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ABSTRACT
Academic homepages are an important source for learning re-
searchers’ profiles. Recognising person names and publications
in academic homepages are two fundamental tasks for understand-
ing the identities of the homepages and collaboration networks of
the researchers. Existing studies have tackled person name recogni-
tion and publication recognition separately. We observe that these
two tasks are correlated since person names and publications often
co-occur. Further, there are strong position patterns for the occur-
rence of person names and publications. With these observations,
we propose a novel deep learning model consisting of two main
modules, an alternatingly updated memory module which exploits
the knowledge and correlation from both tasks, and a position-
aware memory module which captures the patterns of where in a
homepage names and publications appear. Empirical results show
that our proposed model outperforms the state-of-the-art publi-
cation recognition model by 3.64% in F1 score and outperforms
the state-of-the-art person name recognition model by 2.06% in F1
score. Ablation studies and visualisation confirm the effectiveness
of the proposed modules.
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1 INTRODUCTION
Recognition of person names and publications from academic home-
pages are two essential tasks for analysing researchers’ profiles.
There have been extensive research interests in the extraction and
mining of such information from academic homepages [3, 8, 16, 20,
28, 31]. The recognition process has become a necessary part of
many online systems, such as AMiner [24] and CiteSeerX [16], and
the extracted person names and publications can bring interest-
ing applications. For example, person names can provide valuable
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Figure 1: An example of recognising person names and pub-
lications in academic homepages. Names aremarked in bold
italic and publications are marked with grey background.

insights for analysing researchers’ collaboration networks. Publica-
tions can be used to mine the evolution of a researcher’s research
interests and predict the development directions of the researcher.

Figure 1 shows an example of the two tasks. Given the plain text
of an academic homepage, the aim is to recognise every person
name and every publication as a text string shown in the example.

Recently, deep learning based methods have been developed to
address these problems. The state-of-the-art for publication recog-
nition [31] uses a Bi-LSTM-CRF based model to learn the page-level
and line-level structure. The state-of-the-art for person name in
academic homepages [1] uses a co-guided neural network to learn
from fine-grained annotation of names. Despite their success, these
studies have tackled the two tasks separately. We observe that there
is a strong correlation between person names and publications.
For example, a string is more likely to refer to a publication if it
contains multiple names consecutively. Also, strings that appear in
multiple publications are likely to be a person’s name, e.g., the page
owner or a frequent coauthor. Such an observation motivates us
to design joint learning models for publication and person names
simultaneously. A straightforward method to learn a model for the
two tasks jointly is to train them together by minimising the total
loss of the two tasks or simply concatenating the representation of
publication and person name when training [6, 13]. However, our
experimental study shows that such a straightforward approach
performs poorly. The issue is that they cannot capture the correla-
tion between the two tasks well since the learned signals from the
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two tasks do not have enough intermediate interaction with each
other at each iteration of training.

Further, we observe that there are strong patterns of where in a
homepage names and publications appear. Academic homepages
usually present information in separate blocks, e.g., one for biogra-
phy and another for publications (cf. Figure 1). These blocks may
use different formatting styles, such as paraghraphs, lists, and tables.
The grouping of similar contents into separate blocks and the simi-
lar formatting styles within the same block lead to strong position
patterns in the plain text of academic homepages. Specifically, the
contents of the same block may run across multiple consecutive
lines, while the contents of different blocks may be separated. Fur-
ther, each line or several consecutive lines in a block may describe
one piece of information. For example, the block for publications
in Figure 1 consists of six consecutive lines and each publication
consists of three lines. The position of lines and blocks provides
valuable signals for the recognition tasks.

To address the issues in straightforward joint models, and to
better utilise the correlation and position patterns of person names
and publications, we propose a novel Position-aware Alternating
Memory (PAM) network. PAM consists of two main modules, an
alternatingly updated memory (AM) module which exploits the
knowledge and correlation from both tasks, and a position-aware
memory (PM) module which captures the patterns of where in a
homepage names and publications appear. In the AM module, an
attention-based memory updating controller is used to activate hid-
den representation from a name encoder and a publication encoder
alternatingly, and update the memory representation alternatingly
to enhance the intermediate interaction in each iteration. The cor-
relation representation between person names and publications is
captured in the alternating updates of memories. In the PM mod-
ule, position representations are integrated into the correlation
representation between person names and publications. The posi-
tion representations consist of local and global positions. The local
position representations capture the difference in line numbers
between tokens. The global position representations capture the
attention distribution of all the lines in a homepage with respect to
the publication block.

