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ABSTRACT

Recommendation datasets are prone to selection biases due to self-

selection behavior of users and item selection process of systems.

This makes explicitly combating selection biases an essential prob-

lem in training recommender systems. Most previous studies as-

sume no unbiased data available for training. We relax this assump-

tion and assume that a small subset of training data is unbiased.

Then, we propose a novel objective that utilizes the unbiased data

to adaptively assign propensity weights to biased training ratings.

This objective, combined with unbiased performance estimators,

alleviates the effects of selection biases on the training of recom-

mender systems. To optimize the objective, we propose an efficient

algorithm that minimizes the variance of propensity estimates for

better generalized recommender systems. Extensive experiments

on two real-world datasets confirm the advantages of our approach

in significantly reducing both the error of rating prediction and the

variance of propensity estimation.
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1 INTRODUCTION

Normally, recommendation datasets are collected during users’

normal use of recommender systems and are subject to selection bi-
ases [19, 24]. For example, Fig. 1 shows two types of selection biases

in movie recommendation: (1) Systems’ item selection process: the

right half of Fig. 1 shows that the system aims to recommendmovies

that Bob may like by filtering out movies with low predicted ratings;

(2) Users’ self-selection behavior: the left half of Fig. 1 shows that

Bob tends to rate recommended movies that he likes and rarely
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Fig. 1: An example of selection biases in movie recommendation.

rates recommended movies that he dislikes. Due to such selection

biases, high ratings are more likely to be observed than low rat-

ings [13]. Back to the example in Fig. 1, there are a total of two high

ratings (the top-right corner) and both ratings are observed. The

percentage of high ratings being observed is thus 100%, which is

greater than that (17%) of low ratings (one out of six is observed). In

fact, studies have shown that high ratings account for the majority

of observed ratings and low ratings are under-represented [18, 19].

Usually, observed ratings are used to train a rating prediction model

and items are ranked in descending order of predicted ratings when

recommended to users [33, 39]. Since observed ratings are biased

from the population of all ratings – whether observed or not, it

is difficult to accurately estimate the real performance of a rat-

ing model. This creates a widely-recognized challenge for training

recommender systems on biased datasets [6, 18].

To address this challenge, unbiased estimators of the real perfor-
mance of a rating model have been recently introduced [24, 39].

Theoretically, unbiased estimators can yield accurate estimation

of a rating model’s real performance even on biased datasets. This

is achieved mostly by inversely weighting each observed rating

with the propensity (i.e., probability) of observing that rating. An

intuitive justification is that ratings that are under-represented

within observed ratings should be up-weighted. According to the

definition of propensity, the ratings that are under-represented are

those that have a small propensity of being observed. Those ratings,

once weighted by inverse of the small propensity, will be assigned

a large weight and thus be correctly up-weighted.

Most previous studies that explicitly handle selection biases

assume that no unbiased dataset is available for training [6, 18, 24].

https://doi.org/10.1145/3437963.3441799
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However, unbiased ratings can be gathered, e.g., by asking users

to rate a number of randomly-selected items (thus avoiding the

selection biases). Exiting studies have used such unbiased datasets

to accurately estimate the real performance of a rating model [24,

39]. Whenever it is possible to gather unbiased ratings, a small

unbiased dataset can be curated for training. Hence, we depart

from the assumption that all training ratings are biased and assume

that a small subset of training ratings is unbiased.

In this paper, we propose an objective that utilizes a small un-

biased dataset to explicitly strengthen the generalization ability

of a rating model. Specifically, we iteratively validate the perfor-

mance of the rating model on the unbiased dataset while training

the rating model on a biased dataset. The optimal rating model is

thus the one that is trained on biased data but performs well on

unbiased data. This closely matches the definition of generalization

ability because unbiased data can provide accurate estimation of the

generalization ability. The key idea of our optimization objective

is to introduce a propensity model that uses the unbiased dataset

to dynamically determine the propensities of biased ratings. This

guides the propensity model to find a weighted combination of

biased ratings that can best approximate unbiased performance

estimation on unbiased data. This way, training the rating model

on biased data will be equivalent to training the rating model on

unbiased data. To update the propensity model’s parameters, we

directly optimize the rating model’s performance on the unbiased

dataset. The rationale is that the best propensity model should op-

timize the performance of a rating model on unbiased data that is

consistent with the testing procedure. A recent study [39] that also

uses unbiased data simply assumes that the propensity of observ-

ing a rating only depends on the rating’s value. In contrast, our

propensity model is free of this assumption and can use all user

and item information (e.g., user age) to better model the propensity.

To optimize the objective, we propose an algorithm where the

propensitymodel’s parameters are updated simultaneously with the

rating model’s parameters. This algorithm makes use of automatic

differentiation and obviates complex derivation of gradients. Hence,

it can be conveniently applied when we use different unbiased

estimators and a diverse set of model architectures [27, 40]. This

makes the proposed algorithm appealing to practitioners. A well-

known challenge in applying unbiased estimators is to obtain stable

gradients to update the ratingmodel [31, 32]. This is because inverse

propensity weightingmay cause large gradient updates to the rating

model’s parameters, especially when the propensity estimates are

small. This motivates us to use the sample variance of propensity

estimates to regularize the training of the propensity model, which

results in low-variance propensity estimates. Empirical results show

that our approach substantially outperforms the state-of-the-art

ones that do not employ unbiased data, as well as a recent one that

also uses unbiased data [39].

Our main contributions are summarized as follows.

1 We propose a novel objective that utilizes a small set of

unbiased data to alleviate selection biases and improve the

training of recommender systems on biased data.

2 To optimize the objective, we propose an efficient algorithm

that can also effectively reduce the variance of propensity

estimation during training model parameters.

3 We conduct extensive experiments on two real-world datasets.

The results show that our approach improves the perfor-

mance of rating prediction by up to 7.9% and reduces the

variance of propensity estimation by orders of magnitude.

2 RELATEDWORK

2.1 Recommendation Debiasing

Existing studies on recommendation debiasing primarily focus on

two tasks: rating prediction and item ranking [29, 30, 38]. The

rating prediction task aims to predict the rating that a user may

give to an unseen item, while the item ranking task aims to provide

a user with an item list that maximizes a ranking metric [28, 37].

