
World Wide Web manuscript No.
(will be inserted by the editor)

Clustering Web Video Search Results based on Integration of
Multiple Features

Alex Hindle · Jie Shao · Dan Lin · Jiaheng Lu ·
Rui Zhang

Received: date / Accepted: date

Abstract The usage of Web video search engines has been growing at an explosive rate.
Due to the ambiguity of query terms and duplicate results, a good clustering of video search
results is essential to enhance user experience as well as improve retrieval performance. Ex-
isting systems that cluster videos only consider the video content itself. This paper presents
the first system that clusters Web video search results by fusing the evidences from a variety
of information sources besides the video content such as title, tags and description. We pro-
pose a novel framework that can integrate multiple features and enable us to adopt existing
clustering algorithms. We discuss our careful design of different components of the system
and a number of implementation decisions to achieve high effectiveness and efficiency. A
thorough user study shows that with an innovative interface showing the clustering output,
our system delivers a much better presentation of search results and hence increases the
usability of video search engines significantly.

Keywords Web video · YouTube · search results clustering · user interface

1 Introduction

The exponential growth of the number of multimedia documents distributed on the Inter-
net, in personal collections and organizational depositories have brought extensive attention
to multimedia search and data management. Among the different multimedia types, video

A. Hindle · J. Shao · R. Zhang
Department of Computer Science and Software Engineering
The University of Melbourne, Australia
E-mail: {ahindle, jsh, rui}@csse.unimelb.edu.au

D. Lin
Department of Computer Science
Missouri University of Science and Technology, USA
E-mail: lindan@mst.edu

J. Lu
School of Information and DEKE, MOE
Renmin University of China, China
E-mail: jiahenglu@ruc.edu.cn



2

carries the richest content and people are using it to communicate frequently. With the mas-
sive influx of video clips on the Web, video search has become an increasingly compelling
information service that provides users with videos relevant to their queries [12].

Since numerous videos are indexed, and digital videos are easy to reformat, modify
and republish, a Web video search engine may return a large number of results for any
given query. Moreover, considering that queries tend to be short [17,16] (especially those
submitted by less skilled users) and sometimes ambiguous (due to polysemy of query terms),
the returned videos usually contain multiple topics at semantic level (see an example in
Fig. 1). Even semantically consistent videos have diverse appearances at visual level, and
they are often intermixed in a flat-ranked list and spread over many results pages.

In terms of relevance and quality, videos returned in the first page are not necessarily
better than those in the following pages. As a result, users often have to sift through a long
undifferentiated list to locate videos of interest. This becomes even worse if one topic’s
results are overwhelming but that topic is not what the user actually desires, or the dominant
results ranked at the top are different versions of duplicate or near-duplicate videos (i.e.,
lack of diversity). In such a scenario, clustering search results is essential to make the search
results easy to browse, and improve the overall search effectiveness.

Clustering the raw result set into different semantic categories has been investigated in
text retrieval (e.g., [38,24,39]) and image retrieval (e.g., [3,18]), as a means of improving
retrieval performance for search engines. To the best of our knowledge, this work is the first
attempt to address a more challenging problem of video search results clustering. Web video
search results clustering is clearly related to the general-purpose clustering but it has some
specific requirements concerning both the effectiveness and the efficiency of the underlying
algorithms that are addressed by conventional techniques.

Currently available commercial video search engines generally provide searches only
based on keywords but do not exploit the context information in a natural and intuitive way.
This paper presents the first system that clusters Web video search results by fusing the evi-
dences from a variety of information sources besides the video content such as title, tags and
description. We propose a novel framework that can effectively integrate multiple features
and enable us to adopt existing clustering algorithms. In addition, unlike only optimizing
clustering structure as in the traditional clustering algorithms, we emphasize the role played
by other expressive messages such as representative thumbnails and appropriate labels of
generated clusters. Besides clustering organization, these messages are very helpful to fa-
cilitate users for fast browsing. A thorough user study carried out by human assessors con-
firms that our proposed strategy can deliver a much more meaningful presentation of search
results, which complements the output of current video search engines and leads to a con-
siderately enhanced search experience. The proposed framework for information integration
enables us to exploit state-of-the-art clustering algorithms to organize returned videos into
semantically and visually coherent groups - their efficiency ensures almost no delays caused
by the post-processing procedure. In summary, our system returns much higher quality re-
sults yet with similar response time to other systems.

The rest of the paper is organized as follows. We discuss related work in Section 2 and
provide some preliminaries on two general clustering algorithms in Section 3. Section 4
presents our system by describing the information integration framework, the purpose of
each module, and the key comparison and clustering algorithms. Section 5 reports the results
of our experimental study. Finally, Section 6 gives the concluding remarks and future work
directions.



3

Fig. 1 A search results page showing the flat-ranked list for a “tiger” query, with multiple semantic categories
mixed together (as of October 2009).

2 Related work

In this section, we review some previous research efforts on search results clustering and
video clip comparison, respectively.



4

2.1 Search results clustering

Currently, there are several commercial Web page search engines that incorporate some form
of result clustering1. The seminal research work in information retrieval uses scatter/gather
as a tool for browsing large to very large document collections [7,6]. This system divides a
document corpus into groups and allows users to iteratively examine the resultant document
groups or sub-groups for content navigation. Specifically, scatter/gather provides a simple
graphical user interface. After the user has posed a query, s/he can decide to “scatter” the
results into a fixed number of clusters; then, s/he can “gather” the most promising clusters,
possibly to scatter them again in order to further refine the search. Many other works on
text (in particular, Web page) search results clustering are along this line, such as [38,24,19,
39,22,36]. For more details, there is an excellent survey [4] regarding this topic published
recently.

