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ABSTRACT
Explainable recommendation has recently attracted increasing at-

tention from both academic and industry communities. Among

different explainable strategies, generating natural language ex-

planations is an important method, which can deliver more infor-

mative, flexible and readable explanations to facilitate better user

decisions. Despite the effectiveness, existing models are mostly

optimized based on the observed datasets, which can be skewed

due to the selection or exposure bias. To alleviate this problem, in

this paper, we formulate the task of explainable recommendation

with a causal graph, and design a causality enhanced framework to

generate unbiased explanations. More specifically, we firstly define

an ideal unbiased learning objective, and then derive a tractable

loss for the observational data based on the inverse propensity

score (IPS), where the key is a sample re-weighting strategy for

equalizing the loss and ideal objective in expectation. Considering

that the IPS estimated from the sparse and noisy recommendation

datasets can be inaccurate, we introduce a fault tolerant mechanism

by minimizing the maximum loss induced by the sample weights

near the IPS. For more comprehensive modeling, we further analyze

and infer the potential latent confounders induced by the complex

and diverse user personalities. We conduct extensive experiments

by comparing with the state-of-the-art methods based on three

real-world datasets to demonstrate the effectiveness of our method.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Explainable recommendation has been recognized as an important

problem in both of the academic and industry communities. It basi-

cally aims to solve the problem of “why an item is recommended to

a user?”, which can help to enhance the recommendation persua-

siveness, user satisfaction and system transparency [36]. To achieve

explainable recommendation, people have designed a large amount

of models [7, 15, 16, 18, 24, 35, 38], among which the methods for

generating natural language explanations are becoming more and

more popular due to their capabilities on delivering richer and more

accessible information [36]. In general, these methods regard user

reviews as the explanations [16, 19], and the task of explainable

recommendation is converted to the review generation problem.

More specifically, early models like NRT [19] and Att2Seq [9] gen-

erate explanations completely based on the user/item IDs (or ad-

ditionally the rating information). Due to the lack of informative

guidance, these explanations usually contain a large amount of gen-

eral words [16], which are less effective for assisting user decisions.

To solve this problem, recent models, such as NETE [16] and PE-

TER [18] firstly extract item features (e.g., product quality, clothing
style) from the user reviews, and then regard them as inputs to

generate more specific and informative explanations.

While the above models have achieved many successes, they are

optimized based on the observational review datasets (e.g., Amazon

and Yelp), which may have been biased by the user intrinsic prefer-

ence or previous recommender systems (RecSys). For example, in

Figure 1(a), the user is a digital fan. Thus we observe that most of

her interactions and reviews are about items like computers, phones

and digital cameras. However, for the other products (e.g., clothes),
only a few interactions and reviews can be observed. Based on such

https://doi.org/10.1145/3543507.3583260
https://doi.org/10.1145/3543507.3583260
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a dataset, the estimated explanations for the clothes can be not well.

In the user reviews, we may observe that the feature “item quality”

is mentioned with a much higher frequency due to the user review-

ing habits. However, providing explanations should not be related

with the reviewing habits. The system should have the capability

of choosing any feature for explanation. When the system selects

appearance or price as the explanation feature, the model may not

work well due to the insufficient training corpus. To further ver-

ify such item- and feature-level biases, we conduct a preliminary

study based on three real-world datasets including the TripAdvi-

sor
1
, Amazon

2
and Yelp

3
. We focus on the relation between the

observation
4
frequency and the number of items (or features) with

this frequency. The results are presented in Figure 1(b). We can

see a small number of items (or features) are observed with much

higher frequency than the other ones. If one directly learns models

based on such datasets, the parameters would be biased towards the

frequently observed items/features, and the explanations generated

for the underrepresented items/features can be unsatisfied.

To alleviate the above problem, we propose to formulate the

explainable recommendation taskwith a causal graph to understand

the bias formation mechanism and design an unbiased explainable

recommender framework based on the inverse propensity score

(IPS). While this seems to be an interesting idea, it is not easy due

to the following challenges: to begin with, while recent years have

witnessed many promising unbiased recommender models [27],

they are mostly designed for the item-level bias. However, in our

problem, the biases come from both of the item- and feature-level.

How to jointly correct them in a unified framework is still not

clear. Then, the recommendation datasets can by quite sparse and

noisy, the estimated IPS may deviate from the real one, how to

handle the estimation error to guarantee the final performance

needs our careful designs. In addition, user personalities in real-

world scenarios can be quite diverse. Thus, there may exist latent

confounders, which may invalid the basic causal assumptions. How

to model and infer them may also challenge our idea.

To overcome the above challenges, we firstly define an unbiased

learning objective considering both of the item- and feature-level

biases, and then derive a tractable loss for the observational data

based on IPS, where the basic idea is to impose smaller weights

to the items/features with higher observational frequencies, and

assign larger weights to the long-tail items/features. For handling

the prediction error of IPS, we firstly estimate it from the noisy

data, and then assume that the real IPS should be not far from the

estimated one. At last, we minimize the maximum loss induced

by the sample weights near the estimated IPS. For handling the

potential latent confounders, we leverage neural networks to model

and infer them, and the obtained results are incorporated into the

IPS and user preference estimation processes. Based on all the above

designs, we finally propose an unbiased explainable recommender

framework, where we call it as USER for short.

In a summary, the main contributions of this paper can be con-

cluded as follows: (1) we propose to build an unbiased explainable

recommender framework based on causal inference, which, to the

1
https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews

2
https://jmcauley.ucsd.edu/data/amazon/

3
https://www.yelp.com/dataset

4
Here, an observation can be an item interaction or a feature mention.

Figure 1: (a) Examples of the biased item interactions and
feature mentions. (b) Statistics on the relation between the
observational frequency and the number of items (or fea-
tures) based the datasets of TripAdvisor, Amazon and Yelp.

best of our knowledge, is the first time in the recommendation

domain. (2) To achieve the above idea, we design a framework to

jointly correct the item- and feature-level biases, where we propose

a fault tolerant IPS estimation strategy, and also model and infer the

potential latent confounders. (3) We conduct extensive experiments

to demonstrate the effectiveness of our model based on three real-

world datasets. To benefit the research community, we have released

our framework at https://gitee.com/mindspore/models/tree/master/

research/recommend/user.

2 PRELIMINARIES
2.1 RecSys with Natural Language Explanations
Natural language explanations hold the promise of explaining rec-

ommendations according to the user preference in a flexible and

informative manner. In practice, it is hard to obtain the ground truth

of the explanations. Thus, people leverage user reviews, which

contain rich user preferences, to approximate the real explana-

tions [8, 16, 18]. Formally, suppose we have a user set U and an

item set I, the observed ratings and reviews
5
from the users to the

items are collected in R = {(𝑟𝑢𝑖 , 𝒔𝑢𝑖 ) |𝑢 ∈ U, 𝑖 ∈ I}, where 𝑟𝑢𝑖 is
the rating falling into the range of [1, 5]. 𝒔𝑢𝑖 = {𝑠1

𝑢𝑖
, 𝑠2
𝑢𝑖
, ..., 𝑠

𝑙𝑢𝑖
𝑢𝑖

} is
the review posted by user 𝑢 on item 𝑖 , 𝑠𝑘

𝑢𝑖
is the 𝑘th word in the

review, the word vocabulary is defined as V , and 𝑙𝑢𝑖 is the review

length. For each review 𝒔𝑢𝑖 , there is a feature set 𝒇𝑢𝑖 associated with
it, indicating the review contents. For example, in Figure 1(a), for

the review of “The quality of the phone is very good”, the feature is

“quality”. We define by F the set of all features. GivenU, I, F and

R, the task of natural language explainable recommendation aims

to learn a model, such that for a give user-item pair and a feature

set, the model can accurately predict the review and rating.