Both tasks have been widely studied by academics and industry

over the last few years [14, 35]. In this paper, we tackle the rating

prediction task. We use existing model architectures [5, 12], which

output a rating given user and item features as inputs, to implement

underlying rating model. Our approach benefits from advances in

designing such model architectures, e.g. the ones based on deep

neural networks [5, 26]. Recommendation is closely related to but

different from search in that recommendation does not require

explicit user queries while search does [7, 15, 16].

A widely-recognized problem in the rating prediction task is that

datasets for training are usually biased [19, 22, 23]. To handle biased

datasets, early studies optimize a joint likelihood of a propensity

model and a rating model, which requires highly complex infer-

ences [6, 18]. To avoid such inference complexity, recent studies

adopt two-phase learning, which first learns a propensity model

and then applies propensity weighting techniques to train a rat-

ing model [24, 39]. The main difference between these studies and

our work is that we directly relate the objective for the propensity

model to the final goal of the debiasing problem, i.e., optimizing

the performance of a rating model on unbiased datasets.

As for the item ranking task, recent studies show that directly

using biased datasets in learning to rank approaches usually yields

suboptimal results [11]. The suboptimality is observed under vari-

ous ranking metrics such as Expected Reciprocal Rank (ERR) and

Normalized Discounted Cumulative Gain (NDCG) [34, 36]. These

studies on item ranking are largely orthogonal to our work on

rating prediction.

2.2 Bi-level Optimization

Bi-level optimization, which performs upper-level learning subject

to the optimality of lower-level learning, has received increasing

attention recently [10, 17]. Among existing approaches of bi-level

optimization, the most related one is from Ren et al. [21], which

dynamically determines weights of training examples. This ap-

proach may generate negative weights, and it resorts to heuristics

for adjusting these weights to avoid unstable training behaviors.

In contrast, our approach generates non-negative weights based

on propensity estimates, and explicitly controls the variance of the

weights for a better performance of rating prediction.

Generally, it is challenging to train parameters in bi-level opti-

mization because the lower-level learning cannot be performed in

closed form [10, 25]. To tackle this challenge, an early approach

applies implicit differentiation, and assumes that the optimality to

the lower-level learning uniquely exists [20]. This assumption often



does not hold in practice, and thus this approach may incur large

errors in gradient computation. To address this issue, recent studies

differentiate a certain parameter update function to better compute

gradients [3, 4]. We further develop this approach by regularizing

the upper-level learning with the variance of propensity estimates,

which helps stabilize training at the lower level and thus results in

better generalized rating models.

3 PRELIMINARIES

Let {𝑢𝑚 |𝑚 = 1, ..., 𝑀} be a set of users, {𝑖𝑛 |𝑛 = 1, ..., 𝑁 } be a set of
items, and A = {(𝑢𝑚, 𝑖𝑛) |𝑚 = 1, ..., 𝑀 ;𝑛 = 1, ..., 𝑁 } be the set of all
user-item pairs. Let 𝒙𝑢,𝑖 = [𝑥𝑢,𝑖,𝑘 |𝑘 = 1, ..., 𝐾] be a feature vector
of user 𝑢 and item 𝑖 , where 𝑥𝑢,𝑖,𝑘 ∈ R is the 𝑘-th feature (e.g., user

gender). Let R = [𝑟𝑢,𝑖 |𝑢, 𝑖 ∈ A] be a true rating matrix, where 𝑟𝑢,𝑖 ∈
R is the true rating given by user𝑢 to item 𝑖 . Users may freely select

a fraction of items to rate and the ratings to these selected items

are observed. The observed ratings, denoted by RB (B ⊆ A), are

biased, meaning that the probability of observing a rating depends

on that rating’s value [19]. Such a probability is often called the

propensity 𝑝𝑢,𝑖 = 𝑝 (𝑜𝑢,𝑖 = 1), where 𝑜𝑢,𝑖 is a Bernoulli variable

indicating whether the true rating 𝑟𝑢,𝑖 is observed 𝑜𝑢,𝑖 = 1 or

missing 𝑜𝑢,𝑖 = 0. Given the biased ratings RB , a debiasing problem

of recommendation aims to learn a rating model 𝑦𝜙 (𝒙𝑢,𝑖 ) ≈ 𝑟𝑢,𝑖
(with parameters 𝜙) that can accurately predict all true ratings.

Formally, the goal is to minimize the real performance E(A) of a
rating model, which can be computed if all ratings are observed

E(A) = 1

|A|
∑

𝑢,𝑖∈A
(𝑒𝑢,𝑖 )2, 𝑒𝑢,𝑖 = 𝑦𝜙 (𝒙𝑢,𝑖 ) − 𝑟𝑢,𝑖 , (1)

where 𝑒𝑢,𝑖 is a prediction error. The real performance can be unbias-

edly estimated by a naive estimator that averages prediction errors

over a set of unbiased ratings RU (U ⊆ A)

E(A) ≈ E(U) = 1

|U|
∑

𝑢,𝑖∈U
(𝑒𝑢,𝑖 )2 . (2)

To gather unbiased ratings, we may ask users to rate randomly-

selected items. This way, the propensities of observing different

ratings are the same and the observed ratings are thus unbiased.

To solve the debiasing problem, recent studies separate learning

into two consecutive phases, which we illustrate in Fig. 2a [24, 39].

As shown by the left half of Fig. 2a, the first phase aims to learn a

propensity model 𝑞𝜃 (𝒙𝑢,𝑖 ) ≈ 𝑝𝑢,𝑖 (with parameters 𝜃 ) that can ac-

curately estimate the propensity. There are two types of propensity

models. The first type is a naive Bayes model [24]. It assumes that

the propensity 𝑝𝑢,𝑖 = 𝑝 (𝑜𝑢,𝑖 = 1|𝑟𝑢,𝑖 = 𝑟 ) only depends on the true

rating, and estimates the propensity by the Bayes’ theorem

𝑞𝜃 (𝒙𝑢,𝑖 ) =
𝑝 (𝑟𝑢,𝑖 = 𝑟 |𝑜𝑢,𝑖 = 1)𝑝 (𝑜𝑢,𝑖 = 1)

𝑝 (𝑟𝑢,𝑖 = 𝑟 )
. (3)

