
Coq formalization of graph transformation
Samuel Arsac, supervised by Russ Harmer and Damien Pous

Équipe PLUME, LIP, ENS Lyon

March - July 2022

Contents
1 Introduction 2

2 Background 4
2.1 Quasi-topoi . 4
2.2 Basic structures . 5

2.2.1 Partial map classifiers 5
2.2.2 Regular monomorphisms 6
2.2.3 Final Pullback Complements 6
2.2.4 Multi-Pushout Complements 7
2.2.5 FPC augmentations 7
2.2.6 Multi-sums . 8

2.3 Sesqui-pushout rewriting . 8

3 Formalization 10
3.1 Quasi-topoi . 10
3.2 Basic structures . 12

3.2.1 Pullbacks . 12
3.2.2 Final Pullback Complements 15
3.2.3 Multi-sums . 17
3.2.4 Multi-POCs and FPAs 18

3.3 Formalized results . 18

4 Conclusion 18

1

1 Introduction
The general context
Graph rewriting is a mathematical theory allowing for the definition of
rewriting rules for graphs. This includes adding, deleting, merging and du-
plicating nodes and edges, but also modifiying associated data. A handbook
of the general theory was published in 1997 [9].

It has applications in various domains, such as software engineering,
databases, but also organic chemistry and molecular biology.

The subject of this internship is to formalize some useful categorical
results for graph rewriting. There are already some Coq libraries for cat-
egory theory, such as John Wiegley’s categories in Coq [10] or the more
general UniMath [2] and HoTT [8], both of which are based on the univa-
lence axiom. There are also some libraries in other proof assistants, such as
agda-categories [7], in Agda.

The research problem
Proofs of advanced results in graph rewriting can easily become convoluted
due to the amount of morphisms they involve and thus be error-prone. For-
malizing in Coq the categorical notions involved is a way to avoid this issue.

None of the previously mentioned libraries have all the required categor-
ical constructions in order to formalize graph rewriting.

I focused on an article by Russ Harmer and Nicolas Behr about concur-
rency theorems in two rewriting frameworks [3].

Your contribution
Using John Wiegley’s library [10] for some basic definitions, I defined some
the constructions used in graph rewriting in Coq.

This includes some usual constructions such as pullbacks and other less
usual notions such as final pullback complements and quasi-topoi.

I used these definitions to prove some auxiliary results in the article about
concurrency theorems, laying a foundation for proving the main theorems.

I did not reach the proofs of these concurrency theorems, as I have not
formalized all the required constructions.

The Coq code can be found in this repository, along with some docu-
mentation.

2

Arguments supporting its validity
When necessary, definitions written in Coq are proven equivalent to their
usual mathematical definition. This ensures that they correspond to the
expected notion, but also that they can be used in an intuitive way in a
proof, while still allowing for some interesting properties in Coq.

I have defined several constructions in a way that allows linking them
together, so as to make proving some usual results more efficient.

These definitions do not depend on any specific category, hence they can
be used in a completely different context.

Summary and future work
Since only auxiliary results are defined and proven for now, an obvious
future work is to define the few remaining constructions and prove the main
concurrency theorems of the article [3].

Implementing graph categories in Coq could also be an interesting step,
and then possibly to extract algorithms for graph transormation.

Another future work is a wiki for graph transformation with an underly-
ing Coq formalization of the results. Reserchers behind this project include
Nicolas Behr (IRIF), Russ Harmer and Damien Pous.

More generally, these foundations can be used for other results in graph
rewriting, and in any other field making use of the same constructions, since
they are purely categorical.

Notes and Acknowledgements
This internship report is written in English as it could possibly be of use in
the previously mentionned wiki project.

I wish to thank Russ Harmer and Damien Pous for their helpful super-
vision during my internship. I would also like to thank Nicolas Behr for his
insights on some parts of the article.

3

2 Background
The formalization aims at proving results on Sesqui-Pushout and Double-
Pushout graph rewriting, as presented in [3]. For the sake of simplicity, I will
present only Sesqui-Pushout rewriting here, but Double-Pushout rewriting
is based on the same notions. Comments on the differences between the two
approaches can be found in [4], section 1.2.

2.1 Quasi-topoi
The categories that will be used here for graph rewriting are called quasi-
topoi. In order to define them, we need several auxiliary definitions.

We first define a class of monomorphisms with some stability properties
(these monomorphisms will be noted ↣ in the rest of the report, while ↠
will be used for generic epimorphisms).