There are also some works on general image clustering [10,25,34] and particularly, a
few Web image search results clustering algorithms [3,18] have been proposed to cluster
the top returned images using visual and/or textual features. Nevertheless, different from an
image, normally the content of a video can be hardly taken in at a glance or be captured
in a single vector. This brings more challenges. Compared with the previous design [18]
solely based on textual analysis for clustering, our system of video search results cluster-
ing can yield a certain degree of coherence on visual appearance of each cluster. While [3]
takes a two-level approach that first clusters the image search results into different semantic
categories and then further groups images in each category with visual features for a better
visual perception, we propose to integrate textual and visual features simultaneously rather
than successively, to avoid propagating the potential errors from the first clustering level
to the next level. Although there are some previous studies on image [28] and video [37]
retrieval on the Web utilizing the integration of multiple features, fusion of the heteroge-
neous information from various sources for clustering Web video search results in a single
cross-modality framework has not been addressed before.

Existing systems of general video clustering only consider the content information but
not the context information. For example, in [21] video clips are clustered according to video
signature (ViSig) [5] similarity, which is discussed in the next section.

2.2 Video clip comparison

Video clips are short videos in digital format predominantly found on the Web and express
a single moment of significance. The term “video clip” is loosely used to mean any short
video typically less than 15 minutes. It is reported in the official YouTube blog that, over
99% of videos uploaded are less than 10 minutes. Traditional videos such as full movies and
TV programs with longer durations can be segmented into short clips, each of which may
represent a scene or story.

Generally, a video can be viewed as being multi-modal by having visual, audio, textual
and motion features [31]. In this work we exploit the inherent visual information by repre-
senting a video clip as a sequence of frames, each of which is represented by some low-level
feature [33] which is referred to as video content, such as color distribution, texture pattern
or shape structure.

1 An example is clusty.com.



5

One of the most popular methods to compare video clips is to estimate the percentage of
visually similar frames. Along this line, [5] proposed a randomized algorithm to summarize
each video with a small set of sampled frames named video signature (ViSig). However,
depending on the relative positions of the seed frames to generate ViSigs, this randomized
algorithm may sample non-similar frames from two almost-identical videos. [27] proposed
to summarize each video with a set of frame clusters, each of which is modelled as a hyper-
sphere named video triplet (ViTri) described by its position, radius, and density. Each video
is then represented by a much smaller number of hyper-spheres. Video similarity is then
approximated by the total volume of intersections between two hyper-spheres multiplying
the smaller density of clusters. In our system, we partially employ a more advanced method
called bounded coordinate system (BCS) [14]. Given two video clips, their video similarity
can be approximated by comparing their BCSs. This is described in Section 4.2.

2.3 Semantic Web and information fusion

Considering semantics in Web applications have been studied extensively. Recently, Garcı́a
et. al. [11] explored using the object-action interaction paradigm to improve the usability
and accessibility of Web applications. Fusion of information from various sources has also
been studied in different application scenarios such as [28,37,32]. However, none of them
have addressed the problem of video clustering.

3 Preliminaries

This section briefly reviews two general-purpose clustering algorithms normalized cuts and
affinity propagation, which will be used in our system for comparing their outputs.

3.1 Normalized cuts (NC)

The first clustering algorithm represents a similarity matrix M as a weighted graph, in which
the nodes correspond to videos and the edges correspond to the similarities between two
videos. The algorithm recursively finds partitions (A,B) of the nodes V subject to the con-
straints that A∩B =∅ and A∪B = V , to minimize the following objective function [29]:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)
assoc(B,V )

(1)

where assoc(A,V ) = ∑u∈A,t∈V w(u, t) is the total connection from nodes in A to all nodes
in V and assoc(B,V ) is defined similarly. Cut(A,B) = ∑u∈A,v∈B w(u,v) is the connection
from nodes in A to those in B. It can be seen that the clustering objective is equivalent to
minimizing the cut Ncut(A,B), which can be solved as a generalized eigenvalue problem
[13]. That is, the eigenvector corresponding to the second smallest eigenvalue (which is
called Fiedler vector) can be used to bipartition the graph. The components of this vector
are thresholded to define the class memberships of the nodes. This bipartition process is
performed recursively until the desired number of clusters is reached.

A limitation of normalized cuts is the fact that the user must specify in advance the num-
ber of generated clusters. This often has an adverse effect on the quality of the clustering. We
usually prefer automatically determining the number of clusters. The clustering algorithm
described next can determine an adaptive number of clusters automatically.



6

3.2 Affinity propagation (AP)

The second clustering algorithm is the affinity propagation method proposed in [9]. Like
normalized cuts, this algorithm accepts a similarity matrix and assigns data points to clusters.
In this algorithm each data point to be clustered is viewed as a node in a network which
passes messages to other nodes in order to determine which nodes should be exemplars and
which nodes should be associated with those exemplars. An exemplar is the point which best
represents other points in its cluster. The algorithm runs to maximize the overall similarity
of all data points to their exemplars. The solution is approximated following the ideas of
belief-propagation. There are two types of messages sent between data point i and candidate
exemplar k: responsibility r(i,k) and availability a(i,k). Responsibility messages are sent
from i to k and reflect how strongly data point i favors k over other candidate exemplars.
Availability messages are sent from k to i and reflect how available i is to be assigned to k
currently.

r(i,k)← s(i,k)− max
k′|k′ 6=k

{a(i,k′)+ s(i,k′)} (2)

a(i,k)←min

{
0,r(k,k)+ ∑

i′|i′ /∈{i,k}
max{0,r(i′,k)}

}
(3)

The messages are passed during a variable number of iterations. In each iteration the
evidence accumulates that some points are better exemplars. It can be seen in (2) and (3)
that there is a circular dependency between responsibility and availability. This is handled
by initializing a(i,k) to a zero value so that r(i,k) can be calculated in the first iteration.
After this the availabilities are calculated and stored to be ready for the next iteration.