To simplify notation, we define 𝑝𝑟 = 𝑝 (𝑟𝑢,𝑖 = 𝑟 ), 𝑝𝑜 = 𝑝 (𝑜𝑢,𝑖 = 1),
and 𝑝1𝑟 = 𝑝 (𝑟𝑢,𝑖 = 𝑟 |𝑜𝑢,𝑖 = 1). Given biased ratings RB and unbiased

ratings RU , the parameters 𝜃 = {𝑝𝑟 , 𝑝𝑜 , 𝑝1𝑟 |𝑟 = 1, ..., 𝑅} are fitted by
maximizing a likelihood function as follows

FNB (𝜃 ) =
∏

𝑢,𝑖∈U
𝑝𝑟𝑢,𝑖 +

∏
𝑢,𝑖∈B

𝑝𝑜

∏
𝑢,𝑖∈M

(1 − 𝑝𝑜 ) +
∏

𝑢,𝑖∈B
𝑝1𝑟𝑢,𝑖 , (4)

SecondFirst
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Fig. 2: During the training process of updating a rating model 𝑦𝑠 ,

two-phase learning (a) uses a fixed propensitymodel𝑞2, but bi-level

optimization (b) adaptively updates the propensity model 𝑞𝑠 .

whereM = A \ B is the set of missing ratings. The second type

is a logistic regression model [24]. It estimates the propensity by

applying a logistic function on the user and item features 𝒙𝑢,𝑖

𝑞𝜃 (𝒙𝑢,𝑖 ) = 𝜎 (𝒘T𝒙𝑢,𝑖 + 𝑏) =
exp(𝒘T𝒙𝑢,𝑖 + 𝑏)

exp(𝒘T𝒙𝑢,𝑖 + 𝑏) + 1
, (5)

where 𝜃 = {𝒘, 𝑏} are parameters. To fit the parameters, we max-

imize the likelihood of observing the biased ratings RB (i.e., the

ratings self-selected by users) as follows

FLR (𝜃 ) =
∏

𝑢,𝑖∈B
𝑞𝜃 (𝒙𝑢,𝑖 )

∏
𝑢,𝑖∈M

(1 − 𝑞𝜃 (𝒙𝑢,𝑖 )). (6)

Given the propensity model, the second phase aims to train a rating

model, as shown in the right half of Fig. 2a. This is achieved by min-

imizing an unbiased estimator of the real performance, e.g., inverse-

propensity-scoring (IPS) estimator [24] and doubly-robust (DR) es-

timator [39]. The DR estimator needs an error model 𝑔𝜉 (𝒙𝑢,𝑖 ) ≈ 𝑒𝑢,𝑖
(with parameters 𝜉) that can accurately impute the prediction errors.

Note that the naive Bayes model requires an unbiased dataset

and has two issues. First, it assumes that the propensity depends

on the rating only, which may not hold in practice. Second, if a

rating value 𝑟 is absent on the unbiased dataset, the naive Bayes

model 𝑞𝜃 (𝒙𝑢,𝑖 ) in Eqn. (3) is not well defined because in such case

the denominator will be zero (i.e., 𝑝𝑟 = 0).

4 PROPOSED APPROACH

We study the debiasing problemwhere a set of unbiased ratings RU ,

in addition to a set of biased ratings RB , is available for training.
Unbiased ratings are more costly than biased ratings to gather be-

cause asking users to rate randomly-selected items may negatively

affect user experience. We thus assume that the number of unbiased

ratings is much smaller than that of biased ratings |U| ≪ |B|. Un-
der these problem settings, we propose an objective to effectively

utilize the unbiased dataset in Sec. 4.1. Then, we propose an efficient

algorithm to optimize the objective in Sec. 4.2.

4.1 Training Objective

Since we assume that the number of unbiased ratings RU is small,

using only the unbiased dataset to train a rating model may cause

severe overfitting. Hence, we use the large biased dataset RB to



train the rating model and rely on unbiased estimators to obtain

accurate performance estimation on the biased dataset. For the

estimators to be unbiased, we need a good propensity model that

can produce accurate propensity estimation. In such case, the unbi-

ased estimators will be equivalent to a naive one on the unbiased

dataset given by Eqn. (2). This observation motivates us to utilize

the unbiased dataset to train a propensity model. In particular, we

aim to learn a propensity model such that a rating model trained on

the biased dataset performs well on the unbiased dataset. Formally,

this goal can be formulated as a bi-level optimization problem

𝜃∗ = argmin

𝜃
LU (𝜙∗ (𝜃 );U) (7)

s.t. 𝜙∗ (𝜃 ) = argmin

𝜙
LL (𝜙, 𝜃 ;B) . (8)

Following the terminology in bi-level optimization, Eqn. (7) and

Eqn. (8) are called upper level and lower level, respectively. The lower
level aims to minimize a lower loss LL w.r.t. the rating model’s

parameters𝜙 on the biased dataset RB for a given propensity model,

whereas the upper level aims to minimize an upper loss LU w.r.t.

the propensity model’s parameters 𝜃 on the unbiased dataset RU .
We define the lower loss based on an unbiased estimator to

obtain accurate performance estimation on the biased dataset. To

give a unified treatment of the IPS estimator and the DR estimator,

we define the lower loss by

LL (𝜙, 𝜃 ;B) =
∑

𝑢,𝑖∈B
ℓ𝑢,𝑖 (𝜙, 𝜃 ) +

∑
𝑢,𝑖∈M

ℓ̂𝑢,𝑖 (𝜙), (9)

where ℓ𝑢,𝑖 (𝜙, 𝜃 ) and ℓ̂𝑢,𝑖 (𝜙) are losses for the observed ratings RB

and the missing ratings RM , respectively. Specifically, we can in-

stantiate the lower loss by IPS as follows. The IPS loss minimizes

a square prediction error 𝑠𝑢,𝑖 (𝜙) = (𝑦𝜙 (𝒙𝑢,𝑖 ) − 𝑟𝑢,𝑖 )2, inversely
weighted by a propensity estimate 𝑞𝜃 (𝒙𝑢,𝑖 ), for each observed rat-

ing and ignores all missing ratings,

ℓ𝑢,𝑖 (𝜙, 𝜃 ) =
𝑠𝑢,𝑖 (𝜙)
𝑞𝜃 (𝒙𝑢,𝑖 )

, ℓ̂𝑢,𝑖 (𝜙) = 0. (10)

Alternatively, we can instantiate the lower loss by DR as follows.

