. (3), i.e., C(q, S) = max
o∈S {d(q, o) + P(S)}, we have

C(q, Si) ≤ d(q, om) + P(S j) ≤ C(q, S j).

For example, given the query q in Fig. 2, there are two
feasible sets SI = {o1, o2} (P(SI) = 0.5) and SII =
{o0, o2} (P(SII) = 2.69). We have SI ≺ SII because there
exists an object o2 ∈ SII that for all objects o1, o2 in SI we
have d(o2, o1) = 0.5 < P(SII)−P(SI) = 2.69−0.5 = 2.19
and d(o2, o2) = 0 < P(SII) − P(SI) = 2.19.
TheMRSRad algorithmAlgorithm2 summarizes the above
query processing procedure. This algorithm uses multiple
relaxed safe regions to maintain Se and uses the proposed
two optimizations to accelerate the query update process.We
call itMRSRad . The function dominance(·) implements the
dominance-based optimization. The access order optimiza-
tion is applied in Lines 9–10. Compared with SRSR, this
algorithm spends more time maintaining Se.
Complexity LetOψ ⊆ O be a set of objects. For each object
o ∈ Oψ, o.ψ

⋂
q.ψ �= ∅. The main costs of SRSR and

MRSRad lie in topK SetsSearch(·), which is the function
that computes the top-k feasible sets and it takes O(k log k ·

Algorithm 2: MRSRad

Input : an MCSKQ q
Output: the new Se

1 Q ← topK SetsSearch()

2 dominance(Q)

3 ComputeRSRs()
4 report Result(Se)
5 while query continues do
6 q moves to q ′
7 while not Q.empty() do
8 Si ← Q.dequeue()
9 if d(q, q ′) > νk,i then

10 break

11 else
12 if q ′.λ is in RSR(Si) then
13 Q′.enqueue(Si , C(q ′, Si))

14 q ← q ′, Q ← Q′, Q′.clear()
15 if Q.empty() then
16 Q ← topK SetsSearch()

17 dominance(Q)

18 ComputeRSRs()
19 report Result(Se)

20
21 procedure ComputeRSRs()
22 Se ← f irst entr y of Q
23 k ← |Q|, γk ← C(q, S|Q|)
24 while not Q.empty() do
25 S j ← Q.dequeue()
26 for each object o ∈ S j do
27 RSR(S j) ← RSR(S j)

⋂
Eγk
o

28 νk, j = γk − P(S j)

29 Q′.enqueue(S j , νk, j)

30 Q ← Q′, Q′.clear()

|Oψ ||q.ψ |) time. Assuming that the query object q moves at a
constant speed v, for SRSR, if q exits RSR(Se), the function
topK SetsSearch(·)will be invoked. We denote the point of
exit by qe. The minimum distance between q and qe is

de = C(q, Sk) − C(q, Se)

2
.

In the worst-case, q moves in a straight line. Then, the fre-
quency f of topK SetsSearch(·) invoked is

f = v

de
= 2v

C(q, Sk) − C(q, Se)
.

Thus, the time complexity of SRSR is O(f · k log k ·
|Oψ ||q.ψ |). If a client–server-based system is used, for each
time topK SetsSearch(·) is invoked, k feasible sets are sent
from the server to the client. As the size of a feasible set
is at most k · |q.ψ |, the communication cost for SRSR is
O(k · |q.ψ | · f). For MRSRad , only when q exits all RSR(Si)
for i ∈ [1, k] is the function topK SetsSearch(·) invoked.
Thus, we have

123

H. Xu et al.

de = max
i∈[1,k]

C(q, Sk) − C(q, Si)

2
,

and the frequency is

f = max
i∈[1,k]

2v

C(q, Sk) − C(q, Si)
.

5 MCSKQ algorithms for approximate result
maintenance

As the cost analysis above shows, even with multiple RSRs
and the two optimizations, the overall cost of MRSRad is
still high due to the recomputation of top-k feasible sets. In
order to avoid the high cost in recomputation, in this section,
we propose another two algorithms AIM and AAM, which
both adopt the approximate algorithms described in Sect. 2.1
in recomputation. AIM uses the L-Appro algorithm to com-
pute an approximate result set Sa and maintains Sa under a
3-approximation ratio. AAM is based on AIM andMRSRad ,
and maintains Sa under a 1.8- or 1.375-approximation ratio
(depending on the underlying H-Appro algorithms in recom-
putation).

5.1 Approximate incremental maintenance

Given a query q, if we adopt the L-Appro algorithm in recom-
putation, we will have a 3-approximation result set Sa which
consists of the nearest neighbors (NNs) of q for each key-
word t ∈ q.ψ . When the query moves to q ′, if each object in
Sa is still the NN of q ′, then the current Sa is the answer to
q ′. In order to check the validity of Sa efficiently, we propose
the concept of keyword-based Voronoi neighbor set (KVNS).
Based on KVNS, we propose the approximate incremental
maintenance (AIM) algorithm, which adopts an incremental
strategy to maintain Sa as a 3-approximation result.
Keyword-based Voronoi neighbor set Before formally
defining KVNS, we first briefly discuss the Voronoi dia-
gram. The Voronoi diagram [33] of a set O of n objects
is a subdivision of the plane into n Voronoi cells, where
each Voronoi cell V (oi) corresponds to an object oi in O
and for any point p within V (oi), oi is the NN of p, i.e.,
∀o j ∈ O\{oi }, d(p, oi) ≤ d(p, o j). The Voronoi cells are
also called order-1 Voronoi cells. For kNN (k > 1) queries,
we have the corresponding higher-order Voronoi diagrams
and Voronoi cells. For ease of presentation, in this section,
Voronoi cells refer to order-1 Voronoi cells unless specified
otherwise. TheVoronoi diagram is computed using the bisec-
tors between the objects in O. Only those between adjacent
data objects will be included in the Voronoi diagram.

LetOt ⊆ O contain the objects o ∈ Ot having keyword t .
Given a Voronoi diagram ofOt , for any two objects oi , o j ∈

(a)

(b)

(c)

Fig. 7 The Voronoi diagram of O

Ot , we call o j a t − Voronoineighbor of oi if their bisector
is included in the Voronoi diagram, i.e., oi and o j share an
edge of their Voronoi cells, denoted by V (oi)||V (o j).

Definition 2 [Keyword-basedVoronoiNeighborSet (KVNS)]
Given an object o ∈ Ot , the setO′

t ⊂ Ot , denoted by Nt (o),
that contains all the t-Voronoi neighbors of o is the t-Voronoi
neighbor set of o.

Conceptually, for an object o covering the keyword t , the
t-Voronoi neighbor set of o defines a safe region, which is
equivalent to a Voronoi cell for t .

We illustrate the above concepts using an example in
Fig. 7. For the data set O = {o0, o1, . . . , o10} in Fig. 7a,
let Ot1 = {o0, o1, o3, o6, o8} be a subset of O where each
object covers keyword t1 and Ot2 = {o2, o4, o5, o7, o9, o10}
where each object covers keyword t2. In Fig. 7b, c, the dash
lines indicate the boundaries of Voronoi cells ofOt1 andOt2 .
The Voronoi cell V (o0) shares an edge with V (o1), V (o3),
V (o6), and V (o8). Thus, the t1-Voronoi neighbor set of o0 is
Nt1(o0) = {o1, o3, o6, o8}. Similarly, the t2-Voronoi neigh-
bor set of o5 is Nt2(o5) = {o2, o4, o9}.

For each object o ∈ O, we precompute and store all the
t-Voronoi neighbor sets for each keyword t ∈ o.ψ . Such
precomputation is only needed once and can be computed
efficiently [34]. As described later in the complexity analysis,
the storage of KVNS only takes reasonable space.

Using KVNS, we can use only a few objects to check the
validity of an existing NN of the moving query, which is
formally stated in the following Lemma 4.

Lemma 4 Given a query q, let ot be the NN of q for keyword
t. When q moves to q ′, if ot is closer to q ′ than any object in
Nt (ot), ot is still the NN of q ′ for t .

123

Efficient processing of moving collective spatial keyword queries

Proof By definition, Nt (ot) contains all the t-Voronoi neigh-
bors of ot . Since the segments of the bisectors of ot and each
object in Nt (ot) construct the (order-1) Voronoi cell V (ot)
of ot on Ot , if ot is closer to q ′ than any object in Nt (ot), q ′
is in V (ot). Thus, ot is still the NN of q ′ for t . �

Query updates By Lemma 4, when the query q moves to
q ′, a straightforward way to check the validity of the current
approximate result set Sa is to check whether each object o
in Sa is closer to q ′ than o’s KVNS. If so, the current Sa is
still valid. Otherwise, we invoke the L-Appro algorithm at q ′
to recompute a new Sa . In order to further reduce the recom-
putation frequency, we propose the following incremental
maintenance strategy.