In summary, this paper makes the following contributions:
• We address the tasks of person name recognition and pub-

lication recognition in academic homepages simultaneously by
modeling their correlation and the position patterns.
•We propose a deep learning model named PAM, which consists

of two main modules, an alternatingly updated memory module and
a position-aware memory module.
•We conduct a thorough experimental study using real datasets.

The empirical results show that our model PAM outperforms the
state-of-the-art publication recognition model by 3.64% in F1 score
and outperforms the state-of-the-art person name recognitionmodel
by 2.06% in F1 score. Ablation studies and visualisation confirm the
effectiveness of the proposed modules in our model.

2 RELATEDWORK
Previous studies on academic homepages usually use rule-based [8,
30] or a hybrid of machine learning and rule-based methods [3] on
the HTML DOM trees of webpages. Yang and Ho [30] use heuristic
rules to locate the publications in a DOM tree. They assume that

publications are listed as nodes at the same level in the DOM tree.
Chung et al. [3] uses a linear chain CRFmodel to analyse the content
in a DOM tree and then refines the publication boundaries by rules.

Recent studies on academic homepages usually treat the plain
text of a homepage as a document and recognise information from
the plain text using deep learning based natural language processing
methods. For example, state-of-the-art techniques for publication
recognition [31] and for person names recognition [1] use Bi-LSTM-
CRF based models to recognise information from the plain text of
the homepages. However, they solve the two tasks separately. To
the best of our knowledge, no existing work has taken a joint
learning approach to recognising person names and publications
simultaneously from the plain text of academic homepages.

A few other studies recognise person names and publications
from research papers and digital libraries [15, 18, 24, 25]. Such a
recognition problem is simpler since the text in research papers
and digital libraries is usually well-formatted with few format vari-
ations. After recognition, these studies may need to solve the name
disambiguation problem (i.e., different people with identical names)
[23] before mining the collaboration networks or research interests
of a researcher. Such a problem can be alleviated by recognising
information from academic homepages.

Models based on memory networks [22, 27] are proposed for
question answering in recent years. Dynamic Memory Network
(DMN) [12] uses a gated recurrent unit [2] based controller to up-
date the memory, while Working Memory Network (W-MemNN)
[17] uses a multi-head attention [26] based controller. All these
networks use a memory module for a single task and update the
memory repeatly, while our model updates the memory alternat-
ingly using the knowledge from two correlated tasks.

Moreover, we use different methods to capture the position pat-
terns. The state-of-the-art for publication recognition [31] trains
webpage-level and line-level models together to capture the posi-
tion information of academic homepage, whereas our model cap-
tures position information by integrating them into the memory
updating process. Studies have exploited relative token position and
importance in a sentence [21, 29], whereas our algorithm focuses
on relative line position and importance in a page.

3 JOINT LEARNING FOR BOTH TASKS
Usually, the plain text of an academic homepage is saved first, then
the recognition tasks are conducted on text [1, 31]. Given the plain
text of an academic homepage, we aim to recognise all the person
names and publications from the plain text simultaneously. To
accomplish this, a straightforward method is to train a model for
the two tasks together by solving a joint optimization problem,
i.e., minimising the total loss of the two tasks, or using simple
concatenation procedures when training [6, 13, 32]. However, our
experimental study (Section 4.3.2) shows that such a naive way of
joint learning does not yield good performance since the correlation
between the two tasks cannot be captured well.

To address the problem, we propose a Position-aware Alternating
Memory (PAM) network. Figure 2 illustrates our proposed PAM
network. Our model consists of four modules including input pro-
cessor, alternatingly updated memory (AM), position-aware memory
(PM) and joint recognition. AM an PM are the two main modules
for joint recognition of names and publications. In input processor



Figure 2: Overview of the PAM network. The Alternatingly updated memory (AM) module exploits the knowledge from both
tasks. The Position-aware memory (PM) module integrates local and global position into the memory updating process.

(Section 3.1), we tokenise the plain text, use word embeddings to
represent the tokenised text, and encode them through two en-
coders to get two sequential hidden representations, one for person
names and the other for publications. Then, the hidden representa-
tions are passed to AM module (Section 3.2) to capture the correla-
tion between person names and publications. Specifically, we use
a memory updating controller to activate hidden representation
and update the memory alternatingly. In position-aware memory
(Section 3.3), to take advantage of the position patterns in academic
homepages, we expand the memory updating controller and inte-
grate local and global position representations into the memory
updating process. In the joint recognition module (Section 3.4), we
produce recognition reuslts based on the updated memory and
jointly learn the two tasks. Table 1 summarises the symbols fre-
quently used in the following discussions.