The DR loss treats an imputed error 𝑔𝜉 (𝒙𝑢,𝑖 ) as the prediction

error to train the rating model. It obtains a “true rating” 𝑟𝑢,𝑖 =

𝑦𝜙𝑠
(𝒙𝑢,𝑖 ) + 𝑔𝜉𝑠 (𝒙𝑢,𝑖 ) by adding a predicted rating and an imputed

error at current training step 𝑠 . For eachmissing rating, it minimizes

a square imputed error 𝑠𝑢,𝑖 (𝜙) = (𝑦𝜙 (𝒙𝑢,𝑖 ) − 𝑟𝑢,𝑖 )2 between the

rating model’s next prediction and the “true rating”

ℓ̂𝑢,𝑖 (𝜙) = 𝑠𝑢,𝑖 (𝜙) . (11)

Once the true rating is observed, it further introduces a correc-

tion (i.e., the difference between the square prediction error 𝑠𝑢,𝑖 (𝜙)
and the square imputed error 𝑠𝑢,𝑖 (𝜙)), and inversely weights this

correction by the propensity estimate 𝑞𝜃 (𝒙𝑢,𝑖 )

ℓ𝑢,𝑖 (𝜙, 𝜃 ) = 𝑠𝑢,𝑖 (𝜙) +
𝑠𝑢,𝑖 (𝜙) − 𝑠𝑢,𝑖 (𝜙)

𝑞𝜃 (𝒙𝑢,𝑖 )
. (12)

By the above optimization, for any propensity model 𝑞𝜃 , we

can obtain a corresponding rating model 𝑦𝜙∗ (𝜃 ) that minimizes

the lower loss. We aim to find the propensity model such that

the corresponding rating model performs well on the unbiased

dataset. To this end, we define the upper loss as an average of

square prediction errors on the unbiased dataset

LU (𝜙∗ (𝜃 );U) =
∑

𝑢,𝑖∈U
𝑠𝑢,𝑖 (𝜙∗ (𝜃 )) (13)

=
∑

𝑢,𝑖∈U
(𝑦𝜙∗ (𝜃 ) (𝒙𝑢,𝑖 ) − 𝑟𝑢,𝑖 )2 . (14)

Note that the propensity model often has a small number of parame-

ters, which can be properly fitted on the small unbiased dataset. We

illustrate the proposed bi-level optimization in Fig. 2b: instead of

using a fixed propensity model, it learns to assign adaptive propen-

sity weights while debiasing the training of a rating model. Hence,

we name the proposed approach learning to debias (LTD).

4.2 Training Algorithm

Next, we detail how to train the parameters within LTD {𝜙, 𝜃, 𝜉}.
We encounter two challenges in the training: (1) Since LTD builds

on bi-level optimization, it is often computationally expensive to

minimize the upper loss to find a good propensity model [4]. This

is because the upper loss depends on the best parameter values

of the rating model, which has no closed form. (2) LTD applies

inverse propensity weighting, and thus it is difficult to obtain stable

gradients to update the rating model [32]. The reason for this is

that such inverse may cause large gradient updates to the rating

model, especially when the propensity estimates are small. Note

that the two challenges are not specific to our approach, but are

known in approaches based on bi-level optimization [4] and inverse

propensity weighting [32]. To tackle these challenges, we propose

a variance-regularized training algorithm in this section.

To simplify notation, we define two operators that compute

partial gradients w.r.t. parameters 𝜌 ∈ {𝜙, 𝜃, 𝜉}

∇𝜌𝑠 (·) =
𝜕

𝜕𝜌
(·)

���
𝜌=𝜌𝑠

, ∇T𝜌𝑠 (·) = (∇𝜌𝑠 (·))
T, (15)

where 𝜌𝑠 are the values of parameters 𝜌 at training step 𝑠 .

The lower loss is differentiable w.r.t. the rating model’s param-

eters 𝜙 . Hence, we can apply vanilla stochastic gradient descent

(SGD) or other SGD variants to update the rating model. Here, we

apply vanilla SGD for illustrative purpose.

It is difficult to minimize the upper loss because the best pa-

rameter values 𝜙∗ (𝜃 ) within the upper loss have no closed form.

A common practice is to replace the the best parameter values

with a sequence of approximate ones that can converge to the best

ones [4, 21]. To obtain such approximate parameter values, at each

training step 𝑠 , we define an update function that simulates a single

parameter update of the rating model by vanilla SGD

𝜙𝑠+1 (𝜃𝑠 ) = 𝜙𝑠 − 𝜂∇𝜙𝑠
LL (𝜙, 𝜃𝑠 ), (16)

= 𝜙𝑠 − 𝜂
∑

𝑢,𝑖∈B𝑠
∇𝜙𝑠

ℓ𝑢,𝑖 (𝜙, 𝜃𝑠 ) − 𝜂
∑

𝑢,𝑖∈M𝑠

∇𝜙𝑠
ℓ̂𝑢,𝑖 (𝜙),

where 𝜂 ∈ R+ is a learning rate; B𝑠 ⊂ B andM𝑠 ⊂ M are mini-

batches of observed and missing ratings. This update function

models how the propensity model affects training of the rating

model, and does not actually update the rating model’s parame-

ters. The update function performs a single parameter update for

computational efficiency at training. We find that performing more

parameter updates does not further improve the performance but



Algorithm 1: Vrt: Variance-Regularized Training

Input: 𝑆,RB ,RU , 𝜙0, 𝜃0, 𝜉0

1 for 𝑠 = 0, ..., 𝑆 − 1 do
2 Sample mini-batches B𝑠 ⊂ B (M𝑠 ⊂ M) and U𝑠 ⊂ U
3 Compute the lower loss LL (𝜙𝑠 , 𝜃𝑠 ) on B𝑠 (andM𝑠 )

4 Compute an update function 𝜙𝑠+1 (𝜃𝑠 ) ← 𝜙𝑠 −𝜂∇𝜙𝑠 LL (𝜙, 𝜃𝑠 )
5 Compute the RU loss LRU (𝜙𝑠+1 (𝜃𝑠 )) on U𝑠 and B𝑠
6 Update the propensity model 𝜃𝑠+1 ← 𝜃𝑠 − 𝜂∇𝜃𝑠 LRU (𝜙𝑠+1 (𝜃 ))
7 Compute the lower loss LL (𝜙𝑠 , 𝜃𝑠+1) on B𝑠 (andM𝑠 )

