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What is Versioned data 
 Data describing objects that 

 has some attributes that change over time 

 we want to keep track of ALL the changes 

 (implicitly) has an attribute that never changes: identifier 
 

 E.g. 
 Bank account: account number, balance 

 Stock: stock number, price 

 Wikipedia entry: name, contents 

 Sales record: item id, sales of a certain day 

 Star positions: star name, location 
 

 Every changed value is called a “version” and has a “version 
number” 

 

 “Versioned data” also called “temporal data”, and “version 
number” becomes “timestamp” 



What to do on Versioned Data 

 Point query (query with single key and single time) 
 What was the position of star #1234 on 1 Jan 2010? 

 

 (Key-slice) Time-range query 
 Show the trajectory of star #1234 between 1 Jan 2010 and 

today. 

 

 (Time-slice) Key-range query 
 Show the positions of all the stars on 1 Jan 2010 

 

 Time-range key-range query (relatively rare) 
 Show the trajectories of the stars #1000~2000 between 1 

Jan 2010 and today 



Why do we Care about it Now 

 Very large versioned databases 
 Sales record: Wal-Mart’s data warehouse 

was 70 TB in 2001 

 Star positions: The Sloan Digital Sky 
Survey project receives 70 gigabytes of 
images every night 

 Existing version indexes do not scale well 

 

 

 Improvement on Hardware 
 CPU/cache speed doubles every two 

years 

 Memory size increases at a similar rate 

 Existing version indexes do not take 
advantage of main memory techniques 



Outline 

 Existing Work 
 Version indexes, especially TSB-tree 

 Main memory techniques 

 

 Design for multiple levels of memory hierarchy 
 Principles 

 Straightforward approaches 

 

 HV-tree 

 

 Experimental results 

 

 



Existing Version Indexes 

 Ones that move new data to new nodes 

 Write-once B-tree 

 Multi-version B-tree 

 

 One that moves old data to new nodes 

 Time Split B-tree (TSB-tree) 

 Unique feature of progressively migrate old 
data to a new medium – a larger medium 
like hard disk or tape 

 Leaving current data on high-speed medium like 
the main memory 
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 Time split or key split depends on the portion of current entries in 
the node β: key split if β is greater than a threshold T 

 

 Search: follow key-time range 
 

Key split at 

value 4 



Main Memory Indexing 

Techniques 

 Key techniques 

 Aligning node size with block size 

 CSS-tree, CSB+-tree: use the cache block size 

(typically 32B or 64B) as tree node size 

 Later study shows that the actual optimal node size 

for the CSB+-tree is much larger than the cache block 

size 

 We assume the optimal node size Scache is known 

 

 Pointer elimination 

 Hard to apply to a complicated structure like TSB-tree 



Design for Multiple Levels of 

Memory Hierarchy 

 Facts: big latency difference between adjacent 
levels of memories in the hierarchy, usually 1000 
times. 

 

 Principles 

 

 Tailor the index’s structure to suits the characteristics 
of each level of the memory hierarchy. 

 

 Keep as much as possible frequently accessed data 
in higher levels of the memory hierarchy. 



Straightforward Adaptions of 

TSB-tree 

 TSB-small 
 use Scache as the node size 

 let the operation system deal with caching and paging 

 Worse than TSB-tree because of bad paging behavior 

 

 TSB-cond 
 use Scache as the node size initially 

 expand/condense to node of size Sdisk as historical 
pages are created and moved to disk 

 Worse than TSB-tree because of overhead caused by 
condensation 



The HV-tree: memory 

Hierarchy aware Version tree 

 Node size adjustable to the level of the 

memory the node resides in (Principle 1) 

 Key: Gradual change of size 

 

 Delayed data migration (Principle 2) 

 



The HV-tree Structure 

 Allowable node sizes 

 Scache , 2Scache , … , Sdisk  (Sdisk is a power of 2 

times Scache) 

 E.g. Scache =1K, Scache =4K, so allowable node 

sizes are: 1K, 2K, 4K. 

 

 Some additional pointers maintained for data 

migration 



The HV-tree Insertion 

 Start with the 
smallest allowable 
node size 

 

 

 When node is full 
 key split 

 time split 

 or node expansion 

 

 Choice of T 
 Scache /Sdisk 



HV-tree Data Migration 
 Upon creation of a historical node 

 Do not move to disk immediately 

 Added to a Migration Chain 

 Migrate when out of memory 



Experimental Setup 

 Generated datasets with updates, search and mixed 
workloads 

 

 Sizes: 500MB, 1000MB 

 

 Queries follow Zipfian distribution, with varying 
skewness 

 

 Hardware: 
 3GHz CPU, 1GB memory, 80GB disk 

 L1 cache: <8K, 64B, 1>, L2 cache: <512KB, 64B, 8> 

 Scache =1K, Scache =4K 

 



Results: Updates and Point 

Queries 



Results: Key-Range Queries, 

Time-Range Queries 

 Key-range queries 

 

 

 

 

 

 

 Time-range queries 



Experiments 

 Finding Scache 

 

 

 

 

 

 

 

 Validation of T 



Conclusions and Future Work 

 First index design optimizing performance for multiple levels of 
memory hierarchy, achieving a highly scalable and efficient 
version index. 

 

 Key techniques 
 Difference node sizes 

 Gradual change of node sizes 

 Data migration chain 

 

 Performance 
 Several times faster for updates and point queries 

 1000 times faster for key/time range queries 

 

 Future work 
 Other data structures 

 Multi-core machine 

 


