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Abstract The Multiple Time Bucket Join (MTB-join)

algorithm is the state-of-the-art for processing the Con-

tinuous Intersection Join (CI-join) query over moving

objects. It considerably outperforms alternatives, but

still falls short of real-time application performance re-

quirements for large sets of moving objects. In this pa-

per, we achieve real-time performance for the CI-join

query over large sets of moving objects by exploiting the

computational power of commodity Graphics Process-

ing Units (GPUs). We first analyze how the main char-

acteristics of the MTB-join algorithm make it ill-suited

to GPUs, and identify key challenges in designing effi-

cient GPU based algorithms for the query. We then ad-

dress these challenges by developing the Multi-Layered

Grid Join (MLG-join) algorithm which has the follow-

ing key features: (i) memory locality friendly indexing,

(ii) no dynamic memory allocation, (iii) in-place object

updates, (iv) lock free concurrent updates, and (v) mas-

sive parallelism. These features unleash the full poten-

tial of the memory bandwidth and parallel processing of

GPUs. Furthermore, we conduct a theoretical analysis

which can predict the pruning power of the MLG-join

algorithm given certain parameter values used in the
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algorithm. This allows us to select optimal parameter

values. Through extensive experimental results we show

that our analysis accurately models the MLG-join algo-

rithm’s sensitivity to parameter values. The proposed

MLG-join algorithm outperforms the MTB-join algo-

rithm, and a GPU-based nested loops join algorithm,

by up to two orders of magnitude, and achieves real-

time performance for CI-join queries on large sets of

moving objects.

1 Introduction

The Continuous Intersection Join (CI-join) query is im-

portant for monitoring and predicting the behavior of

moving objects of non-zero extents [25,26]. It provides a

continuous list of pairs of objects from two sets of mov-

ing objects that will intersect now and in the future

given their current trajectories. Where object trajec-

tories are modeled using an initial location and a lin-

ear velocity. The trajectory is updated when velocity

changes or a maximum time has been reached. Forcing

objects to issue updates at least once with a maximum

time period allows dead objects to be removed.

Figure 1(a) shows an example of the application of

the CI-join query, where shipping vessels monitor haz-

ards such as storms [5]. Three storms and four vessels

are represented by their respective Minimum Bound-

ing Rectangles (MBRs). The CI-join query will provide

a continuous report to all vessels of any storms they

might encounter based on the current trajectories of the

storms and the vessels. Figure 1(b) shows another ap-

plication where two teams of players are in a military

simulation [15] or massively multiplayer online game

(MMOG) [18]. Here the query provides a continuous

list of all players on two opposing teams that can in-
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flict damage upon other players, both now and in the

immediate future. This type of information is used in

MMOGs for artificial intelligence and server-side load

balancing [4].

(a) Maritime hazard mon-
itoring

(b) Military simula-
tion/MMOG

Fig. 1 Motivating examples

The scale of problems involving CI-joins are often

large (over 100,000 moving objects in military simula-

tion [15] and 400,000 moving objects in MMOGs [18])

and require rapid object trajectory updates. With mod-

ern GPS technology, it is common for real-world objects

to update their position and velocity at sub-second in-

tervals. For real-time processing, the data structures

must be updated and process queries within sub-second

intervals. The moving nature of the objects distinguishes

the CI-joins from traditional spatial joins and results in

expensive index structure balancing as cost models and

sorting become more complex. For stationary and/or

point data, balancing is much simpler as objects can be

pre-sorted and cost models can refer to node-overlap or

velocity distributions. With moving and non-zero ex-

tent objects there is no simple order for sorting, and

cost models, such as surface area of spatio-temporal

volumes for the TPR∗-Tree [21], are costly to compute.

Furthermore, intersection checks of moving object ex-

tents over a period of time are computationally expen-

sive, which hinders real-time query processing.

The Multiple Time Bucket Join (MTB-join) algo-

rithm [25,26] is the state-of-the-art method for process-

ing the CI-join query and uses two moving object index

structures. It suffers from high initial cost for build-

ing the index structures and high maintenance cost of

keeping the two index structures up-to-date as object

trajectories change. This limits the scalability of the

MTB-join algorithm. Zhang et al. [25,26] report that

the MTB-join algorithm requires several seconds to pro-

cess a CI-join on two sets of 100,000 objects using to-

day’s regular commodity hardware, which is slower than

sub-second response time required in real-time applica-

tions.

In this paper we propose to leverage the compu-

tational power of Graphics Processing Units (GPUs)

to achieve real-time processing of the CI-join query on

large sets of moving objects. In order to use GPUs ef-

ficiently, a job must be broken up into thousands of

small pieces which can be performed in parallel with

minimal sychronization and load imbalance. Therefore

a natural solution is to use a brute force join algorithm

such as the nested loops join. However, such a solution

will not yield satisfactory performance due to the huge

number of comparisons (one for each object pair) to

find intersecting objects.

Indexes can be used to prune the number of intersec-

tion checks. However, most existing indexes [12,19–21]

require the number of objects in tree nodes or grid cells

to shrink and grow in response to object updates, lead-

ing to expensive dynamic memory allocation. In addi-

tion, concurrent updates on these indexes require lock-

ing or atomic operations. Both dynamic memory allo-

cation and locking are expensive on GPUs. This means

the MTB-join algorithm is ill-suited to GPUs since it

uses TPR-tree indexes which requires frequent dynamic

memory allocation and locking operations [19].

The above discussions point out the design chal-

lenges facing an efficient GPU based algorithm for the

CI-join query. We propose a novel algorithm named the

Multi-Layered Grid join (MLG-join) which addresses

those challenges. The MLG-join algorithm groups ob-

jects into partitions based upon memory locations, and

indexes each partition in a separate layer of a multi-

layered grid. As a result, data is accessed at the par-

tition grain via the grid index. Storing objects within

each partition consecutively allows index look-ups to

take maximum advantage of the massive GPU mem-

ory bandwidth1. In contrast to existing tree/grid based

structures, our multi-layered grid approach performs

concurrent updates without using dynamic memory al-

location or atomic operations. We avoid dynamic mem-

ory allocation by reserving a separate bit for each par-

tition within each grid cell. We avoid locks and atomic

operations by handling insertions as writing a bit value

of 1 into the grid, regardless of the previous state of

the bit. Deletions are handled by periodic rebuilding of

the grid, which maybe done highly efficiently thanks to

the great parallelism provided by GPUs. This allows for

thousands of index updates, and queries, to be executed

in parallel.

In summary, the MLG-join algorithm has five key

features: (i) memory locality friendly indexing, (ii) no

dynamic memory allocation via a multi-layered grid

structure, (iii) in-place object updates, (iv) lock free

concurrent updates and (v) massively parallel mainte-

nance and querying. These features overcome the draw-

backs of the previously discussed approaches. Although

single level partition indexing is coarse, experiments

1 Currently up to 192GB/s for the NVIDIA GTX 680.
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show that the multi-layered grid can prune 99% of in-

tersection checks in typical workloads. The coarse gran-

ularity also eases load balancing as each partition has

a fixed size. Experiments show that the grid can be

rebuilt within 100ms for 500,000 objects, avoiding the

expensive setup cost of the initial join process in the

MTB-join algorithm.

It is worth noting that some of our ideas are not

limited to the CI-join query, and are applicable to large

batches of spatial queries such as the range, similarity

search [3] and kNN queries [17]. Our key contributions

are as follows.

– We propose a novel high-performance GPU based

solution to the CI-join query called the MLG-join

algorithm. We overcome the challenges of load bal-

ancing, dynamic memory allocation and high main-

tenance costs of moving object indexes on GPUs by

indexing partitions (groups of consecutively stored

objects) in a fixed-sized, multi-layered grid. The grid

is updated in parallel without locking or atomic op-

erations.

– We theoretically analyze the percentage of object

intersection checks that have been pruned by the

MLG-join algorithm. The analysis is experimentally

validated and is used to guide algorithm parameter

selection.

– We conduct an experimental study comparing the

MLG-join algorithm against the state-of-the-art CPU-

based approach (MTB-join algorithm) and a naive

GPU solution (GPU nested-loop join algorithm).

The results show that the MLG-join algorithm out-

performs both alternative algorithms by up to two

orders of magnitude. The MLG-ioin algorithm achieves

real-time processing of the CI-join query on large

sets of moving objects using a regular GPU equipped

commodity computer.

The rest of the paper is organized as follows. Sec-

tion 2 gives the problem definition and background in-

formations on GPUs. Section 3 reviews related work.

In Section 4, we present the MLG-join algorithm and

its implementation on the GPU. Section 5 provides a

theoretical analysis for choosing algorithm parameters.

Section 6 presents the experimental setup and results,

and finally Section 7 concludes the paper.

2 Preliminaries

In this section we provide a problem definition and de-

scribe the performance characteristics of GPUs.

2.1 Problem definition

The CI-join query was originally proposed and defined

by Zhang et al. [25]. The query assumes moving objects

with non-zero extents bounded by MBRs, modeled us-

ing linear functions of time [22]. The intuition here is

that the velocity of an object usually stays unchanged

for a short period of time. As a result, we can model the

movement of an object by its current location and ve-

locity rather than keeping track of every location that

the object passes through.

Objects are requested to report their locations when-

ever their velocity changes or a maximum update inter-

val (TM ) is about to expire (often referred to as a heart-

beat). If an object has not reported its location within

TM then we assume the object has left the system. The

CI-join query is then formally defined as follows:

Definition 1 Let A, B be sets of moving objects with

non-zero extents, and let Mbr(x, t) be a function that

returns the MBR of an object x at timestamp t. Let a ∈
A, b ∈ B. The continuous intersection join (CI-
join) query finds every pair (a, b) such that Mbr(a, t)∩
Mbr(b, t) 6= ∅, for any time t ∈ [tq,∞), where tq de-

notes the timestamp when the query is issued.

