
CBHE: Corner-based Building Height Estimation for Complex
Street Scene Images

Yunxiang Zhao
The University of Melbourne & NUDT

yunxiangz@student.unimelb.edu.au

Jianzhong Qi
The University of Melbourne

jianzhong.qi@unimelb.edu.au

Rui Zhang∗

The University of Melbourne

rui.zhang@unimelb.edu.au

ABSTRACT

Building height estimation is important in many applications such

as 3D city reconstruction, urban planning, and navigation. Recently,

a new building height estimation method using street scene images

and 2D maps was proposed. This method is more scalable than

traditional methods that use high-resolution optical data, LiDAR

data, or RADAR data which are expensive to obtain. The method

needs to detect building roo�ines and then compute building height

via the pinhole camera model. We observe that this method has

limitations in handling complex street scene images in which build-

ings overlap with each other and the roo�ines are di�cult to locate.

We propose CBHE, a building height estimation algorithm con-

sidering both building corners and roo�ines. CBHE �rst obtains

building corner and roo�ine candidates in street scene images based

on building footprints from 2D maps and the camera parameters.

Then, we use a deep neural network named BuildingNet to classify

and �lter corner and roo�ine candidates. Based on the valid corners

and roo�ines from BuildingNet, CBHE computes building height

via the pinhole camera model. Experimental results show that the

proposed BuildingNet yields a higher accuracy on building corner

and roo�ine candidate �ltering compared with the state-of-the-art

open set classi�ers. Meanwhile, CBHE outperforms the baseline

algorithm by over 10% in building height estimation accuracy.

CCS CONCEPTS

• Information systems→ Location based services; •Comput-

ing methodologies → Neural networks; Camera calibration;

Image representations.

KEYWORDS

Building Height Estimation; Camera Location Calibration; Open

Set Classi�cation

ACM Reference Format:

Yunxiang Zhao, Jianzhong Qi, and Rui Zhang. 2019. CBHE: Corner-based

Building Height Estimation for Complex Street Scene Images. In Proceedings

of the 2019 World Wide Web Conference (WWW’19), May 13–17, 2019, San

Francisco, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3308558.3313394

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313394

Figure 1: Building A’s roo�ines are hard to detect due to

the overlapping with building B, while building A’s corners

can help �gure out the true roo�ines. Red arrows: building

roo�ines; Blue arrows: building corners.

1 INTRODUCTION

Building height plays an essential role in many applications, such

as 3D city reconstruction [3, 30], urban planning [29], naviga-

tion [14, 32], and geographic knowledge bases [50]. For example,

in navigation, knowing the height of buildings helps identify those

standing out in a city block, which can then be used to facilitate

navigation by generating instructions such as "turn left before an

18 meters high (�ve-story) building".

Previous studies for building height estimation are mainly based

on high-resolution optical data [18, 48], synthetic aperture radar

(SAR) images [7, 41], and Light Detection and Ranging (LiDAR)

data [33, 44]. Such data, however, are expensive to obtain and hence

the above approach is di�cult to apply at a large scale, e.g., to all

the buildings on earth. Moreover, such data is usually proprietary

and not available to the public and research community. Recently,

street scene images (or together with 2D maps) have been used for

building height estimation [11, 46], which can be easily obtained

at large scale (e.g., via open source mapping applications such

as Google Street View [2] and OpenStreetMap [16]). Estimating

building height via street scene images relies on accurate detection

of building roo�ines from the images, which then enables building

height computation using camera projection. However, existing

methods for roo�ine detection check the roo�ine segments only,

which may be confused with overlapping buildings. As shown in

Fig. 1, the roo�ine of building B may be detected as the roo�ine of

building A because the roo�ines of di�erent buildings may be in

parallel with each other, and the buildings have similar colors and

positions in the street scene images.

In this paper, we present a novel algorithm named Corner-based

Height Estimation (CBHE) to estimate building height for complex

street scene images (with blocking problem from other buildings and

trees). Our key idea to handle overlapping buildings is to detect not

only the roo�ines but also building corners. We obtain coordinates

of building corners from building footprints in a 2D map (e.g.,

OpenStreetMap). We then map the corner coordinates into the

https://doi.org/10.1145/3308558.3313394
https://doi.org/10.1145/3308558.3313394
https://doi.org/10.1145/3308558.3313394

street scene image to detect building corners in the image. Corners

of di�erent buildings do not share the same coordinates, and it is

easier to associate them with di�erent buildings, as shown in Fig. 1.

CBHEworks as follows. It starts with an upper-bound estimation

of the height of a building, which is computed as the maximum

height that can be captured by the camera. It then tries to locate a

line (i.e., a roo�ine candidate) at this height and repeats this process

by iteratively reducing the height estimation. Following a similar

procedure, CBHE also locates a set of building corner candidates.

Next, CBHE �lters the roo�ine candidates with the help of the

corner candidates (i.e., a roo�ine candidate needs to be connected

to a corner of the same building to be a true roo�ine). When the

true roo�ine is identi�ed, CBHE uses the pinhole camera model to

compute the building height.

In the process above, when locating the roo�ine and corner can-

didates, we fetch two sets of image segments that may contain

building roo�ines or corners, respectively. To �lter each set of ob-

jects and identify the true roo�ine and corner images, we propose

a deep neural network model named BuildingNet. The key idea

of BuildingNet is as follows. Building corner has a limited number

of patterns (e.g., " ", " ", " ", " "), while non-corner images may

have any pattern. The same applies to the building roo�ines. Thus,

we model building corner (roo�ine) identi�cation as an open set

image classi�cation problem, where each corner (roo�ine) pattern

forms a class, while non-corner (non-roo�ine) images should be

di�erentiated from them when building the classi�er. To do so,

BuildingNet learns embeddings of the input images, which mini-

mize the intra-class distance and maximize the inter-class distance,

and then di�erentiates di�erent classes using a Support Vector Clas-

si�cation (SVC) model on the learned embeddings. When a new

image comes, the trained SVC model will tell whether it falls into

any corner (roo�ine) classes. If the image does not fall into any

corner (roo�ine) classes, it is a non-corner image and can be safely

discarded.

When estimating building height via the pinhole camera model,

the result highly relies on the accuracy of the camera location due to

GPS errors. Therefore, CBHE calibrates the camera location before

roo�ine detection. To calibrate the camera location, CBHE detects

candidate regions of all building corners in street scene images by

matching buildings in street scene images with their footprints in

2D maps based on the imprecise camera location from GPS. Then, it

uses BuildingNet to classify the corner candidates and remove those

images classi�ed as non-corner. From the remaining corner after

the classi�cation through BuildingNet, CBHE selects two corners

with the highest score (detailed in Section 4.2) to calibrate the

camera location via the pinhole camera model. We summarize our

contributions as follows:

• We model building corner and roo�ine detection as an open set

classi�cation problem and propose a novel deep neural network

named BuildingNet to solve it. BuildingNet learns embeddings

of the input images, which minimize the intra-class distance and

maximize the inter-class distance. Experimental results show that

BuildingNet achieves higher accuracy on building corner and

roo�ine identi�cation compared with the state-of-the-art open

set classi�ers.

