The HV-tree: a Memory Hierarchy
Aware Version Index

Rui Zhang

University of Melbourne

Martin Stradling
University of Melbourne

What is Versioned data oo

e Data describing objects that
e has some attributes that change over time
e we want to keep track of ALL the changes
e (implicitly) has an attribute that never changes: identifier

.g.
Bank account: account number, balance
Stock: stock number, price
Wikipedia entry: name, contents
Sales record: item id, sales of a certain day
Star positions: star name, location

® & & o o m

e Every changed value is called a “version” and has a “version
number”

e “Versioned data” also called “temporal data”, and “version
number’ becomes “timestamp”

What to do on Versioned Data | s¢:¢

e Point query (query with single key and single time)
e What was the position of star #1234 on 1 Jan 20107

e (Key-slice) Time-range query

e Show the trajectory of star #1234 between 1 Jan 2010 and
today.

e (Time-slice) Key-range guery
e Show the positions of all the stars on 1 Jan 2010

e Time-range key-range query (relatively rare)

e Show the trajectories of the stars #1000~2000 between 1
Jan 2010 and today

Why do we Care about it Now

e Very large versioned databases

e Sales record: Wal-Mart’'s data warehouse

was 70 TB in 2001

e Star positions: The Sloan Digital Sky

Survey project receives 70 gigabytes of
Images every night

e EXisting version indexes do not scale well

e Improvement on Hardware

10000 g

1000 k-

100

performance

CPU/cache speed doubles every two
years

10

Memory size increases at a similarrate — & & 7

EXxisting version indexes do not take
advantage of main memory techniques

2000

Outline

e EXisting Work
e Version indexes, especially TSB-tree
e Main memory technigues

e Design for multiple levels of memory hierarchy
e Principles
e Straightforward approaches

e HV-tree

e Experimental results

Existing Version Indexes

e Ones that move new data to new nodes
e Write-once B-tree
e Multi-version B-tree

e One that moves old data to new nodes
e Time Split B-tree (TSB-tree)

e Unique feature of progressively migrate old
data to a new medium — a larger medium
like hard disk or tape

Leaving current data on high-speed medium like

the main memory

Time Split B-tree (TSB-tree) 13+

key, time, data

40,Dan |1,1,Alan | 7,2,Ed 1,3,Ben <1,4,Tim>

Time split at
time 4

. . 00
Time Split B-tree (TSB-tree) HE
[X)
o
key, time, ptr
0,0 0,4
key, time, data
1,4, Tim |4,4Dan |7,4,Ed <1,4,Tim>
4,0,Dan | 1,1,Alan |7,2,Ed 1,3,Ben _ _
Time split at

time 4

Time Split B-tree (TSB-tree) 13+

o000
Akey o0

S omespie Ken ®
8 | -

f Ed
74 e
6 _ N2 : N4 Luke .
5. | S key, time, ptr
4]
3 o (— key spiit

i : John Fred E 0,0 0’4 4’4
2 —

| i sa N5 i N1
i Alan Ben TL Sid T Carl N
1 .—O—g:)—(o

1 i tr‘meisph'f
0 —I"''T"''T''''T'"'T""I""'I"''T""I""T""I""T>
01 2 3 45 6 7 8 9 1011

key, time, data

1,4 Tim | 4,4Dan |7,4,Ed

Key split at
value 4

40,Dan |1,1,Alan | 7,2,Ed 1,3,Ben

e Time split or key split depends on the portion of current entries in
the node (3: key split if B Is greater than a threshold T

e Search: follow key-time range

Main Memory Indexing
Techniques :

e Key techniques

e Aligning node size with block size

CSS-tree, CSB+-tree: use the cache block size
(typically 32B or 64B) as tree node size

Later study shows that the actual optimal node size
for the CSB+-tree is much larger than the cache block

size
We assume the optimal node size S__,. IS known

e Pointer elimination
Hard to apply to a complicated structure like TSB-tree

Design for Multiple Levels of | ss
Memory Hierarchy

e Facts: big latency difference between adjacent
levels of memories in the hierarchy, usually 1000
times.

e Principles

Tailor the index’s structure to suits the characteristics
of each level of the memory hierarchy.

Keep as much as possible frequently accessed data
In higher levels of the memory hierarchy.

Straightforward Adaptions of | ss2:
TSB-tree

e TSB-small
e use S_... as the node size
e let the operation system deal with caching and paging
e \Worse than TSB-tree because of bad paging behavior

e TSB-cond

e use S_, .. as the node size initially

o expand/condense to node of size Sy, as historical
pages are created and moved to disk

e Worse than TSB-tree because of overhead caused by
condensation

The HV-tree: memory
Hierarchy aware Version tree

e Node size adjustable to the level of the
memory the node resides in (Principle 1)

Key: Gradual change of size

e Delayed data migration (Principle 2)

The HV-tree Structure cecs

e Allowable node sizes

@ S_cache J 28cache R Sdis.k (Sdisk Is a power of 2
times S__te)

o E.0. S e =1K, S_.che =4K, so allowable node
sizes are: 1K, 2K, 4K.

e Some additional pointers maintained for data
migration

The HV-tree Insertion

o Start with the
smallest allowable
node size

e When node is full
o key split
e time split
e Or node expansion

e Choiceof T

© Scache /Sdisk

s N

\

e

(start /‘,I—---:ﬁ'

-
-

Node full? =

no

-
- -
H-\"'-\-\. "’(

e

yes

Calculate:
B = Re + Fnodelsize)