8 Update the rating model 𝜙𝑠+1 ← 𝜙𝑠 − 𝜂∇𝜙𝑠 LL (𝜙, 𝜃𝑠+1)
9 end

Output: 𝜙𝑆 , 𝜃𝑆

Algorithm 2: Doubly-Robust Variance-Regularized Training

Input:𝑇, 𝑆,RB ,RU , 𝜙0, 𝜃0, 𝜉
0

0

1 for 𝑡 = 0, ...,𝑇 − 1 do
2 for 𝑠 = 0, ..., 𝑆 − 1 do
3 Sample a mini-batch B𝑠𝑡 ⊂ B
4 Compute the EI loss LEI (𝜉𝑠𝑡 ) on B𝑠𝑡
5 Update the error model 𝜉𝑠+1𝑡 ← 𝜉𝑠𝑡 − 𝜂∇𝜉𝑠𝑡 LEI (𝜉)
6 end

7 Call Alg. 1 by 𝜙𝑡+1, 𝜃𝑡+1 ← Vrt(𝑆,RB ,RU , 𝜙𝑡 , 𝜃𝑡 , 𝜉𝑆𝑡 )
8 Copy the error model’s parameter values 𝜉0

𝑡+1 ← 𝜉𝑆𝑡
9 end

Output: 𝜙𝑇 , 𝜃𝑇 , 𝜉
0

𝑇

increases computational cost, which has also been observed previ-

ously [10]. Then, we replace the best parameter values 𝜙∗ (𝜃 ) in the

upper loss with the approximate ones 𝜙𝑠+1 (𝜃𝑠 ) computed by the

update function, and differentiate this update function to compute

gradients w.r.t. the propensity model’s parameters

𝜃𝑠+1 = 𝜃𝑠 − 𝜂∇𝜃𝑠LU (𝜙𝑠+1 (𝜃 )), (17)

where the gradients can be derived by the chain rule

∇𝜃𝑠LU (𝜙𝑠+1 (𝜃 )) =
∑

𝑣,𝑗 ∈U𝑠

∇𝜃𝑠 𝑠𝑣,𝑗 (𝜙𝑠+1 (𝜃 )),

=
∑

𝑣,𝑗 ∈U𝑠

(∇𝜃𝑠𝜙𝑠+1 (𝜃 ))∇
T
𝜙𝑠+1 (𝜃𝑠 )𝑠𝑣,𝑗 (𝜙),

=
∑

𝑣,𝑗 ∈U𝑠

(
∇𝜃𝑠

(
− 𝜂

∑
𝑢,𝑖∈B𝑠

∇𝜙𝑠
ℓ𝑢,𝑖 (𝜙, 𝜃 )

))
∇T
𝜙𝑠+1 (𝜃𝑠 )𝑠𝑣,𝑗 (𝜙),

= −𝜂
∑

𝑢,𝑖∈B𝑠 , 𝑣, 𝑗 ∈U𝑠

(∇𝜃𝑠∇𝜙𝑠
ℓ𝑢,𝑖 (𝜙, 𝜃 ))∇T𝜙𝑠+1 (𝜃𝑠 )𝑠𝑣,𝑗 (𝜙),

whereU𝑠 ⊂ U is a mini-batch of unbiased ratings. The last equa-

tion holds because, by definition, the loss ℓ̂𝑢,𝑖 (¬𝜃 ) is constant w.r.t.
the propensity model’s parameters. This equation requires second-

order gradients, which can be computed by

∇𝜃𝑠∇𝜙𝑠
ℓ𝑢,𝑖 (𝜙, 𝜃 ) = −

∇𝜃𝑠𝑞𝜃 (𝒙𝑢,𝑖 )∇T𝜙𝑠
(𝑦𝜙 (𝒙𝑢,𝑖 ) − 𝑟𝑢,𝑖 )2

𝑞𝜃𝑠 (𝒙𝑢,𝑖 )2
, (18)

∇𝜃𝑠∇𝜙𝑠
ℓ𝑢,𝑖 (𝜙, 𝜃 ) = −

∇𝜃𝑠𝑞𝜃 (𝒙𝑢,𝑖 )∇T𝜙𝑠
(𝑠𝑢,𝑖 (𝜙) − 𝑠𝑢,𝑖 (𝜙))

𝑞𝜃𝑠 (𝒙𝑢,𝑖 )2
, (19)

when using the IPS estimator and the DR estimator, respectively.

4.2.1 Variance Regularization. The propensity model trained using

the above algorithm often has an increasing variance in propensity

estimation (see Fig. 5b for empirical evidence). Such variance may

cause training of the rating model to diverge because a portion of

biased ratings may receive low propensity estimates. This portion

of biased ratings will dominate the lower loss and thus lead to large

gradients for training the rating model. To reduce the variance

of propensity estimation, we propose a regularized-upper (RU)

loss that regularizes the upper loss with the sample variance of

propensity estimates on the mini-batch B𝑠 of biased ratings

LRU (𝜙𝑠+1 (𝜃𝑠 )) = LU (𝜙𝑠+1 (𝜃𝑠 )) + 𝜆LSV (𝜃𝑠 ). (20)

Here, 𝜆 ∈ R+ is a regularization hyper-parameter and

LSV (𝜃𝑠 ) =
1

|B𝑠 | − 1
∑

𝑢,𝑖∈B𝑠

(
𝑞𝜃𝑠 (𝒙𝑢,𝑖 ) −

∑
𝑣,𝑗 ∈B𝑠

𝑞𝜃𝑠 (𝒙𝑣,𝑗 )
|B𝑠 |

)
2

(21)

is the sample variance. Since the sample variance is differentiable

w.r.t. the propensity model’s parameters, we can straightforwardly

compute the gradients of the RU loss as

∇𝜃𝑠LRU (𝜙𝑠+1 (𝜃 )) = ∇𝜃𝑠LU (𝜙𝑠+1 (𝜃 )) + 𝜆∇𝜃𝑠LSV (𝜃 ) . (22)

where the gradients of the sample variance are given by

∇𝜃𝑠LSV (𝜃𝑠 ) =
2

|B𝑠 | − 1
∑

𝑢,𝑖∈B𝑠
𝑞𝜃𝑠 (𝒙𝑢,𝑖 )∇𝜃𝑠𝑞𝜃 (𝒙𝑢,𝑖 ) (23)

− 2

|B𝑠 | ( |B𝑠 | − 1)
∑

𝑢,𝑖∈B𝑠
𝑞𝜃𝑠 (𝒙𝑢,𝑖 )

∑
𝑢,𝑖∈B𝑠

∇𝜃𝑠𝑞𝜃 (𝒙𝑢,𝑖 ).