3.1 Input Processor
Given the plain text of an academic homepage, we first tokenise
it and get a sequence S of n tokens and each token is represented
as a de -dimension word embedding, i.e., S ∈ Rn×de . Following
state-of-the-art methods [1, 31], we use GloVe [19] to learn word
embeddings on an academic homepage dataset (detailed in Sec-
tion 4.1.1), although other pre-training methods may be used here
without loss of generality. Then, we encode the input sequence S
via two recurrent neural networks (RNNs), one for person name
recognition and the other for publication recognition. Specifically,
we use LSTM [7] as the RNN unit:

N = LSTM (S ) and P = LSTM (S ) (1)

Here, N ∈ Rn×dh is the hidden representation from the person
name encoder (i.e., an LSTM), P ∈ Rn×dh is the hidden representa-
tion from the publication encoder (another LSTM), and dh is the
dimensionality of each token in hidden representations.

Next, S , N , and P are passed to the AM module.

Table 1: Frequently used symbols

Symbols Description
n the number of tokens
de the dimension of word embeddings
dh the dimension of hidden representations
dm the dimension of memeory representations
dz the dimension of each head
i the hop number
A the alternating hidden representation
M the memory representation
W the projection matrix
R the relationship representation
Uд the global position representation
Ul the local position representation
Q the predicted publication block
lµ the median line ofQ
σ half of the total number of lines inQ
k the number of predicted publication tokens in a line
lt the line number of token t
ε the total number of lines in the homepage

3.2 Alternatingly Updated Memory
Different from the traditional Memory Networks [22, 27], which
updates a memory representation repeatedly for a single task, we
propose to update the memory representation alternatingly using
the knowledge from two correlated tasks. Our intuition is to improve
the learned representations for one task by taking into account the
knowledge from the other task.

Specifically, AM initialises the memory representationM with
S , i.e., M0 = S , and updates it using an alternating hidden repre-
sentation A, which is obtained from the person name encoder and
publication encoder by:

A = f (i + 1)N + f (i )P (2)



where A ∈ Rn×dh , i is the hop number and function f activate N
and P alternatingly in two consecutive hops by providing alternat-
ing boolean values for even and odd values of i:

f (i ) =
1
2 [(−1)

i + 1] (3)

When updating the memory representationM , we use a memory
updating controller based on multi-head attention [26], which is
similar to that used in Working Memory Network [17]. Multi-head
attention allows the model to jointly attend to different representa-
tion subspaces using projection matrices.

Let Z j denote the memory representation in head j . The memory
representation in hop i , denoted byMi , is the concatenated memory
representations of all the heads:

Mi = (Z1 ⊕ Z2 ⊕ ... ⊕ Zh )W
Z (4)

where Mi ∈ R
n×dm ,W Z ∈ Rdm×dm is a projection matrix, dm

is the dimensionality of each token inMi , ⊕ is the concatenation
procedure, and h is the number of heads.

Let Rj denote the encoding of the specific relationship between
the most recent memory representationMi−1 andA in head j . Then
Z j is:

Z j = so f tmax (
Rj
√
dz

)AWA
j (5)

where j ∈ [1,h], Z j ∈ Rn×dz ,WA
j ∈ R

dh×dz is a projection matrix,
1√
dz

is the scaling factor (cf. Figure 2), and dz = dm
h .

Rj is the dot-product between the projection ofMi−1 in head j
and the transpose of the projection of A in head j, which is a key
step for capturing the correlation in the alternating updates, given
by the following equation:

Rj = Mi−1W
M
j (AWA′

j )⊤ (6)

where Rj ∈ Rn×n ,WM
j ∈ Rdm×dz andWA′

j ∈ Rdh×dz are projec-
tion matrices.
3.3 Position-aware Memory
To exploit the position patterns in academic homepages, we further
learn a position-aware memory. Specifically, we integrate the global
position representationUд and the local position representationUl
into the memory updating process by extending Equation (6) :

Rj = Mi−1W
M
j (AWA

j +Ul )
⊤ + f (i )Uд (7)

3.3.1 Global Position. We observe that the contents of a block run
across consecutive lines. We utilise such a position pattern and
model the attention distribution of all the lines in a homepage inUд
when recognising publications, i.e., the lines around the median line
of a publication block should have more attention, while the lines
far from the median line should have less. The attention distribution
is assumed to follow a normal distribution.