Responsibility (2) can be thought of as a competitive update where the similarity mea-
sure between i and k, s(i,k), is subtracted from by k

′
. That is the greatest similarity value

between i and every other potential exemplar, s(i,k′), plus the corresponding availability
value, a(i,k′). It can be seen in (3) that an availability value will not be greater than zero
so this factor will either have no effect on responsibility or it will increase it. Intuitively, if
some other candidate exemplar for point i is less available, the current candidate exemplar
being analyzed then becomes more responsible and a better fit.

Availability (3) is either zero or less depending on the self responsibility, r(k,k), of the
candidate exemplar and the sum of the positive responsibilities that the candidate exemplar
receives from other points. Self responsibility is a measure of how much evidence there
is for the point itself to be an exemplar. This measure can be adjusted by a “preference”
measure given by the user. By default, all data points are equally suitable as exemplars, so
the preferences are set to a common value (e.g., the median of the input similarities in the
similarity matrix). It can be seen in (3) that if r(k,k) is negative then this will negatively
affect the availability of this point, which means this point is less available to be assigned to
another cluster.

Affinity propagation is also an iterative algorithm. The two messages are passed from
one node to every other, once per iteration. The algorithm reaches convergence when enough
evidence has been formed about exemplars and assignments to exemplars. That is when the
messages being passed have little or no effect on the current responsibility and availability
measures any more. At this stage node i is assigned to whichever candidate exemplar k
maximizes the value of a(i,k)+ r(i,k). If this value is maximized where i = k then i itself is
an exemplar.



7

4 Our system

In this section, we describe the different components of our video search results clustering
system including acquisition and pre-processing of returned videos, pre-processing of con-
text information with a focus on texts, our video clustering method and result visualization.
Our system is comprised of a database, processing codes of various algorithms implemented
in different languages. The key algorithms in our system are the ones used for compactly
representing and comparing video clips, processing texts, and underlying clustering algo-
rithms.

4.1 Collection of information from various sources

Our system mimics the storage and search components of a contemporary Web video search
engine but has additional post-processing functionality of clustering returned results. In re-
sponse to a query request, first we gather top results via a third-party Web video search
engine. YouTube is an ideal third-party Web video search engine to be used in our system,
since it provides an API to its system which enables developers to write content-accessing
programs more easily. TubeKit2 is an open source YouTube crawler which targets this API
[26]. In our system TubeKit is used for sending text queries to YouTube and downloading
returned videos and their associated metadata. It is run from a local computer and is es-
sentially a client interface to the YouTube API. When supplied with a query, TubeKit will
send it to YouTube and will in turn receive a list of videos and metadata similarly to the
user actually accessing YouTube via a Web browser and entering the same query. Specifi-
cally, available metadata supplied in YouTube include video title, tags, description, number
of viewers, viewer comment counts, average ratings, among others (see Fig. 2). This infor-
mation is by default gathered and stored in a local database and indexed by a video ID.

Among the different metadata around a video, the title, tags, and description are more
likely to be informative in revealing its semantic meaning. For example a video’s title might
be “pluto” while its tags might be “pluto”, “disney”, “mickey” which give a good indication
that the video would belong to a Disney Pluto’s cluster rather than the former planet’s cluster.
In our system, we only utilize the metadata which are posted by the video publisher and
remain constant. We have observed that other metadata such as viewer comments can be
quite noisy and less relevant. There may be a case for mining this kind of data but we leave
that for future research. The embedded videos clips can be downloaded using youtube-dl3,
a Web video downloader written in Python that can be integrated with TubeKit. It uses the
URL of the YouTube page to extract the video and save it to the local database. From there
we can analyze its visual content as well as context information.

4.2 Video processing

4.2.1 Computing similarity based on video content analysis

A video is really a sequence of image frames so the problem of representing a video numer-
ically can be decomposed into representing multiple, sequential images. Each video can be

2 www.tubekit.org
3 bitbucket.org/rg3/youtube-dl



8

Fig. 2 A YouTube page with highlighted title, tags and description.

represented by a sequence of d-dimensional frame features obtained from image histograms,
in order of appearance. An image histogram is constructed by counting how many pixels in
an image fall into certain parts of the color spectrum. It is represented by a single vector
where the dimensionality d relates to the number of parts the spectrum is divided into. This
low-level visual feature is far less complicated to analyze when compared with higher level
features such as local points of interest in an image.

In order to compare two video clips, we may compare their histograms, using a frame-
by-frame comparison approach (or possibly based on key-frame or sub-sampling represen-
tations). Unfortunately this approach has a quadratic time complexity because each frame
must be compared with every other frame. This is undesirable because there may be at least
hundreds, maybe tens of thousands of videos which may need to be compared with each
other and leads to unacceptable response time. In our previous research [14], the bounded
coordinate system (BCS), a statistical summarization model of content features is intro-
duced. It can capture dominating content and content changing trends in a video clip by
exploring the tendencies of low-level visual feature distribution. BCS can represent a video
as a compact signature, which is suitable for efficient comparison.