• We propose a corner-based building height estimation algorithm

named CBHE, which uses an entropy-based algorithm to select

the roo�ine among all candidates from BuildingNet. The entropy-

based algorithm considers both building corner and roo�ine fea-

tures and yields higher robustness for the overlapping problem in

complex street scene images. Experiments on real-world datasets

show that CBHE outperforms the baseline method by over 10%

regarding the estimation error within two meters.

• We propose a camera location calibration method with an analyt-

ical solution when given the locations of two building corners in

a 2D map, which means highly accurate result can be guaranteed

with the valid building corners from BuildingNet.

We organize the rest of this paper as follows. We review related

work in Section 2 and give an overview of CBHE in Section 3. The

BuildingNet and entropy-based ranking algorithm are presented in

Section 4, and the building height estimation method is detailed in

Section 5. We report experimental results in Section 6 and conclude

the paper in Section 7.

2 RELATED WORK

In this section, we review studies on camera location calibration and

building heigh estimation. We also detail our baseline method [46].

2.1 Camera Location calibration

Camera location calibration aims to re�ne the camera location of

the taken images, given rough camera position information from

GPS devices or image localization [1, 25].

Existing work uses 2.5Dmaps (2Dmaps with height information)

to calibrate camera locations. Arth et al. [4] present a mobile device

localization method that calibrates the camera location by matching

building facades in street scene images with their footprints in 2.5D

maps. Armagan et al. [3] train a convolutional neural network (CNN)

to predict the camera location based on a semantic segmentation

of the building facades in input images. Their method iteratively

applies CNN to compute the camera’s position and orientation

until it converges to a location that yields the best match between

building facades and 2.5D maps. Camera location calibration using

2.5D maps can produce good results. The hurdle is the requirement

of building height information for generating 2.5D maps, which

may not be available for every building. Chu et al. [9] extract the

position features of building corner lines (the vertical line of a corner)

and then �nd the camera location and orientation by matching the

extracted position features with building footprints in 2D maps.

However, their method cannot handle buildings overlapping with

each other or having non-uniform patterns on their facades.

2.2 Building Height Estimation

Building height estimation has been studied using geographical

data such as high-resolution images, synthetic aperture radar (SAR)

images, and Light Detection and Ranging (LiDAR) data.

Studies [18, 23, 31, 39, 48] based on high-resolution images (such

as satellite or optical stereo images) estimate building height via

methods such as elevation comparison and shadow detection, which

may be impacted by lighting and weather condition when the im-

ages are taken. Similarly, methods based on height estimation is

synthetic aperture radar (SAR) images [7, 37, 41] are mainly based

Figure 2: Solution overview

on shadow or layover analysis. Methods based on aerial images

and aerial LiDAR data [33, 36] usually segment, cluster and then

reconstruct building rooftop planar patches according to prede�ned

geometric structures or shapes [48]. LiDAR data is expensive to

analysis and has a limited operating altitude because the pulses

are only e�ective between 500 and 2,000 meters [44]. A common

limitation shared by the methods above is that the data that they

use are expensive to collect, which signi�cantly constraints the

scalability of these methods.

Method based on street scene image and 2Dmap. Yuan and

Cheriyadat propose a method for building height estimation uses

street scene images facilitated by 2D maps [46]. Street scene im-

ages are widely available from Google Street View [2], Bing Street-

Side [21] and Baidu Map [5], which makes building height esti-

mation based on such data easier to scale. Yuan and Cheriyadat’s

method has four main steps: (i) Match buildings in a street scene

image with their footprints in a 2D map via camera projection

based on the camera location that comes with the image. Here,

the camera location may be imprecise due to GPS error [15, 47].

(ii) Calibrate the camera location via camera projection with the

extracted building corner lines from street scene images. (iii) Re-

match buildings from a 2D map with those in the street scene image

based on the calibrated camera location, and then detect building

roo�ines through edge detection methods. (iv) Compute building

height via camera projection with camera parameters, calibrated

camera location, the height of building roo�ines in the street scene

image, and the building footprint in the 2D map.

Our proposed CBHE di�ers from Yuan and Cheriyadat’s method

in the following two aspects: (A) In Step (ii) of their method, they

calibrate camera location by matching building corner lines in the

street scene image with building footprints in the 2D map. Such

a method cannot handle images in urban areas where the corner

lines of di�erent buildings are too close to be di�erentiated, or

the buildings have non-uniform patterns/colors on their facades

which makes corner lines di�cult to recognize. CBHE uses building

corners instead of corner lines, which puts more restriction on the

references for camera location calibration, and thus yields more

accurate results. (B) In Step (iv) of their method, they use a local

spectral histogram representation [26] as the edge indicator to

capture building roo�ines, which can be ine�ective when buildings

overlap with each other. CBHE uses the proposed deep neural

network named BuildingNet to learn a latent representation of

building roo�ines, which has been shown to be more accurate in

the experiments.

3 OVERVIEW OF CBHE

We present the overall procedure of our proposed CBHE in this

section. We also brie�y present the process of camera projection,

which forms the theoretical foundation of building height estima-

tion using street scene images.

3.1 Solution Overview

We assume a given street scene image of buildings that comes with

geo-coordinates and angle of the camera by which the image is

taken. Here, the geo-coordinates may be imprecise due to GPS

errors. Google Street View images are examples of such images,

and we aim to compute the height of each building in the image.

As illustrated in Fig. 2, CBHE contains three stages:

• Stage 1 – Preprocessing: In the �rst stage, we pre-process the

input image by recognizing the buildings and computing their

sketches. There are many methods for these purposes. We use

two existing models Re�neNet [24] and Structured Forest [12] to

identify the buildings and compute their sketches, respectively.

After this step, the input image will be converted into a grayscale

image with each pixel valued from 0 to 255 that contains building

sketches, which enables identifying roo�ines and computing the

height of the building via camera projection.

• Stage 2 – Camera location calibration: Before computing

building height by camera projection, in the second stage, we

calibrate the camera location. This is necessary because a precise

camera location is required in the camera projection, while the

geo-coordinates that come with street scene images are imprecise

due to GPS errors. To calibrate the camera location, we �rst de-

tect building corner candidates in street scene images according

B2

B1

h

 r

 f

 c
h'r

h'b
z'

x'

y'

d

Image plane coordinate system
Camera coordinate system (with prime)

hr

hb

o'
d

cz cn

cx

x

y

f
o

Figure 3: Geometric variables in the camera and the image

coordinate systems (best view in color).

to their footprints in 2D maps and their relative position to the

camera. Then, by comparing the locations and the projected po-

sitions of building corners (two corners), we calibrate the camera

location via camera projection. In this stage, we propose a deep

neural network named BuildingNet to determine whether an

image segment contains a valid building corner. The BuildingNet

model and the process of selecting two building corners for the

calibration are detailed in Section 4.

• Stage 3 – Building height computation: In this stage, we ob-

tain the roo�ine candidates of each building via weighted Hough

transform and �lter out those invalid roo�ine candidates via

BuildingNet. Then we rank all valid roo�ines by an entropy-

based ranking algorithm considering both corner and roo�ine

features and select the best one for computing building height via

camera projection. The detailed process is provided in Section 5.

Since Stage 1 is relatively straightforward, we focus on Stages

2 and 3 in the following Sections 4 and 5, respectively. Before

diving into these two stages, we brie�y discuss the idea of camera

projection and present the frequently used symbols.