LetGt denote the attention distribution for token t . ThenUд is
the concatenation of all such distributions:

Uд = G0 ⊕G1 ⊕ ... ⊕Gn (8)

whereUд ∈ R
n×n .

Let lµ denote the median line of the predicted publication block
Q and σ denote half of the total number of lines inQ (cf. Figure 3).

Figure 3: Example of the computation ofUд andUl .

Then we have:

Gt = [−
(l1 − lµ )2

2σ 2 , ...,−
(ln − lµ )

2

2σ 2 ] (9)

whereGt ∈ R
n and details for optimizing lµ are in Section 3.4.

Let k denote the number of predicted publication tokens in a
line, k̄ denote the mean of all the k values in a homepage, then the
predicted publication blockQ is the set with the most consecutive
lines that contains more predicted publication tokens than k̄ .

Let V denote the number of tokens in line l andT l
v denote the

prediction for tokenv in l , then the number of predicted publication
tokens in l , denoted by kl , is:

kl =
V∑
v=1

T l
v (10)

whereT l
v is computed by:

T l
v =

{
0, top (Blv ) < pub

1, top (Blv ) ∈ pub
(11)

B = so f tmax (PW B + bB ) (12)

Here,W P ∈ Rn×dP , bP ∈ RdP , dP is the number of token labels
(e.g., BIO) in the publication recognition task, and B is the prob-
ability distribution of the possible token labels for all the tokens
based on P . Function top () finds the label with the largest posibil-
lity for each token: top (Blv ) ∈ pub means that the found label is a
publication label while top (Blv ) < pub means otherwise.

3.3.2 Local Position. Ul captures the difference in line numbers
between tokens. Let Lt denote the embedding of the relative line
distances between token t and every other token in the homepage,
thenUl is the concatenation of all such embeddings:

Ul = L0 ⊕ L1 ⊕ ... ⊕ Ln (13)

whereUl ∈ R
n×n×dz .

Let lt denote the line number of token t , ε denote the total num-
ber of lines in the homepage (cf. Figure 3), emb denote a function
that yields a dz -dimension embedding, then Lt is:

Lt = emb ([ l1 − lt
ε
, ...,

ln − lt
ε

]) (14)



where t ∈ [1,n], Lt ∈ Rn×dz and emb is applied to reduce the space
complexity when computingUl in multi-head attention [21].

3.4 Joint Recognition
The improved memory representations from PAM is used to pro-
duce our final output by:

N̂ = so f tmax (McW
N + bN ) (15)

P̂ = so f tmax (Mc−1W
P + bP ) (16)

whereW N ∈ Rdm×dN , bN ∈ RdN ,W P ∈ Rdm×dP , bP ∈ RdP , dN
is the number of token labels (e.g., BIO) in person name recognition
task and c is the final hop. N̂ and P̂ contain the learned probability
distributions of the labels for all the tokens. For each token in each
task, the label with the highest posibillity is our final output.

Our model is trained by minimising the following loss function:
L = LN + LP + λLD (17)

where LN and LP are the loss for the person name recognition
task and the publication recognition task, respectively, and LD is
added to optimise lµ with λ as the weight. Specifically:

LN = −
1
n

n∑
i=1

Ñi log(N̂i ) (18)

LP = −
1
n

n∑
i=1

P̃i log(P̂i ) (19)

LD =
∥l̃ − lµ ∥

ε
(20)

where Ñ and P̃ are the ground turth for the two tasks and LN and
LP are the average of cross-entropies for the two tasks, respectively.
∥l̃−lµ ∥ is the distance between the ground truth median line l̃ in the
publication block and the predicted median line lµ . l̃ is computed in
the same way as lµ , except that kl is based on the ground truth P̃ .

4 EXPERIMENTS
We report experimental results in this section. We start with the
experimental setup (Section 4.1). To evaluate the effectiveness of
our proposed model, we compare it with state-of-the-art models
that solve the two task separately (Section 4.2). We also compare
our model with other naive joint learning models (Section 4.3.1). To
evaluate the effectiveness of the architectural choices of our model,
we perform an ablation study and compare our model with variants
of our models (Section 4.3.2). To better understand how the model
works, we also show and analyse the visualisation result (Section
4.4) and conduct an error analysis (Section 4.5).