To transform a sequence of frame features into a BCS model, principal component anal-
ysis (PCA) is applied to project each histogram vector (or frame) to a new coordinate system.
The basic idea of BCS is shown by an example in Fig. 3, where the black dots illustrate the
frame feature vector distribution of a sample video clip, where each frame can be thought
of as a data point in this system. The data is projected so that the greatest variance in it lies
on the first principal component, the second greatest variance on the second and so on. The
number of principal components is equal to the dimensionality of the histogram vector. Web
videos can be noisy, for example there might be anomalies in the recording process which
could significantly alter a frame’s histogram and disrupt the continuity of the sequence. The



9

1
st
 BPC2

nd
 BPC

Fig. 3 Bounded coordinate system.

noise can be eliminated by using bounded principal components (BPC) where bounds are
placed on the furthest data points in the directions of the principal components (see Fig. 3).
Using standard deviations as thresholds, these outlying data points can be systematically
dropped from the coordinate system. Another component in the BCS model is the mean of
the data points. It is the origin of the system and is used in the visual similarity computation
together with the BPC values.

A video X in BCS form has the notation BCS(X) = (OX ,Φ̈X
1 , . . . ,Φ̈X

d ) where O is the
mean and Φ̈ is a BPC. d represents the dimensionality of the feature space, which in our
case is the dimensionality of the image histograms. We compare two videos X and Y by
using (4) which produces a dissimilarity measure D.

D(BCS(X),BCS(Y )) = ‖OX −OY‖︸ ︷︷ ︸
by translation

+(
dY

∑
i=1
‖Φ̈X

i − Φ̈Y
i ‖+

dX

∑
i=dY +1

‖Φ̈X
i ‖)/2

︸ ︷︷ ︸
by rotation and scaling

(4)

This dissimilarity measure accounts for three operations which are useful in comparing
the BCSs of two videos. The difference in mean values represents a translation distance
between the origins of the two videos. Another operation is rotation: how far must one axis
(BPC) be rotated to be the same as its counterpart? The other is scaling: how much must one
axis shrink or stretch to be the same length as its counterpart? Intuitively, if we applied (4) to
the BCSs of two videos for which the only difference was that one video was color shifted
(i.e., every pixel had a constant intensity difference in relation to its counterpart), then the
shift would be accounted for by a small operation and their dissimilarity would be minimal.
In general, as a compact signature for the original video BCS is robust to various video
transformations ranging from simple formatting to complex mixture of different editing ef-
fects [14]. Different from the traditional frame-based comparisons that involve quadratic
computational complexity, visual similarity computation with BCS is only linear in the di-
mensionality of feature space and independent of video length. These properties make BCS
an ideal visual representation model in our system.

4.2.2 Implementation issues

We assume that visual feature extraction and representation are pre-processed offline (by the
server side of video search engine at the same time when videos are indexed). The process
done online in real-time is the actual clustering of videos. This is appropriate for a real-
world system because users have the expectation that after they enter a query, the relevant



10

results should be returned quickly. The clustering may operate between query entry and
results return time. Before it can operate, the videos must have undergone certain offline
pre-processing.

We extended the TubeKit database schema so that the progress of each video through
various processing stages can be monitored. This is useful because the system has a number
of scripts which operate on bulk datasets. We want them to operate only on data which
have not been processed. For a video, the stages which are monitored are whether the video
has been downloaded, converted from Flash to MPEG format, histogram-analyzed, BCS-
analyzed, and processed for similarities with other videos. A logical data flow is shown in
Fig. 4.

Raw video files

Histogram sequence fi les

BCS files

Similar i ty matr ix Clusters

Fig. 4 System data flow.

After a video has been downloaded it is converted to MPEG format because we found
that our feature extraction algorithm module (or perhaps the software library it uses) was
more reliable taking MPEG as input rather than Flash video. The extraction produces a file
with a histogram vector on each line, one line for a video frame. The histogram file of a
video is used as input to the BCS algorithm. The BCS files are much smaller than histogram
files as they only contain the BPC, mean and standard deviation vectors.

The BCS comparison algorithm accepts two BCS files from different videos. It pro-
duces a dissimilarity measure which is written to a video dissimilarity matrix stored in the
database. This is done for every video pair which has already been BCS-analyzed - an ex-
ample of the use of the tracking system.



11

4.3 Text processing

4.3.1 Computing similarity based on text analysis

With the maturity of Web 2.0, the context of a video is often very closer to its semantic
meaning [30] and thus comparing textual features is beneficial. As we do for the videos,
we also make comparisons for the associated metadata. The classical information retrieval
method of computing text similarity is to use a set of pre-determined index terms to represent
a document in the form of document-term vector. Vector similarity is then used to identify
documents that are most related to a query. This is however inappropriate in our problem for
comparing the similarity of short sentences. A sentence represented using a large number
of pre-determined terms will result in a very sparse vector (i.e., the vector has a very small
number of non-zero elements). The textual similarity computation method we adopt here
is straightforward: two sentences or groups of words are searched for common words. For
every common word they share, their similarity measure is increased by one. This measure
is initialized to zero. In the example below, the similarity measure is 4 because there are four
common words between the short sentences s1 and s2.

s1 = “Tiger Woods Greatest Golf Shot Ever”

s2 = “Tiger Woods Amazing Golf Shot”

Sim(s1,s2) = 4

Although we acknowledge the fact that a comprehensive scoring function of text seman-
tic similarity should produce a more accurate similarity measure, we take a first rough cut
at this problem and attempt to model the semantic similarity of texts as a function of the
component words. This lexical matching method should be quite effective on the context
information for which there is no concept of full sentence semantic meaning and which is
more like a “bag of words”. For context information which are actual sentences, our method
based on word co-occurrence might give reasonable results to some extend but it would
ignore full sentence meaning.