3.2 Camera projection

We use Fig. 3 to illustrate the idea of camera projection and the

corresponding symbols. In this �gure, there are two coordinate

systems, i.e., the camera coordinate system and the image plane

coordinate system. Speci�cally, {o′, x ′, y′, z′} represent the camera

coordinate system, where origin o′ represents the location of the

camera. The camera is set horizontal to the sea level, which means

that plane x ′z′ is vertical to the building facades while the y′-axis

is horizontal to the building facades. We use {o, x , y} to represent

the image plane coordinate system, where origin o is the center of

the image, and plane xy is parallel to plane x ′y′.

In Fig. 3, there are two buildings B1 and B2 that have been pro-

jected onto the image. For each building, we use lr , lf , and lc to

represent the roo�ine, the �oor, and the line on the building pro-

jected to the x-axis (center line) of the image plane xy. Corners

cn , cx , and cz are the corner nearest to the camera, the corner far-

thest to the y-axis of the image plane when projected to the image

plane (along the x-axis), and the corner closest to the y-axis of the

image plane when projected to the image plane (along the z-axis),

respectively. The height h of the building is the sum of the distance

between lr and lc and the distance between lc and lb . These two

distances are denoted as h′r and h′
b
, and the projected length of

h′r in the image plane xy is denoted by hr . Since the camera is set

Table 1: Frequently used symbols

Notation Description

hr the height of a building above images’ center line

hb the height of a building below images’ center line

d the distance from the camera to cn of a building

d̂ the projected length of d onto the z-axis

f the focal length of the camera

lr a building roo�ine

cn the corner nearest to the camera

cx the corner farthest to o in the image plane

cz the corner closest to o in the image plane

horizontal to the sea level, the height of h′
b
is the same as the height

of the car or human beings who captured the street scene image,

which can be regarded as a constant.

Let d be the distance from the camera o′ to corner cn , d̂ be the

projected length of d onto the z′-axis, and f be the focal length

of the camera (i.e., the distance between the image center o and

the camera center o′). Based on the pinhole camera projection, the

height of a building can be computed as follows:

h = h′r + h
′
b
= hr · d̂/f + h

′
b

(1)

In this equation, the focal length f comes with the input im-

age as its metadata. The distance d̂ is computed based on the geo-

coordinates of the building and the camera, aswell as the orientation

of the camera. The geo-coordinates of the building are obtained

from an open-sourced digital map, OpenStreetMap, while the geo-

coordinates and orientation of the camera come with the input

image from Google Street View. Due to GPS errors, we describe

how to calibrate the location of the camera in Section 4. The height

hr is computed based on the position of the roo�ine lr which is

discussed in Section 5. Table 1 summarizes the symbols that are

frequently used in the rest of the discussion.

4 CAMERA LOCATION CALIBRATION

When applying camera projection for building height estimation,

we need the distance d̂ between the building and the camera. Com-

puting this distance is based on the locations of both the building

and the camera. Due to the error of GPS, we calibrate the camera

location in this section.

4.1 Key Idea

We use two building corners in the street scene image with known

real-world locations for camera location calibration. To illustrate

the process, we project Fig. 3 to a 2D plane, as shown in Fig. 4a,

and assume that corner cn of building B1 and building B2 are two

reference corners.

We consider a coordinate system with corner cn of building B1
as the origin, and the camera orientation as the y-axis. Let ¹1 and

¹2 be the angles of corner cn of B1 and corner cn of B2 from the

orientation of the camera, respectively. Then the ratio of d2/d3 is

determined by the position of these two reference corners in the

image. ¹3 represents the angle between the line connecting corner

cn of B1 and corner cn of B2 and x-axis, and it can be computed

(x,y)

(x’,y’)

(a) (b)

Figure 4: (a) geometric variables of Fig. 3 in plan view. (b)

the left building shows the formation of cn and cz , while the

right building illustrates how to �nd corner candidates.

according to the camera’s orientation and the relative locations of

the two reference corners in 2D maps. Therefore, we can compute

the coordinates (x ,y) of corner cn of building B2 in the coordinate

system. With ¹1, ¹2, and the coordinate (x ,y), we compute the y

coordinate of the camera as follows:

y′ =
x − y · tan¹1

tan¹1 + tan¹2
(2)

Since the x coordinate of the camera is equals to y′ · tan¹2,

we obtain the relative position of the camera to the corner cn of

building B1. Thus, camera location calibration becomes the problem

of matching two building corners with their positions in the image.

The real-world location of the building corners can be obtained

from 2D maps, and we need to locate their corresponding positions

in the street scene image based on the (inaccurate) geo-coordinates

of the camera. For a pinhole camera, matching a 3D point in the

real world to a 2D point in the image is determined by a 3×4 camera

projection matrix as follows:

³ · p = [I |03]

[
R t

0
T
3

1

] [
p′

1

]
, I =



f 0 0

0 f 0

0 0 1


(3)

where a real-world point p′ = (x ′,y′, z′)T can be projected to its

position p = (x ,y, 1)T in the image plane; ³ is the parameter that

transfers pixel scale to millimeter scale [28]; [I |03] is the camera

matrix determined by focal length f ; R is the camera rotation ma-

trix, while t is a 3-dimensional translation vector that describes

the transformation from the real-world coordinates to the camera

coordinates.

Since the image geo-coordinates may be inaccurate, we can only

compute rough locations of the building corners. Based on the

rough position of each corner, we then iteratively assume a height

hr for each building to obtain the gradient of its roo�ines, as shown

in Fig. 4b. We use 120×120 sub-images with the horizontal position

and the assumed height of the corner as their center for building

corner detection. A building corner consists of two roo�ines or

a roo�ine with a building corner line, as shown in Fig. 4b. For

each building, we only consider their corners cn and cz . There are

three types of formation for corner cn as illustrated by the red lines

on the left-hand side building in Fig. 4b, and there is one type of

formation for corner cz as illustrated by the blue lines. Based on the

detected building corner candidates, we use BuildingNet described

Section 4.2 to �lter out non-corner image segments, and then select

the two reference corners which is discussed in Section 4.2.

We assume the camera location error from Google Street View

API to be less than three meters due to its camera location optimiza-

tion [20]. If the camera location we compute is more than three

meters away from the one provided by Google Street View API, we

use the camera location from Google Street View API directly. We

further improve the estimation accuracy by a multi-sampling strat-

egy, which uses the median height among results from di�erent

images of the same building taken at di�erent distances.

4.2 BuildingNet

We formulate building corner detection as an object classi�cation

problem, which �rst detects candidate corner regions for a spe-

ci�c building by a heuristic method, and then classi�es them into

di�erent types of corners or non-corners.

We classify images that may contain building corners into �ve

classes. The �rst four classes correspond to images containing one of

the four types of building corners, i.e., corner cn , cz of the left-hand

side buildings, and corner cn , cz of the right-hand side buildings ("

", " ", " ", " "). The last class corresponds to non-corner images

which may contain any pattern except the above four types of

corners (e.g., they could contain trees, lamps or power lines), and

should be �ltered out. Such a classi�cation problem is an open

set problem in the sense that the non-corner images do not have

a uni�ed pattern and will encounter unseen patterns. To solve

this classi�cation problem, we build a classi�er that only requires

samples of the �rst four classes in the training stage (can also take

advantage of non-corner images), while can handle all �ve classes

in the testing stage. To enable such a classi�er, we �rst propose the

BuildingNet model based on LeNet 5 [22] and triplet loss functions,

which learns embeddings that map potential corner region image

segments to a Euclidean space where the embeddings have small

intra-class distances and large inter-class distances.

