
VLDB Journal manuscript No.
(will be inserted by the editor)

A Motion-Aware Approach for Efficient Evaluation of Continuous
Queries on 3D Object Databases

Mohammed Eunus Ali · Egemen Tanin · Rui Zhang · Lars Kulik

Received: date / Accepted: date

Abstract With recent advances in mobile computing tech-
nologies, mobile devices can render 3D objects realisti-
cally. Users of these devices such as tourists, mixed-reality
gamers, and rescue officers, often need real-time retrieval of
3D objects over wireless networks. Due to bandwidth and
latency restrictions in mobile settings, efficient continuous
retrieval of 3D objects is a major challenge. In this paper, we
present a motion-aware approach to this problem in a client-
server model. Specifically, we propose: (i) representing 3D
objects in multiple resolutions through wavelets to facilitate
motion-aware incremental retrieval, (ii) motion-aware buffer
management schemes for both client and server, (iii) an effi-
cient index structure for 3D objects represented by wavelets,
and (iv) techniques for processing group queries exploiting
group motion behavior of clients. The results of our exten-
sive experimental study demonstrate the effectiveness of our
solution.

Keywords Continuous queries · Spatial indexing · Spatial
databases · Wavelets · 3D Objects · Augmented-reality

1 Introduction

Recent advances in mobile computing have delivered com-
petitive rendering capabilities, which have enabled a new
level of realism for 3D representations of objects on small
computing devices such as cell phones, or head-mounted
displays. For example, in the LifeClipper project [1], a head-
mounted display is used to offer virtually enhanced travel

M. E. Ali, E. Tanin, R. Zhang, L. Kulik
NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
University of Melbourne
VIC 3010, Australia
Tel.: +61 3 8344 1350
Fax: +61 3 9348 1184
E-mail: eunus,egemen,rui,lars@csse.unimelb.edu.au

experiences for tourists visiting foreign locations. Virtual
3D objects are added to the view according to the current
position and viewing direction of a tourist. While the cur-
rent status of this particular project requires the tourist to
carry a portable storage device for providing the data, we
envision that users will only need to wear a head-mounted
display. In our scenarios, clients can obtain 3D data on the
fly through a wireless connection: a tourist might use a mo-
bile device, such as a smartphone, to see the 3D interior de-
tails of restaurants along a street without physically entering
them; an electrician with augmented-reality glasses can see
3D layouts of wiring and pipes inside a wall before a repair;
a rescue officer can see the structure of a building even if the
building is on fire and filled with smoke. These application
scenarios all require real-time retrieval of 3D data.

The data access operations in all of these applications
fit into the basic client-server model. This model consists of
mobile clients, a server, a large set of 3D objects located on
the server, and wireless connections between clients and the
server. A client has a view attached to it. At any time, accord-
ing to the client’s location and viewing direction, the client
retrieves all the objects within the range of its view from
the server through a wireless connection, and then renders
the retrieved objects on its display. As the client moves, ob-
jects that fall within the range of the view will continuously
be retrieved. This view can also be considered as a window.
Therefore, the total process can be viewed as a continuous
window query on a 3D object database. To guarantee a real-
istic visual experience, the objects in the query window have
to be retrieved at a high rate. Typically, the client and the
server will be connected through a wireless network such
as a mobile phone network, which has a high latency and
low bandwidth [2]. Thus the wireless connection becomes
the bottleneck for our application domain. Furthermore, the
server’s I/O costs will add to the response time observed

2

by the clients, especially when there are a large number of
clients in the system.

The data retrieval incurs the highest delay when the
client changes its view rapidly. This is because (i) in the
same amount of time, there are more objects that are swept
by the client’s view when the view changes at a high speed,
leading to more objects to be retrieved per time unit from
the server, (ii) for a moving client, the usable bandwidth of
a connection in a network such as mobile phone networks
drops compared to the bandwidth that is available for a static
client [2].

In this paper, we provide a systematic solution to the
problem of continuous retrieval of 3D objects for mobile
clients. Our solution is based on the key observation that
when a client’s view is moving at a high speed, the client
is only interested in and capable of absorbing a very coarse
resolution of the information from the environment viewed.
Even if we visualize all 3D objects in full detail, the user
will not be able to see most of the details presented while
moving quickly. Therefore, we represent objects in multiple
resolutions and retrieve only the data necessary to visual-
ize the objects at the required resolution based on the speed
of the movement of the client’s view. We use wavelets for
multi-resolution representations of 3D objects. Wavelets are
ideal for our needs because of the following two advantages:
(i) wavelets can easily represent an object at different reso-
lutions; (ii) for an increased object resolution, we only need
to retrieve the difference between the two resolutions, which
incurs only incremental costs. Our contributions can be sum-
marized as follows:
• Motion-aware data retrieval: (i) representation of 3D ob-

jects at multiple resolutions through wavelet decomposi-
tion, (ii) retrieval of data necessary for a certain resolu-
tion, determined by the change of the speed in the view
frame, (iii) incremental retrieval of the difference of two
successive view frames when increasing the resolution.

• Motion-aware buffer management: a pre-fetching and
caching strategy (i) at the client based on the view’s
movement and (ii) at the server based on the movement
of groups of clients.

• Group query processing for 3D object retrieval to reduce
I/O costs for simultaneous queries from multiple clients.

• An efficient index for 3D object databases in multiple
resolutions based on wavelets, and pathways to the index
to accelerate index traversal.

A preliminary version of this paper has appeared in [3],
where we focused on 3D data retrieval for a single client. We
presented the motion-aware continuous retrieval technique,
motion-aware buffer management for a client and an index
structure for 3D objects represented by wavelets. In this pa-
per, we investigate further motion-aware techniques when
processing a group of queries from multiple clients. First,

we propose group query processing techniques by exploit-
ing the movement patterns of co-located clients. Second,
we propose a buffer management technique for the server,
which buffers the data based on the movement characteris-
tics of clients. Third, we introduce the mechanism of path-
ways to our index to improve its performance for continuous
queries. Finally, we conduct experiments to verify the effec-
tiveness of these new techniques.

The rest of this paper is organized as follows. Section 2
provides some preliminaries and discusses related work. For
clarity, we discuss our proposed techniques in two separate
sections: client-side (Section 3), and server-side (Section 4).
In Section 3, we describe our client-side optimization tech-
niques, which include motion-aware continuous data re-
trieval and motion-aware buffer management. In Section 4,
we present our server-side optimization techniques, which
include motion-aware group query processing, buffer man-
agement, an efficient index for 3D objects represented by
wavelets, and a linked-index for more efficient access to the
data. In Section 5, we report the results of our experimental
study and finally, we conclude the paper in Section 6.

2 Preliminaries and Related Work

Location based continuous queries on point objects (e.g., lo-
cation of a restaurant or a museum) have been extensively
studied in recent years. However, research on continuous
query processing for a 3D object database is still in its in-
fancy. In this section, we present preliminaries and review
different aspects of existing works that are related to contin-
uous window query processing on a 3D object database. In
Subsection 2.1, we present the preliminaries and our system
assumptions. In Subsection 2.2, we review existing work on
continuous window query processing on point objects, and
then discuss buffer management techniques for continuous
queries. Since we introduce a multi-resolution approach for
efficient query processing on 3D objects, we discuss some
background on multi-resolution modeling of 3D objects in
Subsection 2.3. In this section, we also give an overview
of wavelet based multi-resolution representations of 3D ob-
jects because in this paper we represent 3D objects using
wavelets. Finally, in Subsection 2.4, we present existing in-
dexing techniques for 3D object databases.

2.1 Preliminaries

Let DB be a set of 3D data objects from a three-dimensional
data set stored in a server. Let Qt be the view window (or the
query window) of a client at time t in the data space. For a
moving client, the view window of the client changes con-
tinuously. Let Qt, Qt+1, ...Qt+n be the query windows at
times t, t + 1, ..t + n, respectively, of the client. The query

3

is issued by a client to a server through a wireless link. In
this setting, we provide a systemic solution for efficient pro-
cessing of continuous window queries Qt, Qt+1, ...Qt+n on
a 3D object database DB. The performance measure of this
type of query processing includes both data transfer cost and
data retrieval cost from a server.

The two major determining factors of data transfer cost
over a wireless link are: (i) latency and (ii) bandwidth. While
new technologies, such as HSPA+, promise a relatively high
bandwidth, the latency of an wireless link is still a prob-
lem for these emerging technologies. Most common cellu-
lar links are provided today by general packet radio service
(GPRS) and code division multiple access (CDMA) sys-
tems, and these links have the bandwidth in the range 0.01-
1 Mbps, with high one-way latency of 100-500 ms [4, 5].
Though, recently introduced wireless link based on uni-
versal mobile telecommunications system (UMTS) (e.g.,
HSPA+) has the peak-rate bandwidth over 20Mbps, the cell
edge users only get 1.5-3 Mbps [6]. More importantly, the
latency of UMTS based links is in the range 50-100 ms
which is still a bottleneck [4, 7]. Moreover, wireless links
have intrinsic characteristics such as variable bandwidth, de-
lays, and unstable connectivity that affect the performance.
For example, the throughput of multi-hop wireless network
drops to as low as a few Kbps, even though individual wire-
less link evolves to higher speeds such as 20 Mbps, in ad-
dition, the mobility of a client contributes to the delays in
wireless network [5, 8]. Although bandwidth and latency in
wireless systems will continue to evolve, with the increasing
demand from users regarding heavy weight data consump-
tion we assume that data transfer will continue to be a con-
tentious topic.

We propose a systematic solution that retrieves and
transfers 3D objects in multiple resolutions to optimize the
usage of bandwidth in a wireless network. To overcome the
high latency, variable bandwidth, and unpredictable wireless
links (e.g., broken links when the client enters in a tunnel),
we propose new buffer management techniques based on the
likelihood of visits to objects.

Though the data transfer cost is a dominant factor in
delay-sensitive applications for a single client setting, the
high data retrieval cost at the server may also be a major con-
tributor to the delays when the server is overloaded with a
large number of simultaneous queries. For this, we propose
a suite of server-side optimization techniques that include
group query processing, buffer management, and indexing
3D objects to reduce the I/O costs.

Server data processing and in particular I/O becomes
a dominant factor in data retrieval, especially for large
databases[9, 10], which is also the case in our application
domain. More specifically, in our case, the I/O costs can
largely affect the performance when the server needs to pro-
cess a group of simultaneous queries on a large 3D object

database. In this paper, we measure the I/O costs as the aver-
age number of disk-resident index nodes that need to be ac-
cessed for a query. While future technologies, such as Stor-
age Class Memory (SCM) [11], may reduce the access time,
the cost of the tree-traversal, i.e., searching and retrieving
the required data will still remain to be a problem for large
3D data as data sets are becoming more and more detailed
and complex. In this paper, we assume the current standard
for I/O costs [12, 13].

The key contribution of this work is multi-resolution
data retrieval techniques that allow different resolution of
3D objects to be efficiently retrieved for continuous win-
dow queries. While we use applications where the speed
of a client determines the desired resolution, our approach
may be less applicable to some scenarios such as in digital
battleground, where the resolution requirement should be a
choice of a user rather than a system parameter based on
speed. Even in such a scenario, our system could be ben-
eficial, as the underlying techniques for the data retrieval
will remain the same. We conduct a set of experiments (Sec-
tion 5.4) showing that other parameters such as distance of
objects from the client can also be used for multi-resolution
retrieval of objects to optimize the data retrieval cost.

For our application domain, we choose the client-server
model over a traditional client-only solution (e.g., LifeClip-
per [1], or GPS navigation) where the client device pre-loads
3D objects and processes the query locally, for the following
reasons: (i) It is not realistic for some databases to remain
unchanged. (ii) It is not feasible for a client to download
whole databases on to the mobile device for large data, e.g.,
3D representation of a city. (iii) The location-based service
provider may not prefer the client to download the whole
database for commercial reasons.

2.2 Continuous Queries from Mobile Clients

Current research on continuous window/range queries from
mobile clients focus on both static (e.g., [13, 14]) and mov-
ing objects (e.g., [15, 16, 17]). However, these techniques
are commonly based on point data sets since only the loca-
tions of objects are relevant for these systems.

Continuous window query processing techniques on
static point objects generally tessellate the data space based
on the position of objects, and then exploit the location
and/or the movements of the client to reduce communication
and processing overheads. Existing approaches in this do-
main fall into two major categories: (i) safe region based, (ii)
time-parameterized based. In safe region based techniques
(e.g., [14, 18]), the server returns the query result along with
a region around the client’s location within which the re-
sult remains same. In time parameterized based techniques
(e.g., [13, 19]), a result set (up to a future timestamp) is re-

4

turned along with the validity time of the result so that the
client can incrementally compute the new result.

On the other hand, for moving objects, the data space
cannot be divided into distinct regions based on the objects’
positions because the objects change their position contin-
uously. Among existing research in this field, [15, 16] are
of particular interest to our work as they also use motion of
the query issuer for processing continuous queries on mov-
ing objects. Lazaridis et al. [16] focus on continuous queries
for retrieving moving objects in virtual tour-like applica-
tions where all objects within the view are retrieved. They
bound the next query window based on reported velocity of
the user, and retrieve the data for all predicted query win-
dows. This approach also reduces the I/O costs by retrieving
a disk block only once and cache them in the server to re-
use it as long as it is required for successive query requests.
In [15], a motion adaptive indexing scheme for moving ob-
jects is proposed for efficient processing of moving continu-
ous queries. The authors use the concept of motion-sensitive
bounding boxes that automatically adapt their sizes to the
motion parameter of moving objects and moving queries.
Both of these approaches [15, 16] reduce the number of in-
dependent searches in the index by pre-calculating future
query results. These works [15, 16] are not tailored for 3D
objects. Moreover, none of the existing research utilizes the
motion of clients for efficient processing continuous queries
on a 3D object database. In this paper, we use the motion of
a client to retrieve necessary 3D data with appropriate reso-
lutions for the required visualization.

SINA [17] and Q-Index [20] have been proposed to op-
timize the continuous processing of multiple simultaneous
queries on moving object data. SINA uses shared execu-
tion paradigm to optimize the performance, and proposes a
hashing based technique for evaluating multiple continuous
spatio-temporal range queries. On the other hand, Q-Index
uses an index structure to index queries for efficient process-
ing of continuous range queries for moving objects. Since
these multi-query processing techniques only focus on point
data sets, they are not able to utilize the multi-resolution na-
ture of queries based on the motion of clients.

In summary, we are different from [15, 16, 17, 20] on a
number of aspects: (i) We model 3D objects in multiple reso-
lutions that allow us to retrieve only necessary data required
by the client which is one of the key features of our methods;
on the other hand in these works, since they work on point
data there is no such concept of multi-resolution processing.
(ii) We use certain properties of wavelets to efficiently index
multi-resolution data for 3D objects, on the other hand since
these approaches only use point data sets they are not suit-
able for 3D object indexing. (iii) We propose novel buffer
management schemes by utilizing the movements of clients
which does not exist in these works.

For multi-query optimization techniques, similar to [17],
we use a shared execution paradigm to optimize multiple si-
multaneous queries at the server. However, the fundamental
difference of our approach to [17] is that our group query
processing technique exploits variable resolution require-
ments of different clients to optimize the processing of mul-
tiple simultaneous queries. Moreover, our proposed linked
index is optimized for the data retrieval for a group of con-
tinuous queries. Since [20] deals with stationary queries on
moving objects, this approach is not applicable for moving
queries.