To accomplish the above task, people have designed a lot of mod-

els [8, 9, 16, 18, 19]. Generally speaking, there are usually two parts

in these models: (1) review prediction and (2) rating prediction.

For the first part, suppose we have a review 𝒔𝑢𝑖 = {𝑠1
𝑢𝑖
, 𝑠2
𝑢𝑖
, ..., 𝑠

𝑙𝑢𝑖
𝑢𝑖

},

5
Following the common practice in this domain, we assume that each rating is accom-

panied with a user review.
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Figure 2: (a) The causal graph for generating ideal datasets in general recommendation. (b) The causal graph for generating
observational datasets in general recommendation. (c) The causal graph for generating ideal datasets in explainable recommen-
dation. (d) The causal graph for generating observational datasets in explainable recommendation. (e) The causal graph for
explainable recommendation with latent confounders.

then the model is optimized to maximize the likelihood of observ-

ing this review. The loss function is 𝐿𝑆
𝑢,𝑖,𝑓

= 1

𝑙𝑢𝑖

∑𝑙𝑢𝑖
𝑡=1

− log𝑔𝑆 (𝑠 =

𝑠𝑡
𝑢𝑖
|𝑢, 𝑖, 𝑓 , 𝒔1:(𝑡−1)

𝑢𝑖
), where 𝑔𝑆 can be implemented with any sequen-

tial architecture like GRU [16, 19] and LSTM [8, 9]. The output of

𝑔𝑆 is a V-sized softmax layer, and “𝑠 = 𝑠𝑡
𝑢𝑖
” means that the 𝑠𝑡

𝑢𝑖
th

element should be maximized. 𝒔1:(𝑡−1)
𝑢𝑖

= {𝑠1
𝑢𝑖
, 𝑠2
𝑢𝑖
, ..., 𝑠𝑡−1

𝑢𝑖
} is the

set of words before time step 𝑡 . For generating more informative

explanations, people usually extract a feature 𝑓 from 𝒔𝑢𝑖 , and input
it at each step [16, 18]. For the second part, the model is optimized

by minimizing the distance between the predicted and real ratings,

and the loss is 𝐿𝑅
𝑢,𝑖

= (𝑟𝑢𝑖 − 𝑔𝑅 (𝑢, 𝑖))2, where 𝑔𝑅 is the model for

predicting the user-item ratings. Since the review and rating can

be associated (e.g., on the sentiment polarity), 𝑔𝑆 and 𝑔𝑅 are usu-

ally designed by sharing the architectures and parameters [16, 18],

which unifies 𝐿𝑆
𝑢,𝑖,𝑓

and 𝐿𝑅
𝑢,𝑖

into a multi-task learning framework.

2.2 Causal Understanding of Debiased RecSys
Debiased recommendation is becoming more and more popular [4,

12, 26, 27, 32]. In this section, we provide a causal perspective

to understand this problem. For general recommendation, where

we only consider the user, item and rating, the ideal loss func-

tion should evaluate all the user-item pairs [8, 27], that is: 𝐿
ideal

=
1

|U | |I |
∑
𝑢∈U

∑
𝑖∈I 𝐿𝑅

𝑢,𝑖
= 1

|U |
∑
𝑢∈U E𝑖∼𝑝𝐼 (𝑖) [𝐿𝑅𝑢,𝑖 ], where 𝑝

𝐼 (𝑖) =
1

|I | (∀𝑖 ∈ I) is the uniform distribution on the item set. This ideal

objective is equal to optimizing the model with the dataset gen-

erated according to the causal graph in Figure 2(a). However, in

practice, the observed datasets do not follow this causal graph, since

the observation
6
of an item should be related with the user due to

the diverse personalities or the personalization requirements of the

previous recsys (see Figure 2(b)). In order to obtain debiased recom-

mender models based on the observed datasets, the following loss

function can be adopted𝐿
debias

= 1

|U |
∑
𝑢∈U

1

|I𝑢 |
∑
𝑖∈I𝑢

𝑝𝐼 (𝑖)
𝑝𝐼
𝑂
(𝑖 |𝑢) 𝐿

𝑅
𝑢,𝑖

,

6
An item may be observed because the user actively selects this item or the item is

recommended according to the user preference.

where 𝑝𝐼
𝑂
(𝑖 |𝑢) is the probability of observing the interaction of item

𝑖 given user 𝑢 (a.k.a, propensity score). I𝑢 is the set of items inter-

acted by user 𝑢. For the unbiasedness of this objective, we have the

following theory, where we present the proof in Appendix A.

Theorem 1 (Unbiasedness of 𝐿
debias

). Suppose each item in I𝑢 is a
random variable, and independently sampled from the observational
probability 𝑝𝐼

𝑂
(𝑖 |𝑢), then E[𝐿debias] = 𝐿ideal.

Remark. Above, we provide a causal understanding of the debiased

recommendation by analyzing the causal graphs leveraged for gen-

erating the ideal and observed datasets. These causal graphs enable

us to more intuitively understand the bias formation mechanisms,

and inspire us to improve debiased recommender models from the

causal perspective (e.g., capturing the potential latent confounders).

3 THE USER FRAMEWORK
In this section, we firstly define the ideal unbiased learning objective

for explainable recommendation, and correspondingly show the

causal graph for ideal dataset generation. Then, we analyze the

causal graph for generating the observed datasets, and propose a

debiased loss function for the observed datasets based on IPS. In the

next, we design a fault tolerant mechanism for the IPS estimated

from the noisy and sparse recommendation datasets. At last, we

model and infer the potential latent confounders, and incorporate

them into the IPS and review/rating prediction processes. In the

following, we introduce our framework more in detail.

3.1 Ideal Learning Objective
In our explainable recommendation task, the ideal objective should

evaluate the reviews and ratings for all the users, items and features,

thus we have the following ideal loss:

𝐿𝑒
ideal

=
1

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I

∑︁
𝑓 ∈F

𝐿𝑆
𝑢,𝑖,𝑓

+ 𝛼

|U||I|
∑︁
𝑢∈U

∑︁
𝑖∈I

𝐿𝑅𝑢,𝑖

=
1

|U|
∑︁
𝑢∈U

E𝑖∼𝑝𝐼 (𝑖) [E𝑓 ∼𝑝𝐹 (𝑓 ) [𝐿𝑆𝑢,𝑖,𝑓 ]] +
𝛼

|U|
∑︁
𝑢∈U

E𝑖∼𝑝𝐼 (𝑖) [𝐿𝑅𝑢,𝑖 ],
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where 𝛼 is a hyper-parameter balancing the importances between

the review and rating predictions. 𝑝𝐹 (𝑓 ) = 1

|F | (∀𝑓 ∈ F ) is the
uniform distribution on the feature set. This objective needs to be

optimized based on the datasets generated according to the causal

graph in Figure 2(c), where the observation probabilities of the items

and features are not influenced by any other factors, but follow

uniform distributions. However, such datasets can only be obtained

by conducting a large amount of online experiments, which are too

expensive [27]. Thus, we derive a tractable unbiased loss for the

observed datasets, which are much more accessible.