When q moves to q ′, let o f ∈ Sa be the furthest object
from q ′ in the current Sa . We use the following lemma to
show that we can simply use o f to check the validity of Sa
instead of all objects in Sa .

Lemma 5 Let t be the keyword o f covers. When o f is still
the NN of q ′ for t , the current Sa gives a 3-approximation
result to q ′.

Proof Let Se be the exact result for the query q ′ and ot be
the object covering keyword t in Se (recall that ot is not
necessarily the NN of q ′ for keyword t). Since o f is the NN
of q ′ for t , we have d(q ′, o f) ≤ d(q ′, ot). We also have
d(q ′, o f) ≤ C(q ′, Se), since d(q ′, ot) ≤ C(q ′, Se). Because
o f is the furthest object from q ′ in the current Sa , the largest
possible distance between two objects in Sa is 2·d(q ′, o f) by
the triangle inequality. Therefore, Sa satisfies the following
inequalities:

C(q ′, Sa) = max
o∈Sa

d(q ′, o) + max
o1,o2∈Sa

d(o1, o2)

≤ d(q ′, o f) + 2 · d(q ′, o f)

≤ 3 · d(q ′, o f)

≤ 3 · C(q ′, Se),

i.e., the current Sa still gives a 3-approximation result to q ′.�

For example, in Fig. 7a, the NNs of q for t1 and t2 are
o0 and o5, respectively. Thus, an approximate result set is
Sa = {o0, o5}.When q moves to q ′, as d(q ′, o5) > d(q ′, o0),
o5 is the furthest object from q ′ in Sa . From Fig. 7c, we find
that q ′ is in the Voronoi cell V (o5), which means o5 is still
the NN for t2. By Lemma 5, the current Sa = {o0, o5} still
gives a 3-approximation result to q ′, although the NN of q ′
for t1 changes from o0 to o1 (as illustrated in Fig. 7b).

When o f is no longer the NN of q ′ (for its corresponding
keyword), we can actually use the t-Voronoi neighbor set
Nt (o f) to efficiently find the new NN, and the method is
stated in the following Lemma 6.

Lemma 6 Let ot ∈ Sa be the NN of q for keyword t, om be
the object having the minimum distance to q ′ in Nt (ot). If om
is closer to q ′ than any object in Nt (om), then om is the NN
of q ′ for t .

Proof Since om is a t-Voronoi neighbor of ot , by definition,
ot is also a t-Voronoi neighbor of om , i.e., ot ∈ Nt (om). Thus,
if om is closer to q ′ than any object in Nt (om), by Lemma 4,
om is the NN of q ′ for t . �

Based on above analysis, our query update process is
described as follows: When q moves to q ′, we first check
whether the furthest object o f from q ′ in the current Sa is the
NN of q ′ for its corresponding keyword, e.g., keyword t . If
so, the current Sa is valid. Otherwise, we use the t-Voronoi
neighbor set Nt (o f) of o f to find the new NN om . If om can
be found (by Lemma 6), we replace o f by om and get a new
Sa = current Sa\{o f } ⋃{om}. We then repeat the above
steps to check the validity of this new Sa . If om cannot be
found, we invoke the L-Appro algorithm to recompute a new
Sa . Algorithm 3 summarizes the query processing procedure.

Algorithm 3: AIM
Input : an MCSKQ q
Output: the new Sa

1 Sa ← L − Appro(q)

2 report Result(Sa)
3 while query continues do
4 q moves to q ′
5 while true do
6 o f = argmaxo∈Sa d(q ′, o)
7 om = argmino∈Nt (o f) d(q ′, o)
8 if d(q ′, o f) < d(q ′, om) then
9 q ← q ′

10 report Result(Sa)
11 break

12 else
13 if om is closer to q ′ than any object in Nt (om)

then
14 Sa ← Sa\{o f } ⋃{om}
15 else
16 Sa ← L − Appro(q ′)
17 q ← q ′
18 report Result(Sa)
19 break

Complexity By Algorithm 3, the current approximate result
set Sa is valid as long as the furthest object o f ∈ Sa is still
the NN of the new query for its corresponding keyword t .
Let the size of the data space be 1, then the area of the safe
region for Sa is R = min{ 1

|Ot | | t ∈ q.ψ} where Ot ⊆ O
and each object o ∈ Ot covers keyword t . According to [9],
the recomputation frequency f is inversely proportional to
the square root of the area of the safe region. Therefore, we

123

H. Xu et al.

have f = O(

√
1
R). Let Oψ ⊆ O be a set of objects and

o.ψ
⋂

q.ψ �= ∅ for each object o ∈ Oψ . Since the cost of the
L-Appro algorithm is O(|Oψ | log |Oψ |) [12], the time com-

plexity of AIM is O(

√
1
R · |Oψ | log |Oψ |). Okabe et al. [33]

have proved that the average number of edges per Voronoi
cell does not exceed 6, i.e., there are at most 6|o.ψ | Voronoi
neighbors for each object o. If a client–server-based system
is used, since the size of Sa is at most |q.ψ |, the communi-
cation cost of AIM is O(|q.ψ | · f · maxo∈Oψ

|o.ψ |) in the
worst case. In our experiments, the largest size of o.ψ is 36.

5.2 Advanced approximatemaintenance

To provide users with better approximate results, in this sec-
tion, we introduce the advanced approximate maintenance
(AAM) algorithm. AAM adopts the H-Appro algorithms
(cf. Sect. 2.1) in recomputation and can maintain a ρ-
approximation result (ρ ∈ {1.375, 1.8}). SinceAAMisbased
onMRSRad (cf. Sect. 4.2) and AIM, it indicates that the pro-
posed algorithmsMRSRad and AIM are general and flexible
and can be integrated with any static CSKQ computation
methods.

Given an MCSKQ q, AAM first computes an approxi-
mate result set Sa from the better one of the two candidates:
One is the set Sn computed by the L-Appro algorithm, and
the other is the set Sp having the minimum cost among all
special feasible sets. When the query moves, AAM aims to
maintain Sn and Sp. If so, there is no need to issue a new
query. For the maintenance of Sn , we use the query update
process of AIM (cf. Algorithm 3 Lines 3–19). For Sp main-
tenance, we compute the relaxed safe region RSR(Sp) using
similar computation steps as the relaxed safe region RSR(Se)
of the exact result set Se (cf. Sect. 4.1), i.e.,

RSR(Sp) =
⋂

o∈Sp
Eγk
o ,

Eγk
o = {q ′|d(q ′, o) + d(q, q ′) ≤ γk − P(Sp)},

where P(Sp) is the maximum distance between any two
objects in Sp and γk = C(q, Sk)with Sk being the k-th special
feasible set of q. When the query moves within RSR(Sp), the
new Sp remains to be one of the top-k special feasible sets
of q. Thus, we adopt the query update process of MRSRad

(cf. Algorithm 2 Lines 5–19) to maintain Sp by replacing
the top-k feasible sets with the top-k special feasible sets.
Algorithm 4 summarizes the query processing procedure.

6 The variants of MCSKQ

In this section, we show that the MRSRad and AIM algo-
rithms can also effectively solve MCSKQ with weighted

Algorithm 4: AAM
Input : an MCSKQ q
Output: the new Sa

1 Sn ← AIM (Lines 1 to 2)
2 Sp ← MRSRad (Lines 1 to 4)
3 Sa ← min{Sn, Sp}
4 report Result(Sa)
5 while query continues do
6 q moves to q ′
7 maintain Sn
8 maintain Sp
9 Sa ← min{Sn, Sp}

10 q ← q ′
11 report Result(Sa)

objects, MCSKQ on road networks, and other variants
of MCSKQ (e.g., MCSKQ with a group of query users,
MCSKQ with the MinMax cost function).

6.1 MCSKQwith weighted objects

In real life, users may prefer to a far-away object with a much
higher popularity than one close to their locations. There-
fore, in this section, we consider the popularity of objects
in MCSKQ and study the MCSKQ problem with weighted
objects, i.e., weighted MCSKQ. Different from the origi-
nal MCSKQ where objects are treated equally, weighted
MCSKQ takes into account object weights when evaluat-
ing the cost of an object set. The object weights can capture
aspects of objects such as user ratings, popularity, and text
relevance to the query.