In our experiments, we show that our approach for 3D
objects retrieval significantly outperforms approaches that
do not take the multi-resolution concept into account.

Buffer Management for Continuous Queries: To reduce
the impact of high latency low-bandwidth wireless links, dif-
ferent pre-fetching schemes for continuous retrieval of data
using mobile clients have been proposed [21, 22]. Since
a mobile client has a limited buffer and all of the pre-
fetched data may not be used by the client, non-uniform
one-dimensional motion patterns are modeled by [22] to de-
fine regions that are likely to be visited subsequently. Al-
ternative techniques (e.g., [21]) assume linear movement of
objects that use the speed and the movement direction of
the client to define the region to be pre-fetched. These pre-
fetching techniques do not perform well when the movement
patterns are non-trivial which is commonly the case for mo-
bile clients. Moreover, none of these techniques exploits the
prediction capabilities of techniques such as the Kalman fil-
ter [23]. With the recent development of computing power
of mobile devices, we argue that a mobile client is capable
of deploying estimation techniques. In this paper, we pro-
pose sophisticated state-estimation based techniques to de-
termine the regions that are likely to be visited by the client
in subsequent timestamps. Based on these estimations, our
buffer manager fetches or caches complex 3D data at the
client. Furthermore, we generalize our buffer management
technique for the server that buffers the data based on the
grouped movement of clients.

2.3 Multi-resolution Modeling

Multi-resolution Modeling for 3D Objects: Triangular mesh
based surface representation of 3D objects is common in
computer graphics and geometric modeling [24]. These
mesh representations are usually large data sets limiting
the transmission of complex 3D data to clients over low-
bandwidth networks. One common approach to deal with
this problem is to decompose 3D objects in multiple level
of details, and allow the application to retrieve only the nec-
essary details of objects. To represent an object with vari-
ous levels of details, a wide variety of models are available
for mesh simplification on multi-resolution modeling. Two

5

1

5

4

21

6

33

212

3

0
4

0
4

0
5

0
6

(c)(b)(a)

Fig. 1 (a) A coarse approximation (level 0) of a circle by a triangle,
mesh M0, (b) Mesh obtained by a splitting of M0, (c) M1 a level 1
approximation of the circle.

15 9

10
11

5

8

2

7414

1

13

6

12
3

5

3

6

1

4

2

0
8

0
10

0
12

0
15 0

9

0
11

0
70

14

0
13

5

4

21

3

6

(a) (c)(b)

Fig. 2 (a) A level 1 approximation of the circle by a mesh, (b) Regular
sub-division of the mesh at level 1, (c) M2 as a level 2 approximation
of the circle.

widely used approaches for multi-resolution modeling are:
(i) progressive meshes [25] and (ii) wavelets [26]. Tradition-
ally, graphics applications use either of these approaches to
reduce the cost of 3D object rendering. However, it is known
that wavelet-based approaches offer a more compact coding
for progressive transmission of data and thus require less
bandwidth for wireless transmissions [27, 28]. In a wavelet-
based approach, a given mesh is simplified to a base mesh,
together with a sequence of missing details of the original
mesh. These missing details are called wavelet coefficients.
Since the wireless link forms the main bottleneck for mo-
bile clients, we use a wavelet-based approach for represent-
ing and storing 3D objects data in multiple resolutions, and
furthermore, we retrieve only necessary wavelet coefficients
for the visualization of 3D objects based on the speed of the
client.

Wavelet Representation of 3D Objects: In this part, we
give a brief overview on wavelet-based multi-resolution rep-
resentations of 3D objects [26]. 3D objects can be approxi-
mated by their surfaces using triangular meshes. Let M j be
a triangular mesh representation of the surface of a 3D object
at resolution j. An object can be represented in different lev-
els of resolution by a sequence of meshes M0,M1,...,MJ ,
where, M0 is the base mesh and MJ is the final mesh. For
example, Figure 1(a) shows a triangular mesh M0 (1, 2, 3),
which is a coarse approximation for the surface of the given
circle.

To obtain a higher resolution approximation of the given
surface, the triangle 4(1, 2, 3) is first divided into four sub-
faces by introducing new vertices (4′, 5′, 6′) at edge mid-

points as shown in Figure 1(b). The new set of vertices are
now deformed to make the mesh to fit the surface to be ap-
proximated. For example, vertex 4′ is shifted to a new posi-
tion on the surface and is renamed as 4. The new, finer reso-
lution mesh M1, is shown in Figure 1(c). Since the mesh in
Figure 1(b) is obtained from the mesh in Figure 1(a) by us-
ing a regular subdivision, level 1 mesh M1 can be obtained
by adding the required displacement of three midpoint ver-
tices 4′, 5′, and 6′. In this case, the missing details of the
mesh M0 from the mesh M1 can be shown as the displace-
ment of the vertices 4, 5, and 6 from the vertices 4′, 5′, and
6′, respectively. Thus the wavelet coefficients that represent
the difference between M0 and M1 are d0

4, d
0
5, and d0

6. For
example, d0

4 is obtained by v1
4−

v0
1+v0

2
2 = v1

4−v1
4′ . Similarly,

Figure 2 shows the steps for obtaining a level 2 mesh M2

that is a more refined approximation of the surface than level
1 mesh M1. Each face of the mesh in Figure 2(a) is divided
into four faces by introducing edge midpoints as shown Fig-
ure 2(b). Then the new set of vertices are shifted towards the
original surface to obtain M2 in Figure 2(c).

The wavelet decomposition of a mesh MJ produces
a base mesh M0 and the sets, {W0,W1, ...,WJ−1}, of
wavelet coefficients. Each Wi contains a set of wavelet coef-
ficients at level i that represents the missing details between
mesh M i and M i+1. Coefficients with higher values have
greater significance than that of lower valued coefficients.
Since the smaller magnitude coefficients have less role to
play in the overall structure of the object, the bandwidth uti-
lization can be improved by discarding lower valued coeffi-
cients. In a selective transmission scenario, the coefficients
that are necessary to modify the clients’ currently available
version of objects are retrieved. Thus, at a given point in
time, only a subset of coefficients are needed to be retrieved
by the client.

There are many other methods for decomposing the sur-
face of 3D objects using wavelets. Our techniques described
in subsequent sections also work with other wavelet-based
representation of 3D objects.

2.4 Indexing 3D Objects

Indexing techniques for Multi-resolution Data: Spatial ac-
cess methods such as R-tree [29] and its variants [30], k-d-
trees [31] and quadtrees [32] have been extensively studied
for indexing spatial objects. In R-trees, nearby objects are
first grouped together to form leaf-level nodes, then these
nodes are recursively grouped to form upper-level nodes un-
til we reach to the root of the tree, where the root represents
the total data space. Each entry of a leaf node maintains a
pointer to a data object (or the object itself) and a minimum
bounding rectangle (MBR) that encloses these objects. Each
entry of an index node (or non-leaf node) maintains a pointer

6

to a child node and an MBR that encloses all entries of that
child node. On the other hand, quadtrees and k-d-trees use
space partitioning-based techniques to recursively partition
the space and then assign objects on to the resultant parti-
tions. We use R-tree based indexing at our base to access
multi-resolution objects.

Several spatial access methods have been proposed to
speed up the retrieval of progressive mesh based multi-
resolution terrain data [33, 34, 35, 36, 37]. A pioneering
work, LOD-R-tree, is proposed to index different level of
detail (LOD) of a terrain using R-tree [33]. Hoppe pro-
poses an approach similar to the LOD-R-tree, but uses a
two-dimensional region quadtree [34] for indexing. Shou et
al. propose an improved version of the LOD-R-tree by in-
cluding the visibility of data and propose a new indexing
structure called the HDoV-tree [35]. Xu proposes a LOD-
quadtree, in which the LOD dimension is added with the
dimensions of terrain data [36]. Recently proposed direct
mesh based R-tree [37] avoids unnecessary data retrieval
by using a new data structure called Direct Mesh that al-
lows the reconstruction of a terrain approximation with less
I/O overhead than other approaches. All of these methods
discussed above are designed for progressive mesh based
multi-resolution terrain modeling, and cannot work with
wavelet-based multi-resolution representations of 3D ob-
jects. Furthermore, none of these methods consider the mo-
tion of clients for optimizing the processing of continuous
queries. We propose an R-tree based index using motion-
awareness for 3D object retrieval in multiple resolutions us-
ing wavelets.

Indexing for Improved Traversal: An index that main-
tains links among neighboring nodes of the index can facili-
tate faster access to the data for continuous queries. Though
no existing work specifically address this issue for contin-
uous queries, there is research in other fields for data re-
trieval that introduce links in indexing among leaf nodes for
faster traversal (e.g., [38, 39]). In [38], a leaf node main-
tains links with its neighbor-nodes, called ropes to facilitate
a faster ray-traversal algorithm. The authors modify the bi-
nary space partitioning trees by ropes to avoid the lengthy
traversal from the root of the tree. On the other hand, in a
disk-based data structure named Corner Stitching [39], the
rectangular objects are stitched together at their corners to
facilitate faster (linear time) searching for VLSI layout edit-
ing. In this structure the empty spaces are also needed to
be modeled requiring large overheads for spatial objects of
varying sizes. Since, these indexing techniques are not ef-
ficient for our purpose, we introduce links in our motion-
aware R-tree based index that reduces I/O and accelerates
the access to 3D data for continuous queries, especially in
the presence of multiple clients.

3 Motion-Aware Processing on the Client

In this section, we first discuss our motion-aware continu-
ous data retrieval scheme that retrieves only the necessary
data for the visualization based on the speed of the client’s
view. Then we propose a motion-aware buffer management
scheme that buffers the data with high probabilities of being
visited by a client.

3.1 Continuous Data Retrieval

In our continuous data retrieval scheme, we propose an ap-
proach that allows a client to incrementally retrieve 3D ob-
jects based on the change of the view of the client and
its speed. In this section, we elaborate this scheme from a
client’s perspective, that is, how a client incrementally de-
cides what to retrieve from the server, and then briefly dis-
cuss how the server determines the query result at the end of
this section. The details of the server side query processing
is given in Section 4.3.

In our approach, we assume that a client has a function
to map the speed of the client to an appropriate resolution of
3D objects for the necessary visualization at a given point
in time. This mapping of a speed to a resolution can be
done automatically by the system in combination with some
user input. For example, the system can be trained to map
a speed to a resolution that satisfy expected users’ require-
ments. Then a specific user might be interested in setting
the required resolutions for different speeds based on dif-
ferent environmental settings. A user can tune this mapping
function using a GUI with sliders depending on parameters
such as the display size and available bandwidth. It is im-
portant to note that we also take the acceleration of a client
into consideration in the mapping process using the motion
prediction approach.

As we have discussed, a mesh representing a 3D object is
decomposed into a set of wavelet coefficients. Each wavelet
coefficient representing a vertex of the mesh has an asso-
ciated value w in a range of [0, 1]. The larger the value of
a coefficient, the greater the significance it has on the vi-
sualization of the object. So for the lowest resolution ob-
ject, only few wavelet coefficients having larger w values
are sufficient to represent the overall shape of the object. On
the other hand, for the highest resolution object, all wavelet
coefficients are necessary to represent every detail of the ob-
ject. Let, at time t, the speed of the moving client be st and
the view of the client be mapped to a query window Qt. The
client needs to retrieve all the coefficients necessary for visu-
alizing the objects that fall inside Qt. For example, when the
speed is very low (st ≈ 0) the client needs to see the objects
inside Qt with the highest resolution (or full level of details).
In this case all the coefficients whose values range from 0.0
to 1.0 and satisfy Qt need to be retrieved. Similarly, when

7

E
{1tQ

tQ

0
A

0
B

BA

D G C

0CF0D

1 2

3

4

5
6

Fig. 3 Continuous data retrieval

the speed is higher (say, st = 0.5) the client needs to retrieve
less details for objects inside Qt. In this later case, the client
may only retrieve wavelet coefficients whose values range
from 0.5 to 1.0, since these coefficients are sufficient for the
visualization of objects for this client moving at speed 0.5.
It can be observed from the above discussion that to retrieve
objects with required resolutions from a 3D object database,
one needs to set the following parameters: a query window
and a range determining the candidate wavelet coefficients
for visualization with required resolutions.

Our algorithm incrementally retrieves 3D data from a
server for a continuous query. A continuous query is rep-
resented as a time-ordered sequence of window queries (or
query frames). As the client moves, it sends queries to the
server at different timestamps. The client only retrieves the
data that is not already retrieved by the previous query
window. Figure 3 shows two rectangular query windows
(A,B, C, D) and (A′, B′, C ′, D′) for the two query win-
dows Qt−1 and Qt at times t−1 and t, respectively. Suppose
the client has already obtained all the data for the objects for
Qt−1. For an object, the client needs all of its vertices that
fall inside the query window and also all the neighboring
vertices that connect to this set of visible vertices. These are
required to properly render the objects inside a query win-
dow. For example, for the query window Qt−1, the client re-
trieves vertices {1, 6} that fall inside the query window and
the neighboring vertices {3, 4, 5} that connect to 1 and/or 6.
Thus, at timestamp t, the client only needs to retrieve infor-
mation for the region Qt − Qt−1 = (E,B′, C ′, D′, G,C).
After receiving the region (E,B′, C ′, D′, G,C) from the
client, the server divides the region along the x-axis into
two query windows (G, C, F,D′) and (E,B′, C ′, F) and
executes these sub-queries separately.

After retrieving the results for all the sub-queries, the
server filters the results to avoid transmitting the data that
is already available at the client. In this example, the server
filters out those vertices that connect to the vertices that fall
inside the previous query window (A,B,C, D). Therefore,
the server filters out vertices {3, 4, 5} and only sends vertex
2 to the client as the final result for the query window Qt.

Algorithm 1 shows the steps of our data retrieval pro-
cess. Let Qt and Qt−1 be the query windows at time t

and t − 1, respectively. First, the algorithm finds the over-
lapping region Ot between Qt and Qt−1. The region Nt

Algorithm 1: ContinuousDataRetrieval
Ot ← Qt ∩Qt−1;1.1
Nt ← Qt −Qt−1;1.2
rt ←MapSpeedToResolution(st);1.3
if (Ot 6= ∅) then1.4

if (rt > rt−1) then1.5
Rt ← Retrieve({(Ot, rt−1, rt), (Nt, 0, rt)});1.6

else1.7
Rt ← Retrieve({(Nt, 0, rt)});1.8

else1.9
Rt ← Retrieve({(Qt, 0, rt)}) ;1.10

of Qt, which is not overlapping with Qt−1, is also deter-
mined. Then the function MapSpeedToResolution converts
the speed at time t, st, to the resolution at time t, rt. Retrieve
is a remote function that is invoked by the client to retrieve
objects from the server. It takes a set of parameters, where
each element of this set consists of a group of parameters,
i.e., a region and lower and upper limits for resolutions. If
the required resolution rt is greater than rt−1 (the resolution
of the previous query window), then the client needs to re-
trieve additional object details for region Ot. These details
are necessary to convert the objects within Ot from resolu-
tion rt−1 to resolution rt. In addition, objects for the non-
overlapping region Nt are to be retrieved with resolution rt.
If rt ≤ rt−1, then objects for the region Ot are available at
the client; so only objects for the non-overlapping region Nt

are retrieved with resolution rt. Finally, if there is no overlap
between Qt and Qt−1, then all the objects that fall inside Qt

are retrieved with resolution rt.
Using our multi-resolution continuous data retrieval

scheme, the data transmission cost can be significantly re-
duced by selecting objects with appropriate resolutions ac-
cording to the speed of a client. However, the process still
incurs a significant latency because the client needs to com-
municate with the server for each of the query windows.
During this time, the wireless connection between the mo-
bile client and the server may also become unstable (e.g.,
broken links). In such cases, the proposed incremental tech-
nique may not be sufficient for real time retrieval of 3D ob-
jects using wireless links. To help overcome these problems,
we propose a client-side buffer management scheme. In our
buffer management scheme, the client pre-fetches 3D ob-
jects based on the likelihood of client’s interest on 3D ob-
jects in subsequent timestamps.