Definition 1 (Stable system of monics ([3], Definition 1)). A stable system
of monics M in a category C is a class of monomorphisms satisfying the
following conditions:

• all isomorphisms are in M,

• M is stable under composition,

• M is stable under pullbacks: if C
c←− A

a−→ B is a pullback of B
b−→

D
d←− C and b is in M then c is in M.

We then define subobject classifiers, which have an object Ω of “truth
values”, and which given a monomorphism A

m−→ B in M, gives a charac-
teristic morphism which is meant to identify the parts of B that are in the
image of m and those that are not.

Definition 2 (Regular subobject classifier ([11], 14.1)). In a category C
with finite limits, a regular subobject classifier of M is a monomorphism
T

T−→ Ω where T is terminal, such that for any A
m−→ B in M, there is a

unique pullback square A
m−→ B → Ω

⊤←− T ← A.

A T

B Ω

⊤m
⌟

We can finaly define quasi-topoi:

4

Definition 3 (Quasi-topos ([3], Definition 3)). A category is a quasi-topos
if:

• it has finite limits and colimits,

• it is locally cartesian closed,

• it has a regular subobject classifier.

2.2 Basic structures
2.2.1 Partial map classifiers

An M-partial map is a span A
m←− X

f−→ B, with m in M. The idea is that
we have a partial map from A to B, where X represents the elements on
which the map is defined and m embeds X in A.

A classifier is a way to obtain a total map from the partial map by
modifying the codomain. For Set, this can be done by adding a ⊥ element
to the codomain to which all elements that have no image by the partial
map will be mapped.

Definition 4 (M-partial map classifier ([3], Definition 2)). Given a category
C with a stable system of monics M, an M-partial map classifier (T, η) with
T an endofunctor on C and η a natural transformation from IDC to T such
that:

• for any X, X ηX−−→ T (X) is in M,

• for any M-partial map A
m←− X

f−→ B, there exists a unique morphism
A

ϕ(m,f)−−−−→ T (B) such that X
f−→ B

ηB−−→ T (B)
ϕ(m,f)←−−−− A

m←− X is a
pullback.

X B

A T (B)

m

f

ηB

ϕ(m,f)

⌟

Lemma 1 ([3], Coroallary 1). A quasi-topos always has an M-partial map
classifier.

5

2.2.2 Regular monomorphisms

We need to define first what an equalizer is.

Definition 5 (Equalizer ([1], 7.51)). Given a pair of morphisms A
f−→ B

and A
g−→ B, a morphism E

e−→ A is an equalizer of f and g if:

• f ◦ e = g ◦ e,

• for any E
e′−→ A such that f ◦e′ = g◦e′, there exists a unique morphism

E′ e−→ E such that e′ = e ◦ e.

E′

E A B
f

ge

e′
e

=

Definition 6 (Regular monomorphism ([1], 7.56)). A regular morphism is
a morphism that is the equalizer of a pair of morphisms.

Regular monomorphisms are indeed monomorphisms, because of the uni-
versal property in the definition of equalizers (see [1] 7.57, or the proof in
coq).

The idea behind ruglar monomorphisms is to represent embeddings,
which is not always the case for generic monomorphisms (see [1] page 109
and 7.58).

Lemma 2 ([3], Coroallary 1). A quasi topos always has a stable system of
monics, which is the class of regular monos.

2.2.3 Final Pullback Complements

We define here the notion of Final Pullback Complement (FPC), taking
the definition from [5]. The idea is that given two composable morphisms
A

a−→ B
b−→ D, a pullback complement is another pair A c−→ C

d−→ D such that
the square they form is a pullback. It is final if there is a unique morphism
from any “bigger” pullback to the complement.

Definition 7 (Final Pullback Complement (FPC) ([5], Definition 1)). Given
two composable morphisms A

a−→ B
b−→ D, an FPC of a and b is another pair

A
c−→ C

d−→ D such that

6

• A
a−→ B

b−→ D
d←− C

c←− A is a pullback

• for any pullback A′ a′−→ B
b−→ D

d′←− C ′ c′←− A and any A′ α−→ A such
that a ◦ α = a′, there is a unique C ′ u−→ C such that d ◦ u = d′ and
c ◦ α = u ◦ c′.

