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ABSTRACT

CTR and CVR are critical factors in personalized applications, and

many methods jointly estimate them via multi-task learning to

alleviate the ultra-sparsity of conversion behaviors. However, it

is still di�cult to predict CVR accurately and robustly due to the

limited and even biased knowledge extracted by the single model

tower optimized on insu�cient conversion samples. In this pa-

per, we propose a task adaptive multi-learner (TAML) framework

for joint CTR and CVR prediction. We design a hierarchical task

adaptive knowledge representation module with di�erent experts

to capture knowledge in di�erent granularities, which can e�ec-

tively exploit the commonalities between CTR and CVR estimation

tasks meanwhile keeping their unique characteristics. We apply

multiple learners to extract data knowledge from various views

and fuse their predictions to obtain accurate and robust scores. To

facilitate knowledge sharing across learners, we further perform

self-distillation that uses the fused scores to teach di�erent learners.

Thorough o�ine and online experiments show the superiority of

TAML in di�erent Ad ranking tasks, and we have deployed it in

Huawei’s online advertising platform to serve the main tra�c.
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• Information systems→Computational advertising; •Com-

puting methodologies →Multi-task learning.
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Figure 1: The progressively increased sparsity of events as

well as the CTCVR distribution in Ali-CCP.

1 INTRODUCTION

Online advertising is essential to customer acquisition, which typ-

ically follows a sequential event pattern of “impression → click

→ conversion” [22]. For example, in the app promotion scenario,

users may �rst click an Ad if they are attracted by its content,

and then decide whether to trigger a conversion by installing the

corresponding App or submitting registration forms[1]. To target

users’ interest and increase advertisers’ return on investment (ROI),

click-through rate (CTR) prediction and post-click conversion rate

(CVR) prediction are essential tasks for personalized Ad ranking

systems [4, 10, 17, 19], both of which have decisive impacts on ad-

vertisers’ bid under various mainstream pricing rules like optimized

cost-per-click (OCPC) [12].

Due to the cascaded process of customer acquisition, the amount

of positive feedback is progressively reduced (left Fig. 1), which

leads to a severe sparsity problem of conversion events and thereby

di�erentiates the characteristics of CTR andCVRmodel learning[10,

14]. However, conventional methods usually separately estimate

CTR andCVRwith similar techniques (e.g., factorizationmachines [5,

11] and deep neural networks (DNN) [3, 7]), which may su�er from

the sparsity of conversion samples [10, 15, 19]. Thus, there has been

an increasing trend in industrial applications to jointly estimate

CTR and CVR via multi-task learning (MTL) [8–10, 20, 21]. For

example, Ma et al. [10] propose ESMM to optimize both CTR and

CTCVR (click-through conversion rate) tasks on post-view samples,

where the CTCVR score is the multiplication of predicted CTR and

CVR scores. Ma et al. [9] propose to use shared experts controlled

by gating mechanisms below task-speci�c networks, which aims

to model the commonalities among tasks. However, due to the

ultra-sparsity of conversion events, the knowledge learned by these

methods for CVR estimation may still be rather limited and even

biased [2, 13]. Concerning the diverse CTCVRs of di�erent items

https://doi.org/10.1145/3543873.3584653
https://doi.org/10.1145/3543873.3584653
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Figure 2: Overview of TAML. The whole framework is trained on the post-view space.

(right Fig. 1), it may also be di�cult for an insu�ciently-optimized

single model tower to generate accurate and robust predictions.

In this paper, we propose aTaskAdaptiveMulti-learner (TAML)1

framework for joint CTR and CVR estimation, which employs a

hierarchical task adaptive knowledge representation module with

di�erent experts to capture multi-grained knowledge, and uses

multiple learners to exploit and exchange knowledge from multiple

views to facilitate accurate and robust prediction. Speci�cally, the

hierarchical task adaptive knowledge representation module uses

three groups of experts to respectively capture task-agnostic, task-

speci�c, and even �ner-grained learner-speci�c knowledge. On the

top of these experts, each task has multiple learners to adapt to

its characteristics and make predictions, which are further synthe-

sized into the �nal output. To facilitate knowledge exchange among

learners, we apply self-distillation[18, 23] by using the fused output

as a virtual teacher to teach them to make accurate and robust pre-

dictions. Both online and o�ine experiments show the advantage

of TAML over baselines, and it has been serving the main tra�c of

Huawei’s online advertising system for mobile app promotion.