The CI-join query is computed in two phases, gener-

ating the initial join pairs (initial join) and then main-

taining the join pairs continuously as objects are up-

dated (maintenance).

When a query is issued, the initial join phase be-

gins. We compute every pair of objects that intersect

now and/or in the near future (up to tq + TM , where

TM denotes the maximum update interval), and the

time period that a pair of objects stays intersecting.

This computation is based on the current locations and

velocities of the objects. Its results form a list L of tu-

ples in the form of 〈ai, bj , ts, te〉, where ai and bj denote

two intersecting objects and ts and te denote the start-

ing and ending timestamps of the intersecting period.

We then start the maintenance phase. At every times-

tamp t, we just need to recompute the join result (up

to t + TM ) for the objects that have reported updates

at t, and update the list L accordingly. We then report

the object pairs in the list whose intersecting periods

overlap t. This way, we obtain the intersecting pairs for

every timestamp while constraining the computational

cost by avoiding the join on every object at every times-

tamp. In this paper we study how to process the two

phases using the GPU efficiently.

We assume that the CI-join query will be performed

entirely in memory, since the size of both the main

memory of the system and device memory of GPUs

are currently on the order of several GB. Indexing and
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storing two sets each containing 500,000 objects is on

the order of several MB.

2.2 Graphics Processing Unit (GPU)

Although the GPU is powerful, using it to accelerate the

processing of the CI-join query is difficult. Understand-

ing the main performance characteristics of the GPU

is key to understand the difficulty and opportunities it

offers.

Table 1 provides a summary of the differences be-

tween the CPU and GPU used in our study. The main

difference is that the GPU has many simple cores whereas

the CPU has a much fewer number of powerful cores.

GPUs simple cores lack out-of-order execution and branch-

prediction. The benefit of GPUs stem from lightweight

context switching, high data throughput and the abil-

ity to execute thousands of threads at once. Coordinat-

ing the thousands of GPU threads is difficult as high

speed communication can only occur between prede-

fined thread groups called blocks.

Locking and atomic operations are particularly ex-

pensive on GPUs because the way to achieve perfor-

mance improvement on the GPU is through massive

parallelism. According to the well-known Amdahls law

even a very small amount of sequential code (caused

by locks or atomic operations) can very dramatically

limit the speedup achieved from the massive number of

parallel threads. This is reason we have designed our al-

gorithm to avoid any use of locks or atomic operations.

Threads within a block are processed in batches,

called warps; all threads in a warp must execute the

same instruction at the same time. Any branch diver-

gence (caused by predicate evaluation) violates this and

has a multiplying negative effect on execution time as

some threads sit idle while others evaluate predicated

statements. We quantify the idle time using a metric

called occupancy. At full occupancy, all cores are be-

ing used by threads at all times. Low occupancy means

some physical cores are idle. Thus is the result of too

few threads running, or threads that cannot operate in

parallel due to divergence.

GPU threads operate on a separate memory block

(device memory). The cost of moving data between

main memory (for CPU processing) and device mem-

ory (for GPU processing) is high, and can be the most

expensive step in hardware accelerated applications.

Device memory access has high latency and high

bandwidth. Thousands of parallel threads can be used

to hide these latency costs. Consecutive threads are re-

quired to request data from consecutive blocks in order

to achieve full throughput. This is known as coalesced

memory access. Any random (non-coalesced) memory

access will result in reduced bandwidth. Thread blocks

have a small dedicated explicit cache called shared mem-

ory, and an implicit cache. Both the shared memory and

implicit cache have much lower access latencies than de-

vice memory and can be used to mitigate non-coalesced

access penalties.

Brute-force algorithms are highly competitive solu-

tions on the GPU, due to minimal inter-thread commu-

nication, predictable memory access patterns and sim-

ple execution paths. One such algorithm is the nested-

loops join, where every object in set A is compared with

every object in set B. The outer loop can be executed in

parallel across thousands of threads. This magnitude of

threads is required in order to hide the latency of device

memory access. Full use of a GPU computational poten-

tial can easily be achieved as each pair evaluation can

be performed in parallel, accessing contiguous memory

locations and performing the same set of instructions.

Although the nested-loops join is easy to parallelise, it

incurs too much computational cost by comparing ev-

ery pair of objects from the two sets without pruning.

Complex algorithms are more difficult to parallelise ef-

fectively. Conforming to the operational requirements

of GPUs is challenging, and crippling for most algo-

rithms.

In summary GPUs are characterized by the follow-

ing key attributes: 1) a large number of threads operat-

ing in parallel across hundreds of cores, 2) high memory

bandwidth for coalesced (sequential) access, high mem-

ory latency for non-coalesced (random) access, 3) lim-

ited cache and shared memory, 4) heavy penalties for

branch statements, and 5) minimal inter-thread com-

munication.

3 Related Works

In this section we describe four areas of related work:

indexing moving objects, existing algorithms for pro-

cessing CI-join queries, join processing on GPUs and

main memory indexing structures on CPUs and GPUs.

3.1 Indexing moving objects

The Time Parameterized R-tree (TPR-tree) [19] is a

popular moving object index which is an extension of

the R-tree [9] into the temporal domain. The TPR-

tree stores an object’s position at a reference time and

their associated velocity at that time. Each MBR in a

TPR-tree has an associated Velocity Bounding Rectan-

gle (VBR) which bounds the velocities of the objects

bounded by the MBR. The TPR*-tree [21] improves

over the TPR-tree by offering improved insertion and
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Num. Cores Frequency (GHz) Num. Transistors BW (GB/sec) Peak SP Flops (GFLOPS)
Core i7-950 4 3.06 0.73B 25.6 97.92

GTX 460 SE 288 1.30 1.95B 108.8 748.8

Table 1 Core i7-950 and GTX 460 SE specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point

a0 a1 a2 a3 a4 a5 a6 a7
b0 O

b1 O

b2
b3
b4 O

b5
b6
b7 O

(a) Fine-grained

a0 a1 a2 a3 a4 a5 a6 a7
b0 O

b1 O

b2
b3
b4 O

b5
b6
b7 O

(b) Coarse-grained

a0 a1 a2 a3 a4 a5 a6 a7
b0 O

b1 O

b2
b3
b4 O

b5
b6
b7 O

(c) Semi-contiguous
Fig. 2 Examples of remaining search spaces from three different indexes. The grey squares and white squares represent
remaining and pruned comparisons, respectively. Intersections are marked with letter O.

deletion algorithms. Although the TPR-tree and TPR*-

tree offer fast query times, they both suffer from high

initial building cost and high maintenance costs.

Other moving object indexes, such as the Bx-tree[12],

offer lower build and maintenance costs but still re-

quire dynamic memory allocation and locking for con-

current updates, both of which are costly on GPUs. Ali

et al. [1] build an index on wavelets to reduce the work-

load of continuous retrieval of 3D objects. It is based on

3D object modelling and does not apply to 2D objects

straightforwardly.

3.2 MTB-join algorithm

The only existing work on the CI-join query was done

by Zhang et al. [25,26], for CPUs. To our knowledge

there is no existing work on processing the CI-join query

on GPUs. Zhang et al. use two TPR-trees (one for each

set A and set B) to prune the the number of compar-

isons during join processing. Over time TPR-trees de-

grade in performance due to the expanding of MBRs.

Even with regular updates, any future looking query

requires expansion.

Zhang et al. reduced the computational load of the

CI-join query by imposing a time constraint, observing

that a join result between any two objects only needs to

be valid until the next update on either of the two ob-

jects. The heartbeat (Tm), the maximum time between

updates for any object, was adopted as the time con-

straint. This lowered the computation cost of queries,

but increased the need for query updates as the result

accuracy was also time constrained.

To overcome the high frequency of updates the MTB-

join algorithm was proposed. Query updates were opti-

mized by dividing objects into time buckets based upon

object update behavior. Each time bucket was repre-

sented by a TPR-tree.

Although the MTB-join algorithm uses some very

clever techniques to get the most out of the TPR-tree

for pruning the dataset, it is fundamentally unsuitable

for use on the GPU due to the branching nature of tree

traversals. In addition the overhead of frequent tree up-

dates caused by object updates is particularly expen-

sive on GPUs as they required random manipulations

of memory.

3.3 GPU-based join on static objects

He et al. [10] proposed GPU counterparts for the com-

mon relational database join algorithms including nested-

loops join, indexed-loops join, sort-merge join and hash

join. An emphasis was placed upon the usage of band-

width via coalesced access and shared memory. Their

work resulted in speed-ups of between 2 and 27 fold

for the primitives and, 2 and 7 fold for the joins. Our

work differs from theirs by dealing with a continuous

join query over moving objects.

Bandi et. al. [2] integrated the use of GPUs inside

the Oracle9i commercial database for processing queries

on stationary spatial objects. In particular they pro-

cessed the spatial join using two techniques, an indexed

nested-loops join using an R-tree and a hash styled join

using a quadtree. Their work was based upon stationary

objects and the performance benefits are not applicable

to moving objects due to the cost of processing updates.

The idea of this GPU based join algorithm can also be

used in emerging location based applications such as lo-

cation selection [11,16], which essentially performs join

operations on spatial indexes to find the optimal loca-

tions.

Bohm et. al. [3] demonstrated the use of GPUs for

processing complex data mining tasks. A building block

of this work included a GPU based similarity search

algorithm. The approach had a significant speed im-

provement over the CPU counterpart and was an exam-
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ple of an indexed nested-loops join using a tree struc-

ture. This approach could be extended to perform in-

tersection checks between two sets but there is difficulty

extending it to moving objects with non-zero extents.