Following existing work [12], we use w(q, o) = e−score

as the weight of an object o where score ∈ [0, 1] can be the
normalized user rating or relevance score to the query. We
use the followingweightedMaxMax cost function to evaluate
the cost of a feasible set S, i.e.,

Cw(q, S) = α · max
o∈S dw(q, o)

+ (1 − α) · max
o∈S w(q, o) · max

o1,o2∈S
d(o1, o2),

where dw(o, q) is the weighted distance between object o
and query q and dw(q, o) = w(q, o) · d(q, o). Omitting the
parameter α, we have

Cw(q, S) = max
o∈S dw(q, o) (9)

+ max
o∈S w(q, o) · max

o1,o2∈S
d(o1, o2).

Weighted MCSKQ is to continuously find a feasible set
S having the minimum cost measured by the cost function
Cw(·) when the query moves. Next, we discuss how to reuse
the proposed algorithmsMRSRad andAIMto solveweighted
MCSKQ efficiently.
Adaption of MRSRad Let Eq. (9) be rewritten as

123

Efficient processing of moving collective spatial keyword queries

Cw(q, S) = max
o∈S {w(q, o) · (d(q, o) + Pw(S))}, (10)

Pw(S) =
max
om∈S w(q, om) · max

o1,o2∈S
d(o1, o2)

w(q, o)
.

From Eq. (10), if we model each object o ∈ S as a circle
CPw(S)
o centered at o with a radius of Pw(S), then w(q, o) ·

(d(q, o) + Pw(S)) is the furthest weighted distance from q
to circle CPw(S)

o . Thus, the cost of S is themaximum furthest
weighted distance from q to circles CPw(S)

o for o ∈ S. It
is similar to the original MCSKQ where the cost of S is
the maximum furthest distance from q to circles CP(S)

o for
o ∈ S (cf. Eq. (3)). We are aware that, for the exact result
set Se computed by a static weighted CSKQ algorithm (e.g.,
wMaxMax-Exact [12]), we can also derive the relaxed safe
region RSR(Se) using the similar steps described in Section
4.1, which is the key component of MRSRad . The detailed
computation process is as follows.

First, we introduce the concept of weighted inside. Given
a circle Cγ

q , for an object o ∈ S, we say the corresponding

circle CPw(S)
o is weighted inside Cγ

q , if and only if it satisfies

w(q, o) · d(q, o) ≤ γ − w(q, o) · Pw(S).

Then, by Eq. (10), we have Cw(q, S) ≤ γ if and only if all
the corresponding circles for the objects in S are weighted
inside Cγ

q , where we say S is weighted inside Cγ
q .

Given the top-k feasible sets S1, S2, . . . , Sk (Se = S1) and
a circle Cγk

q centered at q with a radius of γk = Cw(q, Sk).
Since the costs of the other (non-top-k) feasible sets are larger
than γk , only S1, S2, . . . , Sk are weighted inside Cγk

q . When
q moves to q ′ and the current Se is weighted inside the circle
Cγ ′
q ′ where γ ′ = γk − d(q, q ′), as stated in the following

Lemma 7, any non-top-k feasible set S j (j > k) is not better
than Se, which means the result set of q ′ is the one having
the minimum cost among the top-k feasible sets.

Lemma 7 When the query q moves to q ′ and the current Se
is weighted inside the circle Cγ ′

q ′ , for any non-top-k feasible

set S j (j > k): Cw(q ′, S j) > Cw(q ′, Se).

Proof When the current Se is weighted inside Cγ ′
q ′ , we

have Cw(q ′, Se) ≤ γ ′. Since only the top-k feasible sets
are weighted inside Cγk

q , for any non-top-k feasible set

S j for j > k, S j is not weighted inside Cγk
q . Since Cγ ′

q ′
is an inscribed circle of Cγk

q , S j is not weighted inside

Cγ ′
q ′ , i.e., Cw(q ′, S j) > γ ′. Combining the above, we have

Cw(q ′, S j) > Cw(q ′, Se). �

Based on Lemma 7, we derive the RSR of Se which is a

region within which when q moves, the circle CPw(Se)
o for

each o ∈ Se is still weighted inside Cγ ′
q ′ , i.e.,

RSR(Se) =
⋂

o∈Se
Rγk
o , (11)

Rγk
o = {q ′|d(q ′, o) + d(q, q ′)

w(q, o)
≤ γk

w(q, o)
− Pw(Se)}.

Similarly, for the other feasible sets S2, . . . , Sk , we can
also obtain their corresponding RSRs with Eq. (11). Using
these k RSRs, MRSRad can be directly applied to weighted
MCSKQ, by replacing Eγk

o with Rγk
o in Algorithm 2, and we

call this algorithm wMRSRad .
AdaptionofAIMFor a staticweightedCSKQq,wMaxMax-
Appro [12] computes an approximate result set Sa consists
of the weighted NNs which have the smallest weighted dis-
tances for each query keyword, i.e.,

Sa =
⋃

t∈q.ψ

{ot },

ot = arg min
t∈o.ψ dw(q, o).

It can be proved that Sa gives a (1+2e)-approximation result
(e ≈ 2.718).

For weighted MCSKQ with wMaxMax-Appro in recom-
putation, in order to reduce the recomputation frequency, we
introduce the concept of the keyword-basedweightedVoronoi
neighbor set (wKVNS), which is used to check whether the
objects in Sa are still the weighted NNs of the new query.

Different from KVNS (cf. Sect. 5.1) which is con-
structed by 1-order Voronoi diagram, we usemultiplicatively
weighted Voronoi (MW-Voronoi) diagram [35] to construct
wKVNS. Given a set O of data objects, the MW-Voronoi
diagram of O is the collection of MW-Voronoi regions of
all objects in O. These regions form a disjoint and complete
partitioning of the spatial domain. For an object o ∈ O, when
the query q moves in o’s MW-Voronoi region Vw(o), o has
a smaller weighted distance to q than any other object.

Based on MW-Voronoi, we formalize wKVNS. Let a
set Ot ⊆ O contain the objects o ∈ Ot having key-
word t . Given the MW-Voronoi of Ot , for any two objects
oi , o j ∈ Ot , o j is a t-weightedVoronoi neighbor of oi if their
MW-Voronoi regions share an edge, i.e., Vw(oi)||Vw(o j).
We call the set O′

t ⊂ Ot , denoted by Nw
t (oi), that

contains all the t-weighted Voronoi neighbors of oi the
t − weightedVoronoineighborset of oi .

Using wKVNS, we reduce the recomputation frequency
of wMaxMax-Appro. When q moves to q ′, a straightforward
way to check the validity of the current Sa , i.e., whether
Sa gives a (1 + 2e)-approximation result to q ′, is to check
whether each object o in Sa has a smaller weighted distance
than o’s wKVNS. If so, Sa is still valid. Otherwise, we invoke
wMaxMax-Appro at q ′ to recompute a new Sa .

In addition, the incremental maintenance strategy used in
AIM (cf. Lemma 5) still works, as stated in the following

123

H. Xu et al.

Lemma 8. Therefore, we can simply use the object having
the maximum weighted distance to check the validity of Sa ,
and AIM can also be directly applied to weighted MCSKQ
by replacing KVNS with wKVNS in Algorithm 3, which we
call wAIM.

Lemma 8 When the query q moves to q ′, let omw be the
object covering keyword t ∈ q.ψ and having the maximum
weighted distance to q ′ in the current Sa. When omw is also
the weighted NN of q ′ for keyword t, we have

Cw(q ′, Sa) ≤ (1 + 2e) · Cw(q ′, Se),

where Se is the exact result set of q ′.

Proof Since there must exist an object om in Se containing
keyword t , by Eq. (9) we have

dw(q ′, omw) < dw(q ′, om) < Cw(q ′, Se).

Let o f be the furthest object from q ′ in Sa . The maximum
distance between any two objects in Sa is 2 ·d(q ′, o f) by the
triangle inequality. Since omw has the maximum weighted
distance to q ′, we have dw(q ′, o f) ≤ dw(q ′, omw). Thus, it
holds that

d(q ′, o f) ≤ dw(q ′, omw)

w(q ′, o f)
.

Then, we have

Cw(q ′, Sa) = max
o∈Sa

dw(q ′, o)

+ max
o∈Sa

w(q ′, o) · max
o1,o2∈Sa

d(o1, o2)

≤ dw(q ′, omw) + max
o∈Sa

w(q ′, o) · 2d(q ′, o f)

≤ dw(q ′, omw) +
max
o∈Sa

w(q ′, o)

w(q ′, o f)
· 2dw(q ′, omw).