We summarize the whole algorithm of training the propensity

model and the rating models with variance regularization in Alg. 1.

When using the IPS estimator, we do not need to sample mini-

batches of missing ratings, which is shown in parentheses in Alg. 1.

At each training step 𝑠 , we update the propensity model (line 3-

6) before performing actual update of the rating model (line 7-8).

We can directly apply Alg. 1 when using the IPS estimator, but

need to train an extra error model when using the DR estimator.

Following Wang et al. [39], we train the error model by minimizing

an error-imputation (EI) loss, i.e., a weighted average square of

the differences between imputed errors {𝑔𝜉 (𝒙𝑢,𝑖 )} and prediction

errors {𝑒𝑢,𝑖 } on the biased ratings RB

min

𝜉
LEI (𝜉) =

∑
𝑢,𝑖∈B

(𝑔𝜉 (𝒙𝑢,𝑖 ) − 𝑒𝑢,𝑖 )2

𝑞𝜃 (𝒙𝑢,𝑖 )
. (24)

We show the complete algorithm when using the DR estimator

in Alg. 2. We alternate between training the error model and the

rating model until a certain stopping criteria is satisfied. Such a

joint training algorithm has shown to be effective in many other

problems, e.g., dialogue response generation [8, 9].

4.2.2 Training Efficiency. Fig. 3 shows computation performed by

LTD to update the propensity model and the rating model at a

training step. We can see that LTD performs two forward and

backward passes of the rating model on biased ratings and unbi-

ased ratings, respectively, and a forward and backward pass of

the propensity model on biased ratings. Then, LTD performs a

backward-on-backward pass to obtain gradients for the propensity

model, and a final backward pass to obtain gradients for the rating
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Fig. 3: Computational graph of the proposed variance-regularized

training algorithm at training step 𝑠, which employs deep neural

networks to estimate propensities 𝑞𝜃 and to predict ratings 𝑦𝜙 .

model. A backward-on-backward pass often takes about the same

time as a forward pass [21]. Suppose both models take the same

time for a forward and backward pass and are trained for the same

number of steps, LTD only needs about 2× training time compared

to two-phase learning, which performs two forward and backward

passes for the propensity model and the rating model, respectively.

5 EXPERIMENTS

In this section, we empirically study the proposed LTD with the

aim of answering the following research questions:

RQ1 What is the performance of LTD in rating prediction com-

pared with existing approaches to the debiasing problem?

Does LTD reduce the variance of propensity estimation com-

pared to likelihood functions used by two-phase learning?

How does the variance-regularized training algorithm of

LTD converge compared to existing two-phase learning?

RQ2 How does each component of LTD, the propensity model and

the variance regularization, contribute to the performance?

How does the size of the unbiased dataset used in the upper-

level optimization affect the performance?

RQ3 What propensity estimates does LTD automatically learn

from an unbiased dataset? How does inverse propensity

weighting contribute to improving the performance?

5.1 Experimental Settings

5.1.1 Datasets. Unbiased datasets are usually used to unbiasedly

evaluate the performance of rating prediction because it is difficult

to obtain unbiased performance estimation on biased datasets [39].

To the best of our knowledge, there are only two public datasets

where unbiased ratings are available: (1) Music, which has 311,704

biased ratings and 54,000 unbiased ratings given by 15,400 users

to 1,000 songs [19]. (2) Coat, which has 6,960 biased and 4,640

unbiased ratings given by 290 users to 300 coats [24].

5.1.2 Compared Approaches. We refer to approaches that do not

explicitly handle biased datasets and those that do as traditional
and debiasing approaches, respectively. We compare with two tradi-

tional approaches: (1) Matrix factorization (MF) [12]; (2) Neural fac-

torization machine (NF) [5]. We compare to debiasing approaches

that optimize a joint likelihood function: (3) CPT-V [18]; (4) PMF-

NMAR [6]. We also compare to debiasing approaches that adopt

two-phases learning: (5) (MF/NF)-IPS where the underlying rating

model is MF or NF [24]; (6) (MF/NF)-DR where the rating model

and the error model are MF or NF [39]. We pretrain a propensity

model for (MF/NF)-(IPS/DR) as follows: (1) On Coat, we train a

logistic regression model using all pairs of user and item covari-

ates [24]; (2) Due to lack of user and item covariates, we train a

naive Bayes model onMusic [39].

We use (MF/NF)-(IPS/DR)-LTD to denote the proposed ap-

proach where the lower level is instantiated with the second phase

of two-phase learning approaches (MF/NF)-(IPS/DR), respectively.

The propensity model trained by LTD can use all features of ob-

served ratings as inputs. On Music and Coat, we use features: (1)

Number of ratings given by a user and received by an item. (2)

Average rating given by a user and received by an item. (3) True

rating of a user to an item. On Coat, we use additional features:

(1) Gender of a user. (2) Age group of a user. (3) Location of a user.

(4) How much a user is interested in fashion. (5) Gender of a coat.

(6) Jacket type of a coat. (7) Color of a coat. (8) Whether a coat is

promoted on front page. We represent discrete features by one-hot

encoding and normalize continuous features into unit space.

5.1.3 Evaluation Protocol. To unbiasedly evaluate an approach’s

capability to handle biased datasets, we split the ratings on Music

and Coat as follows. We use 90% of the biased ratings (training

subset I) to train a rating model, and use the remaining 10% as a

validation set to tune hyper-parameters. We split out 5% of the

unbiased ratings (training subset II) to train a propensity model,

and use the remaining 95% as a testing set. The 5% of the unbiased

ratings is also used to train the rating model of LTD because the

resulting rating model performs better. To ensure using the same

amount of training data for all approaches, other approaches use

both training subsets I and II for training.