Firstly, this work relies upon sorting the data before

building the index. This is difficult as the data of the

CI-Join is dynamic and changes regularly, therefore re-

quiring frequent re-sorting under this scheme. Secondly,

this work is designed for point data with no obvious

mechanism for handling objects with extents. Indexing

ranges in a tree structure for GPU access is a difficult

task as efficiency requires that each query must traverse

the same depth (number of nodes visited). However,

since ranges can span multiple tree nodes, it is difficult

to predict the traversal depth. Further problems arise

when the data is dynamic and cannot be intensively

processed offline.

The papers by Zhang el al. [23,24] propose a grid-

based approach to perform fast point in polygon (PIP)

tests on the GPU. Our approach is similar to theirs in

that we have a pruning stage like their filtering stage

and we both use a grid-based approach on GPUs. How-

ever, their filtering stage indexes both sets of data. They

also index each polygon separately (each polygon is as-

signed a separate id) in the grid. In contrast we only

index one set of data, the partitions of random objects

(objects that just happen to be next to each other in

an array) in a grid. Our partitions are fundamentally

different from their polygons, since we effectively treat

the entire partition of separate objects as one big ob-

ject whose area is composed of the union of all of its

constituent objects. This effectively means we assign a

single identifier (id) for a whole partition of objects. In

contrast they index each polygon separately onto the

grid and thereby assigning a different id to each poly-

gon. The drawback of the their approach is they need to

store and therefore query a much larger grid since each

grid cell will contain all identifiers of all the polygons

that intersect the grid cell. In contrast for each grid

cell we only store a single bit per partition of objects.

Our indexed data structure suits the architecture of the

GPU much better, because our grid has a fixed maxi-

mum length (one bit per partition) and thus does not

require dynamic memory allocation or a dynamic struc-

ture (linked-list), and memory requirements are more

predictable. A much larger maximum fixed length grid,

or a dynamic grid (e.g. linked-list of ids) would be re-

quired for a unique id for each object, rather than just

each partition.

Furthermore, by indexing both sets of objects, Zhang

et al. [23,24] must perform a scan to detect intersections

and then remove duplicates. The MLG-join algorithm

only indexes one set as partitions, and queries (probes)

this index with the other set. Any resulting duplicates

are intrinsically removed due to the bit-wise OR oper-

ations which occur during the probe.

In addition to the above differences the solution by

Zhang el al. [23,24] is only designed for a static join

whereas we are doing a continuous join. They do not

need to worry about maintenance. We are intersecting

two sets of objects with rectangular extents (4 sides)

whereas they are intersecting a set of points against a

set of polygons (any number of sides).

3.4 CPU and GPU main memory index structures

Kim et. al. [14] have developed FAST, a highly opti-

mized CPU and GPU implementation of a binary tree.

This implementation is highly suitable to GPUs and

demonstrates considerable performance benefits. Un-

fortunately it is not suitable for two-dimensional range

data (object extents) and tree updates are costly. Up-

dates are performed in batches to reduce this cost, but

the memory locations are unpredictable resulting in ex-

pensive random writes on GPUs.

Sidlauskas et. al. [20] developed the PGrid, a grid-

based indexing technique for parallel processing of mov-

ing object queries and updates. This implementation re-

lied upon atomic SIMD operations and dynamic mem-

ory allocation, both of which are costly on GPUs. In

contrast, our multi-layered grid does not use any atomic

operations or locks to support concurrent updates. In

addition, our approach does not need dynamic mem-

ory allocation and allows for in-place updates without

moving objects between grid cells.

A grid based index is much simpler to update than a

tree. Updating an object involves removing the object

from the cells it previously occupied and inserting it

into the cells that it now occupies. However, since there

can be a variable number of objects per grid cell, this

simple operation still needs a dynamic data structure,

such as a linked list.

We overcome these hurdles by implementing a grid

based structure of fixed size that indexes data at a

coarse granularity. This eliminates the need for dynamic

memory allocation which greatly reduces the mainte-

nance costs.

4 Multi-Layered Grid Join (MLG-join)

In this section we first describe the high level objec-

tive of the MLG-join algorithm. Then we present the

detailed steps of the algorithm and its GPU implemen-

tation.

We use the indexed loops join approach to process

the CI-join query. Alternative approaches, such as the
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sort-merge join and hash join, have difficulty process-

ing objects with non-zero extents. Furthermore, sorting

poses additional challenges with moving objects and dy-

namic data, especially for GPU processing.

The indexed loops join approach operates as follows.

At the highest level the algorithm first uses an index to

prune some comparisons (object intersection checks).

We call the set of comparisons remaining after prun-

ing the remaining search space. Second, it performs a

nested-loops join for the remaining search space. Dif-

ferent index structures can prune the search space by

different amounts.

Figure 2 describes three possible remaining search

spaces after pruning using different hypothetical in-

dexes. We assume that objects a0 to a7 are stored con-

tiguously in memory. Figure 2(a) is the result of fine-

grained pruning, only the intersecting pairs remain (4

comparison operations). Figure 2(b) is the result of

coarse-grained pruning (16 comparison operations re-

main). Figure 2(c) is the result of coarse-grained con-

tiguous pruning, the remaining comparisons are semi-

contiguous in memory (16 comparison operations).

An index that can achieve Figure 2(a) is clearly

the most desirable if we are solely interested in hav-

ing the least remaining comparisons. However, in order

to achieve this level of pruning we need to index objects

at a very fine grain. The consequence of fine grained in-

dexing is high update costs since it means the index is

very sensitive to the exact location of objects. To re-

duce the update cost, a coarser grained index can be

used, such as in Figures 2(b) and 2(c).

On GPUs, Figure 2(c) is more desirable than Figure

2(b). The reason is that the contiguous nature of the ob-

jects in the remaining search space allows the compar-

isons to be performed in parallel with coalesced mem-

ory access. Using the parallel architecture of GPUs,

the coarsely pruned search space of Figure 2(c) can be

examined in approximately the same time as Figure

2(a), despite having four times the number of remain-

ing comparisons. Thus on GPUs we can avoid using a

fine grained index and its accompanying high update

costs without significant query performance impact.

The crux of the MLG-join algorithm is coarse-grained,

semi-contiguous pruning. The remaining search space

consists of blocks of thousands of contiguous compar-

isons, which are then processed on thousands of GPU

threads in parallel with fully coalesced memory access.

We develop an indexing structure to produce a con-

tiguous pruned search space, which can handle moving

objects without sorting. This structure allows for thou-

sand fold parallelism on GPUs when building, query-

ing and updating, without locking mechanisms. This

is achieved by indexing groups of objects (partitions)

which are contiguous in memory and performing all

queries, and updates for a single partition in parallel.

4.1 MLG-join algorithm

For ease of understanding we first present the sequential

version of our MLG-join algorithm and then describe

the parallel GPU version in Section 4.2.

The MLG-join algorithm uses two data structures.

The first is the object array which stores the position,

velocity, extent and update information for each object.

Set A and set B objects are stored in separate object ar-

rays. The second is a multi-layered grid which coarsely

indexes set A objects.

The MLG-join algorithm processes the CI-join query

in the following four steps with set B functioning as a

batch of range queries on the multi-layered grid of set

A.

1. Construction, where the grid layers are built.

2. Probing, where the grid layers are queried.

3. Stream preparation, where the query results are trans-

posed to create a reduced search space.

4. Intersection, where the search space is processed.

a0 a1 a2 a3 a4 a5 a6 a7
(a) Set A object array.

a0 a1 a2 a3 a4 a5 a6 a7
(b) Set A object array logically
partitioned into two contiguous
partitions.

a0

a1

a2

a3

a4
a5

a6

a7

(c) Partitions on separate grid layers.

0 0 0 0

1 1 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

0 0 0 0

0 1 0 0
(d) Single-layered grid for each
partition.

00 00 01 01

11 10 00 00

00 00 00 10

00 01 10 00
(e) Combined multi-
layered grid.

Fig. 3 Constructed multi-layered grid. Shading based upon
the proportion of partitions occupying the cell none (white),
one (grey) and two (black).

4.1.1 Construction step (Building the index)

This step involves indexing set A objects using a multi-

layered grid. The Set A object array is logically parti-

tioned, meaning that the object array is not physically

changed but rather the objects within each logical parti-

tion are indexed in a separate layer of the multi-layered

grid.



8 Phillip G. D. Ward et al.

The objects are separated into partitions based on

memory locality (location in the sequential ar-

ray). This differs from most indexing structures which

group objects based on position and/or velocity. The

benefit is two fold. Firstly, it helps to produce a con-

tiguous search space after pruning. Secondly, object lo-

cation and/or velocity updates can be done in-place

without moving objects between partitions.

Figures 3(a) and 3(b) depict logically partitioning

set A objects into two partitions. Note the objects in

the set A array are not moved during the partitioning

but rather as mentioned above the partitioning is logical

instead of physical. The logical partitioning allows us to

create a separate grid layer for each partition. Figure

3(c) shows the set A objects of each partition placed

on a separate grid layer. It should be observed that the

objects in set A are randomly ordered. Furthermore

their indices have no deliberate correlation to spatial

information such as position or velocity. This results in

the contents of a partition, p, being randomly assigned

in regards to spatial information. It should be noted, in

practice each partition has thousands of objects.

A grid layer is analogous to an overhead silhouette

of the objects within one partition. A white grid cell

means the cell is empty; a black grid cell means the

cell is occupied by at least one object of the partition.