A′

B A

D C

C ′

a

b

d

c

a′
α

⌟

c′

d′
u

⌟
=

=

=

2.2.4 Multi-Pushout Complements

Pushout complements are ways to complete a square such that it is a
pushout, similarly to pullback complements. However, contrary to FPCs,
we take the set of all possible complements with an added condition related
to M.

Definition 8 (M-Multi-Pushout Complement ([3], Definition 6)). Given a
category C with a stable system of monics M, the M-multi-pushout com-
plement of two morphisms A

a−→ B
b−→ D with b in M, noted P(a, b) is the

set of all pairs of morphisms A
c−→ C

d−→ D such that:

• c is in M,

• A
a−→ B

b−→ D
d←− C

c←− A is a pushout.

2.2.5 FPC augmentations

An M-FPC augmentation (FPA) of a pushout square is a way to extend
this square into an FPC.

Definition 9 (FPA ([3], Definition 7)). Given a quasi-topos C with M =

rm(C) and a pushout A a−→ B
α−→ D

a←− C
α←− A where α and α are in M, an

FPA is triple (D
e−→ E,C

n−→ F, F
f−→ E) such that

7

• e is an epimorphism,

• e ◦ α and n are in M,

• A
n◦α−−→ D

f−→ E is an FPC of A a−→ B
e◦α−−→ E

We note FPA(α, a) the set of all such triples.

A B

C D

F E

a

α

e

f

n

α

a
e◦αn◦α

2.2.6 Multi-sums

Multi-sums are an extension of the notion of coproduct to a family of objects.

Definition 10 (M-Multi-sum). If C is a quasi-topos, the multi-sum of two
object A and B, noted ΣM(A,B), is a family of cospans (A

ai−→ Ci
bi←− B)i∈I

with (ai) and (bi) regular monomorphisms, such that for any cospan A
f−→

X
g←− B, there is an i in I and a morphism Ci

x−→ X such that f = x ◦ ai
and g = x ◦ bi.

2.3 Sesqui-pushout rewriting
Given a quasi-topos C, we can define Sesqui-pushout rewriting (SqPO-rewriting).
This makes sense when applied to categories of graphs (see [3], section 2.1)

A rewriting rule is a span O
o←− K

i−→ I. The idea is that I is the input
and O the output.

All the following definitions come from [3], Definition 10.

Definition 11 (SqPO-admissible match). Given a rule r = O
o←− K

i−→ I,
its admissible matches into an object X are the regular monomorphisms
I

m−→ X. We note MSqPO
r (X) the class of such morphisms.

Definition 12 (SqPO direct derivation). Given a rule r = O
o←− K

i−→ I, an
object X and an element m of MSqPO

r (X), a derivation of X with r along

8

m is a diagram of the following shape, (1) being obtained as an FPC and
(2) as a pushout.

O K I

(2) (1)

rm(X) X X

o i

m m

io

m∗

It is also possible to compose rules. Admissible matches of rules are the
different ways in which rules can be composed.

Definition 13 (SqPO-type admissible matches). Given two rules r1 =

O1
o1←− K1

i1−→ I1 and r2 = O2
o2←− K2

i2−→ I2, we define the set of admissible
matches:

MSqPO
r2 (r1) := {(j2, j1, j1, o1, j1; i1, ι21)|(j2, j1) ∈ ΣM(I2, O1)

∧ (j1, o1) ∈ P(o1, j1)

∧ (j1, i1, ι21) ∈ FPA(j1, i1)}/ ∼

See the diagram below for a clearer view of what the various morphisms
are.

The set is quotiented by the relation ∼, which eliminates equivalent
elements coming from multi-sums, multi-POCs and FPAs.

Definition 14 (SqPO-type rule composition). Given two rules r1 = O1
o1←−

K1
i1−→ I1 and r2 = O2

o2←− K2
i2−→ I2 and an admissible match µ ∈

MSqPO
r2 (r1), the composition is a diagram like the one below, where (22),

(6) and (4) are pushouts, (11) is a multi-POC, (21) and (3) are an FPA and
(12) and (5) are FPCs.

9

O2 K2 I2 O1 K1 I1

(22) (12) (11) (21)

O21 K2 J21 K1 I21

(6) (5) (4) (3)

O21 K2 J21 K1 I21

o2 i2

j2j∗2

o2

i∗21 j2

j2

i2

j21

i2 o1

o1

j1

o1

j1

j1

i1

i1

i1

j∗1

ι21

ι1

o2

The new rule is obtained by span composition:

r2
µ
∢r1 := (O21

o2←− K2
i2−→ J21) ◦ (J21

o1←− K1
i1−→ I21)

We thus take a pullback K21 of K2
i2−→ J21

o1←− K1 to obtain a new rule
of the shape O21 ← K21 → I21.