4.2.1 Triplet Relative Loss Function. As shown in Fig 5, an input

of BuildingNet contains three images. Two of them (xp and xt)

contain the same type of corner, and we name them the target

(xt) and positive (xp), respectively. The other image xn contains

another type of corners (or a non-corner image if available), and

we name it negative. BuildingNet trains its inputs to d-dimensional

embeddings based on a triplet relative loss function inspired by

Triplet-Center Loss and FaceNet [17, 35, 40, 43], which minimizes

the distances within the same type of corners, and maximizes the

distances between di�erent types of corners as follows:

l =

N∑

i=1

³ · | | f (xti) − f (x
p
i)| |

2

2
+ (1 − ³) ·

| | f (xti) − f (x
p
i)| |

2

2

| | f (xti) − f (xni)| |
2

2

(4)

where ³ ∈ [0, 1] is the weight of intra-class distance in the d-

dimensional Euclidean space; (1 − ³) is the weight of the ratio

between intra-classes distance and inter-class distance, which aims

to separate di�erent classes in the d-dimensional Euclidean space;

N is the cardinality of all input triplets. Function f computes the

d-dimensional embedding of an input image, and we normalize

it to | | f (x)| |2
2
= 1. Di�erent from existing loss function based on

triplet selection [35, 42], triplet relative loss function can minimise

the intra-class distance and maximize the inter-class distance by

means of their relative distance.

Figure 5: BuildingNet structure. xt , xp are images contain-

ing the same corner type. xn is an image containing another

corner type or non-corner, x is a testing image.

4.2.2 Hard Triplet Selection. Generating all possible image triplets

for each batch during the training process will result in a large

amount of unnecessary training data (e.g., xt and xp are too similar,

while xn is way di�erent). It is crucial to select triplets that con-

tribute more to the training phase. In BuildingNet, we accelerate

convergence by assigning a higher selection probability to triplets

that may contribute more to the training process. The probability

of selecting a negative image xni to form a training triplet is:

p(xni) =
e | |f (x

n

i
)−f (x t) | |2

2
−m

∑k
i=1 e

| |f (xn
i
)−f (x t) | |2

2
−m
, i = [1,k]

m =min(| | f (xni) − f (xt)| |2
2
− || f (xt) − f (xp)| |2

2
), i = [1,k]

(5)

Here, k is the total number of negative images in a batch. Af-

ter randomly choosing xt and xp for a triplet, we compute the

Euclidean distance between xt and xp , as well as the distances

between xt and the k negative images xn in the batch. Letm be the

minimum Euclidean distance between xt and any xn , which can

be positive or negative. Then, the negative image xni similar to xt

will have a higher probability to be selected.

After the training process, we obtain a d-dimensional embedding

for each input image. We then learn a support vector classi�er [8]

based on these embeddings for corner region image classi�cation.

4.3 Entropy-based Ranking

BuildingNet can �lter out non-corner images. Among the remain-

ing corner candidates, we select the two corners with the highest

score as the reference corners. Reference corner selection relies on

multiple factors: the length and edgeness (detailed in Section 5) of

the lines forming the corner, the number of other corner candidates

(cn , cx , and cz) of the same building with the same assumed height,

and the position of the corner in the image. We take the position of

the corner into consideration because, empirically, corners close

to one quarter or three-quarters (horizontally) of the image yield

more accurate matching between their positions in the image and

their footprints in 2D maps. We also consider their real-world lo-

cations because a corner close to the camera will be clearer and

has higher accuracy when matching them to their footprints in 2D

maps. Therefore, we de�ne the score of each corner candidate as:

[sc1 , ..., sck]
′
=



¼,É,Ä , Ä,d |c1
.

.

.

¼,É,Ä , Ä,d |ck



·



w¼
.

.

.

wd



(6)

where k is the number of corner candidates from all buildings; ci is

the ith corner candidate; sci is the score of the ith corner candidate;

¼ is the detected length of the two lines that form a corner, while É

is the sum of the edgeness of the two lines; Ä is the number of other

corner candidates of the same building with the same assumed

height; Ä is the minimum distance from the corner to a quarter or

three-quarters of the image, and d is the distance from the corner to

the camera;w¼ ,wÉ ,wÄ ,wÄ ,wd are the weight of these parameters.

Parameters ¼,É,Ä and Ä correlate with the score positively, while

parameter d correlates with the score negatively.

We use an entropy-based rankingmethod to compute theweights

of parameters (w¼ , ...,wd)
T . Shannon entropy is a commonly used

measurement of uncertainty in information theory [38]. The main

idea of the entropy-based ranking algorithm is to compute the

objective weights of di�erent parameters according to their data

distribution. If the samples of a parameter vary greatly, the param-

eter should be considered as a more important feature and thus

should be given a larger weight.

For building corner classi�cation, there are n = 5 parameters and

m = k samples. We denote the decision matrix as r , where ri j is the

value of the ith sample under the jth parameter. Before applying the

entropy-based ranking algorithm, we pre-process these parameters

by Min-max scaling as follows:

ri j =




(ri j −min
j
(ri j))/(max

j
(ri j) −min

j
(ri j)), i� positive

(ri j −min
j
(ri j))/(max

j
(ri j) −min

j
(ri j)) + 1, i� negative

(7)

where positive and negative mean that the jth parameter is pos-

itively/negatively correlated with the value of r . After Min-max

scaling, the entropy of each parameter based on the normalized

decision matrix r ′ is de�ned as:

ej = −ln(m)−1 ·

m∑

j=1

r ′i j · ln(r
′
i j), r

′
i j = ri j/

m∑

j=1

ri j (8)

where r ′ is the standardized r . Based on the entropy of each param-

eter, the weight of each parameter is computed by:

w j = (1 − ej)/(n −

m∑

j=1

ej), j = [1,n] (9)

After computing the weight of each parameter, we apply them

to all corner candidates and rank all the candidates by their scores

to obtain the best two as the reference corners.

5 ROOFLINE DETECTION

Building height estimation requires detecting the roo�ine of each

building. In this section, we present our method for roo�ine candi-

date detection in Section 5.1, and our method for the true roo�ine

selection in Section 5.2. We further present a strategy for handling

tall building (over 100 meters) in Section 5.3.

5.1 Roo�ine Candidate Detection

We consider the roo�ines from corner cn to the corner next to cn ,

along the positive direction of the x ′-axis in the camera coordinate

system, and the one from corner cz to the corner next to corner cz
along the negative direction of the z′-axis in the camera coordinate

(a) (b)

Figure 6: (a) the heuristic method for roo�ine candidate de-

tection. (b) the mask of detected buildings.

system. The corner between corner cz and corner cx is corner cn
if they are adjacent to each other, as shown in Fig. 3, and we take

this situation to simplify the explanation.