Occupation is defined as an object overlaying any part

of a cell. As shown in Figure 3(d), a white cell is repre-

sented by 0 and a black cell is represented by 1. In this

example the layers are combined into a two-layer grid

(one layer per partition) by concatenating the bits of

like grid-cells to make a bit-string, as shown in Figure

3(e).

The multi-layered grid does not assume there is any

spatial clustering present in each partition. Despite this

fact it is still very effective at pruning because the full

spatial coverage of any one partition is typically very

small compared to the full space. This is true even if

the objects are distributed randomly. Experimental re-

sults show that our index can prune more than 99%

of comparisons when the default number of parame-

ters is set to 128. Furthermore, for skewed data our

random assignment of objects into partitions actually

assists with load balancing since the high-density areas

will be spread across multiple partitions. In contrast,

other indexes, e.g., R-tree, will struggle due to the high

number of overlapping nodes in the high-density areas.

Moving objects. In the literature, the R-tree has

been extended with a time parameter to cater for mov-

ing objects. This has made the MBR of each object a

volume representing the MBR over a period of time.

This would require a 3D grid in our case. A 3D grid

would increase the memory required for our grid, along

a0

a1

a2

a3

(a) MBRs of moving ob-
jects

0 0 0 0
1 1 0 0
0 0 0 1
0 0 1 0
1

1 1
1 1

1
(b) Gird cell representation
of MBRs

Fig. 4 Grid representation of object motion.

with the computational cost of constructing and prob-

ing it.

To avoid the extra costs, we enlarge each object’s

MBR to include all space that the object covers over a

period of time (∆T ). Figure 4(a) shows the MBR of the

objects (a0,a1,a2,a3) from the current time to current

time + ∆T . Figure 4(b) shows the grid representation

of the object. In Section 4.3 we discuss how the value

of ∆T is determined.

4.1.2 Probing step (Querying the index)

This step involves the other set of objects (set B) query-

ing the grid. The query generates a bit-string for every

object b in set B, where a bit represents whether b inter-

sects at least one object in a partition of set A (1 for yes

and 0 for no). A zero in an b’s bit-string means b does

not intersect any object in the partition corresponding

to that bit.

For example, suppose we have a set B as shown

in Figure 5(a) probing the multi-layered grid produced
in Figure 3(e). Then the output bit-strings are shown

in column two of Figure 5(b). As we can see from Fig-

ure 5(b), the remaining search space represented by the

bit-strings are semi-contiguous, which satisfies our al-

gorithm design objective as discussed at the beginning

of the section.

4.1.3 Stream preparation step (Results transpose)

This step involves converting the probe output into a

stream of set B objects associated with the partition

that these objects intersect. The result is a list of set

B objects associated to an intersecting partition com-

puted from the probe output. An example of the stream

corresponding to the probe output of Figure 5(b) is de-

picted in Figure 5(c). This step is very similar to a

transpose operation, where the probe output is consid-

ered a matrix with a column for each partition and row

for each object.
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b0

b1

b2

b3 b4

b5

b6

b7

(a) Set B objects acting as
queries on grid.

p0 p1
Output a0 a1 a2 a3 a4 a5 a6 a7

b0 00

b1 10 O

b2 01 O

b3 00

b4 10 O

b5 00

b6 11 O

b7 01 O

(b) Probe output

Partition Bit-string Stream

p0 10 b1, b4, b6
p1 01 b2, b6, b7

(c) Stream

Fig. 5 Example probe and stream preparation.

4.1.4 Intersection step

This step processes the intersection checks on the re-

maining pairs. The intersection check takes into account

the precise spatio-temporal location of the objects and

checks if an actual intersection occurs. If the intersec-

tion check detects an intersection, the time period of the

intersection (ts, te), is computed. This is similar to three

nested-loops. The outer-most loop is the partitions. The

next loop is the objects in a partition. The inner most

loop is the set B objects in the stream, and the op-

erations of the inner most loop are checking whether

two objects intersect each other. The workload of this

nested-loop is close to the size of the solution set, due to

the pruning power of the MLG-join algorithm as val-

idated by the experimental study. We summarise the

above algorithm steps in Algorithm 1.

4.2 Parallel query execution of MLG-join on GPUs

First we describe how the MLG-join algorithm can be

implemented on GPUs without locking mechanisms,

followed by a detailed explanation of the implementa-

tion.

In general, the input for each step of the algorithm is

read-only removing the need for locking, and the output

Algorithm 1: The MLG-join.

input : Two sets of objects A and B. Set A divided
into a set of partitions P .

output: Set of tuples S containing a, b, ts and tf where
a is an object from set A, b is an object from
set B and ts, tf refer to the start and end time
of an interval where objects a and b intersect.

/* Project a’s silhouette onto grid for p */

1 for p ∈ P do

2 for a ∈ p do

3 ConstructMultilayeredGrid(p, a)

/* Create probe output for b from grid */

4 for b ∈ B do

5 Probe[b] ← ProbeMultilayeredGrid(b)

/* Convert probe output to stream (list) */

6 for p ∈ P do

7 for b ∈ B do

8 if p ∈ Probe[b] then
9 List[p] ← List[p] ∪ b

/* Test each b in stream vs. each a in partition */

10 for p ∈ P do
11 for a ∈ p do
12 for b ∈ List[p] do
13 S ← TestIntersection(a,b)

for each thread has its own memory. The exception to

this is the grid during construction. Each thread must

share the grid. Fortunately, the construction process is

commutative, i.e., the iterations may be performed out

of order and the result will be the same. There is no

need for locking or atomic operations as any conflicting

parties will be trying to do the same thing, toggle a bit

from 0 to 1. Although bits are accessed at 32 bit integer

grain, no lost updates occur. This is because each cell is

stored as a separate integer, and each partition accesses

the grid sequentially. The result being that the only

time two threads attempt to access the same integer,

they will both be attempting to access the same cell,

on behalf of the same partition, and setting the same bit

to 1. Although threads which are in different warps will

not be synchronised for this operation, the result will

still be accurate as long as both threads are attempting

the same operation (toggling the same bit to 1). Due

to the memory hierarchy on the graphics card, the two

requests will filter up through local memory and cache,

to the global memory controller. When this occurs, the

two operations will either be combined, or executed in

serial. As no thread will ever be setting a bit to 0, and no

two different partitions are executed at the same time,

the operation will achieve the correct result despite the

order of execution being unpredictable.

The method for parallel execution on GPUs is de-

scribed in the following paragraphs. Each step of the

algorithm is performed using a different kernel.

In the construction step, thread blocks are as-

signed to each partition, with multiple blocks provided

if the number of objects in a partition exceed the max-
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imum number of threads in a block. Threads are as-

signed consecutively to objects, with one thread per

object. An occupancy penalty can occur when the num-

ber of objects is significantly smaller than the maximum

number of threads in a block, resulting in under-use of

the hardware. This penalty can be minimised or com-

pletely avoided through parameter selection. The first

step is to read the attributes of each object. As the ob-

jects in adjacent threads are in adjacent memory posi-

tions, the memory access is coalesced. This makes max-

imal use of the available bandwidth which is the moti-

vation behind the partition structure. The next step is

to calculate which grid cells should be modified. This

process is identical for each thread, achieving full oc-

cupancy on GPUs. The next step, writing to the grid,

is not coalesced for each partition, but is coalesced for

each object. This is due to adjacent objects in memory

not residing in adjacent grid cells, but grid cells spanned

by a single object being adjacent in memory. In the sce-

nario where an object only spans a single grid cell the

performance penalty is small for this potentially non-

coalesced operation as the total cost of the operation is

only a few bits per object. In scenarios where objects

overlap many grid cells, the memory cost of this oper-

ation increases whilst becoming increasingly coalesced.

This behavior is controlled through grid cell size, a tun-

able parameter.

In the probe step, a thread is assigned to each

object in set B sequentially. Reading each objects’ at-

tributes is a fully coalesced process. Calculating which

grid cells to read from achieves full occupancy as in

the construction step. Reading from the grid is a non-

coalesced operation, but the cost is minimal. The read

bit-strings are processed into a single bit-string using

OR operations. This is identical for each thread and

therefore achieves maximum throughput. The final step

is writing these strings into memory. As the strings have

a fixed length (1 bit per partition), an array may be al-

located prior to this step. Writing to this memory is

entirely coalesced and achieves maximum bandwidth.

In the stream preparation step, a thread is as-

signed to each partition. Each block reads the probe

output of a single object in set B into shared memory.

Each thread then checks if the bit corresponding to its

partition is set to 1. If it is, the ID of the object is writ-

ten to that partitions’ stream. Full memory bandwidth

can be achieved during the read step by loading a batch

of objects from set B at a time into shared memory. Full

occupancy is achieved by the threads as the operations

required to check each bit are the same. This process is

repeated for each object in set B.

A difficulty arises when adding objects to a stream,

which involves writing to memory randomly. This ran-

dom write is minimized by only storing object IDs in

the stream.

The reduced search space is all that remains to be

processed. This remaining workload is highly suitable

for GPUs as the data is mostly contiguous, which lends

itself to coalesced memory access patterns. The oper-

ation to be performed on this data is an intersection

check which will be identical computationally for each

object pair, resulting in zero branching. This all results

in the potential for thousands of comparisons to be pro-

cessed in parallel.

In the intersection step, the threads are allocated

in an identical fashion to the construction step. Each

block corresponds to a single partition. Reading the ob-

ject attributes is highly coalesced as stated. The next

step is to process the stream of objects. Each object in

a partition uses the same stream, therefore each thread

in a block requires the same objects from set B. This

can be exploited by loading all the objects within the

stream into shared memory.

Following this, each thread in the block checks for

an intersection between its own object and the objects

in shared memory, and returns the time period that

the two objects intersect for, if any intersection occurs.