3.2 Buffer Management

We develop a state-estimation based motion prediction
method to determine the probability distribution of the data
that will be accessed by a client. Our buffer management
technique is different from existing approaches in two as-

8

pects. First, it is the first probabilistic buffer management
scheme that models non-uniform motion of a client in a
multi-dimensional setting. Second, it exploits the multi-
resolution nature of 3D data to further optimize the buffer
management.

In the following subsections, we first describe differ-
ent components of our motion-aware buffer management
method, and then summarize the complete process.

3.2.1 Cost Model

We propose a cost model for a multi-dimensional non-
uniform motion of a client. Our approach generalizes a
similar model that was designed for one-dimensional non-
uniform motion [22].

We first divide the two-dimensional data space, where
the client can move in, into equal sized rectangular blocks,
also known as sub-regions. The client’s location is a point in
a block within the space. We assume that the client device
has an associated buffer where it can store the data. When
the query window of the client moves into a new block that
is not found in its buffer, the client retrieves a number of
neighboring blocks from the server and stores them in its lo-
cal buffer. Thus the client does not need to contact the server
as long as it remains inside the buffered blocks. The latency
in our system can be reduced by lowering the cache misses
(i.e., when the data is not found in the local buffer) to a
small value. Furthermore, the client has a limited buffer, and
some of the pre-fetched data may not be actually accessed by
the client. Thus the buffer management scheme for a client
should also avoid the retrieval of unnecessary data to min-
imize the wasted bandwidth. We develop a cost model that
allows a client to decide which portion of the data should
be kept in the buffer such that the average cache misses is
minimized for a fixed buffer size. The cache misses will be
minimized when the average residence time of the client in
the buffered region is maximized.

Let Tq be the total duration of a continuous query, M

be the average number of local cache misses during the to-
tal duration of that query, and N(j) be the number of blocks
needed to be retrieved at jth local miss. Let Cc and Ct be the
connection establishment and the data transfer costs, respec-
tively, for a unit block of data with size B from the server to
the client. Then the total data transfer costs for a continuous
query from a mobile client can be determined as

C =
M∑

j=0

(Cc + Ct ×B ×N(j)). (1)

The data transfer costs will be less for smaller values of
M .

In [22], a pre-fetching model is proposed for a one-
dimensional setting (see Figure 4). For this model, the data

p
l r

p

a - 11
n

Fig. 4 One dimensional buffer.

1 2ckb{1ckb

+2c
2
|kb +1c

2
|kb c

2
|kb {1c

2
|kb

Fig. 5 Two dimensional buffer.

space is divided into rectangular blocks where a client can
move to the left block with probability pl or to the right
block with probability pr. In this figure, the current posi-
tion of the client is shown using a white circle. Assuming
the client can buffer a− 1 blocks, where a− 1 > 1, then the
client should buffer (n−1) blocks on the left and (a−n−1)
on the right so that the average residence time Ta,n that the
client spends in the pre-fetched blocks is maximized. Since
M = Tq/Ta,n, the average cache misses M will be minimal
when the average residence time is maximized. For this, a
position nopt in the data space that maximizes Ta,n can be
obtained according to [22] as follows:

nopt =
log(

(
pl
pr

)a−1

a.log pl
pr

)

log pl

pr

. (2)

Since the movement of a client cannot be restricted to
one dimensional space, in our propose model, we partition
the plane around the client into equally sized sectors. Fig-
ure 5 shows the current position of the client using a white
circle, and the partition of the surrounding data space into
different sectors with respect to the client’s position. Each
sector represents one of the k possible directions of the
client. We have shown that for a one-dimensional buffer,
using Equation 2 we can estimate the optimum number of
blocks for each direction (left or right) when the probabili-
ties of the client to move into each direction (pl and pr) and
the available buffer size are given. Equation 2 uses the ra-
tio of pl and pr to estimate the required number of blocks
for each direction, thus the equation can be used to assign
the blocks for any two possible directions. For a two dimen-
sional case, we first assume a logical partition of the space
that divides the data space around the client into two parts

9

(as shown in Figure 5 where the dark solid vertical line di-
vide the data space into two parts) and then use Equation 2
to find the number of blocks for each part. This process is
recursively applied to find the required blocks for each of
the k directions.

Let pi be the probability that the client will move in di-
rection i. The client needs to determine the optimal assign-
ment of the available buffer such that the client’s average
time spent inside the buffered regions is maximized. Let ni

be the number of blocks that need to be assigned in direc-
tion i, and n(i,i′) be the summation of all the blocks that
need to be assigned for the directions from i to i′. Thus we
have n(1,k) = a − 1, where a − 1 is the buffer size. Then
the buffer assignment process for different directions can be
described as follows.

First, we partition all the direction probabilities into two

groups such that pl =
∑b k

2 c
1 (pi), and pr =

∑k
b k

2 c+1(pi).
Then using Equation 2, we compute the number of blocks
n(1,b k

2 c)
that need to be assigned for the directions from 1 to

bk
2 c. Hence, we have n(b k

2 c+1,k) = n(1,k) − n(1,b k
2 c)

. Simi-
larly, we can calculate n(1,b k

4 c)
by using Equation 2, where

pl =
∑b k

4 c
1 (pi), pr =

∑b k
2 c

b k
4 c+1

(pi) and a − 1 = n(1,b k
2 c)

.
This partitioning process continues until each partition con-
tains a single direction. After computing n(1,2), Equation 2
is used to calculate number of blocks n1 for direction 1,
where pl = p1 and pr = p2. Then we can have number of
blocks n2 = n(1,2) − n1 for direction 2. Similarly, the val-
ues n3, n4, ..., nk can be calculated for other directions that
maximize the average residence time Ta,n. Therefore, we
have n1, n2, ..., nk portions of the total buffer assigned for
the directions with probabilities p1, p2, ..., pk, respectively.

Using the above process, we find a set of values
n1, n2, ..., nk for a particular ordering of k directions. There
can be k! possible orderings of the directions and differ-
ent orderings of directions may result in different values for
n1, n2, ..., nk. Among all possible orderings, we select the
result with the maximum average residence time. However,
our results show that this step can be omitted as the ordering
only slightly affects the average residence time.

Similarly, we can extend the model described in [22] and
calculate the average number of blocks N(j) to be retrieved
at jth local cache miss for k directions.

Based on the proposed cost model, we can now decide
what portion of a given buffer should be allocated for which
direction. In the next section, we determine the probabilities
that a client can take for different directions.

3.2.2 Motion Prediction

We use the Kalman filter [23] to predict future positions of
a client from its recent locations and compute the future er-
ror covariances to determine the confidence level of those

(a)

8

6

0
1

2

4
5

7

3

0 1 2 3 4 5 6 7 8

tQ
tQ +1

0.5
0.3

0.2l

2l
l1

l3
0.1

0.1

0.3

0.3

(b)

+2Qt8

6

0
1

2

4
5

7

3

0 1 2 3 4 5 6 7 8

l

Fig. 6 Motion prediction and visiting probabilities of a client at (a)
time t + 1 and (b) time t + 2.

predictions. Based on the covariances and predictions, we
calculate the probabilities of the client to visit neighboring
regions.

The state St of a moving client at time t is defined by us-
ing the positions of this client from the h most recent times-
tamps, i.e., St = [p(t), p(t−1), ..., p(t−h)]T , where p(t) is
a position vector. Thus the prediction of a future state at time
t+1 is St+1 = ASt, where A is the transition matrix, called
a one-step predictor. A can also be used for multi-step pre-
dictions. For example, a state at time t + i can be calculated
as St+i = AiSt. The transition matrix A can be calculated
by using the recursive least-squares estimation method [40]
as well as other methods [41] from recent states.

After predicting the future state, we estimate the ex-
pected confidence of a predicted state by calculating the
error covariances of that state. If Ŝt is the predicted state
and St be the true state, the error of the prediction is et =
St − Ŝt. Similarly, the prediction error for the state t + i is
et+i = Ai(St − Ŝt). From this, the covariance matrix Pt,
which is a measure for the uncertainty of the predicted state
Ŝt, can be defined as Pt = E[ete

T
t]. Then we estimate the

probability of the predicted state Ŝt conditioned on all prior
estimates. Hence, the probability of a state can be estimated
using a normal probability distribution [23], which can be
expressed as

P (St) ∼ N(E(St), Pt) = N(Ŝt, Pt). (3)

The predicted value Ŝt is the mean for the probability
distribution and the variance for this prediction is obtained
from the singular values of Pt.

Since the probability function is continuous, each point
in the data space can have a distinct probability value. Rather
than calculating the probability of each possible point loca-
tion, which is a very costly operation, we divide the total
space into equal sized rectangular blocks and then calculate
the probabilities for different blocks to be visited by a client.

Figure 6(a) shows the current position l and query win-
dow Qt at time t of a client. Suppose the next query window

10

4
p

p
3 2

p

p
1

8

6

1

2

4
5

7

3

0 1 2 3 4 5 6 7 8

0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5 0.5 0.5

0.50.5

0.50.50.5

0.0

0.5 0.5 0.5 0.5 0.5

0.50.5

0.5 0.5

0.50.5

0.40.4 0.4 0.4 0.4

0.4

0.4

0.4

0.4

0.40.40.40.40.40.4

0.0 0.3 0.3 0.3 0.3 0.3 0.3

0.10.10.10.10.1

0.3

0.3

0.3

0.3

0.3

0.3

0.2

0.2

0.3

0.5

Fig. 7 Probabilities of visiting different block by a client.

Qt+1 can be predicted at l1, l2, and l3, with probabilities 0.5,
0.3, and 0.2, respectively, by using Equation 3. Similarly, the
probabilities of different blocks to be visited by the query
window Qt+2 at time t + 2 is shown in Figure 6(b). By iter-
ating this process, the surrounding blocks of the client’s cur-
rent position are assigned different weights by summing up
these probabilities. Figure 7 shows the weights of different
neighboring blocks to be visited by the client. By normal-
izing the weight of a block with respect to the total weight
of the surrounding blocks, we can estimate the probability
of a client to visit that block. Based on these probabilities,
we can approximate the probabilities of a client moving in
different directions. A block that intersects a partition line
is assigned to one of the two partitions that owns the max-
imum portion of that block. If a block is equally owned by
two partitions, we resolve the dispute by assigning alternat-
ing blocks to different partitions. For example, blocks (4,5),
(4,6), (4,7), and (4,8) intersect the partition line between di-
rection 1 and 2. In this case if the blocks (4,5) and (4,7) are
assigned for the direction 1, then the blocks (4,6) and (4,8)
are assigned for the direction 2; or vice versa. Finally, the
probability of the client going in a specific direction can be
obtained by summing up the probabilities of all the blocks
for that direction.

After obtaining the probabilities in different directions,
we apply the proposed cost model (Section 3.2.1) to deter-
mine what portion of the available buffer needs to be as-
signed for each direction.

3.2.3 Buffering Multi-resolution Data

The basic idea of buffering for multi-resolution data is that
when a client moving at a higher speed it can buffer more
objects with lower resolutions than that of a slowly moving
client. Since the required buffer space for the data in a given
query window varies with the speed of the client, we first
estimate the buffer space for the query window as follows.

The server maintains a two-dimensional histogram H of
the data space, where the data space is divided into equal
size rectangular blocks. Each histogram block (i, j) con-

tains a list of values for the corresponding block in the data
space. Each entry ns in the list corresponds to the number
of wavelet coefficients required to represent the objects of
that block with a particular resolution. For example, n0 cor-
responds to the number of coefficients needed to visualize
objects with the highest resolution (i.e., when the speed is
s ≈ 0) for the block (i, j). Similarly, n1 represents the
number of coefficients needed for the visualization of ob-
jects within the block (i, j) for the client moving at speed
s ≈ 1. To determine the required buffer space of a given
query, the client acquires the data histogram of surround-
ing blocks from the server based on the current position and
speed of the client. Then the client can estimate an approxi-
mate buffer space required for the query window Qt at time
t while moving at speed s. Let this buffer space be repre-
sented by a function BS(Qt, s), which can be defined by

BS(Qt, s) =
∑
i,j

(fij ×Hij [s]), where Hij ∩Qt 6= φ. (4)

In this equation, i and j are the indices of a block in
the data histogram H , Hij [s] is the number of wavelet co-
efficients ns required for the visualization of objects in the
block (i, j) for speed s, and fij is the fraction of the block
Hij that overlaps with Qt. Since objects with lower resolu-
tion need less space in the buffer than that of higher resolu-
tion objects, BS(Qt, s1) > BS(Qt, s2), where speed s1 is
smaller than speed s2.

By using the above formulation, the client can estimate
the number of blocks that can be stored in the client’s avail-
able buffer based on its speed. Thus the client can reduce
the cache misses by buffering data for a larger region when
moving at a higher speed.

3.2.4 Buffer Management Process

So far we have discussed various parts of the motion-aware
buffer management scheme. In this section we summarize
the complete process and describe the necessary data struc-
tures for buffer management at a client.

The buffer management process can be summarized as
follows. First, we estimate the client’s path and probabili-
ties of surrounding blocks to be visited by using the state-
estimation based motion prediction model (Section 3.2.2).
Then we partition the surrounding regions of the client’s cur-
rent position into k possible directions, and select the list of
blocks to be put into the buffer from each of the directions
based on the probabilities of the client to move in that direc-
tion (Section 3.2.1). For a multi-resolution buffer, when the
client selects the number of blocks in each direction, it esti-
mates the number of blocks based on the speed of client as
described in Section 3.2.3. Finally, we retrieve objects from

11

(4,5)

(4,4)
(5,5)

(5,4)

876543210

3

7

5
4

2

1
0

6

8

(b)(a)

0
1

2

3

Actual Data

(y,x)

Fig. 8 (a) Status buffer and (b) data buffer at the client.

the server for the predicted blocks that are currently not in
the client’s buffer.

Figure 8 shows the data structures maintained at a client
for buffer management. The client has a two-dimensional
status buffer and a data buffer. In the status buffer, for each
block the client maintains four variables: status represents
whether the required data for the block is already in the
client’s buffer, data resolution indicates the resolution of
the available data for the block, visiting probability stores
the probability of the block being visited by the client, and
buffer pointer points to the corresponding entry in the data
buffer. The client maintains a list for the data buffer that or-
ganizes the available data in the client’s buffer in increas-
ing order of visiting probabilities. Each entry in the list
is pointed by the corresponding block of the status buffer
(shown by the links from Figure 8(a) to Figure 8(b)), and
each entry in the list also points to a data array as shown in
Figure 8(b). Figure 8 shows that the first, second, third, and
fourth entries (labeled as 0, 1, 2, 3, respectively) of the list
contain the data for the blocks (5,4), (5,5), (4,4), and (4,5),
respectively. Since data blocks in the list are kept in increas-
ing order of probabilities, the probability of the block (5,4)
to be visited by the client is greater than that of the block
(5,5). Similarly visiting probability of (5,5) is greater than
the visiting probability of the block (4,4). The size of the
data on each entry may vary (Figure 8(b)) and this variation
depends upon the density and the required resolution of the
data for the corresponding block.