3 Formalization
The last diagram shows how complex things can become when studiying
graph transformations, as this is only for the composition of two rules. This
is why formalizing the theory in a proof assistant can be helpful.

3.1 Quasi-topoi
The definition of quasi-topoi presented earlier involves locally cartesian
closed categories, which means it requires using slice categories, which means
adding a layer of definitions.

However we can find an equivalent definition in [11]:

Lemma 3 ([11]). A category is a quasi-topos iff:

• it has finite limits and colimits,

• it is cartesian closed,

• it has a partial map classifier.

So we can just require a cartseian closed cateogry, but we need to have a
partial map classifier, which is not much more complicated than a subobject
classifier.

10

We first define stable systems of monics with a class having a type to
represent monics, and a way to recover the morphisms from this type. We
can then translate the requirements directly.

Class Stable_monics {C: Category} := {
Stb_Monics (A B: C): Type;
Stb_Monics_morph: forall [A B], Stb_Monics A B -> A ~> B;
Is_M {A B: C} (f: A ~> B) := ∃ f': Stb_Monics A B,

Stb_Monics_morph f' = f;

(** Elements of M are monomorphisms *)
M_monics: forall [A B: C] (m: A ~> B), Is_M m -> Monic m;

(** Direct translation of the definition *)
M_isos: forall [A B: C] m, (∃ iso: A ≅ B, to iso = m)

-> Is_M m;
M_comp: forall [A B C: C] (f: A ~> B) (g: B ~> C),

Is_M f -> Is_M g -> Is_M (g ∘ f);
M_pb: forall [A B C D: C] [a: A ~> B] [b: B ~> D]

[c: A ~> C] [d: C ~> D] (pb: Pullback a b c d),
Is_M b -> Is_M c

}.

We also need to define regular monomorphisms as the instance of stable
system of monics to be used for quasi-topoi.

Equalizers are straightforward to define:

Class Equalizer (f g: A ~> B) (e: E ~> A) := {
Eq_comp: f ∘ e ≈ g ∘ e;

Eq_prop: forall (E': C) (e': E' ~> A), f ∘ e' ≈ g ∘ e' ->
∃!~> ε: E' ~> E,
e' ≈ e ∘ ε

}.

And then regular monomorphisms, following the definition:

Class Reg_mono {C: Category} [A B] (m: A ~> B) := {
reg_prop: ∃ C (f g: B ~> C), Equalizer f g m

}.

11

We can then define partial map classifiers:

Class Part_map_classifier {C: Category} {M: Stable_monics}:= {
class_T: C ⟶ C;
class_η: Id ⇒ class_T;

class_M: forall X: C, (class_η X) ∈ M;
class_pb: forall [X A B] (m: X ~> A) (f: X ~> B),

m ∈ M -> ∃!~> ϕ: A ~> class_T B,
Pullback m ϕ f (class_η B)

}.

And we can finally define quasi-topoi using the library [10] for limits,
colimits and cartesian closeness:

Class Quasi_topos (C: Category) := {

(** Limits and colimits *)
Qt_limits: forall (J: Category) (F: J ⟶ C), Limit F;
Qt_colimits: forall (J: Category) (F: J ⟶ C), Colimit F;

(** C is cartesian *)
Qt_cart: Cartesian;
(** closed *)
Qt_cart_closed: Closed;

(** and it has a partial map classifier *)
Qt_part_map_cl: @Part_map_classifier _ (Reg_mono_M)

}.

Where Reg_mono_M is the function that gives the stable system of
monics made of regular monomorphisms.

3.2 Basic structures
3.2.1 Pullbacks

In John Wigley’s [10], pullbacks are defined in the following way:

Record Pullback {C: Category} {B C D: C}
(b: B ~> D) (d: C ~> D) := {

12

Pull: C;
pullback_fst: Pull ~> B;
pullback_snd: Pull ~> C;

pullback_commutes: b ∘ pullback_fst
≈ d ∘ pullback_snd;

ump_pullbacks : ∀ A' (a' : A' ~> B) (c' : A' ~> C),
b ∘ a' ≈ d ∘ c'
-> ∃! u : A' ~> Pull, pullback_fst ∘ u ≈ a'

∧ pullback_snd ∘ u ≈ c'
}.