This step is the most computationally intensive of the

algorithm. In implementation, it not only achieves full

throughput via each thread performing the same op-

erations, it also performs less memory operations as

each object in the stream is only read once by the en-

tire partition. The number of memory operations per

block is one for each object in the partition (coalesced),

plus one operation for each object in the stream (non-

coalesced). Without exploiting the thread allocation,

this computation would require one operation for each

object in the partition (coalesced), multiplied by one

operation for each object in the stream (non-coalesced).

This provides a significant reduction in the number of

global memory operations required, which in the best-

case is equivalent to the number of objects per partition.

Handling skew. A potential performance issue with

many GPU algorithms is handling skew. The above im-

plementation relies upon similar workloads being un-

dertaken by each partition. The partition approach in-

trinsically handles skewed datasets, due to the fact that

objects are grouped based on memory locality instead

of spatial locality. This makes it unlikely that each par-

tition will have a significantly different workload. If an

area of the grid has a higher density, which is possible

in most applications, this density is likely to be spread

across multiple partitions.
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4.3 Maintenance of continuous query results

Join maintenance is performed in two steps. First the

object array and grid are updated, and then the join

results are updated by re-probing the updated grid. We

will consider updates in batches as it is more efficient

and an individual object update is a special case of a

batched update.

In-place object updates. Objects are updated in-

place within the object arrays. Objects from set A also

insert a new projection of themselves onto the grid. The

old projection of the object is not deleted since it is im-

possible to reverse an inserted projection. This does not

affect the correctness of the join result as it can only

cause false positives, not false negatives, which are re-

moved in the intersection step. We periodically remove

all stale projections by clearing and rebuilding the grid

(detailed later in this section).

New objects are inserted at the end of the object

array. If the object is a set A object then it is also

inserted into the last partition. If many insertions occur,

an extra partition, and corresponding grid layer is set

up for them. The last partition and any new partitions

then run through a construction step to populate their

respective grid layers. Deleted objects are set to null in

their object arrays.

After updating the data structures, the probe re-

sult is updated as follows. All set B objects probe the

grid layers of updated set A partitions (set A partitions

that have an object update). This is computed by only

probing the final (updated) grid layers. Then the up-

dated and newly inserted set B objects probe the grid

layers of all set A partitions. A stream is prepared and

processed. This is performed in the same way as a reg-

ular probe and preparation step, the difference being a

smaller set B. New join results are added to the existing

result set and any deleted objects are removed.

Grid maintenance. The grid must be periodically

cleared and rebuilt, removing the projections of deleted

and out-of-date objects to ensure it retains its efficiency

and correctness. We call the time period between grid

rebuilds ∆T . As ∆T increases, more updates occur be-

tween rebuilds resulting in more stale projections on

the grid. The size of projections also increase as ∆T

increases, resulting in more expensive construction and

probing of the grid. A smaller ∆T means the stale data

is removed more often, making the grid more efficient

but resulting in more frequent rebuilding.

Zhang et al. [26] thoroughly investigated how in-

dex rebuilding time offsets the join performance when

analysing optimal parameters for the MTB-join. Fol-

lowing the results of their study, we set ∆T to the

heartbeat time (Tm). Every object must update every

Tm time period, therefore at the end of Tm, every object

in the grid will have stale data.

Zhang et al. [25] proposed grouping objects into

time buckets based on similar update patterns and in-

dexing each bucket individually so as to reduce index

rebuilding cost. We use a similar approach, i.e., group-

ing partitions into time buckets and offsetting their re-

build times. E.g., given 2 buckets, the first would be

rebuilt at ∆T , and 2∆T , etc., and the second would be

rebuilt at 3
2∆T , and 5

2∆T , etc.

The multi-layered grid for each bucket is stored sep-

arately. We choose a multiple of 32 for the number

of partitions (layers) per bucket. This simplified the

stream preparation and the OR operations in the prob-

ing step. The bit-string in the stream preparation step

would be stored as a series of 32-bit integers, which is

well suited for GPU memory layout. Thus, it determines

the number of partitions per bucket.

4.4 Memory Usage Analysis

There are two main areas within MLG-join where mem-

ory usage can be large. The first is the size of the multi-

layered grid and the second is the temporary memory

used by the transpose operation performed during the

stream preparation step.

A simple way to reduce the size of the multi-layered

grid is to create a coarse-grained grid (large grid cell

size and small number of partitions). It turns out a

relatively coarse-grained grid is actually desirable for

both performance and memory usage because a finer-

grained grid results in too many separate memory reads

and writes. In our experiments the default setting of

1000x1000 grid cells, 256 partitions and grid cells of

0.5x0.5 gives optimal performance and the memory us-

age is only 64MB. Even in scenarios, which consist of

much larger worlds, many more objects, it is still bet-

ter to use coarser-grained implementations due to the

selectivity.

For the stream preprocessing step it is difficult to

perform the transpose operation in-place and therefore

a large temporary buffer is needed. Modifying the logis-

tics of the algorithm to operate in a memory-constrained

environment can circumvent this limit. Such a modifi-

cation can be done without impinging on processing

time, through pipelining. This is left as a direction for

future work.

5 Theoretical Analysis

In this section we first present a cost model for the

MLG-join algorithm which includes the key parameter
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X, the set of object pairs remaining after the prun-

ing steps (first three steps) of the join algorithm. The

parameter represents the effectiveness of the grid at re-

ducing the number of object intersections to check in

the intersection step. Next in Section 5.1 we will quan-

tify the effect that the number of partitions (α) and

grid cell width (γ) have on the size of X (|X|).
The MLG-join algorithm’s performance can be anal-

ysed by examining the computational cost, O, required

for each of the four steps individually.

O = k1|A|
xy

γ2
+ k2|B|

xy

γ2
+ k3|B|α+ k4|X| (1)

Here x and y are the width and height of the ob-

jects respectively. For non-stationary objects, x and y

represent the enlarged MBR depicted in Figure 4. Given

that the computational cost of each different operation

is unique, e.g., calculating the intersection of two rect-

angles is more costly than reading a bit, a step specific

cost coefficient is introduced, where ki is the coefficient

for step i.

The first part of the equation corresponds to the

construction step, where each object in set A performs

an operation for each grid cell it occupies. This is cal-

culated as the ratio between object size and grid cell

size.

The second part of the equation corresponds to the

probing step and is similar to the construction step,

with reading being performed instead of writing. Thus

it has the same number of operations as the construc-

tion step (but proportional to |B| instead of to |A|).
The third part of the equation corresponds to the

stream preparation step, where each bit of each bit-

string is analyzed. The number of operations is propor-

tional to the length of the bit-string (α) and the size of

set B.

The fourth part of the equation corresponds to the

intersection step, where each object pair intersection

not pruned in the first three steps is checked.

It is obvious the first three steps will scale linearly

with set sizes. The unknown is X, which we derive as a

function of α and γ. This function quantifies the bene-

fits of the pruning steps (steps 1 to 3) of the MLG-join

algorithm given a particular partition size and grid res-

olution.

5.1 Analysis of pruning power of the multi-layered grid

The effect the number of partitions (α) and grid cell

width (γ) have upon X is important. A naive assess-

ment of the algorithm suggests a higher resolution grid

(smaller γ) and more partitions (higher α) will result

in more pairs being pruned (smaller X).

A limitation is placed upon γ, in that the smaller

it is, the more grid cells must be read and written in

the probe and construction steps. Furthermore, smaller

values of γ will increase the grid size in memory. Thus

the cost of a higher resolution grid is higher processing

and memory costs.

A limitation is placed upon α, in a similar way. A

higher α increases the number of grid-layers required.

This results in more cycles to probe the grid and pre-

pare the stream. Thus higher partition resolution also

increases the processing and memory costs during prun-

ing.

Understanding and quantifying these costs allows

us to tailor the algorithm parameters for balance of

pruning power, performance and memory costs.

In the worst case, no pruning occurs and X will

contain all the pairs in the Cartesian product of A and

B (A × B). In the best case all the non-intersecting

pairs are pruned and X will only contain pairs in the

solution set, Q.

Quantifying X is not a trivial task. The follow-

ing three sub-sections begin with a simplified scenario,

where objects are assumed to be stationary and there is

infinite grid resolution, then progressively constructs a

version encompassing moving objects and a finite grid

resolution.

5.1.1 Case 1: Stationary objects and infinite grid

resolution, vmax = 0, γ → 0.

Consider the process as defined in Algorithm 1. When
an object b ∈ B probes the grid and returns a negative
result for partition p ∈ P , we effectively remove {a ×
b|a ∈ p} from X. Conversely, the set X is made up of all
the tuples {a×b|∀a ∈ p where b returns a positive result
for partition p}. Thus X can be defined as follows.

X = {a× b|∀b ∈ B, ∀a ∈ p, ∀p ∈ P : ∃ã ∈ p, Intersects(ã, b)} (2)

(Note: X is not constant because the equation involves the size

of P , which depends upon the algorithm parameter α.)

In order to calculate |X|, we need to know how many
pairs of a and b intersect each other. For this we intro-
duce the term σ to define the selectivity of the query.
σ takes a value between 0 and 1, and can be described
as follows.