2 METHODOLOGY

2.1 Overall Framework

Suppose the input features of the model areĔ , which are looked up

by a shared embedding layer to get the feature embedding vector

x. Then it is input to a hierarchical task adaptive knowledge rep-

resentation (HTAKR) module, which extracts knowledge from the

feature embedding in three granularities, including a general level,

a task-speci�c level, and a �ner-grained learner-speci�c level. The

outputs from this module will be aggregated by a set of adaptive

1The MindSpore implementation is available at https://gitee.com/mindspore/models/
tree/master/research/recommend/TAML.

gates, which adaptively control the importance of the three types

of knowledge according to the feature embedding. Each gate corre-

sponds to a task-speci�c learner, which further encodes knowledge

from di�erent views and makes predictions for its task. The pre-

diction scores from multiple learners are aggregated into a uni�ed

score as the �nal output of its task, which also serves as the virtual

teacher to teach learners of this task via self-distillation to exchange

cross-learner knowledge. We �nally multiply the probability results

of CTR and CVR tasks to get the CTCVR score Ħ̂2C2EA .

2.2 HTAKR Module

To fullymodel task-agnostic and task-speci�c knowledge, we design

a hierarchical task-adaptive knowledge representation module on

the top of the embedding layer. It includes general experts to learn

universal knowledge across tasks, task-speci�c experts to learn

task-sensitive knowledge, and learner-speci�c experts to further

cover task-aware knowledge in di�erent aspects. To adaptively fuse

the knowledge extracted by the three groups of experts, an adaptive

gate is used to generate the input embedding for each learner from

the outputs of general experts and experts of the corresponding

task and learner, as shown in right Fig. 2. Let Ģ represent the Ģ-th

learner and Ī represent the task Ī ∈ {ęĪĨ, ęĬĨ }, the input of each

learner is denoted as Ĝ ;C (x). The adaptive gate uses a single-layer

feed-forward network with Softmax function to assign weights to

each expert and aggregate the inputs as follows:

ĝ; (x) = So�max
(

W
;
x

)

, Ĝ ; (x) =

:
∑

8=1

ĝ; (x)8ě
; (x)8 , (1)

whereW; are parameters of the Ģ-th learner, ġ is the total number

of experts, ě; (x) is the concatenation of the embeddings generated

by the general experts, task Ī ’s experts, and Ģ-th learner’s expert.

https://gitee.com/mindspore/models/tree/master/research/recommend/TAML
https://gitee.com/mindspore/models/tree/master/research/recommend/TAML
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2.3 Multi-Learner Network with

Self-Distillation

The input of each learner Ĝ ; (x) �rst passes through a multi-layer

perceptron and gets the output logits, i.e., ĢĥĝğĪ;C = ĉĈČ (Ĝ ;C (Į)).

Then the output logits of each learner are aggregated by average as

ĢĥĝğĪC =
∑=
;=1

1
= ĢĥĝğĪ

;
C , where ĢĥĝğĪC represents the ensemble results

in the task Ī and Ĥ is the total number of learners in this task. The

ensemble results are normalized by the ĩğĝģĥğĚ function, which is

denoted as Ħ̂C . To encourage knowledge sharing among learners of

each task, we apply self-distillation to the muti-learner network.

We set the fused results as the teacher and each learner as the

student. Denote the normalized output of each learner as Ħ̂;C , the

self-distillation loss functions in di�erent tasks are formulated as

follows:

LĩěĢ Ĝ −ġĚęĪĨ = −

Ĥ
∑

Ģ=1

[?̂ęĪĨ log(?̂
Ģ
ęĪĨ ) + (1 − ?̂ęĪĨ ) (1 − log(?̂ĢęĪĨ ) ], (2)

LĩěĢ Ĝ −ġĚęĬĨ = −

ģ
∑

Ģ=1

[?̂ęĬĨ log(?̂
Ģ
ęĬĨ ) + (1 − ?̂ęĬĨ ) (1 − log(?̂ĢęĬĨ ) ] . (3)

2.4 Joint Loss Optimization for TAML

Following [10], we use the cross-entropy loss function to supervise

the CTR and CTCVR tasks as follows:

LęĪĨ = −
1

#

Ĥ
∑

ğ=1

[

~ğęĪĨ log
(

?̂ğęĪĨ

)

+
(

1 − ~ğęĪĨ

)

log
(

1 − ?̂ğęĪĨ

)]

, (4)

LęĪęĬĨ = −
1

#

Ĥ
∑

ğ=1

[

~ğęĪęĬĨ log
(

?̂ğęĪęĬĨ

)

+
(

1 − ~ğęĪęĬĨ

)

log
(

1 − ?̂ğęĪęĬĨ

)]

.