Since max
o∈Sa

w(q ′, o) ≤ 1 and w(q ′, o f) ≥ e−1, we have

Cw(q ′, Sa) ≤ dw(q ′, omw) +
max
o∈Sa

w(q ′, o)

w(q ′, o f)
· 2dw(q ′, omw)

≤ dw(q ′, omw) + 2e · dw(q ′, omw)

= (1 + 2e) · dw(q ′, omw)

≤ (1 + 2e) · Cw(q ′, Se)

�

6.2 MCSKQ on road networks

In the real world, the movement of users is constrained
by road networks, on which the spatial proximity between
objects is determined by the network distance instead of the
Euclidean distance. Thus, in this section, we study MCSKQ
on road networks and we find that MRSRad and AIM also
work for this variant.

A road network is defined as an undirectedweighted graph
G = (N , E,W), where N is a set of vertices/nodes, E a set
of edges, and W a set of weights representing the length of
edges. LetO be a set of two-dimensional static objects on the
edges, and each object o ∈ O has a location o.λ and a set of
keywords o.ψ . Here, the location o.λ of an object is denoted
by a triple (ni , n j , dist) where ni and n j are the vertices
of the edge ei, j on which the object is located, and dist is
the distance from o to ni along the edge ei, j (i < j). Given
two objects oi and o j , we use dr (oi , o j) to denote the length
of path(oi , o j), which is the shortest path between oi and
o j . Figure 8a shows an example of a road network, where
squares denote the vertices and solid dots denote the objects.
The locations and the keywords of each object are shown
in Fig. 8b. Figure 8c shows the lengths of the edges. Take
o2({t1}, (n3, n4, 1)) as an example, it contains the keyword
t1, locates on the edge e3,4, and is one unit away from vertex
n3. The distance dr (o1, o2) between o1 and o2 is computed
as dr (o1, o2) = dr (o1, n4) + dr (n4, o2) = 2 + 3 = 5.

The static CSKQ on road networks is studied in [14] with
the cost function

Cr (q, S) = max
o∈S dr (q, o) + max

o1,o2∈S
dr (o1, o2).

For MCSKQ on road networks, we aim to continuously find
a feasible set S that has the minimum cost measured by this
cost function Cr (·) when the query moves.

Two static algorithms Sliding Window (SW) and NEB
[14] are proposed for static CSKQ on road networks. SW
computes the exact result set Se (briefly reviewed in Sect.
7). NEB computes an approximate result set Sa under a
3-approximation ratio, which consists of the NNs for each
querykeyword.Wenext discuss how theproposed algorithms
MRSRad and AIM can solve MCSKQ on road networks
using SW and NEB in recomputation, respectively.

Recall the cost function we used in the original MCSKQ

C(q, S) = max
o∈S d(q, o) + max

o1,o2∈S
d(o1, o2).

We can see that the only difference between Cr (·) and C(·) is
the distance measurement, i.e., replacing the Euclidean dis-
tance d(·) with the network distance dr (·). Given any three
objects o1, o2, and o3, for the network distance dr (·) the fol-
lowing conditions hold.

123

Efficient processing of moving collective spatial keyword queries

(a)

(b) (c)

Fig. 8 An example for MCSKQ on a road network

1. dr (o1, o2) ≥ 0;
2. dr (o1, o2) = dr (o2, o1);
3. dr (o1, o2) = 0, i f f o1 = o2;
4. dr (o1, o2) ≤ dr (o1, o3) + dr (o3, o2).

The established lemmas for AIM using Euclidean distance
only require these properties. Thus, they can also apply to
the road network distance. Therefore, AIM (cf. Algorithm
3) still works for MCSKQ on road networks, and we only
need to make the following adaptations: (1) using dr (·) to
replace d(·); (2) using the V N 3 method [36] to precompute
and store the KVNS for each object on road networks. We
call this algorithm rAIM.

We proceed to present how to derive the relaxed safe
region RSR(Se) on road networks. The following Lemma 9
shows that as long as the inequality dr (q, q ′) < Cr (q, Sk) −
Cr (q ′, Se) holds (Sk is the k-th feasible set), Se is still better
than any other non-top-k feasible sets. Note that we do not
use the above condition (2) in proving the following lemma,
which means this lemma suits the case where the network

distance is asymmetric, i.e., dr (o1, o2) may not be equal to
dr (o2, o1).

Lemma 9 If dr (q, q ′) < Cr (q, Sk)−Cr (q ′, Se), for any non-
top-k feasible set S j (j > k): Cr (q ′, S j) > Cr (q ′, Se).

Proof By the cost function Cr (·), we have Cr (q ′, S j) =
max
o∈S j

dr (q ′, o) + max
o1,o2∈S j

dr (o1, o2). By the above Inequality

(4), we have

dr (q, o) ≤ dr (q, q ′) + dr (q
′, o).

Then, it holds that

max
o∈S j

dr (q
′, o) ≥ max

o′∈S j
(dr (q, o′) − dr (q, q ′)).

Thus, we have

Cr (q ′, S j) ≥ max
o′∈S j

{dr (q, o′) − dr (q, q ′)}
+ max

o1,o2∈S j
dr (o1, o2)

= max
o′∈S j

dr (q, o′) + max
o1,o2∈S j

dr (o1, o2) − dr (q, q ′)

= Cr (q, S j) − dr (q, q ′)
≥ Cr (q, Sk) − dr (q, q ′).

Since dr (q, q ′) < Cr (q, Sk) − Cr (q ′, Se), we have
Cr (q ′, Se) < Cr (q, Sk) − dr (q, q ′). As a result, we get
Cr (q ′, S j) > Cr (q ′, Se). �

By Lemma 9, we can use the possible locations of q ′, hav-
ing dr (q, q ′) < Cr (q, Sk)−Cr (q ′, Se), to compute RSR(Se),
i.e.,

RSR(Se) =
⋂

o∈Se
Eγk
o ,

Eγk
o = {q ′|dr (q ′, o) + dr (q, q ′) ≤ γk − P(Se)}, (12)

where γk = Cr (q, Sk) and P(Se) = maxo1,o2∈Se dr (o1, o2).
Similarly, for the other feasible sets S2, S3, . . . , Sk , we
can also obtain their corresponding RSRs with the above
equation. Using these k RSRs, MRSRad can be applied to
MCSKQ on road networks. Moreover, we add a procedure
in MRSRad to identify the edges and line segments (e&s)
included in the RSRs. We call this algorithm rMRSRad .
Next,we explain the computation of e&s included inRSR(Si)
(i ∈ [1, k]).

To find the e&s included in RSR(Si), based on Eq. (12),
we can first find the e&s included in Eγk

o for each o ∈ Si .
Then, the intersection of all the e&s is the result. For the
first (and most important) step, we only need to identify the
boundary points of Eγk

o , using which we can easily find the

123

H. Xu et al.

e&s included in Eγk
o . Specifically, we adapt the Incremental

Network Expansion (INE) algorithm [37] around q and o to
first identify the edges that cross the boundary of Eγk

o , and
then the boundary points of Eγk

o . We use a priority queue Qr

to keep the vertices to be examined in ascending order of the
sum aggregate distance to o and q. Initially, Qr contains the
vertices on path(q, o) and their immediate neighbors. We
then check the vertices v in Qr one by one. When v is inside
Eγk
o , i.e., dr (v, o) + dr (q, v) ≤ γk − P(Si), we expand at

v and put all the immediate neighbors of v into Qr . When
encountering a vertex v locates outside Eγk

o , we know there
must be edges on path(q, v) and path(v, o) crossing the
boundary of Eγk

o . Therefore,we add all the intersection points
of path(q, v) and Eγk

o , path(v, o) and Eγk
o , respectively,

into the result list as boundary points of Eγk
o . We repeat the

previous steps until Qr is empty. Algorithm 5 summarizes
these steps.