σ =
|Q|
|A×B|

(3)

It is also necessary to define the number of ob-
jects within each partition, β. β can be thought of as
inversely proportional to α. A smaller α results in a
larger β, and the associated performance and pruning
changes. Thus, we have:

β =
⌈ |A|
α

⌉
(4)
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Assuming that every pair in Q is in a different par-
tition, then β object pairs will be added to X for every
pair in Q, i.e., |X| = β × |Q|.

|X| = σβ|A×B| (5)

Every pair in Q does not have to reside in a different
partition, thus Equation (5) will contain duplicates. To
avoid this, we refine Equation (5) to reflect the proba-
bility of b intersecting two objects in the same partition.
Let σ be the probability that any two random objects
a and b intersect. We require the probability, ϑ, that a
random object b will intersect at least one object a
from partition p. This is analogous to the probability
that in β coin tosses, at least one toss will come up
heads. Therefore,

ϑ = 1− (1− σ)β (6)

Without a known σ, we cannot progress further. If
we assume a uniform distribution in a finite region, the
probability of a random point being within a given rect-
angle, placed randomly, is based on the proportion of
the region the rectangle occupies. In this query, the area
of the possible region is the entire domain, defined by
width multiplied height, wh. As described earlier, the
size of each object is xy. Equation (7) describes this
probability Pr.

Pr =
xy

wh
(7)

To extend this probability from a point within one

object’s extent to two object’s extents overlapping, we

consider the probability of a point lying within both ob-

ject’s extents. We know the likelihood of two indepen-

dent events occurring is the product of their respective

probabilities. Thus we compute σ as follows.
Without loss of generality, we assume that both the

region and all objects’ extents are square, i.e. x = y and
w = h (this is done due to space constraints). Thus, the
area of each object is x2 and the area of the region is
w2.

σ =
x4

w4
(8)

Combining Equation (6) and (8) defines our value
|X| as a function of known problem attributes (region
size, object size) and partition size β, as shown in Equa-
tion (9).

|X| =

⌊(
1−
(
w4 − x4

w4

)β)
|A×B|

⌋
(9)

(Note: |X| is not static as it relies on β.)

5.1.2 Case 2: Stationary objects and finite grid

resolution, vmax = 0, γ > 0

The analysis in the previous section excluded the effect

the grid size plays on pruning. Equation (8) computes

the probability that two objects intersect based on their

extents. When the objects are placed on grids, our al-

gorithm assumes that they intersect as long as they

overlap the same cell, regardless of their precise extent.

This effectively inflates the objects, rounding their ex-

tent up to fill the grid cells they partially occupy. This

new extent can be determined.
To modify σ to account for the inflation, we intro-

duce the term effective size, x̃. The effective size is
the average length of a line x if placed randomly on
the grid and increased to fill a number of grid cells of
width γ. Probabilistically, x̃ is the expected value of x
when represented by an integer number of grid cells,
x̃ = E(x). It is described in Equation (10).

x̃ = x (mod γ) +
(

1 +
⌊
x

γ

⌋)
× γ (10)

By replacing x4 with x̃4 in Equation (9) we have

successfully integrated the effect of the granularity on

the MLG-join algorithm’s performance. See Equation

(11).

|X| =

⌊(
1−

(
w4 − x̃4

w4

)β)
|A×B|

⌋
(11)

5.1.3 Case 3: Moving objects and finite grid

resolution, vmax > 0, γ > 0

Finally, we add velocity to the mix. The stationary rect-

angle used in the previous steps (defined by area x2),

must now be increased in size to bound the moving

object over a period of time, ∆T . This was shown pic-

torially in Figure 4.

We will assume a uniform distribution of directions,

and distribution of velocities between 0 and vmax, where

vmax is the maximum velocity of any object. From this

we can determine that the expected velocity is vmax
2 .

The expected area of the MBR, ϕ, is described in Equa-
tion (12).

ϕ =
(
x+ x̂ · vmax

2
∆T
)
×
(
y + ŷ · vmax

2
∆T
)

(12)

where x̂ and ŷ denotes the unit vector in the x and y

respectively. The vectors x and y are the coordinates of

the space this problem exists within. (x, y) as defined

earlier are the magnitudes of the length of each object’s

extent in this space. ∆T is the period of time the MBR

is valid for.

To simplify the equation, we assume x = y as in

Section 5.1.1. As the velocity is uniformally distributed,

it can be described as having any direction between 0

and π. Finally using some trigonometry, we arrive at

Equation (13).

ϕ = x2 + x× vmax ×∆T ×
(

1−∆T × vmax

8

)
(13)

The effective value of ϕ, ϕ̃, is computed by replacing
x with x̃ from Equation (10). The resulting equation for
ϕ̃ is omitted due to formatting constraints. ϕ̃ is placed
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into Equation (11) in-place of x̃2 to account for the area
of moving objects. Finally α is substituted back in for
β, following Equation (4).

|X| =

⌊
1−

(
w4 − ϕ̃2

w4

) |A|
α
⌋
|A×B| (14)

This equation correctly models both the initial join

and the maintenance phases. In the maintenance phase

only a portion of |A×B| is operated on, but this does

not effect the choice of optimal parameters.

The definition of |X| described in Equation (14) can

be used to determine algorithm parameters to achieve

maximum pruning. The accuracy of Equation (14) is

validated experimentally in Section 6.2. The experi-

mental results, coupled with this equation, allows us

to choose the optimal parameters for our comparative

analysis in Section 6.2.

6 Experiments

In this section a series of experiments are undertaken

with three main goals: the first is to verify the accuracy

of the analysis of Section 5 (see Section 6.2); the sec-

ond is to perform a detailed experimental study of the

key parameters, number of partitions (α) and grid size

(γ), on the performance of the MLG-join algorithm (see

Section 6.2); the third is to compare the MLG-join al-

gorithm’s performance against the current state-of-the-

art algorithm (MTB-join) and a nested-loops join for

GPUs (see Section 6.3). The experimental environment

is first described along with the performance metrics.

6.1 Experimental Setup

The experiments were conducted using Microsoft Vi-

sual Studio 2010 development environment on 64 bit

Windows 7. The proposed algorithm was compiled us-

ing CUDA Toolkit 4.0. It was selected over OpenCL

due to the maturity of the documentation and devel-

opment tools, however an OpenCL implementation is

possible. To ensure validity of test results, operating

system controlled context switching was disabled.

Initial join results were achieved by running the

algorithm 10 times and reporting the median result.

Maintenance results were achieved by warming up the

index over 60 timestamps with updates, and averaging

the cost of a single timestamp over the next 60. This

process was repeated 10 times and the median result

reported.

The host platform consisted of an Intel Core i7 950

3.06 Ghz CPU with 8 GB of RAM. The graphics card

was an NVIDIA 1 GB GeForce GTX 460 SE, running

at 1.3 Ghz.

Real Dataset. We follow Zhang et al. [26] and

adopt two real-world trajectory datasets: a fleet of trucks

and a fleet of school buses [7]. These two datasets con-

sist of 276 and 145 trajectories, respectively, where each

trajectory consist of the location points of a truck or a

bus in a day. The location points are recorded at an in-

terval of 30 seconds. Due to the limited size of the two

datasets, following Zhang et al. [26] and a few other pre-

vious studies [6,8,13], we generate more objects based

on the distribution and characteristics of these trajecto-

ries. Two sets of datasets are generated, i.e., the “Truck

datasets” and the “Bus datasets”, where the objects are

generated based on the truck trajectories and the bus

trajectories, respectively. We generate 100K objects for

every dataset, where every object is generated as fol-

lows. We first randomly choose a trajectory from the

corresponding real dataset for the object. We then ran-

domly choose a location point of the trajectory as the

object’s starting position and give the object a size of

0.5% of the space (i.e., the default object size). We ran-

domly choose one of the adjacent location points in the

trajectory, and generate the current velocity for the ob-

ject which will allow it to reach the chosen adjacent lo-

cation point in 30 timestamps. When the object reaches

the next location point in the trajectory, we repeat the

adjacent location point choosing and velocity generat-

ing process, and an object update is issued.

Synthetic Dataset. Synthetic datasets were gen-

erated with a domain of 1000 × 1000 using the bench-

mark data generator (cf. [26]). Uniform and Guassian

distributed datasets were used. In both datasets the

speed was distributed uniformally between 0 and vmax.

All objects had square extents. The maximum velocity

(vmax = 1) and maximum update interval (TM = 60)

were fixed and adopted from Zhang et. al. [26]. Two

datasets were initially setup at timestamp t0. At each

timestamp 1% of objects randomly updated their posi-

tion, velocity and direction. Any object which did not

update over an interval of TM was removed from the

datasets. The continuous query was first evaluated at

t0 and re-evaluated at every timestamp. The parame-

ters used to vary the characteristics of the two input

data sets A and B are summarised in Table 2.

The default MLG-join algorithm parameter val-

ues, unless otherwise specified, were α = 128 and γ =

1. As mentioned in Section 4.3 we set ∆T to equal TM
which in our experiments was 60 timestamps. Table 3

displays the grid size for the range of parameter values

used in our experiments. It is important to note even

the largest grid (at α = 256 and γ = 0.5) is only 64 MB

in size.
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Symbol Description Value

|A|, |B| Cardinality 1K, 10K, 50K,

100K, 500K

x, y Object size (% of

region size)

0.05%, 0.1%,

0.2% 0.4% 0.8%

vmax Object velocity (%

of region size per

second)

0.05%, 0.1%,

0.2% 0.4% 0.8%

Update rate (% per

timestamp)

0.5%, 1%, 2%

4% 8%

Distribution of ob-

ject position.

Gaussian, Uni-

form

Table 2 Parameters for synthetic datasets. Default values are
in bold.

The MTB-join algorithm implementation and pa-

rameters used were obtained from Zhang et al. [26]. The

I/O time was removed by implementing a RAM disk.

The parameter ranges were chosen to be comparable

with this study. It is important to note that the MTB-

join is designed to work for disk-based data and there-

fore is not highly optimised for in memory continuous

spatial joins. As future work, it would be interesting

to explore ways of optimising the MTB-join for both

in-memory data and GPUs.