(5)

where L2CA and L2C2EA are the loss functions of the CTR and

CTCVR tasks, respectively. The �nal loss function L of the TAML

framework consists of four parts, including the loss of two super-

vised tasks and the loss of two self-distillation auxiliary tasks:

L = LęĪĨ + LęĪęĬĨ + ULĩěĢ Ĝ −ġĚęĪĨ + VLĩěĢ Ĝ −ġĚęĬĨ (6)

where Ă and ă are hyper-parameters, which are the weights of the

self-distillation loss in CTR and CVR tasks.

3 EXPERIMENTS

3.1 Datasets

We use two datasets in the experiments. The �rst one is a public

dataset named Alibaba Click and Conversion Prediction (Ali-CCP)2.

It is collected from real-world tra�c logs of the recommender sys-

tems in the Taobao platform. Following [16], we �lter the features

whose frequencies are less than 10 and divide 10% of the sam-

ples in the original training set for validation. The second one is

a proprietary dataset (named Industrial) collected from Huawei’s

advertising platform. It contains 8 consecutive days of logged data

from a browser search application. The feature set of this dataset is

comprised of 12 �elds, including user attributes, item information,

and corresponding context. We use samples on days 1-7 for training

and day 8 for test. The details of both datasets are listed in Table 1.

2https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408

Table 1: Statistics of the two datasets.

Dataset #User #Item #Impression #Click #Conversion

Ali-CCP 0.4M 4.3M 84M 3.4M 18k

Industrial 0.5M 67.6k 736M 3.7M 1.8M

3.2 Experimental Settings

In our experiments, we optimize the hyperparameters of baselines

and our methods by grid search. We set up a four-layer deep neural

network for all MLP-based methods, and the numbers of hidden

units in each layer are [192, 64, 32, 1]. We use three experts in

expert-based models, each of which is a one-layer perceptron with

64 hidden units. In our method, we use two learners for each task3,

and each learner is a three-layer perception with 64, 32, and 1

hidden units. The weights of self-distillation loss Ă and ă are set to

0.1. For model training, Adam [6] is the optimizer with a learning

rate of 1e-3, and the batch size is 2000. We use L2 regularization

with the strength of 1e-6. ReLU is the activation function. In all

o�ine experiments, we use ROC AUC of CTR, CVR, CTCVR tasks

as the evaluation metric. We run �ve rounds of experiments for

each method and record the average results.

Table 2: Model AUC on the Ali-CCP and Industrial datasets.

Model
Ali-CCP Dataset Industrial Dataset

CTR CVR CTCVR CTR CVR CTCVR

MLP 0.6034 0.6519 0.6207 0.8892 0.7569 0.9525

MMoE 0.6026 0.6703 0.6400 0.9051 0.8082 0.9533

PLE 0.6037 0.6712 0.6477 0.9037 0.8140 0.9539

ESMM 0.6030 0.6706 0.6485 0.9043 0.8162 0.9530

AITM 0.6035 0.6693 0.6518 0.9044 0.8112 0.9541

TAML 0.6049 0.6813 0.6544 0.9072 0.8177 0.9557

3.3 O�line Evaluation

We conduct extensive experiments on the Ali-CCP and industrial

datasets by comparing TAMLwith the following baselines: (1)MLP,

using separate multi-layer perceptrons to predict the target for each

task; (2) MMoE: using multiple shared experts to extract common

knowledge; (3) PLE: using both task-speci�c experts and shared

experts to achieve progressive knowledge extraction; (4) ESSM:

joint estimation of di�erent tasks via probability multiplication;

(5) AITM: transferring information from previous tasks to back-

ward tasks and using a calibrator to constrain the prediction. The

evaluation results are shown in Table 2, from which we have the

following observations. In the two tasks of CVR and CTCVR, MLP

shows low performance, which is due to the sparsity of conversion

samples. Besides, MLP does not use the multi-task learning method

to learn the CTR task, which leads to insu�cient learning in the

discrimination of impression samples in the testing data. PLE is

better than MMoE in most tasks since the task-speci�c experts

in PLE can independently assist in each task learning. PLE can

learn the commonalities and di�erences between CTR and CVR

3Although increasing the number of learners can further improve performance, the
computational complexity is also larger. Thus, we use two learners that can achieve
the maximum relative improvement.
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Figure 3: Ablation studies on core modules in TAML.