Algorithm 5: Compute Boundary Points

Input : Eγk
o

Output: the boundary points of Eγk
o

1 create a queue Qr and an empty list L of boundaries
2 insert vertices adjacent to path(q, o) into Qr
3 while not Qr .empty() do
4 v ← Qr .dequeue()
5 if dr (v, o) + dr (q, v) ≤ γk − P(Si) then
6 insert all immediate neighbors of v into Qr

7 else
8 identify the boundary points on path(q, v) and

path(v, o), then insert them into L

9 return L

We explain Algorithm 5 with the following example. In
Fig. 8, given the query q located at vertex n4 with query key-
words q.ψ = {t1, t2, t3}, we find the top-3 feasible sets S1 =
{o5, o6, o10}, S2 = {o1, o2, o3}, and S3 = {o4, o5, o7}. To
compute the e&s included in RSR(S1), we need to compute
the boundary points of Eγ3

o5 , E
γ3
o6 , and Eγ3

o10 (γ3 = Cr (q, S3)).
A summary of execution steps for computing the boundary
points of Eγ3

o5 is given in Table 4 and detailed explanations
are given as follows. For convenience, we use pnt(ni , n j , l)
to denote a boundary point on edge ei, j with distance l to ver-
tice ni , and seg(ni , n j , l) to denote a line segment on edge
ei, j whose two end points are ni and pnt(ni , n j , l).

Step 1 Vertices n1, n3, n6, n10, n5, and n8, which are
adjacent to path(q, o5) (n4 → n7 → o5), are inserted
into Qr (Line 2).
Step 2Vertex n1 is retrieved from Qr . Since dr (n1, o5)+
dr (q, n1) ≤ γ3 −P(S1), we insert n2, immediate neigh-
bor of n1, into Qr (Lines 5–6).

Table 4 Example run of Algorithm 5

Step Vertex Qr Boundary point

1 – < n1, n3, n6, n10, n5, n8 > –

2 n1 < n3, n6, n10, n2, n5, n8 > –

3 n3 < n6, n10, n2, n5, n8 > pnt(n3, n4, 2),

pnt(n6, n7, 0.5)

4 n6 < n10, n2, n5, n8 > –

5 n10 < n2, n5, n8 > pnt(n7, n10, 2)

6 n2 < n5, n8 > n1

7 n5 < n8 > pnt(n4, n5, 2)

8 n8 <> pnt(n7, n8, 2)

Step 3Vertex n3 is retrieved from Qr . Since dr (n3, o5)+
dr (q, n3) > γ3−P(S1), we identify the boundary points
on path(q, n3) and path(n3, o5). Two boundary points
pnt(n3, n4, 2) and pnt(n6, n7, 0.5) are identified and
inserted into L (Line 8).
Steps 4–8 We examine n6, n10, n2, n5, and n8, respec-
tively, and identify the boundary points, which are listed
in Table 4.

We continue with the above example to show the e&s
included in RSR(S1). After we obtain the boundary points of
Eγ3
o5 (which aren1, pnt(n3, n4, 2), pnt(n4, n5, 2), pnt(n6, n7,

0.5), pnt(n7, n8, 2), and pnt(n7, n10, 2)), the e&s corre-
sponding to these boundary points can be easily obtained
(which are en1,n4 , en4,n7 , seg(n4, n3, 2), seg(n4, n5, 2),
seg(n7, n6, 0.5), seg(n7, n8, 2), and seg(n7, n10, 2), respec-
tively, shown as the thick line segments in Fig. 8a). Using the
same steps we can also obtain the e&s included in Eγ3

o6 and
Eγ3
o10 . The e&s included in RSR(S1) are the intersection of

the e&s included in Eγ3
o5 , E

γ3
o6 , and Eγ3

o10 , which are e&s in the
gray region of Fig. 8a.

6.3 Other variants of MCSKQ

The proposed algorithms may be adapted to handle variants
of MCSKQ, such as MCSKQ with a group of query users
and MCSKQ with the MinMax cost function, etc.
MCSKQ with a group of users (or group-based MCSKQ)
aims to continuously return a set of objects that cover all the
query keywords. These objects are close to the group ofmov-
ing users and are close to each other. We use the following
cost function Cg(U , S) [8] to evaluate the cost of a feasible
set S, where U denotes the group of query users.

Cg(U , S) = max
o∈S,u∈U d(u, o) + max

o1,o2∈S
d(o1, o2).

Group-based MCSKQ is to continuously find a feasible set
S having the minimum cost measured by Cg(·) when the

123

Efficient processing of moving collective spatial keyword queries

group of users moves. We can reuse the proposed algorithms
MRSRad and AIM to effectively maintain the result set of
group-based MCSKQ. For the exact result set maintenance,
let γk = Cg(U , Sk), and for each user u ∈ U , we use γk to
derive RSR(u, Se), i.e.,

RSR(u, Se) =
⋂

o∈Se
{u′|d(u′, o) + d(u, u′) ≤ γk

− max
o1,o2∈Se

d(o1, o2)}.

As long as all the usersmovewithin their correspondingRSR,
the new answer is the one having the minimum cost among
the top-k feasible sets (we omit the proof). For each user u ∈
U , the nearest neighbor set consists of the nearest neighbors
of u for each query keyword. From the existing work [8], we
know that the one having the minimum cost among these |U |
nearest neighbor sets gives a 5-approximation result. Thus,
for this result set maintenance, we can use AIM to maintain
each nearest neighbor set, respectively, and return the setwith
the minimum cost.
MCSKQ with MinMax The MinMax cost function Cmin

(q, S) is denoted as:

Cmin(q, S) = min
o∈S d(q, o) + max

o1,o2∈S
d(o1, o2).

This function is preferable when users expect the nearest
object in a result set to be close to the query location [12].
We can also adapt our algorithms to maintain the result
set of MCSKQ with MinMax. For the exact result set
maintenance, we can use the only object ok ∈ Se, hav-
ing d(q, ok) + max

o1,o2∈Se
d(o1, o2) = Cmin(q, Se), to derive

RSR(Se), i.e.,

RSR(Se) = {q ′|d(q ′, ok) + d(q, q ′) ≤ γk − P(Se)},

where γk = Cmin(q, Sk) andP(Se) = maxo1,o2∈Se d(o1, o2).
As long as the query moves in RSR(Se), the new answer
remains to be one of the top-k feasible sets of q (we omit
the proof). From the existing work [12], we know that the
nearest neighbor set gives a 3-approximation result. For this
result set maintenance, we can also use the furthest object to
check the validity of it (we omit the proof). Thus, AIM can
be directly used.

From the above analysis, we can see that for a variant of
MCSKQ, MRSRad works as long as we can find a region
that only includes the top-k feasible sets and the exact result
maintenance can be done by maintaining each object in the
set separately. AIMworks as long as the nearest neighbor set
is an approximate result.

7 Experiment

7.1 Settings

Data sets Both real and synthetic data sets are used in the
experiments. We use two real-world data sets, whose proper-
ties are shown inTable 5. The first data set contains 1,030,754
tweets in Los Angeles extracted based on coordinates from
the data set used in [38]. Each tweet with geo-location from
Los Angeles is considered a geo-textual object. The second
data set contains 50,334 Foursquare check-in venues in New
York City and nearby suburbs extracted based on coordinates
from the data set used in [39]. We denote the two data sets
by LA and NY, respectively. We also use synthetic data sets
of different sizes (2–10 million objects) to conduct a scala-
bility test. The synthetic data sets are generated from the LA
data set. To generate a data set O of size n, we first insert
all the objects from LA into O and then repeatedly create
objects in O such that O has a similar spatial distribution as
LA until |O| = n. For each newly created object o in O,
we randomly pick a document from the text descriptions of
the objects in LA. We use a real-world road network data set
CA4 for MCSKQ on road networks. The CA data set con-
tains 21,048 nodes and 21,693 edges. We generate randomly
80,000 objects for CA, and for each object, we randomly pick
a document from the text descriptions of the objects in the
LA data set.
Algorithms

We empirically compare the two exact algorithms SRSR
and MRSRad (cf. Sect. 4), and two approximate algorithms
AIM and AAM (cf. Sect. 5) with three sampling-based algo-
rithms denoted by BASEe, BASEg , and BASEa , which
invoke MaxMax-Exact [12], MaxMax-Appro1 [12], and
MaxMax-Appro2 [12] (cf. Sect. 2.1) at every timestamp,
respectively. Similar to the MaxMax-Exact algorithm, we
compute the top-k feasible sets, in the recomputation of
SRSR and MRSRad , by first finding the most infrequent
query keyword tin f , and processing the objects containing
tin f (the pivot) in ascending order of their distances to q. We
then perform an exhaustive search on each pivot, which aims
to find the best feasible set containing the pivot, and main-
tain the current top-k feasible sets. Once we reach a pivot
whose distance is larger than the cost of the k-th feasible set,
we stop and return the current top-k feasible sets. For AIM,
we use MaxMax-Appro1 in recomputation, and for AAM,
we use MaxMax-Appro2 to find the top-k special feasible
sets. For MCSKQ with weighted objects and MCSKQ on
road networks, we evaluate wMRSRad , wAIM, rMRSRad ,
and rAIM with sampling-based algorithms, which will be
described in detail later. Note that, in this section, we call the
algorithms used in recomputation static algorithms.