Similar to corner candidate detection, as shown in Fig. 6a, we

�nd all roo�ine candidates of each building by a heuristic method,

which projects the roo�ines of each building according to its relative

location to the camera in the real world, together with the camera’s

parameters. To do so, we �rst assume hr of a building to be the

maximum height that can be captured, which means that at least a

roof corner (cn , cx , and cz) is visible in the image. If corner cn is

visible, the maximum height computed via camera projection is:

hr = d̂ · (hI /2f) (10)

where hI is the height of the street scene image; d̂ is the distance

from corner cn to the camera projected to the z′-axis of the camera

coordinate system. If corner cn is invisible, we use cz as the refer-

ence corner when computing the maximum height of a building

in the same way. With the maximum height of the building, we

compute the position of corner cn , cx , and cz in the image. We

then apply Hough transform to the input edge map in Fig. 2 to

detect roo�ine candidates, and the roo�ine candidates from cn to

cx need to match the computed position of cn and cx . Similarly,

the roo�ine candidates from cn to cz need to match the computed

position of cn and cz . Instead of using the typical Hough transform

for line detection, which takes binarized images as the input, we

sum the value of all pixels valued from 0 to 255 within a line as its

weight, and name the summed value as the edgeness of a roo�ine

candidate, which re�ects the visibility of a line in the edge map.

We iteratively reduce the assumed height with a step length of

0.5 meters until hr = 0 and collect all candidate roo�ines. Similar to

reference corner detection, we formulate the true building roo�ine

detection as an open set classi�cation and ranking problem.

5.2 Roo�ine Classi�cation and Ranking

There are three types of roo�ines: (i) Roo�ine from cn to cx ; (ii)

Roo�ine from cn to cz of the left hand side buildings; (iii) Roo�ine

from cn to cz of the right hand side buildings, as shown in Fig. 4c.

We use BuildingNet to �lter these candidates and �nd the true

roo�ine, which is similar to the corner candidate validation process

in Section 4.2. Based on the valid roo�ine candidates from Build-

ingNet, we weight each roo�ine candidate lr by its detected length

¼, edgeness É, and the number of corners Ä with the same assumed

height of the same building. We rank all roo�ine candidates via the

entropy-based ranking algorithm in Section 4.3, as follows:

Algorithm 1: Roo�ine pre-processing

Inputs: buildings B, tree area T , edge map E;

Output: updated buildings B;

M = null;

forall building b in B do
// buildings are ordered by whether they have a detectable

corner, and then their distance to the camera;

forall roo�ine lr in b .Lr do

// traverse all roo�ine candidates of building b;

forall pixel p ∈ lr do

if M(p) then

lr .delete(p);

lr (ini) = lr ;

forall pixel p in lr and p < lr and !M(p) do

if connected(p, lr) and T (p) then

lr .add(p);

// update the length and edgeness of lr ;

¼lr = len(lr);

Élr = E(lr (ini)) ∗ len(lr)/len(lr (ini));

[slr1
, ..., slrk

]′ =



¼,É,Ä |lr1
.

.

.

¼,É,Ä |lrk



·



w¼ |lr
.

.

.

wÄ |lr



(11)

where k is the number of roo�ine candidates for a speci�c roo�ine;

lri is the ith roo�ine candidate; slr1
is the score of the ith roo�ine

candidate.w¼ ,wÉ andwÄ are the weight of these parameters based

on all candidates of a speci�c roo�ine of a building, and all three

parameters are positively correlated with the score s . The value of

Ä depends on the number of corners (cn , cx , and cz) with the same

assumed height as the roo�ine candidate, and its value is {0, 1, 2, 3}.

We discussed how to detect references corners in Section 4.2, and

the di�erence in detecting the corners of a speci�c building is that

we do not consider Ä and d in Equation 6 and all corner candidates

here are those of a speci�c building corner.

Di�erent from building corners, which can only be visible or in-

visible, roo�ines can also be partially blocked by other objects (trees

in particular). Therefore, before we apply the ranking algorithm,

we pre-process the length ¼ and edgeness É which are a�ected by

the blocking via Algorithm 1 as follows:

When estimating building height, we �rst separate buildings into

two classes: (i) with at least one valid corner; (ii) without any valid

corner. Then, we process buildings in class (i) according to their

distance to the camera. After all the buildings in class (i) have been

processed, we process the buildings in class (ii) according to their

distance to the camera. After we obtain the height of a building, we

mark the scope of the building in the street scene image, as shown

in Fig. 6b (i.e., height has been obtained).

After detecting the roo�ine candidates of a building, we re�ne

the ¼lr of each roo�ine candidate using the following equation:

¼lr = ¼lr (ini) −
∑

p∈lr

M(p) +
∑

p in lr

T (p) (12)

(a) (b)

Figure 7: (a) an image with an upward-looking view. (b) the

corresponding image with a horizontal view.

where ¼lr (ini) is the detected length of a roo�ine candidate lr .M(p)

checks whether a pixel p within a roo�ine belongs to a building’s

scope in the street scene image that has been processed and closer

to the camera, or within another building’s roo�ine that has been

processed but farther to the camera. We remove pixel p from a

roo�ine if M(p) is true. T (p) checks whether a pixel p, which is

in the extended line of lr but within the projected scope of the

roo�ine, has been blocked by trees. If there do exist these pixels

and they connect to the detected roo�ine segment, we add them to

the roo�ine. Accordingly, we update the edgeness of a roo�ine as:

Élr = (1 + ¼lr (ini)/¼lr) ·
∑

p∈lr

E(p) · (1 −M(p)) (13)

where E is the input edge map of the original image, ¼lr (ini) and

¼lr are the initial and prolonged length of the roo�ine, respectively.

5.3 Tall Building Preprocessing

Height estimation for tall buildings (over 100 meters) requires the

camera to be placed far away from the buildings with an upward-

looking view to capture the building roof. For images with an

upward-looking view, all building corner lines will become slanted.

Typically, we take the upward-looking view as 25 degrees as an

example to show the strategy that we use for handling tall buildings.

We �rst compute a plane-to-plane homography [51], whichmaps

an image with an upward-looking view to the corresponding im-

age with a horizontal view. Here, we use the homogeneous esti-

mation method [10], which solves a 3×3 homogeneous matrix h

that matches a point in an upward-looking image (Fig. 7a) to a

horizontal-view image (Fig. 7b) using the Equation 14:

A · h =



x1 y1 1 0 0 0 −x1X1 −y1Y1 X 1

0 0 0 x1 y1 1 −x1X1 −y1Y1 X 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xn yn 1 0 0 0 −xnXn −ynYn Xn
0 0 0 xn yn 1 −xnXn −ynYn Xn



· h = 0 (14)

where the homogeneous matrix h(|h | = 1) is represented in the

vector form as h = (h11,h12,h13,h21,h22,h23,h31,h32,h33)
T ; n is

the number of point pairs, which should be no less than four to

validate the homogeneous equation; (Xi ,Yi) represents a point in

the upward-looking image and (xi ,yi) represents the correspond-

ing point in the resultant image with a horizontal view. Vector h

minimizes the algebraic residuals, and A · h is a standard result of

linear algebra. Subject to h = 1, the least eigenvalue of A · AT is

given by the eigenvector, and this eigenvector can be obtained from

the singular value decomposition (SVD) of A.

Figure 8: Examples of four types of corners, three types of

roo�ines, and the corresponding unlabelled images.

6 EXPERIMENTS

In this section, we �rst evaluate our proposed BuildingNet model

for building corner and roo�ine classi�cation and then evaluate our

proposed CBHE algorithm for building height estimation.