We measure the performance by averaging mean square error

(MSE) and mean absolute error (MAE) on the testing set over 10 dif-

ferent runs. A straightforward metric of the estimation variance of

a propensity model 𝑞𝜃 is the sample variance (SV) of the propensity

estimates on an unbiased dataset RU

SV(𝑞𝜃 ) =
1

|U| − 1
∑

𝑢,𝑖∈U

(
𝑞𝜃 (𝒙𝑢,𝑖 ) −

∑
𝑢,𝑖∈U

𝑞𝜃 (𝒙𝑢,𝑖 )
|U|

)
, (25)

Another metric is mean inverse square (MIS) of the propensity

estimates, which characterizes the variability of a training process

using propensity weighting (up to a certain constant) [24]

MIS(𝑞𝜃 ) =
1

|U|
∑

𝑢,𝑖∈U

1

𝑞𝜃 (𝒙𝑢,𝑖 )2
. (26)



Table 1: Performance averaged over 10 different runs.

MSE ± standard deviation MAE ± standard deviation

Approach Music Coat Music Coat

MF 1.951 ± 0.003 1.349 ± 0.007 1.167 ± 0.002 0.948 ± 0.005

NF 1.586 ± 0.007 1.299 ± 0.013 1.034 ± 0.005 0.919 ± 0.009

CPT-V 1.181 ± 0.004 1.512 ± 0.020 0.914 ± 0.003 0.992 ± 0.012

PMF-NMAR 2.243 ± 0.010 1.279 ± 0.009 1.190 ± 0.006 0.910 ± 0.005

MF-IPS 1.069 ± 0.005 1.179 ± 0.012 0.857 ± 0.003 0.891 ± 0.008

NF-IPS 1.047 ± 0.006 1.137 ± 0.011 0.842 ± 0.005 0.863 ± 0.009

MF-DR 1.037 ± 0.003 1.058 ± 0.006 0.793 ± 0.002 0.807 ± 0.004

NF-DR 1.024 ± 0.007 1.033 ± 0.013 0.782 ± 0.003 0.784 ± 0.007

MF-IPS-LTD 1.009 ± 0.003 1.062 ± 0.006 0.836 ± 0.002 0.827 ± 0.004

NF-IPS-LTD 0.992 ± 0.006 1.041 ± 0.009 0.827 ± 0.003 0.812 ± 0.006

MF-DR-LTD 0.982 ± 0.002 0.982 ± 0.003 0.781 ± 0.001 0.770 ± 0.002

NF-DR-LTD 0.977 ± 0.003 0.973 ± 0.006 0.774 ± 0.002 0.759 ± 0.004

*
The bottom four approaches, (MF/NF)-(IPS/DR)-LTD, are proposed.

Since on a biased dataset RB the true propensities satisfy a condi-

tion EB [
∑
𝑢,𝑖∈B 𝑝

−1
𝑢,𝑖
] = 𝑀𝑁 , we normalize propensity estimates

by 𝑞𝜃 (𝒙𝑢,𝑖 ) ← (𝑀−1𝑁−1
∑
𝑢,𝑖∈B 𝑞𝜃 (𝒙𝑢,𝑖 )−1)𝑞𝜃 (𝒙𝑢,𝑖 ) before com-

paring the variance of propensity estimation.

5.1.4 Implementation Details. We implement the propensity model

as a multilayer perceptron (MLP) with one hidden layer. For the

MLP, we search the activation function from {ReLU, sigmoid, tanh}

and the hidden layer size from {4, 16, 64, 256}. We search the regu-

larization hyper-parameter 𝜆 from 0.01 to 100. To avoid overfitting,

we apply L2 regularization on model parameters and search the L2

regularization from 0.01 to 1. We set the batch size to 128 onMusic

and 64 on Coat. All models are trained by AdaGrad [2] with a learn-

ing rate from {0.001, 0.005, 0.01, 0.05}. We tune all hyper-parameters

based on the performance on the validation set.

5.2 RQ1 Comparative Results

5.2.1 Overall Performance. We show the MSE and the MAE of

all approaches on Music and Coat in Table 1. We can see that

the proposed LTD significantly outperforms the corresponding

two-phase learning approach. For example, MF-IPS-LTD (1.062)

outperforms MF-IPS (1.179) by 9.9% on Coat. We also find that

NF-DR-LTD performs the best on both datasets, e.g., NF-DR-LTD

achieves the smallest MSE (0.977) onMusic. By comparing (MF/NF)-

(IPS/DR)-LTD, we can see that LTD benefits from: (1) Advanced

model architecture: NF enhances the expressiveness of MF by mod-

eling non-linear and high-order interactions between features. (2)

Improved lower loss: the DR estimator addresses the variance issue

of the IPS estimator by introducing an error model. In general, the

debiasing approaches outperform the traditional ones by explicitly

handling selection biases in the training set. However, the debiasing

approaches, CPT-V and PMF-NMAR, perform worst on Coat and

Music, respectively. This is probably because these two approaches

make strong generative assumptions and require highly complex

inferences. Unlike CPT-V and PMF-NMAR, our approaches neither

make generative assumptions nor require complex inferences, lead-

ing to consistent improvements. The improvements of LTD under

Table 2: Variance of propensity estimation on Music and Coat

SV MIS

Approach Music Coat Music Coat

Two-phase 7.079 · 10−4 6.827 · 10−3 5.996 · 103 2.164 · 103

B
i
-
l
e
v
e
l

MF-IPS-LTD 4.876 · 10−6 1.635 · 10−5 2.682 · 103 1.473 · 102
NF-IPS-LTD 4.136 · 10−6 4.962 · 10−6 2.661 · 103 1.471 · 102
MF-DR-LTD 9.203 · 10−7 9.898 · 10−6 2.507 · 103 1.467 · 102
NF-DR-LTD 7.066 · 10−7 4.534 · 10−6 2.494 · 103 1.466 · 102
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Fig. 4: Comparing convergence ofNF-DR andNF-DR-LTDonMusic.

Table 3: Performance of NF-DR-LTD on Music and Coat.

MSE MAE

Propensity model Music Coat Music Coat

Simple propensity model 1.044 1.028 0.812 0.784

Logistic regression model 1.003 1.006 0.791 0.774

MLP with one hidden layer 0.977 0.973 0.774 0.759

MLP with two hidden layers 0.996 0.990 0.783 0.763

MAE are not as significant as those under MSE because the losses

of LTD are based on square errors rather than absolute errors.