4.1 Experimental Setup
4.1.1 Dataset and Preprocessing. We use the same datasets used
by the state-of-the-art for publication recognition [31] and person
name recognition [1]. Table 2 summarises the dataset statistics.
• HomePub dataset [31] contains the plain text of 2,087 home-
pages from different universities and research institutes with
12,796 publications annotated.
• HomeName dataset [1] is constructed from the HomePub
dataset by further labeling the person names. All the 70,864

Table 2: Statistics of the dataset used in experiments.

Summary of Dataset
# homepages 2,087
# homepages for training 1342
# homepages for development 335
# homepages for testing 410
# publications 12,796
# homepages containing publications 702
Avg. # publications per page 18.23
Std. # publications per page 36.15
# person names 70,864
# homepages containing names 2087
Avg. # names per page 34
Std. # names per page 133
# pages with names only 1385
# pages with names and pubs 702
# names in pages with names only 9,490
# names in pages with names and pubs 61,372

person names are annotated with fine-grained forms such
as whether a name is a first or last name. We keep only the
annotation for names.

We focus on English webpages and convert any text in Unicode
to ASCII using Unidecode1. The text is tokenised on whitespace,
newline characters, and punctuations. Every punctuation and new-
line character is considered as a single token. Standard BIO tagging
scheme is adopted. Word embeddings are initialised with 100 di-
mensional GloVe [19] vectors trained on the tokenised dataset.
4.1.2 Evaluation Metric. We measure precision (P), recall (R), and
F1-score (F1). For person name recognition, we report the Token
Level performance, which reflects the model capability to recognise
each person name token. We also report the Name Level perfor-
mance, in which the model needs to recognise a whole person name
without missing any token. For example, for the name ‘John Doe’,
recognising either ‘John’ or ‘Doe’ is a true positive at token level,
while only recognising ‘John Doe’ in full is a true positive at name
level. For publication recognition, we report the String Level perfor-
mance, in which the model needs to recognise a whole publication
without missing any token.
4.1.3 Model Implementation . We implement our PAM model in
TensorFlow2 and train it on an NVIDIA GTX1080 GPU. The model
is trained with the Adam optimiser [11] with the learning rates
tuned among {0.01, 0.005, 0.001}. The batch size is tuned among {32,
64, 128} and the maximum sequence length is tuned among {100,
200, 500}. The dimensions of the encoders are tuned among {100,
200} and the dropout rate is set to 0.5. The number of hops is tuned
among {2, 4, 6, 8}, the number of attention heads is tuned among
{2, 5, 8} and λ is tuned among {1, 10, 15}. We use a development
set to select the best hyperparameters through grid search and
the optimal hyperparameters are highlighted above in bold. The
model is trained for a maximum of 20 epochs with early stopping
if the performance on the development set does not improve after
3 epochs.
1https://pypi.org/project/Unidecode/
2https://www.tensorflow.org/
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4.1.4 Baselines. We compare our proposed model with the follow-
ing single-task models for publication recognition:
• ParsCit [4] is an open-source package3 for parsing publica-
tions based on feature engineering and CRF.
• CNN-Sentence [10] is used to classify whether each line in
a webpage is a publication. It has filter windows with sizes
of 3, 4, 5 and 100 feature maps for each, a dropout rate of 0.5,
a batch size of 40 and a learning rate of 0.01.
• Bi-LSTM-CNN-CRF [14] has a filter window size of 3 with
30 feature maps, a hidden dimension of 100, a dropout rate
of 0.5, a batch size of 40 and a learning rate of 0.01.
• PubSE [31] is the state-of-the-art for publication recognition
based on Bi-LSTM-CNN-CRF. It has a filter window size of 3
with 30 feature maps, a hidden dimension of 100, a learning
rate of 0.01 and a dropout rate of 0.5 for both the line-level
model and the webpage-level model. The batch size is 40 for
the line-level model and is 1 for the webpage-level model.
The coefficients in the loss function are 1, 0.05, 1, 0.3.

We compare with the following single-task models for person
name recognition:
• Stanford-NER [5] is a named entity recognisor based on
CRF provided by the Stanford NLP Group4.
• Bi-LSTM-CRF [9] has a hidden dimension of 100, dropout
rate of 0.5, batch size of 32 and an initial learning rate of 0.01
with a decay rate of 0.05.
• CogNN [1] uses fine-grained name form annotations through
co-attention. This is the state-of-the-art model for person
name recognition. It has a hidden dimension of 100, dropout
rate of 0.5, batch size of 32 and an initial learning rate of 0.01
with a decay rate of 0.05.