4 http://www.cs.utah.edu/~lifeifei/.

123

http://www.cs.utah.edu/~lifeifei/

H. Xu et al.

Table 5 Data set properties

Property LA NY

Number of objects 1,030,754 50,334

Number of unique words 1,065,061 379

Avg number of words per object 9.68 3.23

Weuse IR-tree [40] in the static algorithms and set the page
size to 4KB (100 data objects per page). The experiments are
conducted on a desktop computer with a 3.40 GHz Intel Core
i7-6700CPU, 16GBmemory, and 64-bitWindows operating
system. All algorithms are implemented in C++.
Queries We generate two types of trajectories for the query
object, “random” and “directional”. In the random trajecto-
ries, the query object starts at a randompoint in the data space
and moves toward a randomly chosen new direction at every
timestamp. In the directional trajectories, the query object
also starts at a random point and chooses a random direction,
but it then keeps moving toward this direction until reaching
the boundary of the space, where a new direction within the
space is randomly chosen. By default, between two times-
tamps (i.e., two query computations) the query object moves
for a distance interval that is randomly generated between
1 and 200 m (i.e., the maximum length of trajectories is 20
km). We also use a real trajectory data set Buses5 for query.
This data set consists of 145 trajectories, and each trajectory
consists of location information for a bus within a day, col-
lected every 30 s. We map this data set on to the space of the
LA data set.

We generate 20 trajectories (100 timestamps each) for
each set of experiments, and the query keywords are gen-
erated randomly within the word domain of the used data
set. We report the average CPU time per timestamp and the
average total number of times that the static algorithms are
invoked for each query (# recomputation), which also indi-
cates the communication cost if a client–server-based system
is used.We also report the average approximation ratio of the
approximate algorithms computed by C(q,Sa)

C(q,Se)
, where Sa is an

approximate result set and Se is the exact result set.
We vary the number of query keywords |q.ψ |, the top-k

feasible sets size k, query computation distance interval, and
data set cardinality in the experiments. The value ranges and
default values of these parameters are summarized in Table 6.

7.2 Results

Effect of k Recall that SRSR, MRSRad , and AAM all use
relaxed safe regions to reduce the number of recomputation.
Specifically, SRSR and MRSRad use the top-k feasible sets
and AAM uses the top-k special feasible sets to compute the

5 http://www.chorochronos.org/.

Table 6 Experiment parameters

Parameter Default Values

Data set LA LA, NY

k – 5, 10, 20, 30, 40, 50, 60, 70

|q.ψ | 6 2, 4, 6, 8, 10

Trajectory interval 200 50, 100, 200, 400, 800

Query trajectory directional directional, random, real

Data set size – 2M, 4M, 6M, 8M, 10M

α 0.5 0.1, 0.3, 0.5, 0.7, 0.9

BASEe-NY
BASEe-LA

SRSR-NY
SRSR-LA

MRSRad-NY
MRSRad-LA

102

103

104

5 10 20 30 40 50 60 70

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

k

 0

 20

 40

 60

 80

 100

5 10 20 30 40 50 60 70

#

r
e
c
o
m
p
u
t
a
t
i
o
n

k

(b) # recomputation

BASEa-NY
BASEa-LA

AAM-NY
AAM-LA

100

101

102

103

5 10 20 30 40 50 60 70

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

k

(a) CPU time

(c) CPU time

 0

 20

 40

 60

 80

 100

5 10 20 30 40 50 60 70
#

r
e
c
o
m
p
u
t
a
t
i
o
n

k

(d) # recomputation

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

5 10 20 30 40 50 60 70a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

k

AAM-NY
AAM-LA

(e) Precision

Fig. 9 Effect of k

relaxed safe regions, respectively. In the first set of experi-
ments, we test the effect of k and aim to find its optimal value
to be used in the rest of the experiments.

As Fig. 9 shows, the CPU time (note the log scale) and the
number of recomputation of the three algorithms both drop
initially as k increases, which is expected because a larger
number of (special) feasible sets leads to a larger relaxed safe

123

http://www.chorochronos.org/

Efficient processing of moving collective spatial keyword queries

region, reducing the frequency of recomputation. However,
when k continues to increase, the benefit of larger relaxed safe
regions is less significant, which results from higher compu-
tation cost of the top-k (special) feasible sets and higher query
maintenance cost.

We can observe that SRSR shows the best performance at
k = 40 on the NY data set and k = 60 on the LA data set;
MRSRad shows the best performance at k = 40 on the NY
data set and k = 50 on the LA data set; AAM shows the best
performance at k = 30 on the NY data set and k = 40 on
the LA data set. The optimal value of k is larger on a larger
data set (i.e., the LA data set) is because, on a larger data set,
the query answer becomes invalid more frequently, which
requires a larger relaxed safe region to reduce the recompu-
tation frequency. In the rest of the experiments, we use these
optimal values as the default values.

As SRSR andMRSRad are exact algorithms, their approx-
imation ratios are 1 no matter how k varies. Figure 9e shows
the approximation ratios ofAAMonNYandLAdata sets. As
we can see, the approximation ratio of AAM is consistently
better than the worst-case ratio (i.e., 1.8) and is not affected
by k. This is because the approximate result set computed by
AAM is the better one of the two candidates: One is com-
puted by the L-Appro algorithm, and the other is the best
special feasible set, which are not affected by k.
Effect of |q.ψ |Next we test the effect of the number of query
keywords. In Figs. 10 and 11, we show the algorithm perfor-
mancewhen the synthetic trajectories and the real trajectories
are used, respectively. We can see that they have similar pat-
terns. BASEe, SRSR, and MRSRad involve computing the
exact result set Se or top-k feasible sets, which are NP-hard.
As the number of keywords increases, their computational
costs increase exponentially. As shown in Fig. 10a, SRSR
and MRSRad perform much better than BASEe because
they use RSRs to reduce the recomputation frequency. Since
MRSRad uses k RSRs to maintain the exact result set, it
has the best performance among the exact algorithms. The
query time is reduced by up to 80% compared with BASEe.
As expected, the two approximate algorithms spend much
less time than the exact algorithms. As shown in Fig. 10c,
AIM and AAM both perform better than their correspond-
ing baseline algorithms, and the query times are reduced
by 85% and 70%, respectively. This is because they use
KVNS and RSRs to maintain the result set, which reduce
the recomputation frequency and make the query process-
ing more efficient. AIM has the lowest CPU cost, because it
uses the L-Appro algorithm (MaxMax-Appro1) in recom-
putation with a low complexity. Because AAM needs to
maintain two candidates, i.e., the nearest neighbor set and
the best special feasible set, it has a higher recomputation
frequency as shown in Fig. 10d. The performance gains of
the proposed algorithms are comparable to existing studies
on moving query processing [1,2,32]. As we can see from

102

103

104

105

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEe
SRSR
MRSRad

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

100

101

102

103

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEg
AIM
BASEa
AAM

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

 1

 1.2

 1.4

 1.6

 1.8

 2

2 4 6 8 10a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|q.ψ|

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

(e) Precision

Fig. 10 Effect of the number of query keywords on LA

Fig. 10e, the two approximate algorithms AIM and AAM
both have good approximation ratios that are smaller than 2
and 1.3, respectively. These results confirm the effectiveness
of AIM and AAM because the upper bounds of the approxi-
mation ratios are 3 and 1.8, respectively [12]. Similar patterns
can be observed in the NY data set reported in Fig. 12. In the
following experiments, we omit the results for NY.
Effect of query computation distance interval In Fig. 13,
we compare the algorithms on the LA data set using
directional query trajectories, where the query computation
distance interval is varied from 50 to 800 m.

Note that, in order to better simulate the real-world sce-
nario, for every interval value used (e.g., 200), the query
object speed is not fixed at the interval value per timestamp
(e.g., 200 meters per timestamp). Instead, the query object
speed is randomly chosen between 1 and the interval value
at every timestamp. We can see from Fig. 13a–d when the
distance interval increases, the CPU cost and the number of
recomputation both increase for our four algorithms while
those of BASEe, BASEg , and BASEa stay stable. This is
because the three baseline algorithms simply recompute the

123

H. Xu et al.

102

103

104

105

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEe
SRSR
MRSRad

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

100

101

102

103

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEg
AIM
BASEa
AAM

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

 1

 1.2

 1.4

 1.6

 1.8

 2

2 4 6 8 10a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|q.ψ|

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

(e) Precision

Fig. 11 Effect of the number of query keywords on LA (using real
trajectories)

new exact result set Se or the approximate result set Sa at
every timestamp, which is not affected by the computation
interval; the proposed algorithms rely on RSR and KVNS to
reduce the recomputation frequency, which become invalid
more frequent as the query distance interval increases. How-
ever, the four proposed algorithms still outperform the three
baseline algorithms consistently, which validates the effec-
tiveness of our proposed techniques.