3.2 Unbiased Loss for the Observed Datasets
To derive the unbiased loss function, we assume that the observed

datasets are generated according to the causal graph in Figure 2(d).

The rationalities of this causal graph are presented as follows: U
→ I: the items are observed due to the user active selections or

system recommendations, which are naturally influenced by the

user personalized preferences. U→ F and I→ F: since the reviews
are written by the users for the items, the mentioned features in the

review are influenced by the user preferences and observed items.

U, I → Ra: the ratings are given by the users on the items, thus

they are determined by the user preferences and observed items. U,
I, F→ Re: the reviews are posted by the users for the items around

the features, which form the edges from U, I, F to Re.
Based on the above causal graph, we design the following unbi-

ased loss function:

𝐿𝑒
debias

=
1

|U|
∑︁
𝑢∈U


1

|I𝑢 |
∑︁
𝑖∈I𝑢

𝑝𝐼 (𝑖)
𝑝𝐼
𝑂
(𝑖 |𝑢)


1

|F𝑢𝑖 |
∑︁

𝑓 ∈F𝑢𝑖

𝑝𝐹 (𝑓 )
𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖)

𝐿𝑆
𝑢,𝑖,𝑓




+ 𝛼

|U|
∑︁
𝑢∈U

1

|I𝑢 |
∑︁
𝑖∈I𝑢

𝑝𝐼 (𝑖)
𝑝𝐼
𝑂
(𝑖 |𝑢)

𝐿𝑅𝑢,𝑖 ,

where F𝑢𝑖 is the set of features7 mentioned in the review of user 𝑢

for item 𝑖 . 𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖) is the probability of observing feature 𝑓 given

the user-item pair (𝑢, 𝑖). The unbiasedness of 𝐿𝑒
debias

is shown in

the following theory, and the proof is presented in Appendix B.

Theorem 2 (Unbiasedness of 𝐿𝑒
debias

). Suppose each item in I𝑢 and
each feature in F𝑢𝑖 are independently sampled from 𝑝𝐼

𝑂
(𝑖 |𝑢) and

𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖), respectively, then E[𝐿𝑒debias] = 𝐿𝑒ideal.

3.3 IPS with Fault Tolerant Mechanism
In most of the previous works [4, 12, 26, 27, 32], IPS is estimated

from the recommendation datasets, which can be highly sparse
8

and noisy, making it hard to obtain the real IPS. To alleviate this

problem, we introduce a fault tolerant mechanism to handle the

estimation error. More specifically, we firstly predict an initial IPS

(which can be inaccurate), and then assume that the real IPS fall

into an 𝜖-ball centered at the initial IPS. At last, we minimize the

maximum loss induced by the IPS in this 𝜖-ball. Such optimization

is equal to minimize the upper bound of the loss function with the

real IPS, which is demonstrated to be effective in our experiments.

7 |F𝑢𝑖 | = 1 in our problem.

8
In our problem, we not only have to handle the user-item matrix, but also need to

process the user-item-feature tensor, which is much sparser.

Formally, we solve the following optimization problem:

min

Θ𝑔

max

Θ𝑝

1

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

1

𝑝𝐼
𝑂
(𝑖 |𝑢) |I𝑢 |

1

𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖)

𝐿𝑆
𝑢,𝑖,𝑓

+ 𝛼

|U||I|
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

1

𝑝𝐼
𝑂
(𝑖 |𝑢) |I𝑢 |

𝐿𝑅𝑢,𝑖

s.t. |𝑝𝐼𝑂 (𝑖 |𝑢) − 𝑝𝐼𝑂 (𝑖 |𝑢) | ≤ 𝜖, |𝑝𝐹𝑂 (𝑓 |𝑢, 𝑖) − 𝑝𝐹𝑂 (𝑓 |𝑢, 𝑖) | ≤ 𝜖,

∀𝑢 ∈ U, 𝑖 ∈ I𝑢 , 𝑓 ∈ F𝑢𝑖 ,

(1)

where𝑝𝐼
𝑂
(𝑖 |𝑢) and 𝑝𝐹

𝑂
(𝑓 |𝑢, 𝑖) are the initially estimated IPS. Straight-

forwardly, 𝑝𝐼
𝑂
(𝑖 |𝑢) (or 𝑝𝐹

𝑂
(𝑓 |𝑢, 𝑖)) can be realized with free parame-

ters for each user-item pair (or user-item-feature triplet). However,

this requires nearly |U||I| (or |U||I||F |) parameters, which may

easily over-fit the training data, and be hard to generalize. In prac-

tice, we learn models to estimate 𝑝𝐼
𝑂
(𝑖 |𝑢) (or 𝑝𝐹

𝑂
(𝑓 |𝑢, 𝑖)), where

the model parameters are collected in Θ𝑝 , and we introduce their

specifications later. Θ𝑔 is the set of model parameters for predicting

the reviews and ratings. 𝜖 defines the tolerance level. Smaller 𝜖

requires more accurate initial IPS to quickly discover the real IPS

within a small range. Larger 𝜖 indicates lower confidence on the

initial IPS, and our model needs to find the real IPS in a wider space.

Actually, the above problem has close relation with the ideal

learning objective 𝐿𝑒
ideal

. To reveal such relation, we rewrite the

constraints in (1) as regularizers, and define the following objective:

𝐿
debias

= max

Θ𝑝

1

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

1

𝑝𝐼
𝑂
|I𝑢 |

1

𝑝𝐹
𝑂

𝐿𝑆
𝑢,𝑖,𝑓

+ 𝛼

|U||I|
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

1

𝑝𝐼
𝑂
|I𝑢 |

𝐿𝑅𝑢,𝑖

− 𝜆𝑆

∑︁
𝑢∈U

∑︁
𝑖∈I

|𝑝𝐹𝑂 − 𝑝𝐹𝑂 | − 𝜆𝑅

∑︁
𝑢∈U

∑︁
𝑖∈I

|𝑝𝐼𝑂 − 𝑝𝐼𝑂 |,

where 𝑝𝐼
𝑂

= 𝑝𝐼
𝑂
(𝑖 |𝑢) and 𝑝𝐹

𝑂
= 𝑝𝐹

𝑂
(𝑓 |𝑢, 𝑖), 𝜆𝑅 and 𝜆𝑆 are regular-

ization parameters, and we slightly change (1) by constraining all

the user-item pairs. Then we have the following theory:

Theorem 3 (Theoretical justification). Suppose: (1) 𝑝𝐼∗
𝑂

and 𝑝𝐹∗
𝑂

are
the real propensity scores, 𝑝𝐼

𝑂
and 𝑝𝐹

𝑂
are the propensity scores used

in our objective and 𝑝𝐼
𝑂
and 𝑝𝐹

𝑂
are the initially estimated propensity

scores. All the propensity scores fall into the range of [𝜅1, 𝜅2], where

0 < 𝜅1 < 𝜅2 < 1. (2) | 𝐿
𝑅
𝑢,𝑖

𝑝𝐼
𝑂

| ≤ Δ and |
𝐿𝑆
𝑢,𝑖,𝑓

𝑝𝐼
𝑂
𝑝𝐹
𝑂

| ≤ Δ1, if we set

𝜆𝑆 =
Δ1𝜅2

|U | |I | |F | , 𝜆𝑅 =
Δ |F |+Δ1𝜅2
|U | |I | |F | . Then the following inequality

holds with probability as least 1 − 𝜂.

