
The HV-tree: a Memory Hierarchy

Aware Version Index

Rui Zhang
University of Melbourne

Martin Stradling
University of Melbourne

What is Versioned data
 Data describing objects that

 has some attributes that change over time

 we want to keep track of ALL the changes

 (implicitly) has an attribute that never changes: identifier

 E.g.
 Bank account: account number, balance

 Stock: stock number, price

 Wikipedia entry: name, contents

 Sales record: item id, sales of a certain day

 Star positions: star name, location

 Every changed value is called a “version” and has a “version
number”

 “Versioned data” also called “temporal data”, and “version
number” becomes “timestamp”

What to do on Versioned Data

 Point query (query with single key and single time)
 What was the position of star #1234 on 1 Jan 2010?

 (Key-slice) Time-range query
 Show the trajectory of star #1234 between 1 Jan 2010 and

today.

 (Time-slice) Key-range query
 Show the positions of all the stars on 1 Jan 2010

 Time-range key-range query (relatively rare)
 Show the trajectories of the stars #1000~2000 between 1

Jan 2010 and today

Why do we Care about it Now

 Very large versioned databases
 Sales record: Wal-Mart’s data warehouse

was 70 TB in 2001

 Star positions: The Sloan Digital Sky
Survey project receives 70 gigabytes of
images every night

 Existing version indexes do not scale well

 Improvement on Hardware
 CPU/cache speed doubles every two

years

 Memory size increases at a similar rate

 Existing version indexes do not take
advantage of main memory techniques

Outline

 Existing Work
 Version indexes, especially TSB-tree

 Main memory techniques

 Design for multiple levels of memory hierarchy
 Principles

 Straightforward approaches

 HV-tree

 Experimental results

Existing Version Indexes

 Ones that move new data to new nodes

 Write-once B-tree

 Multi-version B-tree

 One that moves old data to new nodes

 Time Split B-tree (TSB-tree)

 Unique feature of progressively migrate old
data to a new medium – a larger medium
like hard disk or tape

 Leaving current data on high-speed medium like
the main memory

Time Split B-tree (TSB-tree)

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

key, time, data

<1,4,Tim>

Time split at

time 4

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

Time Split B-tree (TSB-tree)

1,4,Tim 4,4,Dan 7,4,Ed

key, time, data

<1,4,Tim>

0,0 0,4

key, time, ptr

Time split at

time 4

4,0,Dan 1,1,Alan 7,2,Ed 1,3,Ben

Time Split B-tree (TSB-tree)

1,4,Tim 4,4,Dan 7,4,Ed

key, time, data

0,0 0,4 4,4

key, time, ptr

 Time split or key split depends on the portion of current entries in
the node β: key split if β is greater than a threshold T

 Search: follow key-time range

Key split at

value 4

Main Memory Indexing

Techniques

 Key techniques

 Aligning node size with block size

 CSS-tree, CSB+-tree: use the cache block size

(typically 32B or 64B) as tree node size

 Later study shows that the actual optimal node size

for the CSB+-tree is much larger than the cache block

size

 We assume the optimal node size Scache is known

 Pointer elimination

 Hard to apply to a complicated structure like TSB-tree

Design for Multiple Levels of

Memory Hierarchy

 Facts: big latency difference between adjacent
levels of memories in the hierarchy, usually 1000
times.

 Principles

 Tailor the index’s structure to suits the characteristics
of each level of the memory hierarchy.

 Keep as much as possible frequently accessed data
in higher levels of the memory hierarchy.

Straightforward Adaptions of

TSB-tree

 TSB-small
 use Scache as the node size

 let the operation system deal with caching and paging

 Worse than TSB-tree because of bad paging behavior

 TSB-cond
 use Scache as the node size initially

 expand/condense to node of size Sdisk as historical
pages are created and moved to disk

 Worse than TSB-tree because of overhead caused by
condensation

The HV-tree: memory

Hierarchy aware Version tree

 Node size adjustable to the level of the

memory the node resides in (Principle 1)

 Key: Gradual change of size

 Delayed data migration (Principle 2)

The HV-tree Structure

 Allowable node sizes

 Scache , 2Scache , … , Sdisk (Sdisk is a power of 2

times Scache)

 E.g. Scache =1K, Scache =4K, so allowable node

sizes are: 1K, 2K, 4K.

 Some additional pointers maintained for data

migration

The HV-tree Insertion

 Start with the
smallest allowable
node size

 When node is full
 key split

 time split

 or node expansion

 Choice of T
 Scache /Sdisk

HV-tree Data Migration
 Upon creation of a historical node

 Do not move to disk immediately

 Added to a Migration Chain

 Migrate when out of memory

Experimental Setup

 Generated datasets with updates, search and mixed
workloads

 Sizes: 500MB, 1000MB

 Queries follow Zipfian distribution, with varying
skewness

 Hardware:
 3GHz CPU, 1GB memory, 80GB disk

 L1 cache: <8K, 64B, 1>, L2 cache: <512KB, 64B, 8>

 Scache =1K, Scache =4K

Results: Updates and Point

Queries

Results: Key-Range Queries,

Time-Range Queries

 Key-range queries

 Time-range queries

Experiments

 Finding Scache

 Validation of T

Conclusions and Future Work

 First index design optimizing performance for multiple levels of
memory hierarchy, achieving a highly scalable and efficient
version index.

 Key techniques
 Difference node sizes

 Gradual change of node sizes

 Data migration chain

 Performance
 Several times faster for updates and point queries

 1000 times faster for key/time range queries

 Future work
 Other data structures

 Multi-core machine