In summary, the continuous data retrieval scheme (Sec-
tion 3.1) depicts the incremental retrieval of 3D objects in
a basic setting where we assume that there is no buffering
technique at the client. The server keeps track of the pre-
vious query window to filter out the results that avoids the
transmission of already available data at the client. Next, the
motion-aware buffer management technique (Section 3.2)
capitalizes the client’s movement patterns and its buffering
capacity, where the client pre-fetches new data or caches the
already retrieved data in the client’s buffer based on the like-
lihood of the client to visit the data in subsequent times-

tamps. Using this scheme, the data retrieved for past queries
(e.g., Qt−3) will still be stored in the buffer if the data has
the high probability of re-use in future. In this setting, the
client first decides the region of the data space that should
be put in the buffer, called the client’s buffer region. Then
the client sends its buffer region to the server where the
blocks of the region for which it already has the necessary
data are marked. From this information, the server avoids
transmitting the same data multiple times. Since the client
buffer is limited, the client dynamically updates the buffer
region based on its movements. In addition to overcoming
the problem of high latency and unstable connection of wire-
less links, this buffer management technique can further re-
duce the data transmission overhead when the client keeps
going back and forth multiple times in the same region.

4 Motion-Aware Processing on the Server

In cases like bus tours, it is common that a group of tourists
will visit places in a city together. In such scenarios, the
views or query windows of co-located clients (i.e., tourists)
might overlap each other as more than one person may be
interested in the same object at the same time. For this,
to optimize the data retrieval, instead of executing each of
these queries independently, we propose a suit of shared-
execution techniques in the server to optimize the process-
ing of these queries. In our current system, the server has
the responsibility of combining query windows. A dedicated
client in the tour could also have this task that we plan to in-
corporate to our future work.

Continuous query processing incurs high I/O costs for
retrieving 3D objects, especially when the number of queries
is large. In such cases, high I/O costs also add to the overall
latency of the data retrieval system. To alleviate this prob-
lem, we develop server-side techniques introducing server-
side motion-aware group query processing, buffer manage-
ment, and indexing techniques, to expedite the query pro-
cessing by reducing the I/O accesses.

4.1 Group Query Processing

A server often needs to handle a large number of simulta-
neous continuous queries from clients, possibly from over-
lapping regions of interest (e.g., tourists in a bus, co-located
visitors inside a museum). A naive approach of executing
each of these queries independently incurs high I/O costs as
it needs to retrieve the same data multiple times. Therefore,
in this paper, we propose a group query processing tech-
nique that overcomes this limitation. Novelty of our group
query processing technique is that it combines overlapping
and the multi-resolution nature of queries for efficient pro-
cessing of simultaneous queries from multiple clients.

12

0C

0J

0L

0E

K

G

H

D

L

C

J

F

I

B

A

E

t
1Q

t
2Q

t
3Q

Fig. 9 Three overlapping queries Q1
t , Q2

t , and Q3
t of different resolu-

tions from three different clients at time t.

As we have already discussed, the resolution of a query
is determined by the speed of the query issuing client. Fur-
thermore, the speed can vary largely among clients. The
overall performance of group query processing can be im-
proved by a combined execution plan that exploits the over-
lapping and multi-resolution characteristics of queries. The
key idea of our approach is to retrieve the requested objects
only once with appropriate resolutions such that it meets the
requirements of all participating clients.

For example, Figure 9 shows three window queries Q1
t ,

Q2
t , and Q3

t received by the server from three different
clients at time t. Let us assume that the resolutions of Q1

t ,
Q2

t , and Q3
t are r1, r2, and r3, respectively, where r1 >

r2 > r3. For the required visualization of objects for all
clients, the data for the overlapping regions of a group of
queries is needed to be retrieved with the highest resolu-
tion of all the participating queries. Figure 9 shows the par-
titioning of query regions for Q1

t , Q2
t , and Q3

t into differ-
ent segments based on the resolutions of these queries. In
this case, all objects for the query segment (A,B, C, D)
needs to be retrieved with the highest resolution r1, i.e.,
Q1

t is executed with resolution r1. After that, since a part
of Q2

t , (E′, F, C, D), is already retrieved with resolution
r1, which is higher than the required resolution r2, the
server only needs to retrieve objects for the query segment
(E,E′, D, C, G,H) with resolution r2, i.e., (Q2

t−Q1
t) is ex-

ecuted with resolution r2 (the resolution of Q2
t). Finally, the

server retrieves objects for the remaining un-retrieved query
segment (J ′, J,K,L′, C ′, C) of Q3

t , i.e., (Q3
t − (Q1

t ∪Q2
t))

is executed with the lowest resolution r3 (the resolution of
Q3

t).
Since in this method, data for each of the query segments

is retrieved once with the required resolution, the I/O costs
are largely reduced. In general, a lower resolution query re-
quires less I/O than that of a higher resolution query. Based
on the above theme, we propose our motion-aware sequen-
tial group query processing (SGQP) algorithm.

Algorithm 2 shows the steps of SGQP. Let
Q1

t , Q
2
t , ..., Q

n
t be a group of n queries in the server at time

t from different clients. After receiving these queries, the
algorithm first sorts the query list in descending order of

Algorithm 2: SGQP
L← {Q1

t , Q2
t , ..., Qn

t };2.1
SL← SortDescOrderOfResolution(L);2.2
NL← FindNonOverlappingQuerySegment(SL);2.3
FL←MergeAdjacentSegmentOfSameResolution(NL);2.4
Result← ExecuteAndFilter(FL);2.5

resolutions using the function SortDescOrderOfResolution.
Then for each query Qi

t in this sorted list, the algorithm finds
the portion of the region of Qi

t that needs to be retrieved
with the resolution of Qi

t. This can be done by removing the
overlapping region of Qi

t and the queries that require higher
resolutions than that of Qi

t. The obtained query segment
for each of the query is added to a new list called NL.
We use the function FindNonOverlappingQuerySegment
to obtain NL from L. For the example shown in Figure 9,
L contains Q1

t , Q2
t , and Q3

t . Thus, NL will have the
query segments (A,B, C, D), (E,E′, D, C, G,H), and
(J ′, J,K,L′, C ′, C) representing Q1

t ,(Q2
t − Q1

t), and
(Q3

t − (Q1
t ∪Q2

t)), respectively.

For a large group of queries, since NL can contain
a large number of query segments with same resolution,
executing each of these query segments separately may
incur large overhead. For this, the function MergeAdja-
centSegmentOfSameResolution merges adjacent query seg-
ments having the same resolution, and inserts the segment
into a new list FL. To merge adjacent query segments, we
simply use a minimum bounding box that encloses all over-
lapping or adjacent query segments having the same resolu-
tion. Finally, the obtained query segment list FL is executed
and the results are filtered out based on the actual query win-
dow list L to obtain the desired results for each client. This
method can reduce I/O costs by only retrieving the data for
a region once with appropriate resolution.

Though SGQP utilizes the overlapping and multi-
resolution behavior of queries, all the query segments are
executed sequentially. As we use a hierarchical R-tree based
index structure (see Section 4.3) to access 3D objects in the
server, SGQP may need to access the same node multiple
times when the data of adjacent query segments is stored in
the same index node. This process results in extra I/O costs.
Thus, to further reduce the I/O costs, we execute all simul-
taneous queries in parallel to retrieve the results in a single
pass over the existing index (see Section 4.3). We name this
approach as motion-aware parallel group query processing
(PGQP). In this approach, all queries are executed in paral-
lel, and in general, queries with higher resolutions need to
explore more nodes in the index than that of the lower reso-
lution queries. For example, when the server executes three
queries (shown in Figure 9) using PGQP, it accesses nodes
in the index if the MBRs of the nodes intersect any of the
three queries Q1

t , Q2
t , and Q3

t . Since the data for the region

13

covered by Q1
t requires to be retrieved with high resolution,

more nodes may need to be accessed for Q1
t . On the other

hand, the data for (Q2
t −Q1

t), and (Q3
t − (Q1

t ∪Q2
t)) regions

are required with medium and low resolutions, respectively,
and these may require less number of nodes to be accessed
than that of higher resolution counterparts.

In summary, our proposed approach retrieves objects for
an overlapping region of interest only once with the maxi-
mum resolution. This shared query processing approach re-
duces the processing load on the server. After retrieving the
data for an overlapping region, the server sends the retrieved
objects to each client with the resolution requested by that
particular client. For example, suppose an object o is re-
quested by three clients with resolutions r1, r2 and r3, where
r1 > r2 > r3. Then the server retrieves the object o with res-
olution r1, but it sends the object to three clients with three
different resolutions r1, r2, and r3, respectively. This is eas-
ily doable due to the properties of wavelets that allow us to
represent a lower resolution of an object as a sub-set of the
higher resolution object.

It is noted that in our approach, the server sends the re-
sult objects to a client with the requested resolution, and thus
the quality of service is assumed to be guaranteed for all
clients over time. However, there may be situations, where
the server can be overloaded with large numbers of simulta-
neous queries from multiple clients. In these situations, the
multi-resolution based shared execution scheme can be use-
ful to reduce the workload of the server by making a trade-
off with the quality of the retrieved data. For example, in
an overloaded situation the server can execute a query for a
lower resolution than the requested one, and return the ob-
jects with a lower resolution to the client. The detail trade-
off analysis between the quality of service and the workload
of the server will be a subject of future study.

4.2 Buffer Management

The purpose of the client-side buffer management was to
reduce the high latency and the consumption of the band-
width of wireless links. In this section, we adopt a buffer
management scheme for the server that aims at reducing the
I/O costs. Our buffer management scheme models the group
movement of clients and buffers the data that has higher
probabilities of being accessed by multiple clients.

In many scenarios, clients generally move in a group
(e.g., a tourist bus) and follow predictable motion patterns
(e.g., moving through roads). We observe that the data re-
trieved for a client in current time may need to be accessed
by the same client or other clients in successive time units.
Thus I/O costs can be reduced by buffering the data for the
regions that have higher probabilities to be visited in succes-
sive time units by clients. This buffering results in lower I/O

Server buffered region

0.4

0.4 0.4

0.4 0.50.50.5

0.3

0.1

0.10.1

0.3

0.3

0.3

0.10.10.10.10.10.10.1

0.4

0.50.50.5

876543210

3

7

5
4

2

1
0

6

8

(b)

0.1

876543210

3

7

5
4

2

1
0

6

8

(a)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00.00.00.00.00.00.00.00.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.3

0.3

0.3

0.3 0.3

0.3

0.2 0.20.2

Fig. 10 (a) The paths for five different clients, and (b) combined
weights of visiting probabilities of different data blocks.

costs. The server does not need to access the disk again and
again for the same data for many clients.

For example, Figure 10(a) shows the paths of five clients
as two different groups, where the centers of the query win-
dows at time t for clients are shown using black dots. In
our buffer management technique, for each client, the server
estimates visiting probabilities of different data blocks by
that client using the motion prediction scheme described in
Section 3.2.2 that uses the movement patterns of the client.
After estimating the visiting probabilities of the surround-
ing blocks for each client, for each block the server sums
up the visiting probabilities of all clients. This process re-
sults in the combined likelihood (or the combined proba-
bilities in normalized form) of visiting a block by clients.
Finally, the server selects the blocks that have higher com-
bined likelihood to fill its buffer. Figure 10(b) shows the dif-
ferent weights representing the combined likelihood of vis-
iting different blocks by clients. In Figure 10(b), the blocks
inside the highlighted rectangle are the candidates to fill the
server buffer as these blocks have higher probabilities to be
visited than the other blocks in the data space.

Visiting probabilities of data in different blocks contin-
uously change with the movement of clients. The data that
has higher probabilities to be visited by clients at time t may
not remain the same at time t + 1. Therefore, the probabili-
ties of the data to be visited by clients needs to be continu-
ously re-evaluated as clients continue to move. Such contin-
uous re-evaluation of the probabilities at each time instant
is highly inefficient. We propose to re-evaluate the probabil-
ities and pre-fetch the data in the server-side buffer based
on these probabilities in regular intervals, named as the pre-
fetch interval. When the pre-fetch interval is too short, the
data in the buffer reflects the clients access patterns more ac-
curately. However, in this case the buffer management cost
will be high as it is necessary to re-evaluate the probabilities
very frequently. On the other hand, if the pre-fetch interval is
too long, as the time elapses the data in the buffer becomes
stale and may not reflect the clients’ access patterns accu-

14

rately. Therefore, the pre-fetch interval should be carefully
chosen to establish the tradeoff between these two extreme
points. In this work we argue that, the system can choose
a suitable value for this parameter based on the clients’ be-
havior in the environment. It is important to note that for the
client-side buffer management, we do not require any pre-
fetch interval as the client starts pre-fetching spontaneously
as soon as it encounters some cache misses in the client’s
buffer.

Our server-side buffer management procedure is quite
similar to our proposed client-side buffer management tech-
nique. However, the key difference of our server-side buffer
management is that it takes group movements into account.
The server-side buffer management can be summarized as
follows. (i) Predict possible future positions of each of the
clients from their motion patterns. (ii) Calculate probabil-
ities of each block (i.e., total data space is divided into
equally sized rectangular logical blocks) to be visited by
each client, and then combine the probabilities of a block
to find the likeliness of all clients to visit that block. (iii)
Select the candidate blocks with higher probabilities for the
buffer. (iv) Pre-fetch the data for the selected blocks from
the disk if it is not already available in the buffer. For a
multi-resolution buffer, when multiple clients with different
speeds visit a block, the data for that block is buffered with
resolutions that is necessary for the lowest speed client.

The data structures for this buffer management is similar
to the client-side buffer management, therefore, we omit the
details for the brevity of this presentation.

Next, we propose an indexing technique for 3D ob-
jects represented using wavelets that offers improved I/O
accesses.

4.3 Indexing Wavelets of 3D Objects

To the best of our knowledge, we are the first to propose
an index for 3D objects represented by wavelets. We exploit
one of the most important properties of wavelets known as
support regions that ensure optimal data retrieval for a win-
dow query. We show how a support-region based index com-
pared to a simple index for wavelet point data, allows us to
retrieve only the necessary coefficients with the required res-
olution.

An R-tree [29] can be used to index the positions of
wavelet coefficients and the associated values resulted from
the decomposition process described in Section 2.3. The po-
sition of a wavelet coefficient is represented by a vertex
(x, y, z) in a three-dimensional space and the value of the
wavelet coefficient is a numerical value w. A 4D-R-tree can
index a wavelet coefficient, where the first three dimensions
represent the position and the fourth dimension stands for
the value.

Suppose a window query Q(R,wmax, wmin) with the
region of interest R (i.e., the view window) is submitted
from a client, where wmax and wmin are the upper and lower
bounds of the coefficient values (w) for the required level
of objects’ details within the region of interest, respectively,
and 0.0 ≤ wmin ≤ wmax ≤ 1.0. For this, all the coefficients
(vertices) that fall inside the query window are retrieved
first. However, these coefficients are not sufficient for the
required visualization inside the query window, because the
coefficients that are associated with the neighboring vertices
of these already retrieved coefficients also contribute to the
visualization of objects for the region of interest R (as de-
scribed in Section 2.2). Therefore, after retrieving initial sets
of coefficients, we compute a bounding region that encloses
all the neighboring vertices and re-execute the query for the
extended region. The problem with this access method is as
follows. This access method is not optimized for the retrieval
costs because it cannot avoid multiple retrievals of wavelet
coefficients and hence incurs high I/O costs. Moreover, ad-
ditional information, neighboring vertices, are also needed
to be stored for each of the vertices. To overcome these lim-
itations and to facilitate optimal data retrieval, we utilize the
support regions of wavelets.