𝐿𝑒ideal ≤ 𝐿debias +𝐶𝑜𝑛𝑠𝑡, (2)

where 𝐶𝑜𝑛𝑠𝑡 is a constant related with 𝜂.

This theory relates our objective with the ideal loss, which theo-

retically reveals the rationality of our framework. The proof of this

theory is presented in the Appendix C.

3.4 Modeling the Latent Confounders
In our problem, there can be three types of latent confounders

(see Figure 2(e)), that is, (i) the confounder between I and Ra (e.g.,
the promotion of the items), (ii) the confounder between I and
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Re (e.g., the temporal factors. In winter, the user may interacted

with the cotton, and the warmth is more likely to be commented),

and (iii) the confounder between F and Re (e.g., the behaviors

of following the other reviews). We assume that the above latent

confounders can be fully represented by three embeddings 𝒛1, 𝒛2
and 𝒛3, respectively. Similar to [2, 22], we infer the latent con-

founders by neural networks based on the user, item and feature

information. In specific, we let 𝑧1 = 𝑔1 (𝑢, 𝑖), 𝑧2 = 𝑔2 (𝑢, 𝑖) and 𝑧3 =
𝑔3 (𝑢, 𝑖, 𝑓 ). Intuitively, if the latent confounders are well represented,
then they should lead to larger likelihoods of the item/feature ob-

servations. Thus we have the following cross-entropy loss: 𝐿1 =

−∑
𝑖∈𝐼 𝑦𝑖 log(𝑦𝐼 (𝑖 |𝑢, 𝑧1)), 𝐿2 = −∑

𝑖∈𝐼 𝑦𝑖 log(𝑦𝐼 (𝑖 |𝑢, 𝑧2)) and 𝐿3 =

−∑
𝑓 ∈𝐹 𝑦𝑓 log(𝑦𝐹 (𝑓 |𝑢, 𝑖, 𝑧3)), where we delay the specifications of

𝑔1 (·), 𝑔2 (·) and 𝑔3 (·) in the following section. 𝑦𝑖 and 𝑦𝑓 indicate

whether item 𝑖 and feature 𝑓 are observed. 𝑦𝐼 and 𝑦𝐹 predict the

probabilities of the item and feature observations. In addition to 𝐿1,

𝐿2 and 𝐿3, we also constrain 𝒛1, 𝒛2 and 𝒛3 by incorporating them

into objective (1). Suppose Θ𝑐 is the set of parameters of 𝑔1, 𝑔2 and

𝑔3, then we finally have the following objective:

min

Θ𝑔,Θ𝑐

max

Θ𝑝

{𝐿
final

:

1

𝑁 |F |
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

1

𝑝𝐼
𝑂2

(𝑖 |𝑢, 𝒛2) |I𝑢 |
1

𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖, 𝒛3)

𝐿𝑆
𝑢,𝑖,𝑓

+
∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

( 𝛼

𝑝𝐼
𝑂1

(𝑖 |𝑢, 𝒛1)𝑁 |I𝑢 |
𝐿𝑅𝑢,𝑖−𝜆𝑅 |𝑝

𝐹
𝑂 (𝑓 |𝑢, 𝑖, 𝒛3)−𝑝𝐹𝑂 (𝑓 |𝑢, 𝑖) |)

− 𝜆𝑆

∑︁
𝑢∈U

∑︁
𝑖∈I𝑢

( |𝑝𝐼𝑂1
(𝑖 |𝑢, 𝒛1) − 𝑝𝐼𝑂 (𝑖 |𝑢) | + |𝑝𝐼𝑂2

(𝑖 |𝑢, 𝒛2) − 𝑝𝐼𝑂 (𝑖 |𝑢) |)

+ 𝐿1 + 𝐿2 + 𝐿3},

where 𝑁 = |U||I|, 𝜆𝑅 and 𝜆𝑆 are Lagrange multipliers. They play

similar roles as the tolerance level 𝜖 . Larger 𝜆𝑅 (or 𝜆𝑆 ) imposes

stricter constraint on the distance between the real and initial IPSs,

while smaller 𝜆𝑅 (or 𝜆𝑆 ) means that this distance is allowed to be

larger. We use different item-level propensities to capture the con-

founders related to the review and rating behaviors separately. 𝑔𝑆

and 𝑔𝑅 in 𝐿𝑆 and 𝐿𝑅 are updated to 𝑔𝑆 (𝑠 = 𝑠𝑡
𝑢𝑖
|𝑢, 𝑖, 𝑓 , 𝒛2, 𝒛3, 𝒔1:(𝑡−1)𝑢𝑖

)
and 𝑔𝑅 (𝑢, 𝑖, 𝒛1), respectively.
Model specifications. For𝑝𝐼

𝑂𝑘
(𝑖 |𝑢, 𝒛) (𝑘 = 1 or 2) and 𝑝𝐹

𝑂
(𝑓 |𝑢, 𝑖, 𝒛),

we have 𝑝𝐼
𝑂𝑘

(𝑖 |𝑢, 𝒛) = softmax(𝑬I (𝒆𝑢 ⊙ 𝒛)) and 𝑝𝐹
𝑂
(𝑓 |𝑢, 𝑖, 𝒛) =

softmax(𝑬F (𝒆𝑢 ⊙ 𝒆𝑖 ⊙ 𝒛)), where 𝒛 is the representation of the

latent confounders, 𝑬I ∈ 𝑅I×𝑑
, 𝑬U ∈ 𝑅U×𝑑

and 𝑬F ∈ 𝑅F×𝑑
are

the embedding matrices for the items, users and features. 𝒆𝑢 ∈ 𝑅𝑑

and 𝒆𝑖 ∈ 𝑅𝑑 are the 𝑢th and 𝑖th columns of 𝑬U and 𝑬I , respec-
tively, representing the embeddings of user 𝑢 and item 𝑖 . ⊙ is the

element-wise product. For 𝑔1, 𝑔2 and 𝑔3, we implement them with

two layer fully connected neural networks, where we use ReLU

as the activation functions, and the inputs are the concatenation

of the user-item or user-item-feature embeddings. For 𝑦𝐼 and 𝑦𝐹 ,

we leverage similar architectures as used for 𝑔1, 𝑔2 and 𝑔3, but the

output layers are softmax to predict the item/feature observation

probabilities. 𝑔𝑆 and 𝑔𝑅 are determined according to the specific

models our framework is applied to.