All the above models are trained on the same training dataset.
The parameters are selected using the same development set with
the optimisers and early stopping mechanisms reported in the
corresponding papers. If these are not reported, we use the Adam
optimiser [11] to train the model for a maximum of 20 epochs with
early stopping if the performance on the development set does not
improve after 3 epochs.

4.1.5 Variants. Since there are no existing models that jointly
recognise person names and publications, we compare with the
following variants of our proposed model:
• Joint-Naive is resulted from removing the AM and PMmod-
ules, in which the outputs of the encoders are fed into the
network’s final output layers directly, and training the two
tasks directly by minimising the total loss.
• Joint-Concat is resulted from replacing the AM and PM
modules with a concatenation procedure similar to Ma et al.
[13] and Hashimoto et al. [6]. This model has a pipeline archi-
tecture for two jointly trained tasks. In the N→ P direction,
the output of the name encoder and the publication encoder
is concatenated to be the input of the the publication pre-
dictor. In the P→ N direction, the output of the publication
encoder and the name encoder are concatenated to be the
input of the name predictor.

3http://parscit.comp.nus.edu.sg/
4https://nlp.stanford.edu/software/CRF-NER.html

• Joint-Gate is resulted from replacing the AM and PM mod-
ules with the gating function in DMN [12]. This model has
a pipeline architecture for two jointly trained tasks. In the
N→ P direction, the output of the name encoder and the
publication encoder are summed up by the gates for several
hops to be the input of the publication predictor. And the
gates are learned based on the output of the name encoder
and the publication encoder. In the P → N direction, the
output of the publication encoder and the name encoder are
summed up by the gates for several hops to be the input of
the name predictor. And the gates are learned based on the
output of the publication encoder and the name encoder.
• Joint-Att is resulted from replacing the AM and PMmodules
with multi-layer multi-head attention [26]. This model has a
pipeline architecture for two jointly trained tasks. In the N→
P direction, the attention is computed using the output of the
name encoder and the publication encoder, then the output
of the publication encoder is weighted by the attention for
several hops before feeding into the publication predictor.
In the P→ N direction, the attention is computed using the
output of the publication encoder and the name encoder, then
the output of the name encoder is weighted by the attention
for several hops before feeding into the name predictor.
• Joint-Stack is resulted from replacing the AM and PM mod-
ules with stacked two groups of multi-layer multi-head at-
tention, each for one task. The attention is computed using
the output of the name encoder and the initial word represen-
tation, then the output of the name encoder is weighted by
the attention for several hops before feeding into the name
predictor. After that, the attention is computed using the
output of the publication encoder and the updated output
from name encoder, then the output of the publication en-
coder is weighted by the attention for several hops before
feeding into the publication predictor.
• AM is resulted from removing the PM module from our
proposed model.

Figure 4: Illustration of Different Joint Models.

http://parscit.comp.nus.edu.sg/
https://nlp.stanford.edu/software/CRF-NER.html


Table 3: Experimental results on single-task models for publication and person name recognition.

Model Pub (String Level) Model Name (Token Level) Name (Name Level)
R P F1 R P F1 R P F1

ParsCit [4] 70.34 18.22 28.94 – – – – – – –
CNN-sentence [10] 73.39 76.69 75.00 Stanford-NER [5] 64.94 94.68 77.04 41.31 40.98 41.15
Bi-LSTM-CNN-CRF [14] 74.15 77.22 75.65 Bi-LSTM-CRF [9] 87.97 89.64 88.79 79.48 82.34 80.89
PubSE [31] 84.12 91.12 87.48 CogNN [1] 93.06 92.85 92.95 86.40 85.32 85.85
PAM (proposed) 89.02 93.34 91.12 PAM (proposed) 95.51 93.21 94.35 88.40 87.42 87.91

• Local-AM is resulted from removing the global position
representation from our proposed model.
• Global-AM is resulted from removing the local position
representation from our proposed model.