The pullback_commutes and ump_pullbacks fields are a direct trans-
lation of the commutativity and of the universal property of pullbacks, re-
spectively. It also makes the choice to provide the pullback object and the
two morphisms. While this can be useful in some cases, we also need a way
to express that a given square is a pullback. However doing so with the
previous definition requires some typecasting with equalities, which is very
unpractical.

We can solve this problem by directly defining pulbacks as a property of
a square, without changing much of the definition:

Record Pullback {C: Category} [A B C D: C]
(a: A ~> B) (b: B ~> D) (c: A ~> C) (d: C ~> D) := {

pullback_commutes: b ∘ a ≈ d ∘ c;
ump_pullbacks : ∀ A' (a' : A' ~> B) (c' : A' ~> C),

b ∘ a' ≈ d ∘ c'
-> ∃! u : A' ~> A, a ∘ u ≈ a' ∧ c ∘ u ≈ c'

}.

Defining a class giving a pullback when given a cospan is very simple
using existential quantifiers.

Once this definition is established, it remains to prove some key results
about pullbacks, such as their unicity up to a unique isomorphism. This
can be directly proven in Coq without much difficulty. However from a
theoretical point of view, this can be proven much more elegantly with the
following lemma.

Lemma 4. Given a category C, three objects B, C and D and a cospan
B

b−→ D
d←− C, a pullback of b along d is a terminal objects in the category

13

of spans B
f←− X

g−→ C making the square commute. The morphisms in this
category being the morphisms in C between the middle objects of the spans
such that the obtained diagram commutes.

Proof. This correspond to the definition of pullbacks as the limit of a dia-
gram.

Since we now that terminal objects are unique up to a unique isomor-
phism, it is almost immediate to show the unicity of pullbacks. It would
be interesting to add more modularity in the formalisation, so as to be able
to prove the unicity of terminal objects once, and then use it to prove the
unicity of pullbacks, and of any other structure that is a terminal object in
some category.

We can define a category of spans Span_cat, given two objects. We
then define, given a cospan, a subcategory Square_cat containing only the
spans making the square commute. This definition can be done interactively
for the most part in Coq.

We then define what a terminal object is, in the same way as in John
Wigley’s library [10], but changing it from giving a terminal object to being
a property of objects. We can then define pullbacks in a third way:

Class Pullback {C: Category} [A B C D: C]
(a: A ~> B) (b: B ~> D) (c: A ~> C) (d: C ~> D):= {

pb_comm: b ∘ a ≈ d ∘ c;
pb_term: @Terminal (Square_cat B C
({|sp_l := op b; sp_r := op d|}))
({|sp_obj := A; sp_l := a; sp_r := c |}; pb_comm)

}.

I have proven the equivalence of this definition with the previous one.
The interest of doing this is twofold: first, to check the correctness of the
definition, second, because this definition is generally not the best to use
in a proof, this proof makes it possible to build a pullback using the usual
definition, and to decompose them in the same way.

Once the unicity of terminal objects is proven, proving the unicity of
pullbacks is simply a matter of unfolding definitions. It still takes a number
of lines, but is quite straigthforward.

Pushouts are defined as pullbacks in the opposite category, which allows
for the transfer of results from one to the other.

14

3.2.2 Final Pullback Complements

The definition could easily be directly translated into Coq in the same way
as the original definition of pullbacks. However we can prove that FPCs are
specific terminal object in a particular category, to get the same benefits as
for pullbacks.

Definition 15. Given three objects A, B, and D in a category C and a pair
of composable morphisms a : A → B and b : B → D, we take the following
category of “candidates FPC” cFPC:
Objects: quintuplets made of two objects A′ and C ′ in C and three morphisms
α : A′ → A, c′ : A′ → C ′ and d′ : C ′ → D, such that the square A′ a◦α−−→
B

b−→ D
d′←− C ′ c′←− A′ is a pullback.

Morphisms: given two objects of cFPC, A
α←− A′ c′−→ C ′ d′−→ D and A

α′
←−

A′′ c′′−→ C ′′ d′′−→ D, morphisms between the two are pairs of morphisms in C,
A′ f−→ A′′ and C ′ g−→ C ′′ such that α′ ◦ f = α, c′′ ◦ f = g ◦ c′ and d′′ ◦ g = d′.
This is illustrated in the following diagram.