4 RELATEDWORK
Our framework stands on the intersection between explainable

recommendation and debiased recommendation. In this section,

Table 1: Statistics of the datasets.

TA-HK AZ-MT YELP
# Users 9,765 7,506 27,147

# Items 6,280 7,360 20,265

# Features 2,825 6,473 8,548

# Interactions 169,389 235,459 676,433

Sparsity 99.72% 99.57% 99.99%

Domain Hotel E-commerce Restaurant

we discuss the previous work in these fields. Relation with ex-
plainable recommendation. In the past few years, people have

proposed a lot of explainable recommendation(EXR) models [36].

They are based on different techniques such as rule mining [1, 24],

attention mechanism [6, 7] and various auxiliary information such

as knowledge graph [31, 35] and user reviews [18]. Among different

explanation strategies, producing natural language explanation is

an important method, which can deliver more flexible and user-

accessible information [18]. For example, [8, 9] leverage LSTM to

generate user reviews. [16, 18] propose to generate controllable ex-

planations based on the product features. [10, 11] build explainable

fairness aware recommender models. While the above studies have

greatly promoted the field of EXR, they mainly focus on the model

perspective. However, in this paper, we consider EXR on the data bi-

ases, which significantly differs from the previous work. Relation
with debiased recommendation. Recent years have witnessed
many promising studies on debiased recommendation [5]. For ex-

ample, [27] proposes an IPS based method to re-weight the training

samples for data bias correction. [26] further extends this work to

the implicit feedback. To improve the robustness, [32] designs a

doubly robust model to achieve unbiased recommendation. To more

comprehensively consider the diverse nature of the user preferences

and item properties, [30, 33, 37] propose to model and infer the

latent confounders in the recommendation domain. By incorporat-

ing a small amount of uniform data, [3] design a causal embedding

strategy to overcome the data bias problem.While the above studies

have achieved many promising results, they focus on improving

the recommendation performance. However, we aim to enhance

the explanation quality, which, to the best of our knowledge, is the

first time in the recommendation domain.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets. Our experiments are based on three public available

datasets: TripAdvisor-HongKong (TA-HK) is a dataset crawled
from a well-known travel website called TripAdvisor

9
. It contains

user ratings and reviews on the hotels in Hong Kong. Amazon
Movies&TV (AZ-MT) is an e-commerce dataset, where we can

access the user preferences on the videos in terms of the ratings and

reviews. Yelp Challenge 2019 (YELP) is a dataset reflecting user

preferences on the restaurants. In our experiments, we directly use

the datasets
10

released in [17], where the item features have been

provided for each user review. The dataset statistics are presented

in Table 1. We can see our datasets can cover different domains,

which can help to demonstrate the generality of our framework.

9
https://www.tripadvisor.com

10
https://github.com/lileipisces/EXTRA
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Table 2: Overall comparison between our framework and baselines. For BLEU and ROUGE, the results are percentage values with "%" omitted.
For each dataset and evaluation metric, we use bold fonts to label the best performance. "-" means the evaluation metric is not available for the
model. The performance improvements of our framework are significant under paired t-test with 𝑝 < 0.05.

Metrics

BLEU (%) ROUGE-1 (%) ROUGE-2 (%)

MAE

BLEU-1 BLEU-4 F1 Recall Precision F1 Recall Precision

TA-HK dataset
MF - - - - - - - - 1.494

SVD++ - - - - - - - - 0.679

Att2Seq 13.788 0.622 13.981 13.134 16.766 1.514 1.479 1.751 -

NRT 10.853 0.306 14.830 12.751 19.368 0.799 0.658 1.137 0.699

NETE 14.960 0.641 15.690 14.904 18.082 1.815 1.844 1.989 0.664

NETE-USER 15.923 0.769 26.060 18.204 58.303 3.456 2.831 5.733 0.647
PETER 18.718 2.148 22.344 20.647 27.547 4.616 4.412 5.729 0.710

PETER-USER 19.462 2.522 26.897 23.560 37.931 6.512 5.888 9.465 0.692
AZ-MT dataset

MF - - - - - - - - 1.465

SVD++ - - - - - - - - 0.866

Att2Seq 10.595 0.465 13.258 11.025 19.557 1.306 1.117 1.873 -

NRT 11.305 0.388 14.735 11.748 21.818 1.309 1.058 1.931 0.815

NETE 13.070 0.433 15.592 13.128 21.162 1.458 1.318 1.914 0.723

NETE-USER 15.701 0.761 17.518 15.235 24.025 2.001 1.834 2.536 0.714
PETER 16.602 1.898 21.664 18.140 32.142 4.320 3.775 6.225 0.732

PETER-USER 17.169 2.038 23.234 19.247 35.575 4.990 4.340 7.404 0.705
YELP dataset

MF - - - - - - - - 2.516

SVD++ - - - - - - - - 0.976

Att2Seq 10.634 0.328 11.871 10.631 15.573 0.715 0.653 0.968 -

NRT 9.515 0.343 11.430 9.983 15.562 0.764 0.697 1.037 0.852

NETE 7.966 0.210 11.238 9.320 16.569 0.525 0.438 0.815 0.867

NETE-USER 12.918 0.541 23.948 16.410 56.050 2.744 2.130 5.079 0.859
PETER 17.426 1.928 22.078 20.325 28.578 4.530 4.225 6.104 0.877

PETER-USER 17.664 1.941 22.747 20.718 30.703 4.558 4.260 6.516 0.838

Baselines. We compare our framework with the following repre-

sentative baselines: Att2Seq [9] is an LSTM model for generating

user reviews directly based on the user/item ID and rating informa-

tion. NRT [19] is also a review generation model based user/item

ID, but its backbone is the gated recurrent unit (GRU). NETE [16]

is a controllable review generation model, where the text sequence

is decoded by taking the user, item and feature information as in-

put. PETER [18] also leverages features as input to generate more

informative explanations, but it uses transformer as the main archi-

tecture, which can usually achieve the state-of-the-art performance.

We apply our framework on NETE and PETER, which are both

feature enhanced explainable recommender models. The obtained

methods are called NETE-USER and PETER-USER, respectively.
For the task of rating prediction, we also compare our framework

with the following simple but effective models: MF [14] is the well-

known matrix factorization model, where the users and items are

represented by latent vectors, and the user-item preferences are

estimated by inner-product based on these vectors. SVD++ [13] is

a variant of MF, where the preference is estimated by taking the

user history information into consideration.

Implementation details. In general, the experiments in the do-

main of debiased recommendation should follow the paradigm of

“biased training and unbiased evaluation”. To this end, we use 50%

of each user interactions as the biased training set. For building the

validation/testing sets, we follow the previous work [3, 20, 25, 26,

34, 39] to sample from the other interactions based on the inverse

item/feature observation frequencies, where the more frequently

observed items/features are sampled with lower probabilities. We

set the splitting ratio between the validation and testing sets as 1:1.