Figure 4 illustrates the architectures of different joint models.
All the above models are trained jointly by minimising the total
loss of the two tasks on the NVIDIA GTX1080 GPU with a batch
size of 32, a dropout rate of 0.5, a maximum sequence length of 200,
encoder dimensions of 100 and a learning rate of 0.01. Joint-Gate
and Joint-Att have hops of 2 and Joint-Stack has hops of 2 in each
group. Joint-Att and Joint-Stack have attention heads of 5. All the
models are trained with the Adam optimiser [11] and the hyperpa-
rameters are selected using the same development set reported in
Section 4.1.1. The models are trained for a maximum of 20 epochs
with early stopping if the performance on the development set does
not improve after 3 epochs.

4.2 Comparison with the State-of-the-Art
Table 3 reports the performance comparison result with the single-
task models. Overall, our PAM model outperforms the state-of-the-
art models on publication recognition and person name recognition
by considerable margins and the improvements mainly lie in the
recall. The improvements are statistically significant, with p <0.05
based on McNemar’s test.
4.2.1 Publication Recognition. The advantage of PAM over neural
baselines such as CNN-sentence [10] and Bi-LSTM-CNN-CRF [14]
is over 15.47% in terms of F1 score since CNN-sentence and Bi-
LSTM-CNN-CRF can hardly handle complex homepages without
the extra information about the position patterns and person names.
PAMalso outperforms the hierarchical PubSE [31]model, which can
capture the positional diversity, by 3.64% in F1 score. The advantage
of our model is more significant in recall than in precision. This may
be explained by our use of the global position representation, which
helps yield higher attention to the publications on a publication
block and helps capture more publications. PubSE may miss some
publications since the block information are not captured well in
their models.
4.2.2 Person Name Recognition. Our proposed PAM model outper-
forms the baselines that use standard NER models, such as Stanford
NER [5] and Bi-LSTM-CRF [9], by at least 5.56% on token level and
7.09% on name level in F1 score. Our improvements mainly lie in
the recall, which is consistent with the observation on the publi-
cation recognition task. This indicates that our model has better
capability to cover more person names with the knowledge from
the publication recognition task. PAM also outperforms CogNN [1]
by 1.40% on token level and 2.06% on name level in F1 score. Note

that CogNN relies on extra labelling information such as whether
the tokens are first names or family names, while our model does
not have this requirement.

4.3 Ablation Study
Table 4 reports the results where we compare our PAM model with
other joint models and variants of PAM. Overall, PAM outperforms
other joint models. AMmakes effective improvements to the overall
model performance, and both global and local position represen-
tations in PM contribute substantially to the model performance,
especially for the publication recognition task. The improvements
achieved by both PM and AM modules are statistically significant,
with p <0.05 based on McNemar’s test.

4.3.1 Model Performance without AM. The models with a name
prefix of ‘Joint-’ (i.e., Joint-Naive, Joint-Concat, Joint-Gate, Joint-
Att, Joint-Stack) do not contain AM module. We can see from Table
4 that they perform worse than AM, with an up to 46.3% drop in F1
score on the string level for publication recognition and an up to
6.7% drop in F1 score on the name level for person name recognition.
Models having more architecture similarity with AM achieve better
result than others, i.e., Joint-Att and Joint-Stack perform better than
others. Joint-Concat tends to introduce noise from one task into the
other task, which leads to worser results than Joint-Naive. Joint-
Gate tends to use the original information in the corresponding task
and discard the new information from the other task, which leads
to similar results as Joint-Naive. We also observe that with higher
frequency we alternatingly updated the representations, we achieve
better results, i.e., AM performs better than Joint-Stack. The reason
is that the correlation between person names and publications can
be better captured in alternating updates.

4.3.2 Model Performance without PM. The AM, Local-AM and
Global-AM models do not contain complete PM module. We can
see from Table 4 that they perform much worse than the full PAM
model, with an up to 13.4% drop in F1 score on the string level
for publication recognition and an up to 5.4% drop in F1 score on
the name level for person name recognition. This indicates that
both global and local position representations are critical to the
performance of PAM, i.e., removing either or both would result in a
drop in performance. Global position is more important than local
position, i.e., performance drops more when the global position
representation is removed. We also note that PM is more important
for the publication recognition task than the person name recogni-
tion task, i.e., performance for publication recognition drops more
when PM is removed. This is expected as publications have stronger
position patterns than person names.



Table 4: Experimental results of jointmodels and variants of
PAM for publication and person name recognition. F1-score
is reported. Models with ∗ have pipeline architectures for
two jointly trained tasks and the reported results for each
task are from the corresponding pipeline directions, i.e., the
result for publication is from N→ P and vice versa.