In this section, we first give the formal definition of sup-
port regions of wavelets and discuss their important prop-
erties. Then we propose our technique to efficiently index
the wavelets that can reduce the I/O costs significantly for
a window query. Finally we discuss the Linked-R-tree that
further reduces the I/O costs for continuous queries, espe-
cially in the presence of multiple clients.

4.3.1 Support Regions of Wavelets

The support region of a wavelet represents a region of the
object to which the wavelet contributes during reconstruc-
tion of the 3D surface. For example, the wavelet coefficient
associated with the vertex v4 in Figure 1(c) has the value
v4− v4′ and the support region as the polygon (1, 4, 2, 5, 6).
If wj

i is an ith wavelet coefficient of level j mesh M j , then
the support region rj

i of this wavelet coefficient is the re-
gion of M j to which the wavelet coefficient contributes dur-
ing the reconstruction of the next level finer resolution mesh
M j+1 from M j .

It is important to note the following property for sup-
port regions. Let W1 = {w1, w2, ..., wn} be a set of n
wavelet coefficients that covers the region R1 and let W2 =
{w1, w2, ..., wm} be another set of m wavelet coefficients
that covers the region R2, where m ≤ n. Here, W2 ⊆ W1

and R2 ⊆ R1. If a new wavelet coefficient wk, k ≥ n, is
added to both W1 and W2, and the regions affected in R1

and R2 by the support region of wk are R
′

1 and R
′

2, respec-
tively, then R

′

2 is also a subset of R
′

1 that is R
′

2 ⊆ R
′

1. This
observation is trivial from the following set of simpler obser-

15

1

2

3

2

1

(a) (b)

r

r

r
r

r

rr4 4

Fig. 11 Regions affected by the support region r4 of a wavelet

10

10 9
A

A
87

A

A
6

A
5

A
4 3

A

A
2

A
1

(b)(a)

3

6 5

2

4

1

4
7

2

8

5

11
3

12

6

13

1

14

915

A

Fig. 12 Minimum bounding rectangles of support regions of (a) level
1 wavelets of Figure 1(c), and (b) level 2 wavelets of Figure 1(d).

vations. Let each wavelet coefficient wi represent a region
ri. Then we have R1 = ∪n

i=1ri and R2 = ∪m
i=1ri. When wk

is added to the set W1, the affected region is R
′

1 = R1 ∩ rk.
Similarly, we have R

′

2 = R2 ∩ rk. Since R2 ⊆ R1, then
R

′

2 ⊆ R
′

1.
For example, Figure 11(a) shows the support regions

r1, r2, r3 for the wavelet coefficients w1, w2, w3, respec-
tively, and the region affected by the support region r4 of
w4 is shown as a filled rectangle, while Figure 11(b) shows
the support regions r1, r2 of wavelets w1, w2, respectively,
and the portion of original region affected by the support re-
gion of w4 is shown as filled polygons. This property of a
support region of a wavelet helps us design an efficient in-
dex that facilitates the efficient retrieval of data for a given
query window.

4.3.2 Indexing Wavelets Based on the Support Region

We use a 4D R-tree to index wavelet-based representa-
tions of 3D objects. We utilize coefficient values and sup-
port regions of wavelets for indexing the data. The first
three dimensions represent the three axes x, y, z that are
used to index the Minimum Bounding Box (MBB) of
the support region of each wavelet, and the fourth di-
mension represents the value of the wavelet coefficients
w. Hence, each wavelet coefficient represents a region in
the x, y, z, w plane. For simplicity of the presentation, we
show the examples for a 2D object. For instance, in Fig-
ure 12(a), for a 2D object the Minimum Bounding Rectan-
gles (MBRs) for the support regions of wavelets represent-

C

B

A

w

y

x

0.6

1.0

0.0
1

1

1

Fig. 13 A part of the R-tree (3D) based index.

ing the vertices 4, 5, and 6 are shown as [A1, A2, A3, A4],
[A1, A2, A5, A6], and [A1, A2, A5, A6], respectively. Simi-
larly, MBRs of level two wavelets are shown in Figure 12(b),
where [A7, A8, A9, A10] is the MBR for the support region
of vertex 7. These examples show that the bounding rectan-
gles can enclose two-dimensional support regions. Let the
value of the coefficients (w) for level one wavelets repre-
senting vertices 4, 5, and 6 are 0.7, 0.6, 0.8, respectively,
and the value of the coefficients for level two wavelets rep-
resenting vertices 7-15 fall within the range [0.0-0.3]. Then
we can index these wavelets using a 3D R-tree, where a part
of the index is shown in Figure 13. Here, leaf node B con-
tains all wavelets coefficients whose values fall within the
range [0.0-0.6) and support regions are enclosed within the
rectangle (x1×y1). Thus all wavelets that represent vertices
7-15 are stored in node B. Similarly, leaf node C contains all
wavelet coefficients whose values fall within the range [0.6-
1.0]. In this case wavelets representing vertices 4,5, and 6 are
stored in leaf node C. Then leaf nodes B and C are grouped
together to form an index node A.

Figure 14 shows an example for representing wavelet co-
efficients indexed by a 3D R-tree for 2D objects. In this ex-
ample, x and y dimensions are used to represent MBRs of
wavelets, and w corresponds to the coefficient value for the
wavelet. Figure 14 shows MBRs with dotted boundary lines
for three different w values 0.0, 0.3, and 0.7.

To retrieve objects with the highest resolution, a
client requests a window query Q(R,wmax, wmin), setting
wmax = 1.0 and wmin = 0.0. These values of wmin and
wmax results in retrieving all wavelet coefficients irrespec-
tive of their values, such that their MBRs intersect with the
query window R. On the other hand, if a client needs to re-
trieve objects with the lowest resolution it sets wmax = 1.0
and wmin = 1.0. In this case, it only retrieves the wavelet
coefficients having value 1.0 as these coefficients are nec-
essary for representing the overall shape of objects with the
lowest resolution. In addition, the client can set any appro-
priate values for wmax and wmin to support progressive re-
trieval of objects. Let us assume a scenario where a client
has all the coefficients having values greater than 0.7 for a
given query window R. If the client requires objects with the

16

y

x

R

w

w

w

w = 0.0

 = 0.3

 = 0.7

Fig. 14 Wavelet coefficients and support regions in our index

finest resolution for the same query, it only needs to send a
query Q(R, 0.7, 0.0) as shown in Figure 14.

In general, our motion-aware access method gives the
minimum number of wavelet coefficients necessary for the
query Q. Let R1 = {r1, r2, ..., rn} be the set of sup-
port regions of n wavelet coefficients retrieved using our
motion-aware index for the query Q. The set contains all
the support regions that fall inside or intersect with Q. As-
sume that another method gives a set of support regions
R2 = {r1, r2, ..., rn} − {rk} of n − 1 wavelet coefficients
for the query Q. Here, 1 ≤ k ≤ n, and hence, R2 ⊂ R1. In
this case, the wavelet coefficient wk associated with the sup-
port region rk is absent. Therefore, objects inside the region
R∩rk lack some details that would otherwise be contributed
by the wavelet coefficient wk. Hence, any method that re-
trieves less data than that of our method is not sufficient for
visualization.

We only retrieve wavelet coefficients whose support re-
gions’ MBRs intersect with the query window. There may
be only a few coefficients whose MBRs intersect with the
query window but the actual support regions do not intersect
with the query window (e.g., when the query window inter-
sect one corner of an MBR). In such cases, these coefficients
can be easily discarded by looking into the actual support re-
gions of these coefficients. In our implementation, we ignore
these coefficients as the number of such coefficients is neg-
ligible in comparison to the total number of coefficients re-
trieved and these coefficients do not affect the results. Thus
in our case, post-filtering of the data is not CPU-intensive.

Though the proposed index offers efficient retrieval of
objects in multiple resolutions for a static window query,
it is not optimized for a continuous query. Furthermore, the
proposed index cannot utilize the behavior of grouped move-
ment for multiple co-located clients. In the next subsection,
we introduce pathways into the index to accelerate data re-
trieval for continuous queries, especially in the presence of
multiple clients.

R12
Q5

1Q R7

R6

5R

4R

R3

1R

R2

Q2
3Q

Q4

Fig. 15 Pathways and R-tree nodes.

4.3.3 The Linked R-tree: an Improvement to the Index

Using the above R-tree based motion-aware index, we op-
timize the I/O costs while retrieving objects with necessary
resolutions based on the speed of a client. However, a con-
tinuous query can be seen as a sequence of snapshot queries
and each snapshot query needs to traverse from the root to
the leaf nodes of the index for the results. Repeated and long
traversal of the index results in high I/O costs, especially
when there is a large of number clients in the system. As we
have mentioned before, in many applications it is common
that the clients move in a group and follow common path-
ways. In such cases, we observe that a client can take the ad-
vantage of the traversal of the index performed by previous
snapshot queries posed by itself or other clients on the same
pathways. Since R-tree based index (Section 4.3.2) does not
support any traversal among nodes, the query processing
cannot take the advantage of continuous exploration of the
data space by clients. Therefore, we propose the Linked R-
tree (LR-tree) by introducing pathways to the index struc-
ture. These pathways can facilitate continuous traversal of
data nodes in an R-tree. The LR-tree allows a single client
or a group of clients to exploit the knowledge of the most
recently accessed nodes to explore their adjacent nodes with
significantly reduced I/O access.

A simple motivating scenario for the LR-tree is shown
in Figure 15. In this figure, a continuous query from a mov-
ing client is represented by a sequence of five snapshot
queries Q1, Q2, Q3, Q4, and Q5. The pathway of the client
is shown by an arc within the data space represented by the
region R12. In this example, objects are grouped into leaf
nodes (level 0) R3, R4, R5, R6,and R7. These leaf nodes
are recursively grouped to form a sub-tree rooted at node
R12. A portion of the R-tree that indexes the data for region
R12 is shown in Figure 16 (without dotted links among leaf
nodes).

In this example, at each instant of time (e.g., t1), the
server receives a snapshot query (e.g., Q1) and traverses the
index tree from the root to one or more leaf nodes to re-
trieve the result. Since the index structure does not allow to
visit spatially adjacent leaf nodes from the client’s previous

17

Level 2

Level 1

Level 0

2R

12R

7RR65RR43R

R1

cp

Fig. 16 LR-tree with pathways at level 0.

position, it cannot capitalize on the traversal done by this
previous snapshot query. Thus a large I/O cost is incurred.
Moreover, the same pathway can also be used by a group of
clients. In such cases, for each of the snapshot queries from
each individual client, the server needs to traverse the index
tree from the root to leaf nodes for the results.

In our proposed LR-tree, we modify the R-tree struc-
ture such that each leaf node maintains links to its spatially
adjacent leaf nodes in different directions (as shown by dot-
ted lines in Figure 16). In addition, a pointer cp to the most
recently accessed leaf node is maintained. In this way subse-
quent queries can follow the path by directly accessing the
leaf node accessed by the previous snapshot query. In this
example, at time t1, query Q1 needs to traverse from the
root to the leaf node R4 to retrieve objects that fall inside
Q1. cp is then updated with the address of R4. Next query
Q2 can use this pointer to access the most recently accessed
leaf block R4. From this node, subsequent queries can then
explore adjacent leaf nodes according to the moving direc-
tion of the client. In this way, for all consecutive queries
Q3-Q5, the server can avoid the traversal from the root to
leaf nodes, and can access the right block of data using less
number of I/Os.

The above index structure results in reduced I/O costs.
However, the reduction in I/O costs comes at the price of
maintaining a large number of links at each of the leaf nodes.
For example, in Figure 16, all level 0 nodes (i.e., leaf nodes)
maintain links to their corresponding neighbors. In this sim-
ple two dimensional tree, leaf nodes R3, R4, R5, R6,and R7

need to maintain 2, 3, 4, 3, and 2 links, respectively.
Considering the trade-off between required I/Os and the

number of links, we propose a heuristic to reduce the re-
quired number of links while providing efficient traversal of
the index for a continuous query. Before going to the details,
we first define the constructs of the heuristic.

Definition: (Visibility) Let MBRN1 and MBRN2

be the minimum bounding rectangles of two nodes N1

and N2 of an R-tree, respectively. For any node x,
MBRx.imin and MBRx.imax are the lower and upper
bounds, respectively, of the MBRx for any dimension i,
1 ≤ i ≤ d. Then node N1 is visible to node N2 if
and only if there is an overlap between [MBRN1 .imin,

MBRN1 .imax] and [MBRN2 .imin,MBRN2 .imax] for
any dimension i, or there is no other set of k nodes, such
that

⋃
1≤J≤k{[MBRJ .imin,MBRJ .imax]}, completely

obstructs the view of [MBRN1 .imin,MBRN1 .imax] from
[MBRN2 .imin,MBRN2 .imax].

For example (Figure 15), R3 and R4 are visible to each
other, whereas, R3 and R6 are not visible to each other be-
cause nodes R4 and R5 completely hide R3 from R6.

Definition: (Neighbors) Node N1 is a neighbor of node
N2 if two nodes are at the same level of an R-tree index and
N1 is visible from N2.

For example, in Figure 15, node R5 has four neighbors
R3, R4, R6, and R7.

Based on the above definitions, we propose the follow-
ing heuristic.

Heuristic 1: Only nodes of one level maintain links to
their neighbors of the same level.

In our work, we use level 1 nodes to apply this heuristic.
In a practical application of the R-tree, each level 1 node
covers a larger region and thus has a smaller number of
neighboring nodes than a level 0 node. Furthermore, each
level 1 node can directly access the data/leaf nodes that fall
inside that node. Thus links at level 1 nodes can reduce the
number of links as well as offer direct access to the data
nodes and thus result in reduced I/O costs.

According to the above heuristic, if the tree (in Fig-
ure 16) maintains links at level 1 nodes (R1 and R2) instead
of level 0 nodes, the number of links are reduced from 14
to 2. The reduction of links is more prominent for a higher
dimensional index with a large database.

Index nodes at level 1 maintain links to their neighbors
in all directions (x, y, z, w). The links in spatial dimension
(x, y, z) facilitate faster traversal of the index when clients
move in the space. Since the nodes at level 1 also main-
tain links with the neighbors in w dimension, it also offers
the client to retrieve objects in multiple resolutions progres-
sively even if the client does not move in any spatial di-
mension. For example, this occurs when a client’s view is
swept through a scene and then focused steadily at a fixed
position. For the region in focus, the client needs to pro-
gressively retrieve more and more details of the objects with
higher resolutions. In this case, the links in w dimension al-
low the system to drill down the index for retrieving wavelet
coefficients of lower w values for objects with higher reso-
lutions. Therefore, our proposed LR-tree based index struc-
ture supports the traversal of data nodes based on the overall
movement characteristics (e.g., spatial or speed) of clients
and thus can reduce the data retrieval costs by optimizing
I/O access. In our proposed index, a node at level 1 main-
tains both the id, and the MBR of a neighbor as a link to that
neighbor. So when a query visits a level 1 node, it can check
whether the query intersects the MBRs of neighbors before
accessing these neighboring nodes and thus save I/O costs.