5.2.2 Variance of Propensity Estimation. We compare the variance

of propensity estimation when completing the training of debiasing

approaches based on propensity weighting. We show the results

under SV and MIS on Music and Coat in Table 2. The variance

of propensity estimation by bi-level optimization is much smaller

than that by two-phase learning (up to 3 orders of magnitude).

Since NF-DR-LTD performs the best on all datasets, we will

focus on its results in the following discussion. We observe that the

results of other LTD approaches are similar to those of NF-DR-LTD.

5.2.3 Analysis of Convergence. It is well-known that bi-level opti-

mization is difficult to perform and we further introduce variance

regularization into the optimization, so it is meaningful to analyze

the convergence of LTD. We plot training loss and testing MSE

of NF-DR and NF-DR-LTD against training epochs on Music in

Fig. 4a and Fig. 4b, respectively. We can see that after eight epochs,

both training loss and testing MSE of NF-DR-LTD converge. The

convergence rate of NF-DR-LTD in terms of training epochs is

comparable to that of NF-DR.

5.3 RQ2 Ablation Studies
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5.3.1 Propensity Model. To study the preferred model architec-

tures for propensity estimation, we use a simple propensity model

𝑞𝜃 (𝒙𝑢,𝑖 ) = 𝜎 (𝑤𝑢,𝑖 ) (𝑤𝑢,𝑖 ∈ R is a parameter) [21] and a logistic

regression model to estimate propensities in NF-DR-LTD. We show

the results in Table 3. We can see that using MLP with one hidden

layer performs the best. Using more hidden layers does not help

largely because the unbiased dataset is too small to train the pa-

rameters of additional hidden layers. The simple propensity model

performs the worst because it ignores all features (e.g., the true rat-

ing), which can be quite predictive in propensity estimation. MLP

is preferred over the logistic regression model due to its ability to

approximate almost any continuous functions in theory [1].

5.3.2 Variance Regularization. We study how the regularization

hyper-parameter 𝜆 affects the performance of LTD. We plot the

result on Music in Fig. 5a. We can see that the variance regular-

ization is indeed beneficial, e.g., MF-IPS-LTD with 𝜆 = 1 (1.009)

outperforms that with 𝜆 = 0 (1.026) by 1.7%. We further compute

the sample variance of propensity estimates on the unbiased testing

set. We show the result during training NF-DR-LTD onMusic in

Fig. 5b. We find that the sample variance keeps growing when 𝜆 = 0,

but drops after a few epochs when 𝜆 ≥ 1. The sample variance in

NF-DR-LTD during training is consistently smaller than that in

two-phase learning (7.079 · 10−4) in Table 2.

5.3.3 Unbiased Dataset Size. We study how the size of the unbi-

ased dataset used for training affects the performance. We resplit

unbiased ratings into a fixed testing set (50%) and a varying training
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(b) Hyper-parameter 𝜆 = 1.

Fig. 7: Average propensity of rating 1 to 5 by NF-DR-LTD onMusic.

set for the propensity model (1% to 50%). We show the results on

Music in Fig. 6a. We can see that LTD performs better when the

unbiased dataset size increases, as expected. We further explore the

unbiased dataset size required to learn a good propensity model

within LTD by computing improvements between NF, NF-DR, and

NF-DR-LTD. We show the results in terms of percentage decrease

in MSE on Music in Fig. 6b. We can see that improvements of

NF-DR-LTD over NF and NF-DR keep growing when we vary the

unbiased dataset size from 1% to 20%, but do not grow afterwards

(improvements over NF-DR are up to a 7.9% drop in MSE). In con-

trast, improvements of NF-DR over NF keep steady because a small

unbiased dataset can fit the naive Bayes model well.

5.4 RQ3 Propensity Weighting

To explore what propensity estimates does LTD learn, we average

propensity estimates for each distinct value of the true ratings

(i.e., 1 to 5) on the training set. We show the results when we

complete training NF-DR-LTD on Music in Fig. 7a. We can see

that on average higher ratings do have larger propensity estimates,

which is consistent with the findings in previous studies [18, 19].

We study how such results are achieved by computing the average

propensity estimate for each distinct value of the true ratings during

training. We show the results of training NF-DR-LTD on Music

in Fig. 7b. We can see that the higher a rating value is, the slower

its average propensity estimate decreases. These results indicate

that by learning from an unbiased dataset, LTD correctly assigns

larger propensity estimates to higher ratings to make the training

sets less biased. We also compare NF-DR-LTD to NF by averaging

MSE and MAE for each distinct rating value onMusic and Coat

in Table 4. Compared to NF, NF-DR-LTD performs better on lower

ratings by sacrificing the performance on higher ratings.

6 CONCLUSIONS

In this paper, we showed the impact of having a small set of unbiased

ratings on alleviating selection biases when training recommender

systems. We proposed learning to debias (LTD), a novel approach

that utilizes a few unbiased ratings to improve the generalization

ability of a rating model trained on biased datasets. To learn the pa-

rameters within LTD, we developed an efficient training algorithm,

which can effectively reduce the variance of propensity estima-

tion while training the rating model. We showed how to apply



Table 4: Comparing the performance of NF-DR-LTD to that of NF

for each distinct value of the true ratings on Music and Coat.

MSE dec. (↓) or inc. (↑) MAE dec. (↓) or inc. (↑)

Rating value Music Coat Music Coat

1 ↓ 86.77% ↓ 47.88% ↓ 65.54% ↓ 36.26%
2 ↓ 60.85% ↓ 21.90% ↓ 25.71% ↓ 12.65%
3 ↑ 79.10% ↑ 10.08% ↑ 63.53% ↑ 5.98%
4 ↑ 93.52% ↑ 10.72% ↑ 67.60% ↑ 6.24%
5 ↑ 82.82% ↑ 10.75% ↑ 58.19% ↑ 7.06%

LTD to improve over two representative types of unbiased per-

formance estimators on two real-world datasets. Compared to the

state-of-the-art approaches, LTD achieves consistent performance

improvements, and the advantage is up to 7.9% in the error of rating

prediction and order of magnitude in the variance of propensity

estimation. For future work, we will explore theoretical bounds on

the generalization ability of a rating model trained by LTD.
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