We also compare the algorithms on random query trajec-
tories. As shown in Fig. 14, the comparative performance of
the algorithms is similar to that shown in Fig. 13. An obser-
vation is that the costs for our proposed four algorithms are
generally lower on randomquery trajectories. This is because
when the query object moves randomly instead of direction-
ally, its probability of staying in the current safe region (i.e.,
RSR or KVNS) is higher and hence the recomputation fre-
quency is lower.
Effect of data set size Next, we conduct a scalability test
with 5 synthetic data sets whose numbers of objects vary
from 2M to 10M. The results are reported in Fig. 15. As we
can see, both the exact algorithms (i.e., SRSR and MRSRad)

101

102

103

104

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEe
SRSR
MRSRad

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

10-2

10-1

100

101

102

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

BASEg
AIM
BASEa
AAM

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

2 4 6 8 10a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|q.ψ|

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

(e) Precision

Fig. 12 Effect of the number of query keywords on NY

102

103

104

0.5 1 2 4 8

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

interval(×100)

BASEe
SRSR
MRSRad 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

#

r
e
c
o
m
p
u
t
a
t
i
o
n

interval(×100)

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

100

101

102

103

0.5 1 2 4 8

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

interval(×100)

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

#

r
e
c
o
m
p
u
t
a
t
i
o
n

interval(×100)

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

Fig. 13 Effect of query computation distance interval (directional)

and the approximate algorithms (i.e., AIM and AAM) are
scalable to large data sets with millions of objects. MRSRad

123

Efficient processing of moving collective spatial keyword queries

102

103

104

0.5 1 2 4 8

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

interval(×100)

BASEe
SRSR
MRSRad 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

#

r
e
c
o
m
p
u
t
a
t
i
o
n

interval(×100)

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

100

101

102

103

0.5 1 2 4 8

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

interval(×100)

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

 0

 20

 40

 60

 80

 100

0.5 1 2 4 8

#

r
e
c
o
m
p
u
t
a
t
i
o
n

interval(×100)

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

Fig. 14 Effect of query computation distance interval (random)

100

101

102

2M 4M 6M 8M 10M

r
u
n
n
i
n
g

t
i
m
e

(
s
)

number of objects

BASEe
SRSR
MRSRad 0

 20

 40

 60

 80

 100

2M 4M 6M 8M 10M

#

r
e
c
o
m
p
u
t
a
t
i
o
n

number of objects

BASEe
SRSR
MRSRad

(b) # recom. (Exact)

10-2

10-1

100

2M 4M 6M 8M 10M

r
u
n
n
i
n
g

t
i
m
e

(
s
)

number of objects

BASEg
AIM
BASEa
AAM

(a) CPU time (Exact)

(c) CPU time (Appro.)

 0

 20

 40

 60

 80

 100

2M 4M 6M 8M 10M

#

r
e
c
o
m
p
u
t
a
t
i
o
n

number of objects

BASEg
AIM
BASEa
AAM

(d) # recom. (Appro.)

Fig. 15 Effect of data set size

runs 5 times faster than BASEe, and AIM and AAM signif-
icantly outperform their corresponding baseline algorithms,
and the advantage is up to 4 times. The costs of the proposed
algorithms increase as the size of data sets increases, since
the safe regions become smaller and recomputations become
more frequent. Note that the CPU times of the two approx-
imate algorithms (i.e., AIM and AAM) are less than 0.4 s
even for 10M data objects.
Effect ofα Next, we test the effect of α, which is a param-
eter included in the MaxMax cost function (cf. Eq. (1)). As
shown in Fig. 16, the costs of MRSRad and AAM increase
as α increases. A possible explanation is that a larger value
of α leads to smaller safe regions. The cost of AIM stays

100

101

102

103

104

0.1 0.3 0.5 0.7 0.9

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

α

MRSRad
AIM
AAM

(a) CPU time

 0

 20

 40

 60

 80

0.1 0.3 0.5 0.7 0.9

#

r
e
c
o
m
p
u
t
a
t
i
o
n

α

MRSRad
AIM
AAM

(b) # recom.

Fig. 16 Effect of α

BASEe wMRSRad BASEg wAIM

100

101

102

103

104

105

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
m
s
)

|q.ψ|

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

(b) # recom.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

2 4 6 8 10a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|q.ψ|

BASEg
wAIM

(a) CPU time

(c) Precision

Fig. 17 Result of MCSKQ with weighted objects

unchanged. This is because AIM is used tomaintain the near-
est neighbor set, which is not affected by α.
MCSKQ with weighted objects We use the LA data set
to study the effectiveness of our proposed algorithms on
MCSKQwith weighted objects. We randomly set the weight
of each object between 1

e (e ≈ 2.718) and 1 (although the
proposed algorithms can work with any weight). We still use
BASEe and BASEg to denote the two baseline algorithms
which invoke wMaxMax-Exact and wMaxMax-Appro [12]
at every timestamp, respectively.We adapt wMaxMax-Exact
to compute the top-k feasible sets in recomputation of
wMRSRad in a way that is similar to extending MaxMax-
Exact (cf. Sect. 7.1). We report the results in Fig. 17 when
varying the number of query keywords. From Fig. 17a we
can see that wMRSRad and wAIM performmuch better than
the baseline algorithms, and wAIM has the fastest runtime.
Compared with the proposed algorithms used in the original
MCSKQ (cf. Fig. 10a), wMRSRad and wAIM have simi-
lar performances with MRSRad and AIM, respectively. This
confirms the flexibility of RSR and KVNS. Moreover, as

123

H. Xu et al.

BASEsw rMRSRad BASEneb rAIM

10-3
10-2
10-1
100
101
102
103

2 4 6 8 10

r
u
n
n
i
n
g

t
i
m
e

(
s
)

|q.ψ|

 0

 20

 40

 60

 80

 100

2 4 6 8 10

#

r
e
c
o
m
p
u
t
a
t
i
o
n

|q.ψ|

(b) # recom.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

2 4 6 8 10a
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|q.ψ|

BASEneb
rAIM

(a) CPU time

(c) Precision

Fig. 18 Result of MCSKQ on road networks

shown in Fig. 17c, the approximation ratio of wAIM is much
better than the worst-case ratio as derived in Lemma 8, that
is, 1 + 2e.
MCSKQ on road networks Next, we test the effectiveness
of our proposed algorithms for MCSKQ on road networks.

We use BASEsw and BASEneb to denote the baseline
exact algorithm and the baseline approximate algorithm,
which invoke SW and NEB [14] at every timestamp, respec-
tively. SW uses sliding windows technique to find a set with
relatively small cost early, which can be served as a tight
upper bound to prune the search space. We adapt SW to
find the top-k feasible sets in recomputation of rMRSRad by
regarding the current k-th feasible set as the upper bound.
The results are reported in Fig. 18. From Fig. 18a we can see
that the CPU time costs of all the algorithms increase as the
number of query keywords increases. This is because, when
the number of query keywords increases, these algorithms
need to retrieve more objects to cover the query keywords.
Since equipped with RSR and KVNS, rMRSRad and rAIM
perform much better than the baseline algorithms. As we
can see from Fig. 18c, rAIM has a good approximation ratio
that is less than 1.5. This confirms the effectiveness of rAIM
because the upper bound of the approximation ratio is 3.
Compared with the proposed algorithms MRSRad and AIM
used in Euclidean space (cf. Fig. 12), rMRSRad and rAIM
spend more CPU times, because of the complicated compu-
tations of road network distance and edges and line segments
(e&s) included in RSR.

8 Conclusion

We formulated the MCSKQ problem and conducted a com-
prehensive study. We first proposed two exact algorithms to
reduce the query recomputation frequency, using the safe
region technique. However, due to the high cost of query
recomputation, they still lacked computation efficiency. To
overcome this limitation,weproposed two approximate algo-
rithms that compute approximate result sets in recomputation
and maintain the result when the query moves, which suc-
cessfully reduce the recomputation cost and hence the overall
query costs. The proposed algorithms are also effective for
variants of MCSKQ. We conducted a detailed cost analysis
for the proposed algorithms. Empirical studies on real-world
data sets and synthetic data sets demonstrate that our pro-
posal is able to achieve a reduction of the processing time
by 60–85% compared with the baseline algorithms, which
confirmed our cost analysis.