18

We summarize the data retrieval process in the following al-
gorithm.

Algorithm 3: QueryProcessingUsingLRtree
rvnl← MRV Nodes();3.1
if (Intersects(Qt, rvnl) then3.2

Recursively visit intersecting neighbors;3.3
else3.4

Recursively visit intersecting nodes from the root node;3.5

Algorithm 3 shows the steps of the query processing for
the LR-tree . Let Qt be a query from a client at time t in the
server. Let rvnl be the list of most recently visited nodes of
level 1 of the index tree. This list contains the level 1 nodes
visited by the clients at time t−1 or by the preceding clients
at time t. This allows not only a single client but also a group
of clients to utilize common pathways. Initially, at time 0,
rvnl is an empty list. If the query Qt intersects with any of
the nodes in rvnl, it recursively visits all of the neighboring
nodes and their leaf nodes intersected by Qt to retrieve the
data. If there is no intersecting node in rvnl, then the Qt

recursively visits the intersected nodes starting from the root
to the leaf nodes, and returns the results.

The proposed LR-tree allows the continuous exploration
of objects using the links based on spatial adjacency, and
also links the data blocks having adjacent resolutions of the
same object. It is noted that, in many database applications,
the top two levels of an index are generally cached to reduce
the I/O costs. Though the caching of top two levels of an
index reduces the cost of searching for a particular region,
processing of continuous queries in a large database still
requires the scanning of some portion of the disk-resident
index. Therefore, in our proposed linked-index, instead of
maintaining links on top levels, we prefer links at lower lev-
els of the index. We argue that our approach of linking the
R-tree nodes that are disk-resident reduces the I/Os by al-
lowing a continuous query to sequentially scan the index for
3D objects. We see in our related experiments that the main
benefits of our approach is visible when a group of clients
(e.g., a tram tour) visit the same nodes sequentially follow-
ing these links. In our experiments, the linked level is regu-
larly the fourth level from the root.

For fast moving clients, our approach still retrieves all
the objects in the traversed space but with a very low resolu-
tion. Thus, we only maintain links with the neighboring visi-
ble nodes of a node. However, there can be other application
scenarios, where the client can jump far away between two
snapshots. In those scenarios, in addition to the links with
neighboring nodes, a node can maintain links with nodes
at far away locations in the space. For example, a node can
maintain successor links with nodes which are at 1, 2, 4, 8,...
unit distances apart from the node (eventually covering the

whole data space), and the number of nodes for a particu-
lar distance can be selected as inversely proportional to the
distance of those nodes. Thus, when a client jumps from its
current position, based on its travel distance, the algorithm
can choose an appropriate successor link to a distant node
and progressively look for objects starting from that distant
node. The detailed analysis of this technique will be a topic
of future study.

5 Experimental Study

We have separated the experimental evaluation into two
parts. In the first part, we evaluate the system for a sin-
gle client, and in the second part, we evaluate our multi-
query optimization techniques in the presence of multiple
clients. For the first part, we present the evaluation of client-
side continuous data retrieval and buffer management tech-
niques, and server-side motion-aware index only assuming
a single client in the system at a particular time. We then
combine these three motion-aware techniques and compare
it with a naive system to show the overall performance. For
the second part, we first independently evaluate each of the
proposed server-side multi-query optimization techniques:
group query processing, buffer management, and the LR-
tree based indexing. Then we combine these three compo-
nents and compare the performance of our system with a
naive system for multiple simultaneous queries. We con-
clude the experimental section with a discussion showing
that similar to speed, other characteristics of a client such as
distance of objects from the client can be utilized to further
optimize the performance.

5.1 Experimental Setup

Our experiments are set up based on a realistic augmented-
reality city tour. We create tours augmented with 3D objects
(e.g., representing old buildings in cities) that are uniformly
distributed throughout the data space. We vary the data set
sizes as 20MB, 40MB, 60MB, and 80MB by placing 100,
200, 300, and 400 objects in the data space. The default data
set size in our experiments is 60MB. In addition, we have
collected and approximated the head movements of tourists
in two different settings: (i) tram tours, (ii) pedestrian tours.
When a client moves from a given starting point towards a
destination, it connects to the server through wireless links
to retrieve the 3D objects. We also vary the length and the
width of the query window by taking 5%, 10%, 15%, and
20% of the length and the width of the total data space,
where 10% is the default for our experiments. A client is-
sues a 3D window query with depth representing its view
to retrieve 3D objects from the server. In our implementa-
tion we place all 3D objects at altitude zero. Since in our

19

scenario z dimension of 3D objects is small comparing to
other two spatial dimensions x and y, the range for the third-
dimension (z) of the view is set to 0.0-1.0 that covers the
entire range of that dimension. All objects that fall inside
the query window are retrieved. We retrieve all objects in-
side a given query window with the same resolution in our
experiments presented in Sections 5.2 and 5.3 regardless of
the depth of objects inside a query window. In the last set
of experiments (Section 5.4), we also consider the distance
of the objects from the client inside a query window and re-
trieve objects with different resolutions depending upon the
objects’ positions inside a given query window.

We assume that the speed of the client reveals the detail
of information that the client is willing to consume; thus, in
our experiments the speed is expected to be inversely pro-
portional to the value of the wavelet coefficients retrieved.
All coefficient values are normalized to the range [0.0,1.0].
When the speed is at a normalized maximum (i.e., 1.0), only
the coefficients that have the highest geometric influence
need to be retrieved. Since all the vertices in the lowest reso-
lution version of an object have coefficient values 1.0, these
vertices are retrieved for the clients with the highest speed. If
the speed is very slow (i.e., close to 0.0), all the coefficients
between 0.0-1.0 are retrieved, leading to all the objects be-
ing retrieved with the highest resolution.

5.2 Part I: Evaluation for a Single Client

For this part of experiments we evaluate our system perfor-
mance from a single client point of view. We first evaluate
our proposed client-side motion-aware continuous retrieval
technique. Then we evaluate motion-aware buffer manage-
ment that reduces the high latency of wireless links. After
that we present the evaluation of our proposed motion-aware
index and measure the required I/Os for retrieving data at
varying speed. We finally compare the average query re-
sponse time of a client that uses above mentioned motion-
aware techniques with that of a naive system.

For a single client setting, we assume that there is only
one client in the system at a particular instant of time. So,
we take 10 different tours, and run the experiments for each
of these clients’ tours independently. In each tour, a client
moves from a given starting point towards a destination, and
retrieves 3D objects from the server through a wireless link.
Parameters for a single client setting are summarized in Ta-
ble 1, where default parameters are shown in bold.

Parameter Value
Bandwidth of Wireless Links 256Kbps
Latency of Wireless Links 200ms
Buffer Size 16K, 32K, 64K, 128K
Data Distribution Uniform, Skewed

Table 1 Parameters and their values for a single client setting

15

12

9

6

3

0
 1 0.8 0.6 0.4 0.2 0.001

D
a

ta
 R

e
tr

ie
v
e

d
 (

K
B

)

Speed

Tram
Walk

Fig. 17 Effect of speed on data retrieval

30

25

20

15

10

5

0
 1 0.8 0.6 0.4 0.2 0.001

D
a
ta

 R
e
tr

ie
v
e
d
 (

K
B

)

Speed

5%
10%
15%
20%

30

25

20

15

10

5

0
 1 0.8 0.6 0.4 0.2 0.001

D
a
ta

 R
e
tr

ie
v
e
d
 (

K
B

)

Speed

20M
40M
60M
80M

(a) Query size (b) Data set size

Fig. 18 Effect of query size and data set size on data retrieval

5.2.1 Evaluation of Motion-aware Continuous Retrieval

In the first set of experiments, we show the effect of the
speed of the clients on continuous data retrieval. The costs
of data retrieval can be reduced significantly by selecting
objects with appropriate resolutions according to the speed
of clients. We measure the amount of data retrieved by
clients traveling similar distances at varying speeds. Fig-
ure 17 shows the average amount of data retrieved by clients
on trams and on foot at different speeds (normalized to
0.001-1.0). Since the size of the objects with the highest res-
olution is higher than that of the objects with the lowest res-
olution, the data size required for clients moving with the
highest speed should be significantly less than that of clients
that move slowly. Figure 17 also validates this.

In Figure 18(a), we measure the average amount of data
retrieved for tram tours by varying the length and the width
of the query size 5%, 10%, 15%, and 20% of the length
and the width of the total data space. In Figure 18(b), we
vary the data set size as 20MB, 40MB, 60MB, and 80MB
and measure the average amount of data retrieved for tram
tours at varying speeds. These figures show that the amount
of retrieved data decreases significantly with the increase of
speed for different query and data set sizes. We see that for
large query windows and data sizes, absolute benefits of our
multi-resolution technique are more pronounced.

5.2.2 Evaluation of Client-side Buffer Management

In the second set of experiments, we compare our client-side
motion-aware buffer management technique with a naive ap-
proach where all the surrounding regions of a query window

20

 1

 0.8

 0.6

 0.4

 0.2

 0
128643216

C
a
c
h
e
 H

it
 R

a
te

Buffer Size (KB)

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 1

 0.8

 0.6

 0.4

 0.2

 0
128643216

D
a
ta

 U
ti
liz

a
ti
o
n

Buffer Size (KB)

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 19 Effect of buffer size

are buffered with equal probabilities. We compare the cache
hit rate (which is a measure of reduction in latency), and the
data utilization (which is a measure of data transfer over-
heads due to pre-fetching) of the motion-aware buffer man-
agement scheme to the naive buffer management scheme.

Effect of Buffer Size: The more buffer space a client has,
the more data it can put into the buffer. However, to fill a
large buffer, a client pre-fetches more data by predicting po-
sitions of the query window far into the future. Hence, there
is a chance that unnecessary data may be pre-fetched with
long term motion predictions. In this experiment, we vary
the buffer size from 16KB to 128KB (Figure 19). The speed
of the clients may also slightly vary at different parts of a
tour for this experiment as the data uses a seed travel pattern
collected from movements of real-world clients.

Figure 19(a) shows that the cache hit rate increases with
the increase of buffer size because a larger buffer can hold
more data. For a 16K buffer, the cache hit rate for tram tours
and pedestrian tours are 75% and 72% for our motion-aware
technique, whereas, for a 128K buffer, the cache hit rates
are 92% (tram) and 88% (walk). Tram tours give superior
cache hit rates because these tours can be predicted more
accurately than the pedestrian tours. We also observe that the
cache hit rate for the motion-aware approach is always better
than that of the naive approach, i.e., on average 32% and
15% better for tram tours and pedestrian tours, respectively.

An efficient buffer management scheme should avoid
pre-fetching data that will not be used by the client. From
this point of view, the used portion of the total pre-fetched
data is one of the major metrics for a good buffer man-
agement scheme. Figure 19(b) compares the data utiliza-
tion of the motion-aware scheme and the naive scheme for
both tram and pedestrian tours. The data utilization in our
motion-aware scheme is 51% for trams and 50% for walk-
ing with a 16K buffer. The utilization drops to 38% (tram)
and 35% (walk) for a 128K buffer. Hence, with the increase
in buffer size the data utilization decreases as the client can-
not make accurate predictions far into the future. The data
utilization in the naive buffer management scheme is 14%
(tram) and 23% (walk) for a 16K buffer, whereas, the utiliza-
tion is 7% (tram) and 9% (walk) for a 128K buffer. Hence,

 1

 0.8

 0.6

 0.4

 0.2

 0
 1 0.8 0.6 0.4 0.2 0.001

C
a

c
h

e
 H

it
 R

a
te

Speed

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 1

 0.8

 0.6

 0.4

 0.2

 0
 1 0.8 0.6 0.4 0.2 0.001

D
a

ta
 U

ti
liz

a
ti
o

n

Speed

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 20 Effect of speed

the data utilization in our approach is always better than the
naive approach (on average 4 times and 2 times for tram
tours and pedestrian tours, respectively).

Effect of Varying Speed: Our buffer management scheme
also uses a multi-resolution representation of objects. Fig-
ure 20 shows that, the cache hit rate increases from 64%
to 91% (tram) and 61% to 89% (walk) with the increase of
speed as more data can be buffered with lower resolutions.
However, due to long distance predictions, we see that the
data utilization is less at higher speeds than that of lower
speeds. Our motion-aware approach achieves higher (on av-
erage 33% for tram tours and 10% for pedestrian tours)
cache hit rates. We also have a higher data utilization (35%-
51%) in comparison with that of the naive approach (7%-
23%).

5.2.3 Evaluation of Motion-aware Indexing

In the third set of experiments, we evaluate our ad-
vanced indexing and access strategy on wavelet-based multi-
resolution objects in comparison to the simpler index (naive
approach) proposed in Section 4.3. We have implemented
R∗-tree [30], which is a variant of R-tree and shows superior
performance over other R-tree variants. In our implementa-
tion, we use a 3D (x, y, w) R∗-tree, and omit the z dimen-
sion, because in our scenario z dimension is small compar-
ing to other two spatial dimensions x and y. The page size
and the node capacity of the R∗-tree are set to 4K and 20,
respectively.

Effect of Varying Speed: First, we observe the effect of
speed while retrieving multi-resolution objects using our
motion-aware index. Figure 21 shows that when the speed
is high, i.e., in the range of 0.9-1.0, we require approxi-
mately 8-11 times less I/O costs than the costs for clients
moving at the lower speeds (i.e., 0.001). This is because
most of the wavelet coefficients have very small values and
have almost insignificant geometric influence on the geom-
etry of objects, i.e., leading to these coefficients not being
retrieved for higher speeds. Our index structure avoids the
retrieval of any extra data than required, whereas the sim-
plistic approach requires a larger amount of retrievals. Fig-

21

 500

 400

 300

 200

 100

 1 0.8 0.6 0.4 0.2 0.001

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Speed

Motion Index (Tram)
Motion Index (Walk)
Naive Index (Tram)
Naive Index (Walk)

Fig. 21 Effect of speed

 300

 250

 200

 150

 100

 50

 20 15 10 5

A
v
e
ra

g
e
 I
/O

 A
c
c
e
s
s
 (

p
e
r

q
u
e
ry

)

Query Size (%)

Motion Index (Tram)
Motion Index (Walk)
Naive Index (Tram)
Naive Index (Walk)

 300

 250

 200

 150

 100

 50

 0
80604020

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Data Set Size (MB)

Motion Index (Tram)
Motion Index (Walk)
Naive Index (Tram)
Naive Index (Walk)

(a) Query size (b) Data set size

Fig. 22 Effect of query and data set sizes

ure 21 shows that our motion-aware access method incurs
much less (21%-52%) I/O costs than the naive approach.

Effect of Query and Data Set Sizes: In this experiment,
we vary the query size and keep the data set size at 60MB
and the speed at 0.5 for each of the tours. Figure 22(a) shows
that the data retrieval costs increase with the size of the
query. Furthermore, our motion-aware access strategy incurs
on average 36% less I/O costs than the naive approach. The
improvement is more prominent for larger query size, which
is up to 49%, because the server needs to access higher num-
ber of nodes for a larger query than that of a smaller query.

We also show the scalability of our index and access
strategy by varying the data set size from 20M to 80M (Fig-
ure 22(b)). In this case the query size is fixed at 10% and
the speed at 0.5. The results show that as the data size in-
creases, the cost difference is more pronounced between our
approach and the naive method. The improvement is 59%
for the largest data set size of 80MB.