4.3.2 Implementation issues

The context information that accompanies a video also has to be processed before any clus-
tering of that video occurs. As with video processing, the stages that each video’s metadata
has passed are monitored. The stages include normalization and comparison. The normal-
ization process involves stemming and removing stop words. Stemming is achieved by a
WordNet stemmer and can be summarized by an example: changing the word “realization”
to the stem “realiz-”. For comparison purposes, this is useful because the words “realize”
and “realization” will now be recognized by our text comparison algorithm as a similar word
through their common stem. The second part of the normalization involves eliminating stop
words such as “I”, “do” or “the” because they will inflate the score of the comparison algo-
rithm and affect clustering quality. For example, two sentences being compared may have
many stop words in common but this does not necessarily imply that the sentences are in-
deed relevant. All punctuation symbols are removed and capitalized letters substituted for
similar reasons. We run a Perl script which normalizes given texts and then writes them into
the main database. After normalization is complete every text is compared using the text
comparison algorithm and given a similarity score which is written into another similarity
matrix in the database. Tags are only compared with tags, title with title, and description



12

with description. Therefore, for context information we store three similarity matrices, one
for each source of metadata.

4.4 The clustering process

In this section, we present our framework for integrating information from various sources
and how to exploit existing clustering algorithms to cluster videos in our framework. We
also present an innovative interface for grouping and visualizing the search results.

4.4.1 Framework for information integration

Almost all video sharing websites have valuable social annotations [2] in the form of struc-
tured surrounding texts. We view a video as a multimedia object, which consists of not only
the video content itself, but also lots of other types of context information (title, tags, de-
scription, etc.). Clustering videos based on just one of the information sources does not har-
ness all the available information and may not yield satisfactory results. For example, if we
cluster videos based on visual similarity alone, we cannot always get satisfactory outcomes
because of the problem of semantic gap and excessively large number of clusters generated
(how to effectively cluster videos based on the visual features is still an open problem and
even a video and its edited fraction may be not grouped correctly). On the other hand, if
we cluster videos based on some other type of information alone, e.g., textual similarity, we
may be able to group videos by semantic topic, but their visual appearances are often quite
diverse, especially for large clusters.

To address the above problem, we propose a framework for clustering videos, which
simultaneously considers information from various sources (video content, title, tags, de-
scription, etc.). Formally, we refer to a video with all its information from various sources as
a video object and the information from each individual source a feature of the video object.
Our framework for information integration has three steps:

1. First, for each feature (video content, title, tags, or description), we compute the similar-
ity between any two objects and obtain a similarity matrix using the methods described
in Sections 4.2 and 4.3 (tags and description are also texts, and how to compute their
similarities are also discussed in Section 4.3).

2. Second, for any two video objects X and Y , we obtain an integrated similarity by com-
bining similarities of different features into one using the following formula:

Sim(X ,Y ) = ∑
for every feature i

wi ·Simi(X ,Y ) (5)

where Sim(X ,Y ) is the integrated similarity, Simi(X ,Y ) is the similarity of X and Y for
feature i, and wi is the weight of feature i. In our system, the current set of features is
{visual, title, tags,description}. The weights are customizable to reflect the emphasis
on certain features. For example, if tags is the main feature we would like to cluster the
video objects on, then tags will be given a high weight. After computing the integrated
similarity of every pair of objects, we obtain a square matrix for the integrated similarity
with every video object corresponding to a row as well as a column. We call this matrix
the integrated similarity matrix.

3. Third, a general-purpose clustering algorithm is used to cluster video objects based on
the integrated similarity matrix.



13

The framework can incorporate any number of features. For example, almost all Web
videos have an audio track which is also regarded a content feature. Thus, audio features
such as Mel-frequency cesptral coefficients (MFCCs) might be further exploited to highlight
similarities of videos.

Via our framework, many general-purpose clustering algorithm can be adopted to cluster
the video objects. In our system, we implemented two state-of-the-art clustering algorithms,
normalized cuts (NC) [29] and affinity propagation (AP) [9] as described in Section 3. The
reason for choosing these two algorithms is that, NC is the most representative spectral
clustering algorithm, while AP is one of few clustering algorithms that do not require users
to specify the number of generated clusters. They both accept as input a similarity matrix
which is indexed by video ID and is populated with pairwise similarities. The efficiency of
the clustering process largely depends on the computation cost of generating the similarity
matrix. Computing the integrated similarities through the elements from different similarity
matrices is sufficiently fast, so that our proposed strategy is suitable to be practically de-
ployed as a post-processing procedure for Web video search engines, where timely response
is critical. We will compare the quality of the clustering results of these two algorithms in
the experimental study.

4.4.2 Video clustering and result visualization

The integrated similarity matrix is the common input for the both clustering algorithms. It
is derived from four similarity matrices which are computed from the different features we
have analyzed (visual, title, tags and description) after the videos and associated metadata
are pre-processed as described earlier.

We modified the NC and AP algorithms implemented by their respective authors so that
the system now could retrieve subsets of the matrices from the database. This is needed by
selecting the similarity matrices for video results for one query, say “tiger” or query number
2. After the clustering algorithm has been executed, a report is produced which provides
information on how many clusters were generated for the given dataset, which videos were
assigned to which clusters, and which videos are exemplars (for AP clustering only). We use
such a report to evaluate the quality of clustering.