B A A′′ A′

D C ′′ C ′g

α′

c′′ c′

f

=
α

a

b

d′′

d′
=

=

Theorem 1. The FPCs of a and b are the terminal objects in cFPC such
that α is an identity morphism.

Proof. The details of the proof are formalized in Coq. I present here the
basic ideas.
First, given an FPC A

c−→ C
d−→ D of a and b, we take the object X :=

A
idA= A

c−→ C
d−→ D of cFPC (it forms a pullback by definition of an

FPC). We now prove that it is a terminal object: given another object
Y := A

α←− A′ c′−→ C ′ d′−→ D, we have a unique morphism C ′ u−→ C by the
property of FPCs, and we already have A′ α−→ A, which gives us a morphism
(α, u) between Y and X. Such a morphism is unique, if we have another
morphism (f, g) from Y to X then g = u because of the unicity of u, and

15

we have idA ◦ f = α, so f = α.

A′

B A A

D C

C ′

c

a

b

d

α

c′

d′ u
g

f=

We now suppose we have a terminal object X := A
idA= A

c−→ C
d−→ D. It is

a pullback by definition. Given a pullback A′ a′−→ B
b−→ D

d′←− C ′ c′←− A′ with
a morphism A′ α−→ A such that a′ = a ◦ α, we define the object A α←− A′ c′−→
C ′ d′−→ D. Since X is a terminal object, we have a unique pair of morphisms
A′ u−→ A and C ′ u′

−→ C such that the square and triangles commute. We
then directly have that u = α and thus that u′ satisfies the commutation
requirements of the definition of FPCs, which gives us that A c−→ C

d−→ D is
an FPC of A a−→ B

b−→ D.

Once again, proving this equivalence in Coq is useful to check the proof,
but also to make the usual definition of FPCs easily available.

We can remark that instead of asking for α to be the identity, askiing
for it to be an isomorphism is equivalent.

Remark. Asking for α to be an identity in the terminal object is equivalent
to asking for α to be an isormorphism in a terminal object.

Proof. If we have a terminal object A
α←− A′ c′−→ C ′ d′−→ D where α is an

isomorphism, then A
idA= A

c′◦α−1

−−−−→ C ′ d′−→ D is also an object (A a−→ B
b−→

D
d′←− C ′ c′◦α−1

←−−−− A is a pullback because A′ a◦α−−→ B
b−→ D

d′←− C ′ c′←− A′′ is,
this is a simple result on pullbacks which is formalized in the Coq file for
pullback lemmas). We have a morphism from the first object to the second:
(α, idC′), and since the first object is terminal, this means the second also
is, by unicity of terminal objects up to isomorphism.

16

The implementation of FPCs using this result is in the file FPC. Like
for pullbacks, I have defined the category interactively using the Program
library. FPCs are then defined in a straightforward way:

Class FPC {C: Category} [A B D: C] (a: A ~> B) (b: B ~> D)
[C: C] (c: A ~> C) (d: C ~> D) := {
FPC_pb: Pullback a b c d;
FPC_term: Terminal (fpc_cat_id_obj C c d FPC_pb);

}.

With fpc_cat_id_obj being the function returning an object of the
category with an identity as α. This is once again a property of a pair of
morphisms to be an FPC, for the same reason as for pullbacks.

3.2.3 Multi-sums

A problem with the previous definition of multi-sums is that a quotient has
to be taken to remove equivalent objects from the family. One way to avoid
doing that is to require the unicity of the object and the morphism, like in
this definition from [6].

Definition 16 (Multi-sum [6]). Given two objects A and B in a category
C, a multi-sum of A and B is a family of cospans (A

ai−→ Ci
bi←− B)i∈I such

that for any cospan A
f−→ X

g←− B, there is a unique pair (i, u) with i ∈ I
and Ci

u−→ X such that u ◦ ai = f and u ◦ bi = g.

A B

C1 . . . Ci

X

a1
b1 ai

bi

f gu

This can easily be linked to multi-inital families, which are a similar
extension of initial objects:

Definition 17 (Multi-initial family [6]). A multi-initial family in a category
C is a family of objects (Xi)i∈I such that for any object Y there exists a
unique pair (i, u) with i ∈ I and Xi

u−→ Y

17

A multi-sum of A and B in C is then a multi-initial family in the category
of cospans with domain A and B, equipped with the morphisms of C making
the diagrams commute. In the case of graph rewriting [3], the definition
involves regular monomorphisms, however it is exactly the same as the one
presented here, on a restricted setting.