5.2.4 System Performance

In this set of experiments, we compare the overall perfor-
mance improvement of our motion-aware approach with a
naive non-multi-resolution technique from a single client’s
perspective.

Our motion-aware approach consists of client-side con-
tinuous data retrieval and buffer management techniques,
and server-side motion-aware R∗-tree based index. To ob-
tain a naive system, we always retrieve objects with the high-
est resolution and we use an R∗-tree [30] to index objects
without using multiple resolutions. We also use a simple

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Speed

Motion-aware schemes
Naive schemes

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Speed

Motion-aware schemes
Naive schemes

(a) Tram (b) Walk

Fig. 23 Query response time (uniform)

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Speed

Motion-aware schemes
Naive schemes

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Speed

Motion-aware schemes
Naive schemes

(a) Tram (b) Walk

Fig. 24 Query response time (zipf)

Least Recently Used (LRU) scheme for caching. In these
experiments, each client travels for the same duration of
time at varying speeds. Hence, when a client is traveling at
a higher speed, it covers a larger area in the city than that
of a slowly moving client. We measure the average response
time for queries (with size 5%) from the clients moving at
different speeds. Experimental results in Figure 23 and Fig-
ure 24 show that, for both uniform and Zipfian data sets, the
query response time for both tram and pedestrian tours in our
motion-aware approach is on average 23 times less costly
than that of the naive approach at high speeds (i.e., 1.0). The
improvement is on average 4 times when the speed of the
client is low (i.e., 0.001). Thus these results reveal that the
performance of the naive system degrades with the increase
of speed, because a large number of objects need to be re-
trieved in a short period of time. However, the motion-aware
approach can cope with the speed by retrieving lower reso-
lution objects. The tram tours show a slightly lower response
time than that of pedestrian tours because tram tours can be
predicted more accurately.

5.3 Part II: Evaluation for Multiple Clients

In this second part, we evaluate our server-side multi-query
optimization techniques, where the goal is to reduce I/O
costs while processing simultaneous queries in the presence
of multiple clients. We use the number of disk pages ac-
cessed per query as our performance metric. If we need to

22

evaluate the overall cost in terms of time, we can charge
10ms for each page access as in [12, 13].

In this section, we first present the evaluation of motion-
aware group query processing techniques that reduce I/O
costs significantly. Then, we evaluate our server-side buffer
management scheme that also reduces the I/O costs by pre-
fetching and caching the data for the available buffer. Next,
we evaluate the LR∗-tree based index (we use R∗ variant
of the R-tree family), and it shows significantly improved
I/O access over the R∗-tree based motion-aware index. Fi-
nally, we combine all these three components and compare
this combined approach with a naive approach by varying
the number of clients in the system.

In the following sets of experiments, for multiple clients,
we use the collected pathways of tram and pedestrian tours
as described in the single client setting. Since the movement
path of each tour is collected from a single client (also called
the seed client), to simulate the group behavior in realistic
grouped movements, we use a uniform random number gen-
erator to place a number of clients in the vicinity of the seed
client (i.e., in a circular area centered at the position of the
seed client with a radius of 10 units) to form a group that fol-
lows the same path of the tour. For each client in the group,
we randomly vary the speed within the confined region of
the group as it moves along the movement path. Though all
the clients in a group use the same movement path, the direc-
tion of the movement within a group slightly varies among
clients. For example, one client may look straight, whereas
another client may look at one side of the path, and a third
client may look at the other side of the path.

We vary the number of clients in a group to generate
groups with different sizes for each tour. We vary the num-
ber of clients in a group from 5 to 25. Also, we generate
a number of groups in the system by randomly placing the
pathways of each tour in the data space. Since we have col-
lected the pathways for 10 different tours in the single client
setting, we have also simulated 10 different groups in the
following experiments.

Parameters for the following experiments are summa-
rized in Table 2, where the default parameters are shown
in bold.

Parameter Value
Group size 5, 10, 15, 20, 25
Buffer Size 128K, 256K, 384K, 512K
Pre-fetch Interval 5s, 10s, 15s, 20s

Table 2 Parameters and their values in multiple clients setting

5.3.1 Evaluation of Group Query Processing

In this set of experiments, we evaluate our proposed
group query processing techniques: sequential group query

 250

 200

 150

 100

 50

 0
 25 20 15 10 5

A
v
e
ra

g
e
 I
/O

 A
c
c
e
s
s
 (

p
e
r

q
u
e
ry

)

Group Size

PGQP
SGQP

SQP

 250

 200

 150

 100

 50

 0
 25 20 15 10 5

A
v
e
ra

g
e
 I
/O

 A
c
c
e
s
s
 (

p
e
r

q
u
e
ry

)

Group Size

PGQP
SGQP

SQP

(a) Tram (b) Walk

Fig. 25 Effect of varying group size

processing (SGQP) and parallel group query processing
(PGQP), and compare these techniques with sequential
query processing (SQP). We expect that the average I/O ac-
cess can be reduced by grouping co-located clients. Since
in this experiment, our main purpose is to show the per-
formance improvement for the grouped behavior of clients,
we run the experiments for a single group in the system at
a particular time. If there are multiple simultaneous groups
in the system, each individual group can be identified from
the overlapping behavior of clients and then we can execute
each group separately using our proposed group query pro-
cessing techniques.

Effect of Varying Group Size: In this experiment, we
vary the size of the group from 5 to 25. Figures 25(a) and
(b) show that the average I/O access per query decreases
with the increase of group size. Since there are more over-
laps among queries for a larger group than that of a smaller
group, our group processing techniques outperform SQP by
a larger margin for a larger group. Experimental results show
that the performance of PGQP is the best among three tech-
niques, and SGQP performs slightly worse than PGQP be-
cause each query is executed independently for SGQP. For
both tram and pedestrian tours, PGQP outperforms SQP by
5 times on average, and SGQP takes approximately on over-
age 2 times less I/Os than that of SQP.

Effect of Varying Query Size: In Figure 26(a), we vary
the query size from 5% to 20%, and the group size is fixed
at the average value of 15. Experimental results show that
the average I/O access per query increases with the increase
of the query size. We also observe that both group query pro-
cessing techniques (i.e., PGQP and SGQP) outperform the
sequential approach with greater margins for larger query
sizes as overlapping among queries increases. Figure 26(a)
shows that PGQP constantly outperforms SQP by 5 times on
average, and SGQP performs on average 2 times better than
SQP.

Effect of Varying Data Set Size: We vary the data set
size from 20MB to 80MB and the group size is again set
to the average value 15. Figure 26(b) shows that the aver-
age I/O access per query increases with the increase of data
set size. The results also show that PGQP performs the best,

23

 500

 400

 300

 200

 100

 0
 20 15 10 5

A
v
e
ra

g
e
 I
/O

 A
c
c
e
s
s
 (

p
e
r

q
u
e
ry

)

Query Size (%)

PGQP
SGQP

SQP 250

 200

 150

 100

 50

 0
 80 60 40 20

A
v
e
ra

g
e
 I
/O

 A
c
c
e
s
s
 (

p
e
r

q
u
e
ry

)

Data Set Size (MB)

PGQP
SGQP

SQP

(a) Query Size (b) Data Set Size

Fig. 26 Effect of varying (a) query size, and (b) data set size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 512 384 256 128

C
a

c
h

e
 H

it
 R

a
te

Buffer Size (KB)

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 512 384 256 128

D
a

ta
 U

ti
liz

a
ti
o

n

Buffer Size (KB)

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 27 Effect of buffer size

and PGQP requires on average 5 times less I/Os than that
of SQP for varying data sizes. Moreover, SGQP performs
approximately 2 times better than SQP.

5.3.2 Evaluation of Server-side Buffer Management

In this set of experiments, we compare our server-side
motion-aware buffer management technique with a naive
approach. In the naive approach, the server allocates buffer
for a random set of clients, where for each of these clients
surrounding regions of the corresponding query window are
buffered with equal probabilities. We compare the cache hit
rate (which is a measure of reduction in latency for I/Os),
and the data utilization (which is a measure of data re-
trieval overheads due to pre-fetching) of our motion-aware
buffer management scheme to the naive buffer management
scheme.

We vary the buffer size, number of clients, speed, and
pre-fetching cycle for different sets of experiments to show
the effectiveness of our approach. Since the clients’ move-
ments are taken from different groups of tram and pedestrian
tours, we select a random number of clients from each group
to form a combined tour.

Effect of Buffer Size: In this experiment, we vary the
buffer size from 128KB to 512KB (Figure 27). Experimen-
tal results show that the increase of buffer size increases the
cache hit rate. The increased cache hit rate results in the re-
duction of I/O costs as well as access time because more data
can be found in the server buffer. Figure 27(a) shows that, in
our motion-aware technique, the cache hit rate for tram tours
and pedestrian tours are 53% and 47% for a 128K buffer,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 40 30 20 10

C
a

c
h

e
 H

it
 R

a
te

Number of Clients

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 40 30 20 10

D
a

ta
 U

ti
liz

a
ti
o

n

Number of Clients

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 28 Effect of number of clients

whereas, 93% (tram) and 98% (walk) for a 512K buffer. We
also observe that the cache hit rate for the motion-aware ap-
proach is on average 3 times better than that of the naive
approach for both tram tours and pedestrian tours. The rea-
son is that the naive approach does not consider the grouped
movements and buffers the data for clients independent of
each other.

Figure 27(b) compares the data utilization of the motion-
aware scheme and the naive scheme for both tram and pedes-
trian tours. The data utilization in our approach is always
better than that of the naive approach (on average 3 times
better for both tram tours and pedestrian tours). We also ob-
serve that in our approach with the increase of the buffer
size the data utilization decreases as the server cannot make
accurate predictions far into the future. The data utilization
in our motion-aware scheme is 70% for trams and 91% for
walking with a 128K buffer. The utilization drops to 42%
(tram) and 52% (walk) for a 512K buffer. We have already
observed that for a single client setting, the data utilization
is higher for tram tours than that of pedestrian tours because
the movement of a client can be predicted more precisely for
tram tours. However, in this experiment for multiple clients,
we observe that the data utilization in pedestrian tours is
higher than that of tram tours. This is because in our setting
the combined view of clients for tram tours cover a larger
area and there are less overlaps among the queries than those
of pedestrian tours.

Effect of Number of Clients: In Figure 28, we vary the
number of clients from 10 to 50, and measure the cache hit
rate and the data utilization. As the number of clients grows,
there are more regions to visit by the clients at a particular
instant of time. However, for a fixed size buffer the server
can only buffer the region with higher probabilities. Thus
the higher the number of clients, the more the clients need to
fetch data directly from the disk. Therefore the cache hit rate
decreases with the increase of the number of clients. On the
other hand, the data utilization increases with the increase
of the number of clients as there are more overlaps among
clients.

Figure 28(a) shows that for our motion buffer, the cache
hit rates are 84% (tram) and 96% (walk) for a small num-

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 0.8 0.6 0.4 0.2 0.001

C
a
c
h
e
 H

it
 R

a
te

Speed

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 0.8 0.6 0.4 0.2 0.001

D
a
ta

 U
ti
liz

a
ti
o
n

Speed

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 29 Effect of varying speed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 15 10 5

C
a

c
h

e
 H

it
 R

a
te

Pre-fetch Interval

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 15 10 5

D
a
ta

 U
ti
liz

a
ti
o

n

Pre-fetch Interval

Motion Buffer (Tram)
Motion Buffer (Walk)
Naive Buffer (Tram)
Naive Buffer (Walk)

(a) Cache hit rate (b) Data utilization

Fig. 30 Effect of pre-fetching cycle

ber of clients 10, whereas the cache hit rates are approxi-
mately 67% (tram) and 61% (walk) for a large number of
clients 50. Furthermore, our motion-aware buffer constantly
outperforms the naive approach (on average 5 times). Fig-
ure 28(b) shows the data utilization of the buffer for varying
number of clients. It shows that the data utilization increases
from 27% to 74% for tram tours, whereas from 51% to 90%
for pedestrian tours. Moreover, the data utilization of our
motion-aware approach is on average 5 times better than that
of the naive approach.

Effect of Varying Speed: In Figure 29, we measure the
cache hit rate and the data utilization while varying the
speed. Results show that the cache hit rate in our approach
increases with the increase of speed as more data can be
buffered with lower resolutions. However, due to long dis-
tance predictions, we see that the data utilization is less at
higher speeds than that of lower speeds. Our motion-aware
approach achieves higher (on average 3 times) cache hit
rates. We also have a higher data utilization (35%-96%) in
comparison with that of the naive approach (12%-27%).

Effect of Pre-fetching Cycle: In Figure 30, we vary the
pre-fetching period at the server and measure the cache hit
rate and the data utilization. Figure 30(a) shows that the
cache hit rate decreases from 78% to 62% for tram tours
and from 78% to 47% for pedestrian tours with the in-
crease of pre-fetching cycle as data becomes stale for a
large pre-fetching cycle. Our motion-aware buffer has al-
ways higher cache hit rate than the naive approach. More-
over, Figure 30(b) shows that the data utilization of our
motion-aware buffer is on average 4 and 2 times better than

 450

 400

 350

 300

 250

 200

 150

 100

 50

 0
 25 20 15 10 5 1

A
ve

ra
g
e
 I
/O

 A
cc

e
ss

 (
p
e
r

q
u
e
ry

)

Group Size

LR* (Tram)
LR* (Walk)
R* (Tram)
R* (Walk)

Fig. 31 Effect of varying group size

that of the naive buffer for tram and pedestrian tours, respec-
tively.

5.3.3 Evaluation of the Linked R-tree (LR-tree)

In this set of experiments, we evaluate our proposed LR-tree
and show the effect of pathways. In the following experi-
ments we have implemented the R∗ variants of the LR-tree.
We vary different parameters like group size, speed, query
size, data set size for evaluating the LR∗-tree based motion-
aware index and compare the results with the R∗-tree based
motion-index.

We have run experiments for both tram and pedestrian
tours. Since in this set of experiments we want to show the
effect of grouped movements of clients for efficient process-
ing of continuous queries using the LR∗-tree, we evaluate
each group of clients separately.

Effect of Group Size: We expect that the benefit of in-
troducing the pathways in the index is more prominent for
a large group of clients. This is because, if there are more
clients that follow the same pathway, then each of these
clients can access neighboring nodes from the index. In Fig-
ure 31, we can see that in our LR∗-tree based index, the
average I/O access per query decreases with the increase of
group size (or number of clients). For example, the average
I/O access for a larger group of size 25 is on average 4 times
(tram) and 10 times (walk) less than that of a smaller group
of size 5. We also observe that the average I/O access for the
R∗-tree based index is approximately 17 times (tram) and
19 times (walk) higher than that of our proposed LR∗-tree
based index for a large group of size 25. The improvement
is approximately 4 times for a small group of size 5. Even
for a single query (i.e., group size 1), the LR∗-tree based
index achieves on average 29% improvement over the R∗-
tree based index, because each subsequent queries from the
client can directly access the desired leaf nodes using the
LR∗-tree.