A highly GPU optimized implementation of the nested-

loops join was used in the study. This algorithm was

designed with a similar execution structure as Bohm

et. al. [3], with objects replacing points. The implemen-

tation was designed to obtain full occupancy on GPUs

and 100% coalesced access patterns. This was confirmed

using the CUDA Visual Profiler prior to testing.

A multi-core CPU version of the MLG-join was also

implemented for comparison purposes. The implemen-

tation was similar to that of the GPU with some minor

changes. The work of a partition was performed in small

batches by a CPU thread, instead of a block of GPU

threads. Alternative values were also used for α (num-

ber of partitions) and γ (grid size). Experiments were

performed to select the optimal parameter values for

the default dataset parameters (Table 3), the results

of which are presented in Figure 8(b). The CPU im-

plementation required significantly less memory for the

same α value, as all the data structures, such as the

streams, could be dynamically allocated. This allowed

for much larger values for α to be tested.

Grid cell size (γ)

Number of partitions (α) 0.5 1 9

64 16 MB 8 MB 1 MB

128 32 MB 16 MB 2 MB

256 64 MB 32 MB 4 MB

Table 3 Grid size for varied parameters.

6.2 Validation of theoretical analysis

Equation (14) of Section 5.1, offers an insight into the

pruning ability of the MLG-join algorithm. This abil-

ity is contingent upon selecting appropriate values for

the number of partitions (α) and the size of grid cells

(γ). To aid in selecting the best values, the effect these

parameters have on the performance of the MLG-join

algorithm is explored. This performance is evaluated in

two ways, firstly the ability of the algorithm to prune

the search space, secondly the cost (time) of running

the algorithm.

The ability of the algorithm to prune the search

space is quantified by measuring the percentage of pairs

remaining in the Cartesian product of the two input

datasets, defined by |X|
|A×B| , where |X| is the number of

object pairs remaining after the pruning as defined in

Section 5.1. This value is used on the y-axis of Figure

6(a) and 7(a). The cost of running the first three steps

of the algorithm (build, probe, prepare) is examined

first, followed by the cost of the entire algorithm. This

analysis provides insight into the effect α and γ have

upon the algorithm steps, in addition to allowing us to

select the optimal parameter set.

6.2.1 Effect of the number of partitions (α)

Figure 6(a) verifies the accuracy of Equation (14) as the

experimental results align closely with those predicted

by the equation for variations in α.

From Figure 6(a), we observe that α is positively

proportional to the algorithm’s pruning ability thus a

higher number of partitions is preferred, as predicted by

Equation (14). From Figure 6(b), we observe that above

a low threshold (1 partition) α is positively proportional

to the cost. Given these two behaviors, a compromise

between pruning ability and cost is required. From Fig-

ure 6(c) we can see that 128 is the optimal value for

α, and in the following experiments we will use this α

value. At this value, approximately 99% of the Carte-

sian Product has been pruned.

The shape of Figure 6(a) is expected as a single

partition is a very coarse grain approach which results

in many false positives (non-intersecting pairs which are

not pruned), whereas a partition per object is the finest

possible grain resulting in very few false positives.

Figure 6(b) shows once there are a sufficient num-

ber of partitions to occupy the GPU hardware (8 or

higher) the cost of building and probing the grid are

fairly constant and minimal (under 1ms per step). The

cost of stream preparation is the dominate step as a

bit must be processed for each partition resulting in a

linear scale.
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Fig. 6 Effect of α on MLG-join performance.

One characteristic that may be counter-intuitive is

the increase in intersecting time for large α in Figure

6(c). The increase in intersecting time is due to a de-

crease in parallel performance. A higher α results in

fewer objects per partition, and consequently less par-

allel threads and operations.

6.2.2 Effect of the size of grid cells (γ)

Figure 7(a) verifies the accuracy of Equation (14) as

the experimental results align closely with those pre-

dicted by the equation for variations in γ. From Figure

7(a), we observe that γ is negatively proportional to the

pruning ability of the algorithm thus smaller grid cells

are preferred. This is intuitive as smaller grid cells yield

a finer grained join and less false positives. From Figure

7(b), we observed that above a low threshold of 1 the

cost is approximately constant. By selecting the finest

grained approach (smallest γ) above the threshold an

optimal value is found (γ=1).

The optimal value is a trade-off between pruning

and intersection times. A coarser grained grid (higher
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Fig. 7 Effect of γ on MLG-join performance.

γ) is faster to build and probe, but yields more false

positives, thus more objects are added to the stream

for the intersection step. Whereas, a finer grained grid

is costly to build as each object overlaps more cells, but

yields a smaller stream. The exception to this relation-

ship occurs for values below 1. As the objects used in

this experiment had size 1, the benefit of increasing grid

resolution beyond 1 has little impact on the stream size

but increased the cost of grid construction.

Figure 7(c) shows the results for the total time, in-

cluding both pruning time and intersecting time. The

results reinforce our earlier expectation, namely the

smallest value of γ that is higher than object size (1)

yields the lowest total time. Therefore the optimal value

of γ is 1, which is used for the remaining experiments.

6.2.3 Parameter tuning for the CPU-based MLG-join

The optimized multi-threaded MLG-join algorithm on

the multi-core CPU required different parameters to the

GPU version (α = 1536, γ = 1). It is expected that the

build and probe steps will be much faster on the CPU
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compared to the GPU as they involve non-coalesced

memory access, a task that the CPU accomplishes eas-

ily. This can be seen in Figure 8(a) where the build step

is almost negligible.
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Fig. 8 Effect of α and γ on CPU-based MLG-join perfor-
mance.

It should be noted that the varying α values (num-

ber of partitions) CPU graphs included larger α val-

ues than the corresponding GPU graphs. This is due

to three factors. The first is memory limitations, as the

CPU has much more memory than the GPU it can han-

dle a larger grid, longer bit-strings for the probe and

more streams for the additional partitions (all scale lin-

early with α). The second is that the GPU requires a
large numbers of threads per block to achieve full occu-

pancy and hide memory latency, so a large number of

small partitions is not suitable. The final factor is that

the CPU performs optimally with many small parti-

tions, rather than the GPU which prefers fewer, larger

partitions.

The CPU prefers small partitions as this reduces

the workload of the intersecting step. More partitions

greatly increased the ability of the grid to prune the

search space, as can be seen in Figure 6(a). Unlike the

GPU, the CPU cannot efficiently spread the workload

of the intersection over hundreds of threads thus, a

smaller workload is highly beneficial.

The cost of this finer pruning is expensive stream

preparation. As each partition requires a separate stream,

and the input to the stream preparation process is pro-

portional to the number of partitions (bit-string length),

the time required to prepare the stream scales linearly

with the number of partitions. This is shown by Fig-

ure 8(b) where the GPU finds optimal performance at

around 1500 partitions. At this stage, the increased cost

of preparing the stream begins to counteract the benefit

of a smaller intersecting step.
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Fig. 9 Effect of γ on CPU-based MLG-join performance.

The optimal value of γ was found to be 1.5. As γ in-

creases in value the cost of the build and probe section

becomes smaller, due to the reduction in cells each ob-

ject overlaps. Conversely, as γ increases in value so does

the cost of processing the intersections, as the coarser

grid gives more false positives. Thus a trade-off must

be found, which occurs at approximately γ = 1.5.

6.3 Performance comparison

The optimized MLG-join algorithm’s performance is

now compared to the current state-of-the-art MTB-join

algorithm and a GPU nested-loops join. There are three

factors to consider when comparing the algorithms. The

first is the setup time, which includes allocating re-

quired memory, transferring data to the GPU and build-

ing data structures. The second is the initial join time,

which is the first join once the data structures are pre-

pared. As future timestamps only require the solution

be maintained, this is likely the only time at which the

entire solution is computed at once. Finally the main-

tenance time (per timestamp) is measured. This is the

amount of time it takes, per timestamp, to maintain

the validity of the data structures and update the mov-

ing join solution, this includes transferring data to the

GPU. All experiments use the default parameters as

defined in Table 2 except where stated otherwise.
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6.3.1 Varying distribution of the dataset

Figure 10 presents the three stages of the join sep-

arately, note the log-scale y axis. The MLG-join al-

gorithm significantly outperforms the MTB-join algo-

rithm in all stages and for both data distributions. The

setup time of the MLG-join algorithm outperforms the

MTB-join algorithm by over three orders of magnitude.

The MLG-join algorithm significantly outperforms the

MTB-join algorithm for both the initial join and join

maintenance by up to 2 orders of magnitude. The rea-

son for this is the MLG-join is able to take advantage of

the massive processing power and memory bandwidth

of the GPU while pruning many of the comparisons

using the multi-layered grid. The MLG-join algorithm

also achieves 2 orders of magnitude improvement in per-

formance over the GPU nested-loops join due to the

MLG-join’s ability to prune the number of comparisons.

In the setup stage the distribution has minimal im-

pact. The GPU based nested-loops join algorithm and

MLG-join algorithm have similar costs as they both

require basic array allocation and data to be trans-

ferred to the GPU. The MLG-join algorithm is slightly

more expensive as the grid must also be allocated. The

MTB-join algorithms setup time is significantly higher

as building the TPR-trees within it are very costly. This

exemplifies the difference between light-weight grid struc-

tures and complex tree structures, an important draw-

back of the MTB-join algorithm as it describes a severe

latency before the initial result can be computed. This

cost for setup renders the MTB-join algorithm unable

to provide real-time results to ad-hoc queries.

Second we observe that the MTB-join algorithm’s

initial join stage suffers a higher performance penalty

than the maintenance stage. This is likely due to the

lower selectivity resulting in more joins initially.