To make the best use of the clustering organization, we design an innovative interface
for visualization of the clustering output, as shown in Fig. 5. We divide the available space of
user interface into multiple displaying regions, one for each cluster. For each generated clus-
ter, we summarize the information contained by the representative thumbnails and appropri-
ate labels, in the hope that they can give users an immediate understanding of the cluster.
Users can choose to navigate to the clusters of interest where further details can be obtained.
Besides clustering organization, we believe their search experience also depends on these
expressive messages. Particularly, for AP clustering some exemplar videos emerge after the
algorithm finishing. Naturally their thumbnail images can be chosen as the representative
thumbnails of the corresponding clusters. On the other hand, each cluster label should con-
cisely indicate the contents of the cluster, while being consistent with the meanings of the
labels of more general and more specific clusters. In our system, some query-related key
phrases are extracted by exploring Web page search result clustering method [39], to enu-
merate the specific semantic of each cluster. Our design of selecting both titles and images
as highlights of a search result document to be presented is supported by prior study [35],
which shows that using mixed text summaries and thumbnails achieves a better performance
than using either text summaries or thumbnail images in informing users of search results.
With this interface, users can identify their desired results with much less effort and time



14

compared with conventional browsing of a flat-ranked list. They can quickly grasp the dif-
ferent meanings of the query terms, and select a subset of relevant clusters easily.

Sting (musician)

Sting (wrestler)

The Sting (fi lm)

Fig. 5 Visualization of cluster results for the “sting” query.

5 Experiments

To evaluate the quality of the system’s clustering output in terms of its ability to correctly
group video clips, we compared the computer-produced clusters to human-produced cate-
gories for a same query result set. First we discuss how this was done and what parameters
were used to generate the results.



15

5.1 Methods

To obtain a result set of videos we supply queries to the Web video crawler component of
the system. We assume that the users are interested in a particular aspect of the query, but
do not know how to express this explicitly and submit a broader, more general query. It
could be that the search results contain multiple topics, and there is no way to exactly figure
out what is relevant to the user given that the queries are short and their interpretation is
inherently vague in the absence of a context. For example, some polysemous terms such
as “tiger”, “pluto” and “sting” can be submitted. For “tiger” we may get results including
videos relating to real feline, Tiger Woods the golfer, the Chinese horoscope and others. This
is appropriate for our evaluation purpose because our system is expected to dynamically
build a bunch of clusters that can reflect the semantically different categories in the raw set
returned by the video search engine.

The result sets were filtered to contain video clips no longer than four minutes. Most
video clips on YouTube fall beneath this threshold [21] and we found that the visual simi-
larity computation algorithm does not perform well when videos have very long durations
(BCS is designed for short video clips). We downloaded about one hundred video clips per
query so that there would be an adequate number of videos per cluster. Very occasionally
some videos in the result set were removed because they either had little or no relevance to
search query or were isolated in their semantic meaning and thus would be alone in their
category. This elimination is reasonable because we are testing a post-processing clustering
functionality but not the search accuracy of a Web video search engine’s retrieval compo-
nent.

The affinity propagation (AP) clustering algorithm can automatically determine the
number of clusters it generates, given any input as discussed above. The normalized cuts
(NC) algorithm however cannot achieve this and must be given an expected number of clus-
ters for the supplied integrated similarity matrix. In order to make a fair comparison between
these two clustering algorithms, we run the AP algorithm on a result set, get the number of
clusters it generates, and then supply the NC algorithm with the same number for the same
result set.

We chose three weighting combinations which we thought would give a range of dif-
ferent results, as shown in Table 1. This table shows keys for different weights which cor-
respond with results in the next section. For example, weight key A puts relatively more
emphasis on visual similarities and less on textual similarities.

Weight Key Visual Tags Title Description Combined

A 0.70 0.21 0.03 0.06 1.00
B 0.50 0.35 0.05 0.10 1.00
C 0.30 0.49 0.07 0.14 1.00

Table 1 Keys for matrix weights.

For evaluation, each video clip is manually labelled as belonging to a certain category by
a human assessor. Cues used to determine memberships are the visual content and context
information (tags, titles and descriptions) of videos. After a result set is divided into multiple
categories by the human assessor, we can measure the performance of a clustering algorithm
by comparing the categories and the generated clusters for the same set. The performance
measure we use is average precision. Assume we are given a set of n returned videos be-



16

longing to c distinctive categories manually labelled, which are denoted by 1, . . . ,c, and the
clustering algorithm clusters the n videos into m groups C j, j = 1, . . . ,m indexed by j. The
precision of a category is defined as

P(k) =
∑mk

j=1 |C j,k|
∑mk

j=1 |C j|
(6)

where k identifies a category (k = 1, . . . ,c). |C j| is the size of cluster C j (how many videos
are in that cluster). |C j,k| is the number of videos in cluster C j that belong to category k,
according to manual labelling. mk denotes the number of clusters containing video clips
from category k. As an example, the clustering precision of one category for a “pluto” query
could be P(former planet) = 0.85. This indicates that for this query, a high number of the
former planet videos were indeed grouped correctly in the right cluster(s), but not all. For
the same query term, we also calculate P(cartoon dog) and precisions for other “pluto”
categories. Finally we take the average precision as an overall measure of the algorithm’s
performance for this query, which is in this case P(pluto). We show a range of average
precision measures next.