In the future, we plan to study MCSKQ with moving
objects and MCSKQ with user preference.

Acknowledgements This work is supported by the National Key R&D
Program of China (2018YFB1003404), the National Natural Sci-
ence Foundation of China (61872070, U1811261), the Fundamental
Research Funds for the Central Universities (N171605001) and Liao
Ning Revitalization Talents Program (XLYC1807158).

References

1. Guo, L., Shao, J., Aung, H., Tan, K.: Efficient continuous top-k
spatial keyword queries on road networks. Geoinformatica 19(1),
29–60 (2015)

2. Huang, W., Li, G., Tan, K., Feng, J.: Efficient safe-region con-
struction for moving top-k spatial keyword queries. In: CIKM, pp.
932–941 (2012)

3. Qi, J., Zhang, R., Jensen, C., Ramamohanarao, K., He, J.: Con-
tinuous spatial query processing: a survey of safe region based
techniques. ACM Comput. Surv. 51(3), 1–39 (2018)

4. Wu, D., Yiu, M., Jensen, C., Cong, G.: Efficient continuously mov-
ing top-k spatial keyword query processing. In: ICDE, pp. 541–552
(2011)

5. Cao, X., Cong, G., Guo, T., Jensen, C., Ooi, B.: Collective spatial
keyword querying. In: SIGMOD, pp. 373–384 (2011)

6. Chan, H., Long, C., Wong, R.: On generalizing collective spatial
keyword queries. IEEETrans. Knowl. Data Eng. 30(9), 1712–1726
(2018)

7. Long, C., Wong, C., Wang, K., Fu, W.: Collective spatial keyword
queries: a distance owner-driven approach. In: SIGMOD, pp. 689–
700 (2013)

8. Su, S., Zhao, S., Cheng, X., Bi, R., Cao, X., Wang, J.: Group-based
collective keyword querying in road networks. Inf. Process. Lett.
118, 83–90 (2017)

9. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evalu-
ation of V*-kNN: an efficient algorithm for moving kNN queries.
VLDBJ 19(3), 307–332 (2010)

10. Wang, Y., Zhang, R., Xu, C., Qi, J., Gu, Y., Yu, G.: Continuous
visible k nearest neighbor query on moving objects. Inf. Syst. 44,
1–21 (2014)

123

Efficient processing of moving collective spatial keyword queries

11. Ward, P., He, Z., Zhang, R., Qi, J.: Real-time continuous intersec-
tion joins over large sets ofmovingobjects usinggraphic processing
units. VLDBJ 23(6), 965–985 (2014)

12. Cao, X., Cong, G., Guo, T., Jensen, C., Ooi, B.: Efficient processing
of spatial group keyword queries. ACM TODS 40(2), 1–48 (2015)

13. Chan,H., Long,C.,Wong,R.: Inherent-cost aware collective spatial
keyword queries. In: SSTD, pp. 357–375 (2017)

14. Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial
keyword query processing on road networks. IEEE Trans. Intell.
Transp. Syst. 17(2), 469–480 (2016)

15. Jin, X., Shin, S., Jo, E., Lee, K.: Collective keyword query on a
spatial knowledge base. IEEE Trans. Knowl. Data Eng. 31(11),
2051–2062 (2019)

16. Zhao, S., Cheng, X., Su, S., Shuang, K.: Popularity-aware collec-
tive keyword queries in road networks. Geoinform. 21(3), 485–518
(2017)

17. Zhang, P., Lin, H., Yao, B., Lu, D.: Level-aware collective spatial
keyword queries. Inf. Sci. 378, 194–214 (2017)

18. Shekhar, S., Liu, D.: Ccam: a connectivity-clustered accessmethod
for networks and network computations. IEEE Trans. Knowl. Data
Eng. 9(1), 102–119 (1993)

19. Gu, Y., Liu, G., Qi, J., Xu, H., Yu, G., Zhang, R.: The moving k
diversified nearest neighbor query. IEEE Trans. Knowl. Data Eng.
28(10), 2778–2792 (2016)

20. Li, C., Gu, Y., Qi, J., Yu, G., Zhang, R., Yi, W.: Processing moving
knn queries using influential neighbor sets. PVLDB 8(2), 113–124
(2014)

21. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor
search. In: VLDB, pp. 287–298 (2002)

22. Attique, M., Cho, H., Jin, R., Chung, T.: Efficient processing of
continuous reverse k nearest neighbor on moving objects in road
networks. Geo-Inf 5(12), 247 (2016)

23. Cheema, M., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous
reverse k nearest neighbors queries inEuclidean space and in spatial
networks. VLDBJ 21(1), 69–95 (2012)

24. Cheema, M., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-
guarded safe zone: An effective technique to monitor moving
circular range queries. In: ICDE, pp. 189–200 (2010)

25. Cho, H., Ryu, K., Chung, T.: An efficient algorithm for computing
safe exit points of moving range queries in directed road networks.
Inf. Syst. 41, 1–19 (2014)

26. Huang, J., Huang, C.: A proxy-based approach to continuous
location-based spatial queries inmobile environments. IEEETrans.
Knowl. Data Eng. 25(2), 260–273 (2013)

27. Mahmood, A., Daghistani, A., Aly, A., Tang, M., Basalamah S.,
Prabhakar,S., Aref, W.: Adaptive processing of spatial-keyword
data over a distributed streaming cluster. In: SIGSPATIAL, pp.
219–228 (2018)

28. Chen, B., Lv, Z., Yu, X., Liu, Y.: Sliding window top-k monitoring
over distributed data streams. Data Sci. Eng. 2(4), 289–300 (2017)

29. Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: AP-tree: effi-
ciently support location-aware publish/subscribe. VLDBJ 24(6),
823–848 (2015)

30. Salgado, C., Cheema,M., Ali, M.: Continuous monitoring of range
spatial keyword query over moving objects. World Wide Web
21(3), 687–712 (2018)

31. Guo, L., Zhang, D., Li, G., Tan, K., Bao, Z.: Location-aware
pub/sub system: when continuous moving queries meet dynamic
event streams. In: SIGMOD, pp. 843–857 (2015)

32. Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li,
G.: Keyword-aware continuous kNN query on road networks. In:
ICDE, pp. 871–882 (2016)

33. Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley, London
(2001)

34. Liu, C., Papadopoulou, E., Lee, D.: An output-sensitive approach
for the L1/L∞ k-nearest-neighbor voronoi diagram. Algorithms
ESA 1, 70–81 (2011)

35. Mu, L.: Polygon characterization with the multiplicatively
weighted voronoi diagram. Prof. Geogr. 56(2), 223–239 (2004)

36. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neigh-
bor search for spatial network databases. In: VLDB, pp. 840–851
(2004)

37. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing
in spatial network databases. In: VLDB, pp. 802–813 (2003)

38. Chen, L., Cong, G., Cao, X., Tan, K.: Temporal spatial-keyword
top-k publish/subscribe.In: ICDE, pp. 255–266 (2015)

39. Bao, J., Zheng, Y., Mokbel, M.: Location-based and preference-
aware recommendation using sparse geo-social networking data.
In: SIGSPATIAL, pp. 199–208 (2012)

40. Cong, G., Jensen, C., Wu, D.: Efficient retrieval of the top-k most
relevant spatial web objects. VLDB Endow. 2(1), 337–348 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Efficient processing of moving collective spatial keyword queries
	Abstract
	1 Introduction
	2 Related work
	2.1 Collective spatial keyword queries
	2.2 Moving queries

	3 Preliminaries
	4 MCSKQ algorithms for exact result maintenance
	4.1 Relaxed safe region
	4.2 MCSKQ algorithms based on relaxed safe region
	4.2.1 Single relaxed safe region algorithm
	4.2.2 Multiple relaxed safe region algorithm

	5 MCSKQ algorithms for approximate result maintenance
	5.1 Approximate incremental maintenance
	5.2 Advanced approximate maintenance

	6 The variants of MCSKQ
	6.1 MCSKQ with weighted objects
	6.2 MCSKQ on road networks
	6.3 Other variants of MCSKQ

	7 Experiment
	7.1 Settings
	7.2 Results

	8 Conclusion
	Acknowledgements
	References