prediction and improves overall performance. These two methods

achieve improvement to some degree, but they have not taken ad-

vantage of the sequential relationship between CTR and CTCVR

tasks. ESMM implicitly models Ħ2EA at the top of the neural net-

work by means of probabilistic information transfer. This entire

space multi-task modeling method makes it perform better than

MLP in both CVR and CTCVR tasks. However, ESMM has not con-

sidered the commonalities and di�erences between CTR and CVR

prediction tasks at the bottom of the MLP. AITM uses the AIT and

calibrator modules to improve CTCVR task with CTR task, but it

cannot completely avoid the phenomenon of Ħ2C2EA > Ħ2CA because

the calibrator can only act as a regularizer rather than restricting

it from the probability formula. In addition, this method does not

explicitly or implicitly model the CVR task, which makes its low

performance in the CVR task. TAML achieves state-of-the-art in all

tasks, which is not only due to the improvement achieved by the

Multi-Learner module learning knowledge from di�erent views but

also because of the self-distillation loss that encourages the knowl-

edge exchange among learners. And the HTAKR module has better

performance in extracting knowledge representation information

for each task.

3.4 Online Evaluation

The proposed method and baseline MTL method were trained of-

�ine and regularly update from April 9 to April 21. Each pre-trained

model is deployed in a single cluster to real-timely show advertising

for mobile app promotion. For online serving, we randomly select

2% of the users as the experimental group that is recommended

ads by TAML and another 2% of the users as the control group that

is recommended ads by baseline MTL method. We use CVR and

E�ective Cost per Mille (eCPM) to evaluate the performance of the

above deployed models.

The online A/B test results of consecutive 15 days show signi�-

cant improvement of TAML over the baseline MTL model. Com-

pared with the baseline MTL model, the conversion rate increases

by 2.49%, and eCPM increases by 2.41%. It brings signi�cant business

revenue improvement with slight latency overload. Now, TAML has

provided real-time prediction for the major tra�c in our system.

Figure 4: Expert weights in adaptive gates.

3.5 Ablation Study

To validate the e�ectiveness of each module in TAML, we conduct

ablation studies on the Ali-CCP dataset. The experimental results

are shown in Fig. 3. From the results, we �nd each module plays

an important role in our method, and removing each of them will

lead to performance degradation. Among them, the multi-learner

mechanism has the most salient contribution. This is because using

multiple learners can help encode more comprehensive and less

biased knowledge. The self-distillation mechanism also has a no-

table contribution. It may be because using knowledge distillation

to fuse the knowledge extracted from multiple learners is better

than simply increasing model capacity. The HTAKR module also

has some contributions. This shows that disentangling di�erent

types of knowledge is more suitable for multi-task learning.

3.6 Gating Weight Analysis

Here, we investigate the gating weights of the three types of experts

on Ali-CCP, as shown in Fig. 4. We �nd di�erent tasks have diverse

gating weights. In the CTR task, general experts are less important

than task-speci�c experts, while on the contrary in the CVR task.

This is because the CTR task can provide rich supervision signals

to assist CVR task in distinguishing a large number of negative

impression samples so that the CTR task is relatively more helpful

to the CVR task. The learner-speci�c experts play important roles

in both CTR and CVR tasks. It shows the importance of �ne-grained

learner-speci�c knowledge in CTR and CVR prediction.

4 CONCLUSION

In this paper, we propose a task adaptive multi-learner (TAML)

framework for joint CTR and CVR estimation. TAML uses a hi-

erarchical task adaptive knowledge representation module to dis-

entangle knowledge in di�erent granularities, and compose them

adaptively as the input of multiple learners. The learners of each

task generate �nal predictions collaboratively, and they exchange

their hidden knowledge via self-distillation. Experiments on both

public and proprietary datasets show that TAML outperforms the

previous state-of-the-art models on three important tasks CTR,

CVR, and CTCVR. Meanwhile, online experiments on Huawei’s

advertising platform show that our model achieves notable on-

line improvements, and it is deployed to serve the personalized Ad

recommendation service for App promotion.
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