- — o

T~ Starge. size

<T

Compare:

T

¢s£ze z Slarge

Time split

Y

Contract
current node

Y

Add historical node

to migration chain

Y
Key split size < Slarge
Y
Expand
Y
(’,/”" Out of main ™ No
T~ memory? "
H yes
i i)
Do Migration —™ End [|=
- /

HV-tree Data Migration cese

e Upon creation of a historical node
e Do not move to disk immediately
e Added to a Migration Chain
e Migrate when out of memory

HV-tree , _
——» in-memory pointer
root — — —» historical pointer

ooy firstOldest --------——-B= migration chain
| 1l.current

~—1 lastOldest

. - i “‘“Hﬂ

2.pending |ag------c--—-- 3.current | 4.current

N AN IV

|
.)
. %/ﬁ I'|7.pending| | 8.pending 9.current | '[10.current| [1ll.current
! | L |
'I | 4 IIIl i A !
\ L -t
____________________ \ __"_"_'__"'_'__'_'II_'_""""""'"'_'____"_III'___'___'I V4
\ : | R / . .
Y Y y "~ -a ¥ magnetic disk
5.migrated | 6.migrated

Omfg Onist

Experimental Setup see

e Generated datasets with updates, search and mixed
workloads

e Sizes: 500MB, 1000MB

e Queries follow Zipfian distribution, with varying
skewness

e Hardware:
e 3GHz CPU, 1GB memory, 80GB disk
e L1 cache: <8K, 64B, 1>, L2 cache: <512KB, 64B, 8>
e S =1K, S =4K

cache cache

Results: Updates and Point
Queries

Update Time (msec)

Search Time (msec)

Update 1/O

14

C} =y i~y ot
- 2___—_‘;‘5_ — = 2 &
o —m— TSB-stand —0— TSB-small

i —3 TSB-cond —a— HV-tree
8_
g -
4_

| | B |] i B—a—N
2_

o

0 ¥ ¥ ¥ S — ‘Ir

200 400 600 800 1000 1200 1400

Data Set Size (Mb)

(a) Update

12
10 4 —8—TSB-stand —o0—TSB-small
5 ——TSB-cond —+— HV-tree
&
o m __.___._—___—5_—__—__7--_5
4 - O.___{:— —0 |
2 -._ I y——A—— —_.———___-‘fff
G T T T T T
200 400 600 8OO 1000 1200 1400
Data Set Size (Mb)
70
—m—T5B-stand —0—TSB-small
60 1 e TSBcond —s—HV-tree
50 - '“““-a,_x____ J
40 -
f/\ B /
30 - ;/ 00—
20 1
y o o
10 ;/ g
- . _______n—""
D T T T T T T
200 400 600 800 1000 1200 1400

Data Set Size (Mb)

Search IO

—a— TSB-stand —o— TSB-small
—%—T5B-cond ——HV-free

a4
2 u
14 g% g 5 a7
'
0+ ¥ + L3 —
200 400 600 800 1000 1200 1400

Data Set Size (Mb)

(b) Search

Results: Key-Range Queries,

Time-Range Queries

e Key-range queries

e Time-range queries

Search time (msec)

Search time (msec)

1000
—M—TSB-large —O— TSB-small
100 —%—TSB-cond —&—HV-tree
—
¢ ”':t:t::_:‘,%_,_,_,_,:i;““
 —-—
1 4
0.1 P
e
001 &2 ‘ | |
00001% 0001% 0.01% -
Key Selectivity
(a) Time-slice
1000
100 4 I i_i:_ifff-i:_i: A
10 gf_:f:’_:_ —
1 —&— TSB-stand —o— TSB-small
—%—TSB-cond —— HV-tree
01
1
I
0.001 |
25% 50% 75%

Time Selectivity

(a) Single key

100%

Search time (msec)

Search time (msec)

10000
1000 4
100 4
10 ——TSB-large
/’ —O—TSB-small
14 rd —3¢—TSB-cond
&
" —a—HV-tree
0.1 4 ; : ;
0.0001% 0.001% 0.01% 0.1% 1%
Key Selectivity
(b) Time-range
10000

10009

=
o
o

10 4

—— TSB-stand —0— TSB-small
—%—TSB-cond —&—HV-tree

A Y

25%

50% 75% 100%

Time Selectivity

(b) Key-range

Experiments

e Finding S_ ;e

e Validation of T

Relative Performance

1.0 —— Update —O— Search —¢— Combined
@
Q
=1
[+
£
)
& 05
@
2
i
@
o
0.0 T T T T
128 256 512 1024 2048 4096
Node Size (bytes)
—O— Update Time —=— Search Time J
1.0 | _
—=— Memory —=— Combined ____.5-;..'--'-“]
B e
| e w a— /
T m - g——u— K o_/.-o ,-"/."f
o9 /]
0——___0__-{}———‘0 / ..'"I
0.5 4 — J,-
W f-“
l A A _a———ﬁ—____a—-- }
0.0 T T T T T T T T

005 015 025 035 045 055 065 075 0485 095

Threshold

Conclusions and Future Work

First index design optimizing performance for multiple levels
memory hierarchy, achieving a highly scalable and efficient
version index.

Key techniques

e Difference node sizes

e Gradual change of node sizes
e Data migration chain

Performance
e Several times faster for updates and point queries
e 1000 times faster for key/time range queries

Future work
e Other data structures
e Multi-core machine

of

