
A Moving Object Index for

Efficient Query Processing with

Peer-Wise Location Privacy

Dan Lin (Missouri University of Science and Technology)

Christian S. Jensen (Aarhus University)

Rui Zhang (The University of Melbourne)

Lu Xiao (Missouri University of Science and Technology)

Jiaheng Lu (Renmin University of China)

Outline

• Introduction

• Related Work

• PEB-tree

• Performance Study

• Conclusion

Introduction

• Proliferation of location-based services

– GPS Navigator, Family Locator, Thing Finder

• Location privacy issues

– Provider-wise privacy

• Service providers disclose locations to malicious parties

– Peer-wise privacy

• Locations are seen by unauthorized users

Spatial cloaking

Location distortion

K-anonymization

Encryption

… …?

Problem Definition

• Users specify their location privacy preferences
– E.g., my colleagues can see my locations only during

work hours

• Privacy-aware Queries
– Retrieve users who allow the query issuer to view their

locations and who satisfy the location constraints
specified by the query issuer.

– Privacy-aware Range Query

– Privacy-aware kNN Query

Problem Statement

Alice Alice’s

friend

Other

users

I want to go out for

lunch with a friend.

Find my nearest friend.

Problem Statement

Alice Alice’s

friend

Other

users

Some of Alice friends

do not want to

disclose locations

at this moment.

Problem Statement

Alice Alice’s

friend

Other

users

Bob is the nearest

and allows Alice to

see his location.

Bob

Related Works

Alice
… … … …

Index users only based on their location proximity

Spatial Index

… … …

• Spatial Indexing Approach

Related Works

• Spatial Indexing Approach

Alice
… … … …

Use an iterative algorithm to find the answer.

Find the user near Alice. Check its privacy policy.

If not satisfied, find the next nearby user.

Spatial Index

… … …

Outline

• Introduction

• Related Work

• PEB-tree

• Performance Study

• Conclusion

Policy Embedded Bx-tree (PEB-Tree)

• Goal: Organize users based on both spatial

proximity and privacy policy compatibility to

enhance query performance.

Alice
… … … …

PEB-tree

… … …

PEB-TREE

• PEB-tree Construction

• Query Algorithms

PEB-TREE Construction

Index key generation:
• Location encoding

– Bx-tree as the base structure

– Handle continuously changing locations of users

• Policy encoding

– Capture compatibilities among location privacy policies belonging to
different users.

• Integrate location encoding and policy encoding to form the index

key of the PEB-tree.

Index key

Policy encoding Policy comparison

Location encoding

PEB-TREE Construction

Policy encoding

• Step 1: Compare each pair of location privacy policies

– Policy similarity score: α∈ [0, 1]

• determined by the size of the region and the duration of the

time interval specified in the policy.

• Step 2: Compute the degree of policy compatibility

between each pair of users
u1 and u2 will disclose locations

to each other simultaneously at

certain time point.
u1 and u2 will NOT disclose

locations to each other

simultaneously at any time.

u1 and u2 are not related.

PEB-TREE Construction

Policy encoding

• Step 3: Assign sequence values to users.

– Users with non-zero compatibility scores are connected by lines

– Sort users in a descending order of the number of connections

– SV(uj) = SV(ui)+(1-C(uj,ui))

0.4

0.2

0.9
0.8 0.6

u1 u2

u4 u3

u5

u6

User ID Sequence Value (SV)

U3

U1

U4

U2

U5

U6

PEB-TREE Construction

Policy encoding

• Step 3: Assign sequence values to users.

– Users with non-zero compatibility scores are connected by lines

– Sort users in a descending order of the number of connections

– SV(uj) = SV(ui)+(1-C(uj,ui))

– Starting value=2

User ID Sequence Value (SV)

U3 2

U1

U4

U2

U5

U6

0.4

0.2

0.9
0.8 0.6

u1 u2

u4 u3

u5

u6

PEB-TREE Construction

Policy encoding

• Step 3: Assign sequence values to users.

– Users with non-zero compatibility scores are connected by lines

– Sort users in a descending order of the number of connections

– SV(uj) = SV(ui)+(1-C(uj,ui))

– Starting value=2

User ID Sequence Value (SV)

U3 2

U1

U4 2.2=2+(1-0.8)

U2

U5 2.8=2+(1-0.2)

U6 2.4=2+(1-0.6)

0.4

0.2

0.9
0.8 0.6

u1 u2

u4 u3

u5

u6

PEB-TREE Construction

Policy encoding

• Step 3: Assign sequence values to users.

– Users with non-zero compatibility scores are connected by lines

– Sort users in a descending order of the number of connections

– SV(uj) = SV(ui)+(1-C(uj,ui))

– Starting value=2, group interval =2

User ID Sequence Value (SV)

U3 2

U1 4=2+2

U4 2.2=2+(1-0.8)

U2

U5 2.8=2+(1-0.2)

U6 2.4=2+(1-0.6)

0.4

0.2

0.9
0.8 0.6

u1 u2

u4 u3

u5

u6

PEB-TREE Construction

Policy encoding

• Step 3: Assign sequence values to users.

– Users with non-zero compatibility scores are connected by lines

– Sort users in a descending order of the number of connections

– SV(uj) = SV(ui)+(1-C(uj,ui))

– Starting value=2, group interval =2

User ID Sequence Value (SV)

U3 2

U1 4=2+2

U4 2.2=2+(1-0.8)

U2 4.6=4+(1-0.4)

U5 2.8=2+(1-0.2)

U6 2.4=2+(1-0.6)

0.4

0.2

0.9
0.8 0.6

u1 u2

u4 u3

u5

u6

PEB-TREE Construction

• A PEB-Tree key consists of three components: TID,

ZV, SV

– TID and ZV are used to model dynamic locations of users

(similar to the Bx-tree)

• TID: timestamp

• ZV: space-filling curve value

– SV: sequence value obtained from policy encoding

• Insertion and deletion of objects in the PEB-tree are

similar to those for the B+-tree.

Privacy-aware KNN Queries

• Perform range queries Iteratively with incrementally enlarged search regions

• Consider the search ranges of both ZV and SV values for each time partition.

– SV(u1), …, SV(um): sequence values of users related to the query issuer

– ZVsi, ZVei : location query ranges

Triangular Search Order Search Matrix

Performance Study

• Test Datasets
– Two types of location distribution

• Uniformly distributed user positions

• Positions distributed in a spatial network

– Randomly generated policies
• With varying spatial ranges and time intervals

– Number of users: 10,000 to 100,000

– Number of policies per user: 10, …, 50, …, 100

– Grouping factor: Model the overlapping of user friends

• The PEB-tree is compared with the Bx-tree.

Performance Study

• Varying Number of Users

The spatial index needs to retrieve all users inside the query range,

regardless of whether or not they are allowed to be seen by the query issuer.

The PEB-tree stores users based on both location and policy proximity,

and search is narrowed by using both location and policy constraints.

Performance Study

• Varying Number of Policies per user

The spatial index does not consider policies, so is not affected.

The PEB-tree needs to search more users related to the query issuer due

to the increase of policies.

Conclusion

• We consider the problem of efficiently supporting

range and kNN queries in a setting that affords

moving users of location-based services peer-wise

location privacy.

• We present a new indexing technique, called the

PEB-tree, along with efficient querying algorithms.

Thank You!

Questions?