In the experiments, we set the maximum length of the generated

explanations as 15, and the vocabulary V is constructed by 20000

most frequently mentioned words. We tune the hyper-parameters

of our model by grid search. In specific, we tune the learning rate

and hidden size in the ranges of [0.1, 0.01, 0.001] and [32, 64, 128,

256], respectively. The batch size for all models is set as 128 and the

weight of 𝐿𝑅
𝑢,𝑖

is tuned in [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000].

We implement the baselines with the codes released in [16, 18] at

https://github.com/lileipisces/NLG4RS. The parameters are set as

the optimal values reported in the original paper or tuned in the

same ranges as ourmodel’s. To evaluate the explanation quality, two

commonly used metrics including BLEU [23] and ROUGE [21] are

leveraged for model comparisons. To evaluate the recommendation

performance, we use MAE [19] as the evaluation metric.

5.2 Overall Performance
The overall comparison results are presented in Table 2. We can

see: for the explanation task, the winner between Att2Seq and

NRT varies on different datasets and evaluation metrics, and the

performance gap is not large, which suggests that these models

may have similar explanation capabilities. By introducing item fea-

tures as input, NETE and PETER can achieve better performances

than Att2Seq and NRT in most cases. This is as expected, since the

features can provide much valuable information to describe the

review content and better guide the sentence decoding process. It
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Table 3: Performance comparison between our framework and its
variants, where "ROUGE " represents "ROUGE-1-F1 (%)". We use bold
fonts to label the best performance.

Method

TA-HK AZ-MT YELP

ROUGE MAE ROUGE MAE ROUGE MAE

PETER 22.344 0.710 21.664 0.732 22.078 0.877

PETER-USER-T 19.848 0.714 19.421 0.917 12.354 0.958

PETER-USER-L 22.897 0.696 22.016 0.711 21.560 0.855

PETER-USER-I 26.636 0.718 22.336 0.744 21.606 0.964

PETER-USER-F 22.237 0.706 21.292 0.710 21.940 0.847

PETER-USER 26.897 0.692 23.234 0.705 22.747 0.838

is encouraging to see that, by imposing our framework on NETE

and PETER, the performance can be significantly enhanced, which

are consistent on all the datasets and metrics. Considering that

the evaluation datasets are unbiased, this result demonstrates that

our framework can provide better explanations if we treat differ-

ent items and features equally in the testing phase. In the original

models, the parameters are directly learned based on the biased

datasets, thus they cannot perform well when the testing sample

distribution is changed to be unbiased. However, our framework

can effectively correct the item- and feature-level biases, which

achieves much better performance than the original models. For

the rating prediction task, we find that by incorporating the history

information, SVD++ can achieve much better performance than MF

on all the datasets. In most cases, NRT, NETE and PETER perform

better than MF and SVD++. This is not surprising, because in the

first three models, the rating and review prediction problems are

formulated as a multi-task learning framework, which makes them

can be mutually enhanced by each other. By applying our frame-

work on NETE and PETER, the performances are improved, which

demonstrates the debiasing effect of our framework.

5.3 Ablation Studies
In this section, we conduct ablation studies to study the contribu-

tions of different components of our framework. More specifically,

suppose the original model is X, then we compare our framework

with its four variants: in X-USER-T , we remove the IPS fault tol-

erant mechanism, and only remain the initially estimated IPS. In

X-USER-L, we do not model the latent confounders. In X-USER-I ,
we do not correct the item-level bias (i.e., removing 𝑝𝐼

𝑂1
and 𝑝𝐼

𝑂2

in 𝐿
final

). In X-USER-F , we do not correct the feature-level bias (i.e.,
removing 𝑝𝐹

𝑂
in 𝐿

final
). We use PETER as the original model, and the

conclusions onNETE are similar and omitted.We set the parameters

as their optimal values tuned in the above section. The comparison

results are presented in Table 3. We can see: in most cases, dropping

the IPS fault tolerant mechanism lowers the performance more se-

verely than ignoring the latent confounders. We speculate that the

recommendation datasets can be too sparse and noisy to obtain

accurate IPS, thus introducing fault tolerant mechanism for the

estimated IPS can well bound the real objective function, and help

to generate better explanations. While modeling latent confounders

can indeed bring better performance, but the improvements are

not large. We argue that the confounder structures can be very

complicated, representing them with unified embeddings can be

too coarse, and fail to provide enough priors for effective parameter

learning. Correcting the item- and feature-level biases are both

important, which is evidenced by the lowered performances of X-

USER-I and X-USER-F against X-USER. For all datasets, X-USER-F

can achieve better performance than X-USER-I on MAE, because

the feature-level bias is irrelevant with the rating prediction task.

However, for the explanation task, the performance of X-USER-F is

comparable or worse than that of X-USER-I, which suggests that

removing the feature-level bias is important to enhance the expla-

nation quality. The best performance is achieved when we combine

all the components, which demonstrates that they are all necessary.

5.4 Influence of the Item/Feature Popularity
To better understand the debiasing effect of our framework, we

report the performance on the items/features with different pop-

ularity levels. In specific, we firstly sort the items and features in

the training set according to their frequencies, where more pop-

ular items are ranked higher. Then we cluster the items/features

ranked between 0%-20%, 20%-40%, 40%-60%, 60%-80% and 80%-100%

into five groups. According to the item groups, we separate the

original testing set into five subsets 𝐼1, 𝐼2, 𝐼3, 𝐼4 and 𝐼5, for example,

in 𝐼1, the items are all ranked between 0%-20% in the training set.

Similarly, based on the feature groups, the testing set can also be

divided into five subsets, and we denote them as 𝐹1, 𝐹2, 𝐹3, 𝐹4 and

𝐹5, respectively. In the experiments, we remain the training set the

same as the previous experiments, while the final performances are

reported on the above ten sub-testing sets. We use YELP as the ex-

periment dataset, and the model parameters are set as their optimal

values tuned in Table 2. From the results presented in Figure 3, we

can see: from the item perspective, the performance improvement

brought by our framework is larger on the items with lower obser-

vational frequencies. The conclusion is consistent on both of the

explanation generation and rating prediction tasks. The reason can

be that the items with lower frequencies are higher weighted in our

framework. They can be optimized more sufficiently, and thus the

performance on them can be improved larger. From the feature per-

spective, the performance improvement is small when the features

are too unpopular. We find that the feature frequencies in the last

groups (e.g., 𝐹5) are mostly “1”. In such a scenario, while we have

higher weighted these samples, the information provided for each

feature is too limited and not diverse enough, which impacts the

model generalization capability and performance improvements.

5.5 Studies on the Generated Explanations
5.5.1 Qualitative studies. For more intuitively understanding our

framework, we present many examples from the TA-HK dataset.