Model Pub Name
Token String Token Name

Joint-Naive 88.5 33.0 88.9 77.5
Joint-Concat∗ 89.5 31.3 89.4 75.8
Joint-Gate∗ 88.8 33.8 89.1 77.7
Joint-Att∗ 93.6 65.4 90.9 81.5
Joint-Stack 94.8 73.1 90.6 82.2
AM 95.2 77.4 91.4 82.5
Local-AM 96.3 84.8 92.1 84.1
Global-AM 96.7 88.7 92.6 85.7
PAM 97.2 91.1 94.3 87.9

4.4 Visualisation
We visualise the attention weights on an academic homepage to
better examine and understand how the memory module works.
Figure 5 shows the attention heatmaps with corresponding tokens
in different hops of the memory; tokens with higher attention are
in darker colour.

The attention is generally more focused in fewer tokens as more
updating hops have been run. For example, Hop 3 and Hop 4 have
higher attentionweights on the intended recognition targets (names
and publications) than Hop 1 and Hop 2; meanwhile, Hop 3 and Hop
4 have much lower weights on other tokens than Hop 1 and Hop 2
have. We also note that the alternatingly updating mechanism can
shift and correct attention weights to the intended level. For exam-
ple, in Hop 1 (the first name round), we observe that the attention
focuses on Mag . Wu Shengqian, while Mag is an academic degree
and should not be recognised as a name. In Hop 3 (the second name
round), Wu Shengqian gains more attention while Mag gets less at-
tention, so they can be recognised correctly. Similarly, in Hop 2 (the
first publication round), Evaluation of the chondrocyte phenotype in
health, disease and therapy has high attention,but actually it relates
to the researcher’s research interest and should not be recognised
as a publication. In Hop 4 (the second publication round), this string
gains lower attention and can be discarded correctly.

4.5 Error Analysis
We perform a manual inspection of recognition results of state-of-
the-art models for the two tasks (i.e., PubSE [31] and CogNN [1])
and our proposed PAM model on 50 randomly selected homepages.
We focus on string level performance for the publication recog-
nition task and on name level performance for the person name
recognition task. In total, we inspect 1,137 publications and 5,542
person names.

For publication string recognition, we observe that PubSE [31]
misrecognises strings about patents, grants, and research projects
as publications. PAM avoids these errors since it can capture pub-
lication block information and these strings are usually listed on

other blocks. Both PubSE and PAM make mistakes when publica-
tions are listed together with invited talks or presentations. These
strings have high similarity to the publications and are difficult to
distinguish when they are listed together. For example, the string
Kelly Schrum. “Teaching Hidden History: Creating An Effective Hy-
brid Graduate Course” Conference on Higher Education Pedagogy,
Virginia Tech (Feb 2016) is a talk given by the page owenr but not a
publication.

For person name recognition, we observe that CogNN [1] tends
to produce false negative predictions in groups, i.e., a series of per-
son names in a publication string cannot be recognised. PAM does
not make such mistakes since it captures the correlation between
names and publications. However, PAM may misrecognise person
names with complex name format while CogNN is better on those
cases since CogNN uses many fine-grained name form annotations.
For example, the string Tyler, L.M.K. Mellor, D. Hauser, KD. contain
three person names, which are marked underlined, while PAM can-
not distinguish them. Both CogNN and PAM may not recognise
some person names hidden in a long paraghraphs, such as a long
biography section. We conjecture that this may be caused by the
LSTM-based encoder. We aim to solve this problem in future work.

5 CONCLUSION
Based on the observations that there is correlation between person
names and publications and that there are position patterns in aca-
demic homepages, we propose to jointly recognise person names
and publications while taking into account the important feature of
position patterns. We proposed a Position-aware Alternating Mem-
ory network. The network has an alternatingly updated memory
module to exploit the correlation of two tasks, and a position-aware
memory module to exploit global and local position information.
Empirical results show that our model outperforms the state-of-
the-art publication recognition model by 3.64% in F1 score and
outperforms the state-of-the-art person name recognition model by
2.06% in F1 score. Our model also outperforms naive joint models
by up to 59.80% and 12.10% in F1 score for publication and person
name recognition, respectively. Ablation studies and visualisation
confirm the effectiveness of the proposed modules in our model.

Our proposed way of modelling interdependency may be ap-
plied to other tasks which are inherently correlated, such as entity
recognition and relation extraction. Our framework may also be
applied to IE tasks on other datasets which have strong position
patterns, such as resumes and other webpages.
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