5.2 Results

Table 2 shows some test query terms used to retrieve the video clip result sets, the number
of video clips used in the clustering process, and the number of clusters generated by the AP
algorithm for each feature weighting combination. Note that the algorithm often generated
a different number of clusters for each weighting scheme. Table 3 shows the average preci-
sions of the two clustering methods (AP and NC, respectively) across different queries and
feature weighting combinations. It seems that in general, a higher textual feature weighting
results in higher average precision for both affinity propagation and normalized cut cluster-
ing methods. There is a noticeable exception to this trend in the case of the “sting” query in
AP - we believe that this was due to one category having significantly fewer labelled videos
than the other categories. In cases where textual features are relatively lowly weighted or
evenly weighted with visual features, the two clustering algorithms perform fairly evenly.
When textual features have greater weighting, NC clustering generally outperforms AP clus-
tering in average precision. This result is tempered by the fact that NC has to utilize AP’s
number of clusters as input. Despite this, in a real Web video search engine, the number
of categories for certain queries may be fixed. In this case, the expected number of clusters
could be stored as a heuristic in order to use the better performing algorithm.

Query #Clips #Clusters
A B C

Panda 90 15 13 13
Tiger 80 10 10 10
Sting 86 14 15 8

Python 100 12 12 7
Pluto 84 8 10 11

Table 2 Query list we tested in the system.



17

Query Weight AP NC
Panda A 0.44 0.45

B 0.54 0.55
C 0.58 0.78

Tiger A 0.69 0.57
B 0.74 0.63
C 0.74 0.78

Sting A 0.81 0.61
B 0.61 0.74
C 0.44 0.77

Python A 0.79 0.56
B 0.89 0.85
C 0.53 0.70

Pluto A 0.37 0.35
B 0.31 0.61
C 0.32 0.79

Table 3 Average precision by query.

The trend in the results indicates that the visual feature component could be less effec-
tive in producing good clusters when highly weighted relative to textual features. This is
expected as there are quite a number of video clips in the returned result set which actually
have the same semantic meaning but different visual appearances. We also observed that
videos with similar visual content were almost always grouped together, even when the vi-
sual feature weighting was lower. In other words, the majority of duplicate or near-duplicate
videos can be correctly clustered and no longer be repeatedly represented as in the output of
current video search engines.

We noted that the computer-produced clusters were often smaller than the correspond-
ing human-produced categories. That is, often the system tends to generate more than one
clusters which belonged to the same category judged by the assessor. This is probably an in-
dication that the categories determined by the assessor are subjective and that other assessors
might separate the categories further.

The results indicate that there is no unanimously optimum feature weighting combi-
nation which can be applied across all query result sets, although generally a higher textual
feature weighting increases average precision. A solution might be to use empirical evidence
to determine the best weighting schemes for certain queries and use heuristics to apply them
at run-time. Our best result was achieved with weight key B for the “python” query where
there were not many labelled categories (the snake, Monty Python, etc.). Both clustering
algorithms performed well here with AP outperforming NC. Unfortunately there was no
perfect result yet (i.e., P(query) = 1). Future work is outlined in the next section which
would help in approaching this score.

In summary, our system can deliver a much better presentation of search results, yet
with similar response time to other video search engines. Overall speaking, AP is recom-
mended to be employed as the underlying clustering algorithm, due to three reasons. First, it
can automatically determine an adaptive number of clusters. Second, the exemplar of each
generated cluster can be naturally used as the most representative video in our user interface
for result visualization. Third, its clustering performance is slightly better than NC in our
larger experiments with more queries.



18

6 Conclusion and future work

We have developed a Web video search system which has additional post-processing func-
tionality of clustering returned results. This enables users to identify their desired videos
more conveniently. Our proposed information integration framework is the first attempt to
investigate the fusion of the heterogeneous information from various sources for clustering.
The main infrastructure of the system is complete and if we wish it is readily extendible
to integrate and test other video clip and text comparison algorithms, as well as clustering
algorithms, which may further improve the quality of clustering.

Currently, comparing visual features is based on global color histogram distribution of
video frames. The effects of other features on clustering quality could be investigated. An-
alyzing high-level visual features is computationally costly but if the processing is done
offline then the reward may be worthwhile. The textual similarity measure we used looks
simple compared with more advanced techniques for inferring short text semantic similar-
ity [23,20,15], which probably could be used on the sentence-oriented title and description
metadata to good effect. Probabilistic latent semantic indexing can be used to discriminate
subjective tags and build a hierarchy with objective tags [8]. In addition, by translating and
comparing context information in different languages, it would be possible to source and
cluster desired video clips even though they might have context information in a language
different to that of the query.

Moreover, currently we assume that every video ought to be assigned to at least one
cluster. However, due to the limitations of search engine technology, only partial returned
videos are indeed relevant to query and some irrelevant videos are mixed (i.e., some noisy
results are likely to be returned). To tackle this problem, another research direction might
be in investigating a new scheme of clustering, Bregman bubble clustering [1], to cluster
returned videos. The algorithm can obtain the dominant clusters by partially grouping videos
in the whole set while discarding some scattered noisy ones.