In specific, we use PETER as the original model, and compare the

explanations generated from PETER and PETER-USER. We set the

model parameters as their optimal values tuned in Table 2. For

references, we also present (i) the ground truth of the explanations,

and (ii) the observation frequencies of the items and features, which

are computed as the ratio between the current and maximum item

interaction (or feature mention) times. From the results shown in

Table 4, we can see, in the first case, when the item and feature

have high observation frequencies, both PETER and PETER-USER

can capture the key word “amenities”. For the second and third

cases, where the items and features are underrepresented in the

dataset (i.e., with lower observation frequencies), PETER-USER
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(a) Results with different item popularity. (b) Results with different feature popularity.

Figure 3: Performance on the items/features with different popularities. "Improv." means the performance improvement ratio.

Table 4: Qualitative studies. In each case, the first line indicates the
item and feature observation frequencies (omitting "%"). The second
line presents the true explanations. The third and forth lines show
the results of PETER and PETER-USER, respectively. The features
in the real and generated explanations are labeled by bold fonts.

Model Explanation

𝐹𝑟𝑒𝑞𝑖=4.50; 𝐹𝑟𝑒𝑞𝑓 =28.63

Ground Truth

Clean and comfortable with good

amenities.
PETER The amenities are good.

PETER-USER Amenities were good.

𝐹𝑟𝑒𝑞𝑖=1.35; 𝐹𝑟𝑒𝑞𝑓 =1.31

Ground Truth Set in a nice surrounding.
PETER The hotel is located in a great location.

PETER-USER

Surroundings are great and
the staff are friendly and helpful.

𝐹𝑟𝑒𝑞𝑖=0.75; 𝐹𝑟𝑒𝑞𝑓 =0.58

Ground Truth Had a nice steak in the Italian restaurant.

PETER The hotel is located in the heart of the city.

PETER-USER

The hotel is a good steak house and

the food is good.

can generate more accurate and informative explanations around

the given features, while PETER only produces general words for

the explanations. More specifically, in the second case, PETER-

USER can accurately generate the explanation around the feature

“surrounding”, while PETER regards “hotel” as the main review

contents. In the third case, PETER-USER can reasonably provide

explanations on the feature “steak”, but PETER fails to capture

such information. The reasons behind the above phenomena can be

that in our framework, the items/features with lower observation

frequencies are higher weighted to enhance their importances in the

training phase. However, in the original model, these items/features

are mostly neglected, thus the performance is not satisfied.

5.5.2 Quantitative studies. To study whether the generated expla-

nations can indeed help users, we further design questionnaires to

ask the feelings of the users on the explanations. In specific, we fo-

cus on two aspects of the explanations [28], that is, (i) effectiveness:

whether the explanations can communicate useful information on

the items, and (ii) persuasiveness: whether the explanations can

persuade users to make decisions. Based on these aspects, we design

the following two questions [29]: Q1: Does the explanation help you
to learn more about the recommended item? Q2: Does the explanation
help you to make fast decisions? For each of these questions, the

annotator is required to give a rating ranging from 1 to 5 to indi-

cate her agreement (i.e., 1-strongly disagree, 2-disagree, 3-neural,

4-agree and 5-strongly agree) on the question. In the experiments,

Table 5: Quantitative studies. For each question, larger result indi-
cates better performance. The better results between our framework
and the original model are labeled by bold fonts.

Dataset TA-HK AZ-MT YELP Average

Question Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

NETE 2.69 3.15 2.30 2.60 2.57 2.67 2.52 2.81

NETE-USER 3.51 3.87 2.90 3.01 3.19 3.29 3.20 3.39
PETER 3.01 3.16 2.43 2.49 3.12 3.25 2.85 2.96

PETER-USER 3.28 3.63 2.68 2.89 3.18 3.46 3.05 3.33

we randomly select 50 samples from the testing set of each dataset,

and 12 annotators with different backgrounds are employed from a

university. We leverage NETE and PETER as the original models,

and compare the explanations generated from them with the ones

produced by imposing our framework. The results are reported as

the average rating across different annotators and samples, which

are presented in Table 5. We can see: for both questions, our frame-

work can lead to better performance than the original model on

all the datasets, and the results are consistent for both NETE and

PETER. On average, our framework can improve the performance

of the original model by about 17.0% and 16.6% on Q1 and Q2,

respectively. This observation demonstrates the effectiveness of

our framework on improving the explanation effectiveness and

persuasiveness, which demonstrates its potential in real-world set-

tings. While we have noticed that there can be general limitations

for the questionnaire studies (e.g., discrepancies between different

annotator understandings on the explanations), under the same

limitations, our framework can always achieve better performances,

which suggests its superiority.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose the task of debiased explainable rec-

ommendation for the first time. For solving this task, we build a

principled framework to jointly correct the item- and feature-level

biases, and design fault tolerant IPS mechanism and latent con-

founder modeling strategy to improve this framework. Extensive

experiments demonstrate that our framework can bring improved

explanation and recommendation performances for the state-of-

the-art models. This paper opens a novel direction on explainable

recommendation, and we believe there still left much room for

improvement. For example, one can leverage IPS normalization or

doubly robust methods to lower the variance of the loss function.

In addition, this paper mainly focuses on natural language explana-

tions, it is interesting to extend the debiasing idea to the other types

of explanations. At last, the user preferences in real-world scenarios

can be dynamic, how to design debiased models considering the

temporal influence is also important.
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A PROOF OF THEORY 1
Proof. By taking expectation on 𝐿

debias
, we have:

E[𝐿
debias
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|I𝑢 |
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=
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ideal

,

(3)

where the second equation holds because 𝑖 is the only random

variable and independently sampled from 𝑝𝐼
𝑂
(𝑖 |𝑢). The second last

equation holds because E𝑖∼𝑝𝐼 (𝑖) [𝐿𝑅𝑢,𝑖 ] is irrelevant with 𝑖 . □

B PROOF OF THEORY 2
Proof. By taking expectation on 𝐿𝑒

debias
, we have:
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where the second equation holds because |F𝑢𝑖 | = 1. □

C PROOF OF THEORY 3
For easy analysis, we introduce some notations. Let
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ideal

=
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To prove this theory, we firstly bound 𝐿𝑅
ideal

and 𝐿𝑆
ideal

with

𝐿𝑅
debias

and 𝐿𝑆
debias

, respectively. Then we combine these results to

obtain the inequality (2).

C.1 Bounding 𝐿𝑅ideal with 𝐿𝑅debias
To begin with, we have:
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According to the Hoeffding’s inequality, if 𝑠𝑢 ∈ [𝑎𝑢 , 𝑏𝑢 ] and |𝑎𝑢 −
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𝑖∈I

𝛽𝑢,𝑖 (𝑝𝐼𝑂 − 𝑝𝐼𝑂 ) + Δ(𝜅2 − 𝜅1) + 𝐿𝑅
debias

+𝐶

≤
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛽𝑢,𝑖 (2𝜅2 − |𝑝𝐼𝑂 − 𝑝𝐼𝑂 |) + 𝐿𝑅
debias

+𝐶1

≤ 2𝜅2Δ − Δ

|U||I|
∑︁
𝑢∈U

∑︁
𝑖∈I

|𝑝𝐼𝑂 − 𝑝𝐼𝑂 | + 𝐿𝑅
debias

+𝐶1

= 𝐿𝑅
debias

− Δ

|U||I|
∑︁
𝑢∈U

∑︁
𝑖∈I

|𝑝𝐼𝑂 − 𝑝𝐼𝑂 | +𝐶2

where 𝐶1 = 𝐶 + Δ(𝜅2 − 𝜅1), 𝐶2 = 𝐶1 + 2𝜅2Δ.