6.1 Datasets

In our experiments, we obtain building footprints (geo-coordinates)

from OpenStreetMap and building images from Google Street View,

respectively. For the experiments on building height estimation, we

use two datasets:

(i) City Blocks, which contains 128 buildings in San Francisco.

We collect all Google Street View images (640×640 pixels) with cam-

era orientation along the street. We set the view of the camera is 90

degrees, and the focal length can be derived via the camera param-

eters provided by Google. We do not need to consider the camera

rotation matrix R and the translation vector t due to the image

preprocessing of Google Street View. We obtain the building height

ground truth from high-resolution aerial maps (e.g., NearMap [13]).

(ii) Tall Buildings, which contains 37 buildings taller than 100

meters in San Francisco, Melbourne, and Sydney collected by us

via Google Street View API. We set the camera with an upward-

looking view (25 degrees) to capture their roo�ines. The building

hight ground truth comes from Wikipedia pages of these buildings

or derived from NearMap [13].

For building corner classi�cation, we crop images from City

Blocks dataset. We generate the corner dataset semi-automatically,

where we crop 28 × 28 pixels image segments from street scene im-

ages, and then manually label whether an image segment contains

a building corner (and the type of corner). The training dataset that

we collected contains 10,400 images, including 1,300 images of each

type of building corner (i.e., a total of 5,200 building corner images)

and 5,200 non-corner images. The testing dataset contains 1,280

images, including 160 images for each type of building corners and

640 non-corner images. The training data and testing data come

from di�erent city blocks.

Following a similar approach, we collect a roo�ine dataset. For

each roo�ine candidate, we extend the upper and lower 10 pixels

of the roo�ine to obtain a 21 ×W image segments, whereW is the

length of the roo�ine, and we further resize (rotate if the roo�ine

is not a horizontal line) the image to 28 × 28 to generate same-size

inputs for BuildingNet. The training dataset includes 7,800 images,

including 1,300 images for each type of roo�ines (i.e., a total of

3,900 building roo�ine images) and 3,900 non-roo�ine images. The

testing dataset contains 960 images, including 160 images for each

kind of roo�ine and 480 non-roo�ine images.

(a) (b)

Figure 9: E�ectiveness of BuildingNet on (a) corner classi�-

cation and (b) roo�ine classi�cation (best view in color).

6.2 E�ectiveness of BuildingNet

Building corner and roo�ine classi�cation is an open set classi�ca-

tion problem where the invalid corner or roo�ine candidates do not

have consistent features. To test the e�ectiveness of BuildingNet,

we use two open set classi�ers as the baselines: SROSR [49] and

OpenMax [6]. SROSR uses the reconstruction errors for classi�ca-

tion. It simpli�es the open set classi�cation problem into testing and

analyzing a set of hypothesis based on the matched and no-matched

error distributions. OpenMax handles the open set classi�cation

problem by estimating the probability of whether an input comes

from unknown classes based on the last fully connected layer of a

neural network. Further, we use two loss functions based on triplet

selection to illustrate the e�ectiveness of our proposed triplet rel-

ative loss function. The loss function in FaceNet [35] makes the

intra-class distance smaller than inter-class distance by adding a

margin, and the one in MSML [45] optimizes the triplet selection

process towards selecting hard triplets in each in training.

Hyperparameters. For the OpenMax, we use the LeNet 5model

to train on the building corner and roo�ine dataset for 10K iterations

with the default setting in Ca�e [19]. We then apply the last fully

connected layer to OpenMax for classi�cation. For our BuildingNet,

we pre-train LeNet 5 with the MNIST dataset and �ne-tune it with

our collected building corner and roo�ine images. Further, since

BuildingNet can also take advantage of unlabeled data (known

unknown [34]) during training, we also pre-train a LeNet 5 model

based on MNIST dataset (0 to 4 as the labeled data and 5 to 9 as the

unlabeled data) and �ne-tune it with our data. We set the learning

rate as 0.1 with the decay rate of 0.95 after each 1K iterations

(50K iterations in total). The batch size is 30 images for each class,

the embeddings that BuildingNet learns are 128-dimensional, and

the ³ in the triplet relative loss function is 0.5. We perform 10-

fold cross-validation on the models tested, and then compute the

accuracy, precision, recall, and F1 score of di�erent models, which

are summarized in Figure 9.

On the corner dataset, BuildingNet achieves an accuracy of

94.34%, and its recall, precision, and F1 score are all over 91% when

using both labeled and unlabeled data for training. Compared with

SROSR and OpenMax, BuildingNet improves the accuracy and F1
score by more than 6% and 10%, respectively. When trained with

labeled data only, BuildingNet still has the highest accuracy and

F1 score (i.e., 88.72% and 81.8%), which are 1.1% and 2% higher

than OpenMax, respectively. Compared with the two loss functions

in MSML and FaceNet which are also based on triplet selection,

(a) (b) (c)

Figure 10: t-SNE [27] 2D embeddings of four types of cor-

ners and the unlabeled data after 100 epochs, learned by the

loss functions in (a) FaceNet, (b) MSML, and (c) the proposed

triplet relative loss (best view in color).

our proposed loss function can improve the accuracy and F1 score

by more than 0.4% and 0.5%, respectively. For the roo�ine dataset,

the proposed BuildingNet again outperforms the baseline models

consistently. These con�rm the e�ectiveness of BuildingNet.

To further illustrate the e�ectiveness of BuildingNet, we visualize

the embeddings generated by three triplet based loss functions on

the corner dataset, as shown in Fig. 10. Compared with random

triplet selection with margin (FaceNet) and hard triplet selection

with margin (MSML), our triplet relative loss function obtains better

classi�cation result with smaller average intra-class distance and

larger average inter-class distance after the same number of epochs.

6.3 E�ectiveness of CBHE

We evaluate the performance of CBHE on City Blocks and Tall

Buildings in this subsection.

6.3.1 Building height estimation on City Blocks. Figure 11 shows

the building high estimation errors of the baseline method [46]

and CBHE over the City Blocks dataset. It shows the percentage

of buildings where the height estimation is greater than 2, 3, and 4

meters, respectively. In both city blocks, CBHE achieves a smaller

percentage of buildings than that of the baseline [46].

In particular, in the �rst city block (Fig. 11a, which has been used

in [46]), CBHE has 10.4%, 5.5%, and 1.2% fewer buildings than those

of the baseline with height estimation errors greater than 2, 3, and

4 meters, respectively. Note that the results of the baseline method

are obtained from their paper [46] since we are unable to obtain

their source code. Also, even though CBHE is run on the same city

block as the baseline in this set of experiments, the images that

we used are more challenging to handle as the trees in the street

scenes have grown larger which block the buildings (cf. Fig. 12).

(a) City block 1 (b) City block 2

Figure 11: The errors of the baseline method [46] and CBHE

on City Blocks.

(a) Images used by the baseline (b) Images used by CBHE

Figure 12: City block street scene images at the same spots.

Fig 11b shows the result in a second city block (which was not

used in [46]). As we are unable to obtain the source code of the

baseline method, the result is based on our implementation of their

method. CBHE again outperforms the baseline. It has 11.5%, 4.8%,

and 5% fewer buildings than those of the baseline with height

estimation errors greater than 2, 3, and 4 meters, respectively.

6.3.2 Building height estimation on Tall Buildings. For tall buildings,

the camera needs to be placed far away with an upward-look view

to capture the building roo�ine. We capture the building images

250 meters away from the buildings via Google Street View API.