Effect of Group Distributions: We observe that the size
of the area covered by a group can vary while the number of
clients in the group remains same. For example, a bus (e.g.,
a small or large) can represent the size of the covered area
by the group. In this experiment we vary the window size

25

 400

 300

 200

 100

 0
 10 8 6 4 2

A
ve

ra
g

e
 I

/O
 A

cc
e

ss
 (

p
e

r
q

u
e

ry
)

Window Size

LR* (Tram)
LR* (Walk)
R* (Tram)
R* (Walk)

Fig. 32 Effect of varying window size

 500

 400

 300

 200

 100

 0
 20 15 10 5

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Query Size (%)

LR* (Tram)
LR* (Walk)
R* (Tram)
R* (Walk)

 250

 200

 150

 100

 50

 0
 80 60 40 20

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Data Set Size (MB)

LR* (Tram)
LR* (Walk)
R* (Tram)
R* (Walk)

(a) Query Size (b) Data Set Size

Fig. 33 Effect of varying (a) query size, and (b) data set size

 500

 400

 300

 200

 100

 0
 1 0.8 0.6 0.4 0.2 0.01

A
ve

ra
g

e
 I

/O
 A

cc
e

ss
 (

p
e

r
q

u
e

ry
)

Speed

LR* (Tram)
LR* (Walk)
R* (Tram)
R* (Walk)

Fig. 34 Effect of varying speed

that represents the covered area of a group. Figure 32, we
see that the average I/O access slightly increases for a large
window size, because more nodes need to be accessed for
sparsely distributed clients. We observe that the average I/O
access for the LR∗-tree based index is always 3-4 times less
than that of the R∗-tree based index.

Effect of Varying Query Size: We also vary the query size
from 5% to 20%. Figure 33(a) shows that the average I/O
access per query increases with the increase of query size.
From the figure, we can see that the LR∗-tree based index
always performs on average 13 times (tram) and 11 times
(walk) better than the R∗-tree based index in all cases for
both tram and pedestrian tours.

Effect of Varying Data Set Size: We vary the data set
size from 20MB to 80MB. Figure 33(b) shows that the av-
erage I/O access per query increases with the increase of
data set size. The reason for this is that for a larger data set a
query needs to explore more nodes in the index than that of a
smaller data set. Experimental results also show that the av-
erage I/O access for the LR∗-tree based index is on average
12 times less than that of the R∗-tree based index.

 60

 50

 40

 30

 20

 10

 0
 25 20 15 10 5

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Group Size

Motion Server (Tram)
Motion Server (Walk)
Naive Server (Tram)
Naive Server (Walk)

 50

 40

 30

 20

 10

 0
 25 20 15 10 5

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Group Size

Motion Server (Tram)
Motion Server (Walk)
Naive Server (Tram)
Naive Server (Walk)

(a) Uniform (b) Zipf

Fig. 35 Motion-aware server (a) uniform, and (b) zipf

Effect of Varying Speed: In Figure 34, we measure the
I/O access while varying the speed. This experiment shows
that with the increase of speed the average I/O access per
query decreases as less data needs to be retrieved for lower
resolutions. Figure 34 also shows that the average I/O access
in the LR∗-tree based index is on average 12 times less than
that of the R∗-tree based index.

5.3.4 Overall Performance

In this final set of experiments, we combine three server-
side techniques for multi-query optimization, and show the
overall improvement of I/O costs for processing queries with
different group size for both uniform and Zipfian distribu-
tions of data (Figure 35). We compare our motion-aware
server with a naive server. The motion-aware server consists
of motion-aware parallel group query processing, motion-
aware buffer management, and the LR∗-tree based index.
On the other hand, the naive server consists of sequential
query processing, LRU buffer management, and the R∗-tree
based motion-aware index without pathways.

Figures 35(a) and (b) show that the motion-aware server
requires on average 7 I/O accesses per query for a small
group size of 5, and on average 1 I/O access per query for a
large group size of 25 for both uniform and Zipfian data sets.
Figure 35(a) shows that for uniform data sets the motion-
aware server requires 9 (for a small group size of 5) to 16
(for a large group size of 25) times less I/Os than that of
a naive server for tram tours, and 5 (for a small group size
of 5) to 20 (for a large group size of 25) times less I/Os
than that of a naive server for pedestrian tours. On the other
hand, Figure 35(b) shows that for Zipfian data sets our ap-
proach performs 8 (for a small group size of 5) to 11 (for a
large group size of 25) times better than that of the naive ap-
proach for tram tours, and 3 (for a small group size of 5) to
12 (for a large group size of 25) times better than that of the
naive approach for pedestrian tours. We also observe that
the average I/O accesses for tram tours in the naive server
decreases with the increase of group size. This is because
LRU performs reasonable well for tram tours and reduces
I/O costs for a large group. However, our results reveal that

26

the motion-aware approach can always cope with a large
group size for both tram and pedestrian tours.

It is important to note that each of the above compo-
nents can independently optimize the processing of continu-
ous queries. Thus it is not mandatory to have all these com-
ponents in a server at the same time.

5.4 Discussion

We have shown that multi-resolution retrieval of 3D objects
based on the speed of clients can significantly reduce the
cost of data retrieval. Similarly, in many applications (e.g.,
digital battleground), other characteristics of clients such as
the distance of objects from clients can also be utilized to
further improve the performance. For example, a client can
retrieve a closer object with a higher resolution, whereas a
lower resolution might be sufficient for a distant object. We
present experimental evidence that shows this effect. We use
a similar experimental setup as described in Section 5.1. As
the client moves along the path in a tram tour, for each of the
query windows it retrieves objects inside the query window
in multiple resolutions based on the distance of the objects
from the client.

Similar to speed, we assume that the distance of a client
from a 3D object determines the detail of information of the
object that the client needs to retrieve. Thus, in our case the
distance is expected to be inversely proportional to the value
of the wavelet coefficients retrieved. For this, a query win-
dow is divided into multiple blocks based on the level of
depth from the client, and for each block, we retrieve data
with an associated resolution.

To show the effect of increasing depth (or distance), in
our experiments, we vary the number of blocks from 1 to 10,
where 1 represents the entire query window with the same
depth and 10 represents that the query window is divided
into 10 equal blocks with different depth. The resolution of
the objects of different blocks decreases with the increase of
the distance from the client. For example, when the num-
ber of blocks is 10, for the nearest block we retrieve all
coefficients between 0.0-1.0, and then for each successive
block we decrease the resolution of objects, and finally for
the farthest block we retrieve objects with the lowest resolu-
tion, i.e., coefficients between 0.9-1.0. Since the number of
blocks of a query window determines the effect of distance
on resolutions of objects, we call this parameter distance-
resolution.

We show the effect of the distance on continuous data
retrieval in Figures 36(a) and (b). We also vary the length
and the width of the query window size 5%, 10%, 15%,
and 20% of the length and the width of the total data space.
Figure 36(a) shows the average amount of data retrieved by
clients for varying distance-resolution. The figure shows that

 0

 50

 100

 150

 200

 250

 300

 10 8 6 4 2 1

D
a

ta
 R

e
tr

ie
v
e

d
 (

K
B

)

Distance-Resolution

5%
10%
15%
20%

 0

 200

 400

 600

 800

 1000

 10 8 6 4 2 1

A
v
e

ra
g

e
 I

/O
 A

c
c
e

s
s
 (

p
e

r
q

u
e

ry
)

Distance-Resolution

5%
10%
15%
20%

(a) Data Retrieved (b) I/Os

Fig. 36 Effect of distance on data retrieval

the amount of retrieved data decreases with the increase of
distance-resolution for different query window sizes, and the
amount of data retrieved is on average 2.5 times less for the
distance-resolution of 10 than that of the case when the dis-
tance is not considered (i.e., distance-resolution of 1). Fig-
ure 36(b) shows the required number of I/Os decreases with
the increase of distance-resolution, and the I/O cost is on av-
erage half of when the distance-resolution is 10 comparing
to that of the distance-resolution of 1.

An extension of our work that covers other parameters
of clients such as the priority of objects (e.g., objects with
higher priorities can be retrieved with higher resolutions
than that of lower priority objects) that can be used for effi-
cient multi-resolution retrieval, will have significant benefits
for future applications.

6 Conclusion

In this paper, we have introduced a motion-aware approach
for efficient processing of continuous queries on a 3D object
database. We have exploited the motion of clients to opti-
mize query processing for both single and multiple queries
in a client-server model. As a part of the complete solu-
tion, we have proposed motion-aware continuous data re-
trieval and buffer management techniques on the client. On
the server-side, we have developed a suit of motion-aware
techniques that include group query processing, buffer man-
agement, and indexing for 3D objects.

Through an extensive set of experiments, we have shown
that the system that adopts our motion-aware schemes ob-
serve significantly reduced query response time as well as
I/O costs than that of a system that does not consider the
motion of clients. We have observed that the query response
time in our motion-aware approach is 23 times less than that
of a naive system when the speed of the client is high, and
4 times less when the speed of the client is low. For multi-
ple simultaneous queries, in terms of I/O costs, our motion-
aware approach outperforms a naive approach by 20 times
for a larger group size of 25 and by 9 times for a smaller
group size of 5.

27

Acknowledgment

We would like to thank the anonymous reviewers for their
comments that improved our paper. This work is partially
supported under the Australian Research Councils’ Discov-
ery funding scheme (project number DP0880215).

References

1. LifeClipper: http://www.torpus.com/lifeclipper/ (2005)
2. Ofcom: http://www.ofcom.org.uk/static/archive/Oftel/-

publications/research/2002/benchint1202 56.htm
(2002)

3. Ali, M.E., Zhang, R., Tanin, E., Kulik, L.: A
motion-aware approach to continuous retrieval of 3D
objects. In: ICDE, pp. 843–852 (2008)

4. Gurtov, A., Floyd, S.: Modeling wireless links for trans-
port protocols. SIGCOMM Computer Communication
Review 34(2), 85–96 (2004)

5. Walke, B.H.: Mobile Radio Networks: Networking and
Protocols. John Wiley & Sons, Inc. (2001)

6. Qualcomm: http://www.qualcomm.com/common/docu-
ments/white papers/HSPAPlus MobileBroadband 021-
309.pdf (2009)

7. Rohde: http://www2.rohde-schwarz.com/en/technologi-
es/cellular standards/3GPP HSPA/information/ (2009)

8. Chou, C.T., Misra, A., Qadir, J.: Low-latency broadcast
in multirate wireless mesh networks. IEEE Journal on
Selected Areas in Communications 24(11), 2081–2091
(2006)

9. Schlosser, S.W., Schindler, J., Papadomanolakis, S.,
Shao, M., Ailamaki, A., Faloutsos, C., Ganger, G.R.:
On multidimensional data and modern disks. In: FAST,
pp. 17–17 (2005)

10. Yu, H., Ma, K.L., Welling, J.: A parallel visualiza-
tion pipeline for terascale earthquake simulations. In:
ACM/IEEE Supercomputing, p. 49 (2004)

11. Freitas, R.F.: Storage class memory: technology, sys-
tems and applications. In: SIGMOD, pp. 985–986
(2009)

12. Hu, H., Lee, D.L.: Range nearest-neighbor query. IEEE
TKDE 18(1), 78–91 (2006)

13. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest
neighbor search. In: VLDB, pp. 287–298 (2002)

14. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.:
Location-based spatial queries. In: SIGMOD, pp. 443–
454 (2003)

15. Gedik, B., Wu, K.L., Yu, P., Liu, L.: Motion adaptive
indexing for moving continual queries over moving ob-
jects. In: CIKM, pp. 427–436 (2004)

16. Lazaridis, I., Porkaew, K., Mehrotra, S.: Dynamic
queries over mobile objects. In: EDBT, pp. 269–286
(2002)

17. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: scalable
incremental processing of continuous queries in spatio-
temporal databases. In: SIGMOD, pp. 623–634 (2004)

18. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-
diagram: a query-dependent approach to moving knn
queries. VLDB 1(1), 1095–1106 (2008)

19. Tao, Y., Papadias, D.: Time-parameterized queries in
spatio-temporal databases. In: In SIGMOD, pp. 334–
345 (2002)

20. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G.,
Hambrusch, S.E.: Query indexing and velocity con-
strained indexing: Scalable techniques for continuous
queries on moving objects. IEEE Transactions on Com-
puters 51(10), 1124–1140 (2002)

21. Cho, G.: Using predictive prefetching to improve loca-
tion awareness of mobile information service. In: ICCS,
pp. 1128–1136 (2002)

22. de Nitto Person, V., Grassi, V., Morlupi, A.: Model-
ing and evaluation of pre-fetching policies for context-
aware information services. In: MobiCom, pp. 55–65
(1998)

23. Welch, G., Bishop, G.: An introduction to the Kalman
filter. SIGGRAPH 2001 Course (2001)

24. Luebke, D.P.: Level of Detail for 3D Graphics: Appli-
cation and Theory. Morgan Kaufmann, CA (2003)

25. Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp.
30–99 (1996)

26. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets
for Computer Graphics: Theory and Applications. Mor-
gan Kaufmann, CA (1996)

27. Moran, F., Garcia, N.: Comparison of wavelet-based
three-dimensional model coding techniques. IEEE
Transactions on Circuits and Systems for Video Tech-
nology 14(7), 937–949 (2004)

28. Patrick, G., Olivier, A., Christian, B.: Real-time re-
construction of wavelet-encoded meshes for view-
dependent transmission and visualization. IEEE Trans-
actions on Circuits and Systems for Video Technology
14(7), 1009–1020 (2004)

29. Guttman, A.: R-trees: A dynamic index structure for
spatial searching. In: SIGMOD, pp. 47–57 (1984)

30. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.:
The R*-Tree: an efficient and robust access method
for points and rectangles. In: SIGMOD, pp. 322–331
(1990)

31. Bentley, J.L.: Multidimensional binary search trees used
for associative searching. Commun. ACM 18(9), 509–
517 (1975)

32. Samet, H.: The Design and Analysis of Spatial Data
Structures. Addison-Wesley, MA (1990)

33. Kofler, M., Gervautz, M., Gruber, M.: R-trees for or-
ganizing and visualizing 3D GIS database. Journal of
Visualization and Computer Animation 11(3), 129–143

28

(2000)
34. Hoppe, H.: Smooth view-dependent level-of-detail con-

trol and its application to terrain rendering. In: IEEE
Visualization, pp. 35–42 (1998)

35. Shou, L., Huang, Z., Tan, K.L.: HDoV-tree: The struc-
ture, the storage, the speed. In: ICDE, pp. 557–568
(2003)

36. Xu, K., Zhou, X., Lin, X.: Database support for mul-
tiresolution terrain visualization. In: ADC, pp. 153–160
(2003)

37. Xu, K., Zhou, X., Lin, X.: Direct mesh: a multireso-
lution approach to terrain visualization. In: ICDE, pp.
766–772 (2004)

38. Havran, V., Bittner, J., Sára, J.: Ray tracing with rope
trees. In: Spring Conference on Computer Graphics,
pp. 130–140 (1998)

39. Ousterhout, J.K.: Corner stitching: a data structuring
technique for VLSI layout tools. Tech. rep., EECS De-
partment, University of California, Berkeley (1982)

40. Yi, B.K., Sidiropoulos, N., Johnson, T., Jagadish, H.V.,
Faloutsos, C., Biliris, A.: Online data mining for co-
evolving time sequences. Tech. rep., CS Department,
Carnegie Mellon University (1999)

41. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction
and indexing of moving objects with unknown motion
patterns. In: SIGMOD, pp. 611–622 (2004)

	Introduction
	Preliminaries and Related Work
	Motion-Aware Processing on the Client
	Motion-Aware Processing on the Server
	Experimental Study
	Conclusion