C.2 Bounding 𝐿𝑆ideal with 𝐿𝑆debias
Similar to the above section, we have the following inequality:

𝐿𝑆
ideal

−𝐸𝑝𝐼∗
𝑂
,𝑝𝐹 ∗

𝑂
[𝐿𝑆

debias
] = 1

|U | |I | |F |
∑
𝑢∈U

∑
𝑖∈I (1−

𝑝𝐼∗
𝑂
𝑝𝐹 ∗
𝑂

𝑝𝐼
𝑂
𝑝𝐹
𝑂

)𝐿𝑆
𝑢,𝑖,𝑓

.

Let 𝑠𝑢 = 1

|I𝑢 |
∑
𝑖∈I𝑢

1

|F𝑢𝑖 |
∑

𝑓 ∈F𝑢𝑖
𝑝𝐼 (𝑖)𝑝𝐹 (𝑓 )

𝑝𝐼
𝑂
(𝑖 |𝑢)𝑝𝐹

𝑂
(𝑓 |𝑢,𝑖) 𝐿

𝑆
𝑢,𝑖,𝑓

, then𝐿𝑆
debias

=
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1

|U |
∑
𝑢∈U 𝑠𝑢 . According the Hoeffding’s inequality, suppose 𝑠𝑢 ∈

[𝑐𝑢 , 𝑑𝑢 ], |𝑐𝑢 − 𝑑𝑢 | ≤ 𝐵2, then the expectation of 𝐿𝑆
debias

is bounded

by the following value with probability at least 1 − 𝜂2:

𝐸𝑝𝐼∗
𝑂
,𝑝𝐹 ∗

𝑂
[𝐿𝑆

debias
] ≤ 𝐿𝑆

debias
+ 𝐵2

√︄
1

2|U| 𝑙𝑜𝑔(
2|H |
𝜂2

) . (6)

Let 𝐶3 = 𝐵2

√︃
1

2 |U | 𝑙𝑜𝑔(
2 |H |
𝜂2

), 𝛽𝑢,𝑖,𝑓 =
𝐿𝑆
𝑢,𝑖,𝑓

|U | |I | |F |𝑝𝐼
𝑂
𝑝𝐹
𝑂

, then we

have the following inequality holds with probability at least 1 − 𝜂2:

𝐿𝑆
ideal

=𝐿𝑆
ideal

− 𝐸𝑝𝐼∗
𝑂
,𝑝𝐹 ∗

𝑂
[𝐿𝑆

debias
] + 𝐸𝑝𝐼∗

𝑂
,𝑝𝐹 ∗

𝑂
[𝐿𝑆

debias
]

≤ 1

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I

(1 −
𝑝𝐼∗
𝑂
𝑝𝐹∗
𝑂

𝑝𝐼
𝑂
𝑝𝐹
𝑂

)𝐿𝑆
𝑢,𝑖,𝑓

+ 𝐿𝑆
debias

+𝐶3

=
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛽𝑢,𝑖,𝑓 (𝑝𝐼𝑂𝑝
𝐹
𝑂 − 𝑝𝐼∗𝑂 𝑝𝐹∗𝑂 ) + 𝐿𝑆

debias
+𝐶3

=
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛽𝑢,𝑖,𝑓 (𝑝𝐼𝑂𝑝
𝐹
𝑂 − 𝑝𝐼𝑂𝑝

𝐹
𝑂 + 𝑝𝐼𝑂𝑝

𝐹
𝑂 − 𝑝𝐼𝑂𝑝

𝐹
𝑂 )

+ 𝐿𝑆
debias

+𝐶4

=
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛽𝑢,𝑖,𝑓 𝑝
𝐼
𝑂 (𝑝𝐹𝑂 − 𝑝𝐹𝑂 ) + 𝛽𝑢,𝑖,𝑓 𝑝

𝐹
𝑂 (𝑝𝐼𝑂 − 𝑝𝐼𝑂 )

+ 𝐿𝑆
debias

+𝐶4

≤
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛽𝑢,𝑖,𝑓 𝑝
𝐼
𝑂 (2𝜅2 − |𝑝𝐹𝑂 − 𝑝𝐹𝑂 |) + 𝛽𝑢,𝑖,𝑓 𝑝

𝐹
𝑂 (2𝜅2 − |𝑝𝐼𝑂 − 𝑝𝐼𝑂 |)

+ 𝐿𝑆
debias

+𝐶4

≤
4Δ1𝜅

2

2

|F | − Δ1𝜅2

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I

( |𝑝𝐹𝑂 − 𝑝𝐹𝑂 |) + (|𝑝𝐼𝑂 − 𝑝𝐼𝑂 |)

+ 𝐿𝑆
debias

+𝐶4

=𝐿𝑆
debias

− Δ1𝜅2

|U||I||F |
∑︁
𝑢∈U

∑︁
𝑖∈I

( |𝑝𝐹𝑂 − 𝑝𝐹𝑂 |) + (|𝑝𝐼𝑂 − 𝑝𝐼𝑂 |) +𝐶5

(7)

where 𝐶4 = Δ1 (𝜅2
2
− 𝜅2

1
) +𝐶3 and 𝐶5 =

4Δ1𝜅
2

2

|F | +𝐶4.

C.3 Bounding 𝐿ideal with 𝐿debias

Supposewe define𝑋1 as 𝐿
𝑅
ideal

≤ 𝐿𝑅
debias

− Δ
|U | |I |

∑
𝑢∈U

∑
𝑖∈I |𝑝𝐼

𝑂
−

𝑝𝐼
𝑂
|+𝐶2,𝑋2 as 𝐿

𝑆
ideal

≤ 𝐿𝑆
debias

− Δ1𝜅2
|U | |I | |F |

∑
𝑢∈U

∑
𝑖∈I ( |𝑝𝐹𝑂−𝑝𝐹

𝑂
|)+

(|𝑝𝐼
𝑂
− 𝑝𝐼

𝑂
|) + 𝐶5 and 𝑌 as 𝐿𝑒

ideal
≤ 𝐿

debias
+ 𝐶𝑜𝑛𝑠𝑡 . Based on the

above results, we know 𝑃 (𝑋1) ≥ 1 − 𝜂1 and 𝑃 (𝑋2) ≥ 1 − 𝜂2. Since

𝑋1 ∩ 𝑋2 → 𝑌 , we have: 𝑃 (𝑌 ) ≥ 𝑃 (𝑋1 ∩ 𝑋2) = 1 − 𝑃 (𝑋1 ∪ 𝑋2) ≥
1 − 𝑃 (𝑋1) − 𝑃 (𝑋2) ≥ 1 − 𝜂1 − 𝜂2 . Let 𝜂 = 𝜂1 + 𝜂2, we have 𝑌 holds

with probability at least 1 − 𝜂.
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