Fig. 13 presents examples of the street scene images for tall building

height estimation. For each street scene image, we �rst rotate it to

the horizontal view according to Equation 14, and then compute

the height of the buildings according to Section 5.

Figure 13: Tall building examples (best view in color).

The baseline method [46] cannot be applied to tall buildings, and

here we only show the result of CBHE. As shown in Table 2, more

than 53% of the tall buildings have a height estimation error of less

than �ve meters and 73.33% of the tall buildings have an error of

less than 10 meters.

Table 2: CBHE for tall building height estimation.

Absolute error Percentage Relative Error Percentage

>5m 45.9% >5% 40.5%

>10m 27.0% >10% 13.5%

The errors of tall buildings may seem larger due to the camera

projection (i.e., the errors aremultiplied by a largermultiplier for tall

buildings). However, we would like to emphasize that the relative

errors are still quite low, e.g., since the tall buildings are taller than

100 meters, even a 10-meter error is less than 10% and is barely

notable in reality.

6.4 Error Analysis

We summarize the challenging cases for CBHE in this section. These

challenging scenarios will be explored in future work.

For those buildings whose roo�ines are entirely blocked by other

objects such as trees, CBHE will ignore them, or output a wrong

estimation. Take Fig. 14a as an example, the trees on the left-hand

(a) (b) (c) (d)

Figure 14: Challenging examples (best view in color).

side of the image block the roof of the green colored building heavily,

resulting in a line below the roof to be identi�ed as the roo�ine.

Additionally, if the corners of a building are not detectable, lines

from other buildings behind this building may also impact the result.

As illustrated in Fig. 14b, the roo�ine of a building behind the blue

colored building was detected as its roo�ine.

In dense city areas, the buildings may overlap with each other,

and it is di�cult to match all buildings with their boundaries in a 2D

map accurately. Take Fig. 14c as an example, building 2⃝ is blocked

by building 1⃝ and building 2⃝’s corners have a similar horizontal

position to building 5⃝. Therefore, CBHE regards the roo�ines of

building 5⃝ as the roo�ines of building 2⃝, which results in the

estimated height of building 2⃝ being 77.41m, although its real

height is 24.53m. Moreover, the height of building 5⃝ is also wrong

because the incorrect roo�ines of building 2⃝ block the roo�ines

of building 5⃝. In Fig. 14d, the blue shaded building mask on the

right-hand side is wrongly assigned to the building 2⃝ (between

building 1⃝ and building 3⃝) because it is closer to the camera with

the similar position to building 3⃝.

7 CONCLUSIONS

We proposed a corner-based algorithm named CBHE to learn build-

ing height from complex street scene images. CBHE consists of cam-

era location calibration and building roo�ine detection as its two

main steps. To calibrate camera location, CBHE performs camera

projection by matching two building corners in street scene images

with their physical locations obtained from a 2D map. To identify

building roo�ines, CBHE �rst detects roo�ine candidates according

to the building footprints in 2D maps and the calibrated camera

location. Then, it uses a deep neural network named BuildingNet

that we proposed to check whether a roo�ine candidate indeed is a

building roo�ine. Finally, CBHE ranks the valid roo�ines based on

an entropy-based ranking algorithm, which also involves building

corner information as an essential indicator, and then computes

the building height through camera projection. Experimental re-

sults show that the proposed BuildingNet model outperforms two

state-of-the-art classi�ers SROSR and OpenMax consistently, and

CBHE outperforms the baseline algorithm by over 10% in building

height estimation accuracy.

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We appreci-

ate the valuable discussion with Bayu Distiawan Trsedya, Weihao

Chen, and Jungmin Son. Yunxiang Zhao is supported by the Chinese

Scholarship Council (CSC). This work is supported by Australian

Research Council (ARC) Discovery Project DP180102050, Google

Faculty Research Award, and the National Science Foundation of

China (Project No. 61402155).

REFERENCES
[1] Pratik Agarwal,WolframBurgard, and Luciano Spinello. 2015. Metric Localization

using Google Street View. In IEEE/RSJ International Conference on Intelligent
Robots and Systems. 3111–3118.

[2] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane
Lafon, Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh Weaver. 2010. Google
Street View: Capturing the World at Street Level. Computer 43, 6 (2010), 32–38.

[3] Anil Armagan, Martin Hirzer, Peter M. Roth, and Vincent Lepetit. 2017. Learning
to Align Semantic Segmentation and 2.5D Maps for Geolocalization. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4590–4597.

[4] Clemens Arth, Christian Pirchheim, Jonathan Ventura, Dieter Schmalstieg, and
Vincent Lepetit. 2015. Instant Outdoor Localization and SLAM Initialization from
2.5D Maps. IEEE Transactions on Visualization and Computer Graphics 21, 11
(2015), 1309–1318.

[5] Baidu. 2018. Baidu Map. Retrieved Oct 18, 2018 from https://map.baidu.com/#
[6] Abhijit Bendale and Terrance E. Boult. 2016. Towards Open Set Deep Networks. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1563–1572.
[7] Dominik Brunner, Guido Lemoine, Lorenzo Bruzzone, and Harm Greidanus.

2010. Building Height Retrieval from VHR SAR Imagery based on an Iterative
Simulation and Matching Technique. IEEE Transactions on Geoscience and Remote
Sensing 48, 3 (2010), 1487–1504.

[8] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST)
2, 3 (2011), 27.

[9] Hang Chu, Andrew Gallagher, and Tsuhan Chen. 2014. GPS Re�nement and
Camera Orientation Estimation from a Single Image and a 2D Map. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
171–178.

[10] Antonio Criminisi. 1997. Computing the Plane to Plane Homography.
[11] Elkin Díaz and Henry Arguello. 2016. An Algorithm to Estimate Building Heights

fromGoogle Street-view Imagery using Single ViewMetrology across a Represen-
tational State Transfer System. In Dimensional Optical Metrology and Inspection
for Practical Applications V, Vol. 9868. 98680A.

[12] Piotr Dollár and C. Lawrence Zitnick. 2013. Structured Forests for Fast Edge
Detection. In IEEE International Conference on Computer Vision (ICCV). 1841–
1848.

[13] Google. 2018. NearMap. Retrieved Nov 4, 2018 from http://maps.au.nearmap.
com/

[14] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark Pauly. 2008.
Automatic Generation of Tourist Maps. ACM Transactions on Graphics (TOG) 27,
3 (2008), 100:1–100:11.

[15] Andreas Grammenos, Cecilia Mascolo, and Jon Crowcroft. 2018. You Are Sensing,
but Are You Biased?: A User Unaided Sensor Calibration Approach for Mobile
Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 11.

[16] Mordechai Haklay and Patrick Weber. 2008. OpenStreetMap: User-Generated
Street Maps. IEEE Pervasive Computing 7, 4 (2008), 12–18.

[17] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. 2018. Triplet-
Center Loss for Multi-View 3D Object Retrieval. arXiv preprint arXiv:1803.06189
(2018).

[18] Mohammad Izadi and Parvaneh Saeedi. 2012. Three-Dimensional Polygonal
Building Model Estimation from Single Satellite Images. IEEE Transactions on
Geoscience and Remote Sensing 50, 6 (2012), 2254–2272.

