
The HV-tree: a Memory Hierarchy

Aware Version Index

Rui Zhang
University of Melbourne

Martin Stradling
University of Melbourne

What is Versioned data
 Data describing objects that

 has some attributes that change over time

 we want to keep track of ALL the changes

 (implicitly) has an attribute that never changes: identifier

 E.g.
 Bank account: account number, balance

 Stock: stock number, price

 Wikipedia entry: name, contents

 Sales record: item id, sales of a certain day

 Star positions: star name, location

 Every changed value is called a “version” and has a “version
number”

 “Versioned data” also called “temporal data”, and “version
number” becomes “timestamp”

What to do on Versioned Data

 Point query (query with single key and single time)
 What was the position of star #1234 on 1 Jan 2010?

 (Key-slice) Time-range query
 Show the trajectory of star #1234 between 1 Jan 2010 and

today.

 (Time-slice) Key-range query
 Show the positions of all the stars on 1 Jan 2010

 Time-range key-range query (relatively rare)
 Show the trajectories of the stars #1000~2000 between 1

Jan 2010 and today

Why do we Care about it Now

 Very large versioned databases
 Sales record: Wal-Mart’s data warehouse

was 70 TB in 2001

 Star positions: The Sloan Digital Sky
Survey project receives 70 gigabytes of
images every night

 Existing version indexes do not scale well

 Improvement on Hardware
 CPU/cache speed doubles every two

years

 Memory size increases at a similar rate

 Existing version indexes do not take
advantage of main memory techniques

Outline

 Existing Work
 Version indexes, especially TSB-tree

 Main memory techniques

 Design for multiple levels of memory hierarchy
 Principles

 Straightforward approaches

 HV-tree

 Experimental results

Existing Version Indexes

 Ones that move new data to new nodes

 Write-once B-tree

 Multi-version B-tree

 One that moves old data to new nodes

 Time Split B-tree (TSB-tree)

 Unique feature of progressively migrate old
data to a new medium – a larger medium
like hard disk or tape

 Leaving current data on high-speed medium like
the main memory

Time Split B-tree (TSB-tree)

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

key, time, data

<1,4,Tim>

Time split at

time 4

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

Time Split B-tree (TSB-tree)

1,4,Tim 4,4,Dan 7,4,Ed

key, time, data

<1,4,Tim>

0,0 0,4

key, time, ptr

Time split at

time 4

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

Time Split B-tree (TSB-tree)

1,4,Tim 4,4,Dan 7,4,Ed

key, time, data

0,0 0,4 4,4

key, time, ptr

 Time split or key split depends on the portion of current entries in
the node β: key split if β is greater than a threshold T

 Search: follow key-time range

Key split at

value 4

Main Memory Indexing

Techniques

 Key techniques

 Aligning node size with block size

 CSS-tree, CSB+-tree: use the cache block size

(typically 32B or 64B) as tree node size

 Later study shows that the actual optimal node size

for the CSB+-tree is much larger than the cache block

size

 We assume the optimal node size Scache is known

 Pointer elimination

 Hard to apply to a complicated structure like TSB-tree

Design for Multiple Levels of

Memory Hierarchy

 Facts: big latency difference between adjacent
levels of memories in the hierarchy, usually 1000
times.

 Principles

 Tailor the index’s structure to suits the characteristics
of each level of the memory hierarchy.

 Keep as much as possible frequently accessed data
in higher levels of the memory hierarchy.

Straightforward Adaptions of

TSB-tree

 TSB-small
 use Scache as the node size

 let the operation system deal with caching and paging

 Worse than TSB-tree because of bad paging behavior

 TSB-cond
 use Scache as the node size initially

 expand/condense to node of size Sdisk as historical
pages are created and moved to disk

 Worse than TSB-tree because of overhead caused by
condensation

The HV-tree: memory

Hierarchy aware Version tree

 Node size adjustable to the level of the

memory the node resides in (Principle 1)

 Key: Gradual change of size

 Delayed data migration (Principle 2)

The HV-tree Structure

 Allowable node sizes

 Scache , 2Scache , … , Sdisk (Sdisk is a power of 2

times Scache)

 E.g. Scache =1K, Scache =4K, so allowable node

sizes are: 1K, 2K, 4K.

 Some additional pointers maintained for data

migration

The HV-tree Insertion

 Start with the
smallest allowable
node size

 When node is full
 key split

 time split

 or node expansion

 Choice of T
 Scache /Sdisk

HV-tree Data Migration
 Upon creation of a historical node

 Do not move to disk immediately

 Added to a Migration Chain

 Migrate when out of memory

Experimental Setup

 Generated datasets with updates, search and mixed
workloads

 Sizes: 500MB, 1000MB

 Queries follow Zipfian distribution, with varying
skewness

 Hardware:
 3GHz CPU, 1GB memory, 80GB disk

 L1 cache: <8K, 64B, 1>, L2 cache: <512KB, 64B, 8>

 Scache =1K, Scache =4K

Results: Updates and Point

Queries

Results: Key-Range Queries,

Time-Range Queries

 Key-range queries

 Time-range queries

Experiments

 Finding Scache

 Validation of T

Conclusions and Future Work

 First index design optimizing performance for multiple levels of
memory hierarchy, achieving a highly scalable and efficient
version index.

 Key techniques
 Difference node sizes

 Gradual change of node sizes

 Data migration chain

 Performance
 Several times faster for updates and point queries

 1000 times faster for key/time range queries

 Future work
 Other data structures

 Multi-core machine