Third we observe the performance of the MLG-join

algorithm for the Gaussian dataset is better than the

uniform dataset for the initial join. As the objects are

grouped in more dense clusters, the grid structure be-

comes more efficient at representing them, resulting in

less work during the stream preparation step.

6.3.2 Real datasets

Figure 12 shows the results comparing the performance

of the different algorithms for the real dataset. The

y-axis is again in log scale. We only show the results

for maintenance because we found the results for setup

time and the initial join varied very little across datasets.

The results again show that the MLG-join algorithm

significantly outperforms both the GPU Nested-Loops

join and the MTB-join. The reason for this is the same

as for the synthetic datasets, namely, MLG-join can

prune the number of comparisons while taking advan-

tage of the massive processing power and memory band-

width of the GPU.
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Fig. 12 Maintenance time for real data.

6.3.3 Multi-core CPU MLG-join versus GPU

MLG-join

Figure 13 shows the results comparing the performance

of a multi-core CPU implementation of MLG-join ver-

sus the GPU implementation. We only show the results

for the join maintenance time since the setup time for

the MLG-join is extremely low for both CPU and GPU

implementations. Also the initial join and join mainte-

nance results were very similar for the different MLG-

join implementations. The experiment included both a

single-threaded and a multi-threaded implementation

of MLG-join. Different parameter values (α and γ) were

used for the CPU and GPU implementations, based

upon the optimal values found in Section 6.2.

The results show the GPU-based MLG-join algo-

rithm outperforms the CPU implementations for both

small and large datasets. The performance gap grows

with increased cardinality. The GPU implementation

outperforms the CPU implementations by 30 times at

500000 objects.

From Figure 13 we see the CPU version benefits

from an increased number of threads. Whilst this may

suggest a compute-bound algorithm, this is not neces-

sarily the case as an increase in threads also provides

access to additional core-specific cache (L1 and L2).

The GPU has approximately 4 times the memory

bandwidth of the CPU which accounts for a portion

of the performance difference. The remainder is most

likely due to the way MLG exploits the broadcast capa-

bility of the GPU architecture. As mentioned in Section

4.2, when the GPU performs the intersection step on a

partition the stream of objects is loaded into shared

memory and broadcast to each thread. This results in

a reduction in the number of global memory operations

required. It is possible the increased cache available on

the multi-threaded CPU provides a similar functional-

ity but on a much smaller scale.
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Fig. 11 Cost when varying dataset cardinality.

There is also a significant difference in raw compute-

power between the CPU and GPU used. Namely, the

total number of operations per second is much higher

on the GPU than the CPU. It should also be noted that

SIMD is not used by the CPU version of the MLG-join

algorithm.
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Fig. 13 Maintenance time for cardinality on CPU and GPU.

The purpose of this experiment was not to put the

CPU against the GPU, but rather to compare the im-

pact the different architectures have upon the algo-

rithm. The MLG-join algorithm has several design choices

that are counter-intuitive and inefficient for CPU-based

processing, such as preparing the streams, pre-allocating

large arrays rather than using dynamic structures, and

grouping objects randomly without consideration for

spatial location. All of these decisions likely contributed

to the poor-scaling exhibited by the CPU implementa-

tion. However, on the GPU these inefficient decisions

allow the GPU to operate at close to full capacity.

6.3.4 Effect of cardinality of the dataset

Figure 11 presents the algorithm running times as the

data cardinality is varied. No results are shown for the

MTB-join and the GPU nested-loops join for 500k ob-

jects due to their unreasonably long execution times at

500k objects. Keeping in mind that the x-axis is in log

to base 10 scale, the results clearly show that MLG-join

is much more scalable than its counterparts. For exam-

ple it takes MTB-join less time to process the initial

join and maintenance for 500k objects than it takes its

counterparts to perform the same operations for 100k

objects.

It is important to note the maintenance results in-

clude data transfer from the CPU to the GPU. Al-

though this transfer time can be a bottleneck for some

applications, for our experiments we found it only oc-

cupied a small portion of the overall maintenance time.

Figure 11 also shows for smaller datasets all algo-

rithms perform similarly for the initial join. This is

due to the minimal impact pruning has on small search

spaces, and the under utilization of the GPU due to in-

sufficient load to achieve full throughput. As cardinality

increases, pruning becomes more cost-effective yielding

performance gains for the MLG-join algorithm relative

to the other algorithms.

6.3.5 Varying selectivity of the dataset

As described in Section 6.1 the selectivity is controlled

by varying the size of the objects, whilst keeping the do-

main they exist within constant. Increasing the object

size increased the likelihood of intersection. The setup

time is not affected by selectivity and is thus omitted.

From the initial join results in Figure 14 we observe

the GPU nested-loops join is not affected by varying

selectivity because it processes all the search space re-

gardless. The MLG-join algorithm is negatively effected

by lower selectivity because its performance benefit de-

rives from pruning the search space, lower selectivity

results in less space that can be pruned. It is also likely,

with larger objects, a different value for γ will yield

superior performance. From the maintenance results in

Figure 14 we observe an improvement in the MTB-join

algorithm, compared to the initial join, due to its ef-

ficient updating. As the MLG-join algorithm does not
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Fig. 14 Cost when varying object size.

move objects into different partitions based upon up-

dating behavior, it cannot benefit in the same way.

6.3.6 Varying velocity of the dataset

From Figure 15 we observe that the MTB-join and

MLG-join algorithms are similarly impacted by the vari-

ation of object velocity. This is expected as both al-

gorithms model the locations of moving objects using

expanding MBRs. The increased velocity also impacts

upon the CI-join selectivity, as higher velocity objects

transition in and out of intersecting locations more fre-

quently. The GPU nested-loops join algorithm is un-

affected by velocity variation as the workload is still

fixed.

Fig. 15 Cost when varying object velocity.

6.3.7 Varying update frequency

From Figure 16 we observe that the MLG-join algo-

rithm and GPU nested-loops join algorithm are largely

unaffected by the varying update rate. This is expected

for the GPU nested-loops join algorithm as the work-

load is largely fixed and no structure maintenance is

required. The MLG-join algorithm performance rein-

forced the claim that the grid structure has a small

maintenance cost. In contrast, the MTB-join algorithm

is significantly impacted by higher update rates. This

is due to the high maintenance cost of the TPR-tree as

each update for the MTB-join may propagate to mul-

tiple nodes in the tree.

Fig. 16 Cost when varying update rate.

6.3.8 Summary of results

The MLG-join algorithm outperforms the current state-

of-the-art (MTB-join) algorithm in all scenarios and by

several orders of magnitude in most cases. The MLG-

join algorithm’s performance is not solely due to supe-

rior hardware as it also significantly outperforms the

GPU nested-loops join algorithm.

7 Discussion

The approach of the MLG-join is unique in that it opts

for reduced pruning power in return for inexpensive

maintenance and GPU friendly execution of the un-

pruned pairs. This reduced pruning power is due to

treating an entire partition as a single object in the

pruning stage. This results in a best-case scenario where

each actual intersection (object-object pair) results in

a partition-object pair still to be processed. The sil-

ver lining to this outcome is that the partition can be

processed in parallel and the memory requirements are

coalesced. These two characteristics can result in the

partition-object pair being processed in the same time

as an object-object pair due to the nature of GPU hard-

ware.

The grid approach, using inflated MBRs to account

for motion, is very simple. Whilst it can be costly in

the way it exaggerates object sizes, it is inexpensive to

build and maintain. In addition, the underlying arrays

are unsorted which removes the cost of keeping track

of dynamic objects that many spatial structures incur.

The high performance available on a GPU with simple
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algorithms, such as the nested-loops join, sets a high

standard for any pruning-based algorithm. That is, the

pruning must incur a smaller cost per pair than the join

algorithm would require to test it. The results in this

paper suggest that the cost of maintaining more com-

plex structures may not be cost-effective on the GPU.

The preference for simple algorithms on the GPU

has encouraged brute-force, divide-and-conquer approaches

to be highly successful. The MLG-join can be consid-

ered a divide-and-conquer hash approach. The divide

is the partitions. Set A is divided into partitions, each

of which is processed separately. The hash is the grid

lookup, which provides a value relating the spatial lo-

cation of an object to the memory location of a set of

objects. The GPU is then highly suitable to process this

set of objects in parallel.

A further benefit of the MLG-join is the lack of re-

liance upon sorted or clustered data. The random allo-

cation of objects to partitions results in a natural distri-

bution of any skew, resulting in intrinsic load balancing.

Other structures, such as the R-tree, require expensive

calculations during insertion to balance load and ensure

optimal insertion positions for new objects. In highly

dynamic, potentially skewed and high-response scenar-

ios these added costs impede fast solutions and incur

waste as objects may be updated or removed before

the intended benefits of their organisation come into

fruition.

8 Conclusion

We have proposed a GPU based algorithm called the

MLG-join for the CI-join query. This algorithm utilizes

contiguous access patterns to produce a grid represen-

tation of the underlying data, achieving both work and

data load balancing across tens-of-thousands of execu-

tion threads on GPUs. This grid representation is then

exploited to prune the number of comparisons, drasti-

cally reducing the computational workload. A thorough

theoretical analysis of the algorithm behavior was un-

dertaken, comprehensively supported by an empirical

study with accuracy above 99.9%. This analysis assists

the selection of optimal algorithm parameters.

Extensive experimental results show that the MLG-

join algorithm outperforms the start-of-the-art CPU-

based approach (MTB-join algorithm), and a naive GPU

based algorithm (nested-loops join), by up to two or-

ders of magnitude for executing the initial join and join

maintenance. It also outperforms the MTB-join algo-

rithm in setup time by four orders of magnitude. For

future work we will apply our ideas to other types of

queries, e.g. range and kNN queries.
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