[19] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolu-
tional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. 675–678.

[20] Bryan Klingner, David Martin, and James Roseborough. 2013. Street ViewMotion-
from-Structure-from-Motion. In IEEE International Conference on Computer Vision
(ICCV). 953–960.

[21] Johannes Kopf, Billy Chen, Richard Szeliski, and Michael Cohen. 2010. Street
Slide: Browsing Street Level Imagery. In ACM Transactions on Graphics (TOG),
Vol. 29. 96.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. 1998. Gradient-
Based Learning Applied to Document recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[23] Gregoris Liasis and Stavros Stavrou. 2016. Satellite Images Analysis for Shadow
Detection and Building Height Estimation. ISPRS Journal of Photogrammetry and
Remote Sensing 119 (2016), 437–450.

[24] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. 2017. Re�neNet:
Multi-Path Re�nement Networks for High-Resolution Semantic Segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5168–5177.

[25] Liu Liu, Hongdong Li, and Yuchao Dai. 2017. E�cient Global 2D-3D Matching for
Camera Localization in a Large-Scale 3D Map. In IEEE International Conference
on Computer Vision (ICCV). 2391–2400.

[26] Xiuwen Liu and DeLiang Wang. 2002. A Spectral Histogram Model for Texton
Modeling and Texture Discrimination. Vision Research 42, 23 (2002), 2617–2634.

[27] Laurens Van Der Maaten and Geo�rey Hinton. 2008. Visualizing Data Using
T-SNE. Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[28] Trish Meyer and Chris Meyer. 2010. Creating Motion Graphics with After E�ects.
Taylor & Francis.

[29] Edward Ng. 2009. Policies and Technical Guidelines for Urban Planning of High-
Density Cities–Air Ventilation Assessment (AVA) of Hong Kong. Building and
Environment 44, 7 (2009), 1478–1488.

[30] Jiyan Pan, Martial Hebert, and Takeo Kanade. 2015. Inferring 3D Layout of
Building Facades from a Single Image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2918–2926.

[31] Feng Qi, John Z Zhai, and Gaihong Dang. 2016. Building Height Estimation using
Google Earth. Energy and Buildings 118 (2016), 123–132.

[32] Adam Rousell and Alexander Zipf. 2017. Towards a Landmark-Based Pedes-
trian Navigation Service using OSM Data. ISPRS International Journal of Geo-
Information 6, 3 (2017), 64.

[33] Aparajithan Sampath and Jie Shan. 2010. Segmentation and Reconstruction of
Polyhedral Building Roofs from Aerial Lidar Point Clouds. IEEE Transactions on
Geoscience and Remote Sensing 48, 3 (2010), 1554–1567.

[34] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. 2014. Probability Models
for Open Set Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 36, 11 (2014), 2317–2324.

[35] Florian Schro�, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A Uni�ed
Embedding for Face Recognition and Clustering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 815–823.

[36] Gunho Sohn, Xianfeng Huang, and Vincent Tao. 2008. Using a Binary Space
Partitioning Tree for Reconstructing Polyhedral Building Models from Airborne
Lidar Data. Photogrammetric Engineering & Remote Sensing 74, 11 (2008), 1425–
1438.

[37] Hélène Sportouche, Florence Tupin, and Léonard Denise. 2011. Extraction and
Three-Dimensional Reconstruction of Isolated Buildings in Rrban Scenes from
High-Resolution Optical and SAR Spaceborne Images. IEEE Transactions on
Geoscience and Remote Sensing 49, 10 (2011), 3932–3946.

[38] Li-yan Sun, Cheng-lin Miao, and Li Yang. 2017. Ecological-Economic E�ciency
Evaluation of Green Technology Innovation in Strategic Emerging Industries
based on Entropy Weighted TOPSIS Method. Ecological Indicators 73 (2017),
554–558.

[39] Frederik Tack, Gurcan Buyuksalih, and Rudi Goossens. 2012. 3D Building Recon-
struction based on Given Ground Plan Information and Surface Models Extracted
from Spaceborne Imagery. ISPRS Journal of Photogrammetry and Remote Sensing
67 (2012), 52–64.

[40] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2018. KDGAN: Knowl-
edge Distillation with Generative Adversarial Networks. In Advances in Neural
Information Processing Systems (NIPS). 783–794.

[41] Zhuang Wang, Libing Jiang, Lei Lin, and Wenxian Yu. 2015. Building Height
Estimation from High Resolution SAR Imagery via Model-Based Geometrical
Structure Prediction. Progress In Electromagnetics Research 41 (2015), 11–24.

[42] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance Metric
Learning for Large Margin Nearest Neighbor Classi�cation. InAdvances in Neural
Information Processing Systems (NIPS). 1473–1480.

[43] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. 2016. A Discriminative
Feature Learning Approach for Deep Face Recognition. In European Conference
on Computer Vision (ECCV). 499–515.

[44] WordPress and HitMag. 2018. LIDAR and RADAR Information. Retrieved Aug
9, 2018 from http://lidarradar.com/category/info

[45] Qiqi Xiao, Hao Luo, and Chi Zhang. 2017. Margin Sample Mining Loss: A
Deep Learning Based Method for Person Re-identi�cation. arXiv preprint
arXiv:1710.00478 (2017).

[46] Jiangye Yuan and Anil M. Cheriyadat. 2016. Combining Maps and Street Level
Images for Building Height and Facade Estimation. InACM SIGSPATIALWorkshop
on Smart Cities and Urban Analytics. 8:1–8:8.

[47] Paul A. Zandbergen and Sean J. Barbeau. 2011. Positional Accuracy of Assisted
GPS Data from High-Sensitivity GPS-Enabled Mobile Phones. The Journal of
Navigation 64, 3 (2011), 381–399.

[48] Chuiqing Zeng, Jinfei Wang, Wenfeng Zhan, Peijun Shi, and Autumn Gambles.
2014. An Elevation Di�erence Model for Building Height Extraction from Stereo-
Image-Derived DSMs. International Journal of Remote Sensing 35, 22 (2014),
7614–7630.

[49] He Zhang and Vishal M. Patel. 2017. Sparse Representation-Based Open Set
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 39, 8 (2017), 1690–1696.

[50] Rui Zhang. 2017. Geographic Knowledge Base (2017): http://www.ruizhang.info/
GKB/gkb.htm.

[51] Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 22, 11 (2000),
1330–1334.

https://map.baidu.com/#
http://maps.au.nearmap.com/
http://maps.au.nearmap.com/
http://lidarradar.com/category/info
http://www.ruizhang.info/GKB/gkb.htm
http://www.ruizhang.info/GKB/gkb.htm

	Abstract
	1 Introduction
	2 Related Work
	2.1 Camera Location calibration
	2.2 Building Height Estimation

	3 Overview of CBHE
	3.1 Solution Overview
	3.2 Camera projection

	4 Camera Location Calibration
	4.1 Key Idea
	4.2 BuildingNet
	4.3 Entropy-based Ranking

	5 Roofline Detection
	5.1 Roofline Candidate Detection
	5.2 Roofline Classification and Ranking
	5.3 Tall Building Preprocessing

	6 Experiments
	6.1 Datasets
	6.2 Effectiveness of BuildingNet
	6.3 Effectiveness of CBHE
	6.4 Error Analysis

	7 Conclusions
	8 acknowledgments
	References