Multi-initial objects and multi-sums are the straightforward to define:

Definition Multi_initial {C: Category} I (i: I -> C) :=
forall A: C, ∃! j: I, i j !~> A
∧ forall j': I, i j' ~> A -> j' = j.

Definition Multi_sum {C: Category} (A B: C) :=
@Multi_initial (Cospan_cat A B).

Where Cospan_cat is the previously defined category of spans, on the
opposite category.

3.2.4 Multi-POCs and FPAs

I have not defined Multi-POCs nor FPAs yet. Like FPCs and multi-sums,
the idea would be to find way to define them in a way that allows for the
inheritance of results, and that would also avoid the need for a quotient
when defining admissibility of matches of rules For example, Multi-POCs
could probably be defined as multi-initial objects in categories of pushout
complements.

3.3 Formalized results
In addition to these definitions, I have formalized a number of auxiliary
lemmas, mostly from Annex A of [3].

I have unfortunately not been able to reach the concurrency theorems
(section 4 of [3]) since I have yet to formalize the semantics of sesqui-pushout
and double-pushout graph rewriting.

4 Conclusion
Most of the conclusions and future work has been discussed in the first
section.

However, in more details, implementing multi-POCs and FPAs are an
obvious next step, since they are the two missing constructions for the rewrit-
ing semantics.

18

All definitions have also not been given as much attention as FPCs and
pullbacks, there could be some improvements for the definition of quasi-topoi
for instance, or in the underlying definitions such as limits and cartesian
closeness.

References
[1] Jiri Adamek, Horst Herrlich, and George Strecker. “Abstract and Con-

crete Categories - The Joy of Cats”. In: Reprints in Theory and Ap-
plications of Categories 17 (2006), pp. 1–507.

[2] Benedikt Ahrens, Chris Kapulkin, and Michael Shulman. “Univalent
Categories and the Rezk Completion”. In: Mathematical Structures in
Computer Science 25.5 (June 2015), pp. 1010–1039. issn: 0960-1295,
1469-8072. doi: 10.1017/S0960129514000486. arXiv: 1303.0584
[math]. url: http://arxiv.org/abs/1303.0584.

[3] Nicolas Behr, Russ Harmer, and Jean Krivine. “Concurrency Theo-
rems for Non-linear Rewriting Theories”. In: Graph Transformation.
Ed. by Fabio Gadducci and Timo Kehrer. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2021, pp. 3–
21. isbn: 978-3-030-78946-6. doi: 10.1007/978-3-030-78946-6_1.

[4] Nicolas Behr, Russ Harmer, and Jean Krivine. Fundamentals of Com-
positional Rewriting Theory. Apr. 14, 2022. doi: 10.48550/arXiv.
2204.07175. arXiv: 2204.07175 [cs]. url: http://arxiv.org/
abs/2204.07175.

[5] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Graph Trans-
formations. Ed. by Andrea Corradini et al. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2006, pp. 30–45. isbn: 978-3-540-
38872-2. doi: 10.1007/11841883_4.

[6] Yves Diers. Familles Universelles de Morphismes. Publications In-
ternes de l’U.E.R. de Mathématiques Pures et Appliquées. Lille: Uni-
versité des Sciences et Techniques de Lille I, 1978. 19 p.

[7] Formalizing Category Theory in Agda | Proceedings of the 10th ACM
SIGPLAN International Conference on Certified Programs and Proofs.
url: https://dl.acm.org/doi/abs/10.1145/3437992.3439922.

[8] HoTT. Homotopy Type Theory. url: https://github.com/HoTT/
HoTT (visited on 08/20/2022).

19

[9] Grzegorz Rozenberg. “Handbook of Graph Grammars and Computing
by Graph Transformation”. In: (Jan. 1, 1997).

[10] John Wiegley. Category Theory in Coq. url: https://github.com/
jwiegley/category-theory (visited on 08/20/2022).

[11] Oswald Wyler. “Chapter 1: Basic Properties”. In: Lecture Notes on
Topoi and Quasitopoi. World Scientific. isbn: 978-981-02-0153-1.

The Coq code can be found in this repository: https://gitlab.com/
SamuelArsac/m2-internship, along with some documentation: https:
//samuelarsac.gitlab.io/m2-internship.

20