References

1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. Journal of
Machine Learning Research 6, 1705–1749 (2005)

2. Bao, S., Yang, B., Fei, B., Xu, S., Su, Z., Yu, Y.: Social propagation: Boosting social annotations for web
mining. World Wide Web 12(4), 399–420 (2009)

3. Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R.: Hierarchical clustering of www image search results using
visual, textual and link information. In: ACM Multimedia, pp. 952–959 (2004)

4. Carpineto, C., Osinski, S., Romano, G., Weiss, D.: A survey of web clustering engines. ACM Comput.
Surv. 41(3) (2009)

5. Cheung, S.C.S., Zakhor, A.: Efficient video similarity measurement with video signature. IEEE Trans.
Circuits Syst. Video Techn. 13(1), 59–74 (2003)

6. Cutting, D.R., Karger, D.R., Pedersen, J.O.: Constant interaction-time scatter/gather browsing of very
large document collections. In: SIGIR, pp. 126–134 (1993)

7. Cutting, D.R., Pedersen, J.O., Karger, D.R., Tukey, J.W.: Scatter/gather: A cluster-based approach to
browsing large document collections. In: SIGIR, pp. 318–329 (1992)

8. Eda, T., Yoshikawa, M., Uchiyama, T., Uchiyama, T.: The effectiveness of latent semantic analysis for
building up a bottom-up taxonomy from folksonomy tags. World Wide Web 12(4), 421–440 (2009)

9. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976
(2007)

10. Gao, B., Liu, T.Y., Qin, T., Zheng, X., Cheng, Q., Ma, W.Y.: Web image clustering by consistent utiliza-
tion of visual features and surrounding texts. In: ACM Multimedia, pp. 112–121 (2005)

11. Garcı́a, R., Gimeno, J.M., Perdrix, F., Gil, R., Oliva, M., López, J.M., Pascual, A., Sendı́n, M.: Building
a usable and accessible semantic web interaction platform. World Wide Web 13(1-2), 143–167 (2010)

12. Gibbon, D.C., Liu, Z.: Introduction to Video Search Engines. Springer (2008)



19

13. Golub, G.H., Loan, C.F.V.: Matrix Computations., third edn. The Johns Hopkins University Press (1996)
14. Huang, Z., Shen, H.T., Shao, J., Zhou, X., Cui, B.: Bounded coordinate system indexing for real-time

video clip search. ACM Trans. Inf. Syst. 27(3) (2009)
15. Islam, A., Inkpen, D.Z.: Semantic text similarity using corpus-based word similarity and string similarity.

TKDD 2(2) (2008)
16. Jansen, B.J., Campbell, G., Gregg, M.: Real time search user behavior. In: CHI Extended Abstracts, pp.

3961–3966 (2010)
17. Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user

queries on the web. Inf. Process. Manage. 36(2), 207–227 (2000)
18. Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.Y.: Igroup: web image search results clustering.

In: ACM Multimedia, pp. 377–384 (2006)
19. Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchical monothetic doc-

ument clustering algorithm for summarization and browsing search results. In: WWW, pp. 658–665
(2004)

20. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity based on semantic nets
and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

21. Liu, S., Zhu, M., Zheng, Q.: Mining similarities for clustering web video clips. In: CSSE (4), pp. 759–
762 (2008)

22. Mecca, G., Raunich, S., Pappalardo, A.: A new algorithm for clustering search results. Data Knowl. Eng.
62(3), 504–522 (2007)

23. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic
similarity. In: AAAI (2006)

24. Osinski, S., Weiss, D.: A concept-driven algorithm for clustering search results. IEEE Intelligent Systems
20(3), 48–54 (2005)

25. Rege, M., Dong, M., Hua, J.: Graph theoretical framework for simultaneously integrating visual and
textual features for efficient web image clustering. In: WWW, pp. 317–326 (2008)

26. Shah, C.: Tubekit: a query-based youtube crawling toolkit. In: JCDL, p. 433 (2008)
27. Shen, H.T., Ooi, B.C., Zhou, X., Huang, Z.: Towards effective indexing for very large video sequence

database. In: SIGMOD Conference, pp. 730–741 (2005)
28. Shen, H.T., Zhou, X., Cui, B.: Indexing and integrating multiple features for www images. World Wide

Web 9(3), 343–364 (2006)
29. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.

22(8), 888–905 (2000)
30. Siorpaes, K., Simperl, E.P.B.: Human intelligence in the process of semantic content creation. World

Wide Web 13(1-2), 33–59 (2010)
31. Snoek, C., Worring, M.: Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools

Appl. 25(1), 5–35 (2005)
32. Taddesse, F.G., Tekli, J., Chbeir, R., Viviani, M., Yétongnon, K.: Semantic-based merging of rss items.

World Wide Web 13(1-2), 169–207 (2010)
33. Wang, H., Divakaran, A., Vetro, A., Chang, S.F., Sun, H.: Survey of compressed-domain features used in

audio-visual indexing and analysis. J. Visual Communication and Image Representation 14(2), 150–183
(2003)

34. Wang, X.J., Ma, W.Y., Zhang, L., Li, X.: Iteratively clustering web images based on link and attribute
reinforcements. In: ACM Multimedia, pp. 122–131 (2005)

35. Woodruff, A., Rosenholtz, R., Morrison, J.B., Faulring, A., Pirolli, P.: A comparison of the use of text
summaries, plain thumbnails, and enhanced thumbnails for web search tasks. JASIST 53(2), 172–185
(2002)

36. Xu, S., Jin, T., Lau, F.C.M.: A new visual search interface for web browsing. In: WSDM, pp. 152–161
(2009)

37. Yang, J., Li, Q., Wenyin, L., Zhuang, Y.: Searching for flash movies on the web: A content and context
based framework. World Wide Web 8(4), 495–517 (2005)

38. Zamir, O., Etzioni, O.: Grouper: A dynamic clustering interface to web search results. Computer Net-
works 31(11-16), 1361–1374 (1999)

39. Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster web search results. In: SIGIR, pp.
210–217 (2004)


