SPNP User’s Manual
Version 6.0

Contact information:
Professor Kishor S. Trivedi
Center for Advanced Computing and Communication (CACC)
Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708, USA
phone: (919) - 660 - 5269
fax: (919) - 660 - 5293
kst@ee.duke.edu

September, 1999

Preface

The Stochastic Petri Net Package (SPNP) is a versatile modeling tool for performance, dependabil-
ity and performability analysis of complex systems. Input models based on the theory of stochastic
reward nets are solved by efficient and numerically stable algorithms. Steady-state, transient, cu-
mulative transient, time-averaged and up-to-absorption measures can be computed. Parametric
sensitivity analysis of these measures is possible. Some degree of logical analysis capabilities are
also available in the form of assertion checking and the number and types of markings in the reach-
ability graph. Advanced constructs, such as marking dependent arc multiplicities, guards, arrays
of places and transitions, are available. The modeling complexities can be reduced with these ad-
vanced constructs. In addition, the expressiveness of the package is enhanced. The most powerful
feature of SPNP is the ability to assign reward rates at the net level and subsequently compute the
desired measures of the system being modeled. Although no previous knowledge of the C language
is necessary to use SPNP, the modeling description language is CSPL, a C-like language.

In the latest version (V6.0), the user can specify non-Markovian SPNs and Fluid Stochastic
Petri Nets (FSPNs). Such SPNs are solved using discrete-event simulation rather than by analytic-
numberic methods. Several types of simulation methods are available: standard discrete event
simulation with independent replicarions or batches, importance splitting techniques (splitting and
Restart), importance sampling, regenerative simulation without or with importance sampling, and
thinning with independent replications, batches or importance sampling.

Since a graphical user interface, iISPN, is now available, the need for the knowledge of C language
further diminishes.

ii

Contents

Preface ii
1 Introduction 1
2 Notation and Terminology 3
2.1 Petri net and stochastic Petrinet L 0oL 3
211 BAG o o ot 3

2.1.2 Petrimet. oL e 3

2.1.3 Stochastic Petrinet 4

2.1.4 TImportant feature for SPNP: marking dependence 4

2.2 Non-Markovian SPN 5
2.3 Fluid Stochastic Petrinet 5

3 Getting Started With SPNP 7
3.1 Imstallation and run oL 7
3.2 Output files 7

4 The CSPL Language 9
4.1 Function: options() 9
4.1.1 Functions to set option values oL 10

4.1.2 Functions to accept runtime inputso 10

42 Function: met() 11
4.2.1 Functions to define a simple SRN 11

4.2.2 An example: using the power of ANSIC 13

4.2.3 Rate-dependent functiono o 15

4.2.4 Marking-dependent function. oo oL 15

4.2.5 Specify marking-dependent enabling functions. 16

4.2.6 Specify marking-dependent firing rates or firing weights 16

iii

4.2.7 Specify marking-dependent arc cardinalities

4.2.8 Define and use parameterso oo
4.2.9 Functions to define an FSPN 0oL
4.2.10 Functions for non-Markovian SPNs
4.3 Function: assert()
4.4 Functions: ac_init() and ac_reach() L L.
4.5 Function: acfinal()
4.6 A complete example

Specialized Output Functions

Discrete-Event Simulation

6.1 Standard discrete event simulation L o Lo
6.1.1 Current limitations of the simulator
6.1.2 Examples e

6.2 Importance splitting for rare events Lo L oo
6.2.1 Example.

6.3 Importance sampling

6.4 Regenerative simulation oL L L

6.5 Regenerative simulation with importance sampling

Available Options

7.1 Options for intermediate files
7.2 Options for analytic-numeric solution
7.3 Options for simulative solution 0o
7.4 Miscellaneous options

Format of the Intermediate Files
8.1 The “xg” file e

8.2 The “me” file e

iv

34

37

38

39

39

39

40

40

42

42

43

43

46

47

50

52

8.3 The “.prb” file e 54
User guide for iSPN 55
9.1 Imtroduction e 95
9.1.1 Organization of this guide L oL 55
9.1.2 Conventions used in this chapter 55
9.2 iSPN . . . e 55
9.2.1 Why iSPN7? o e 55
9.3 iSPNinterface e 56
9.4 The Petrinet editor 58
9.4.1 File functions 61
9.4.2 Miscellaneous functions 0oL 62
9.4.3 Environment control functionso oL Lo 63
9.4.4 Information functions L L L o 63
9.4.5 FSPNmodel e 63
9.5 Execution of the model L 64
9.6 Viewingoutput L e 65
9.6.1 Graphing functions Lo 66
9.6.2 Graph definition functions Lo 67
9.7 Debugging e 68
9.7.1 Reachability graph traversal 0oL 68
9.8 Browse examples Lo e 69
9.9 Help . . . o e 69
9.10 How to install iSPN in a unix environment 70
9.11 Programming reSOUTCES . . . « . v v v v v v v v bt et e e e e 70
9.11.1 Tel (version tel7.4) o L 71
9.11.2 Tk (version tk4.0) 71

0.11.3 Tix (version Tix4.0.4) 72

10 Examples 73
10.1 Molloy’s example e e e e e 73
10.1.1 Source . . . v v o e 73
10.1.2 Description oL e 73
10.1.3 Features oL 73
10.1.4 SPNP File — examplel.c 74

10.2 Software Performance Analysis L o 75
10.2.1 Description o L e e 75
10.2.2 Features 75
10.2.3 SPNP File — ezample2.c 75

10.3 M/M/m/b queueo 7
10.3.1 Description oL 77
10.3.2 Features T
10.3.3 SPNP File — example3.c 78

10.4 C.mmp system performability analysis o 0L 80
10.4.1 SOUrce . . v v v v e 80
10.4.2 Description oL e e 80
10.4.3 Features 80
10.4.4 SPNP File — examplef.c 81

10.5 Database system availability analysis oo L 83
10.5.1 SOUrCe . . o v v o e e 83
10.5.2 Description L e e 83
10.5.3 Features oL 84
10.5.4 SPNP File — exampleb.c 84

10.6 ATM network under overload L 88

vi

10.6.1 Source e 88

10.6.2 Description o L e e 88
10.6.3 Features 88
10.6.4 SPNP File — atm.c e 89
10.7 Criticality Importance and Birnbaum Importance 93
10.7.1 SOUrCe . . . v v v e 93
10.7.2 Description L e e 93
10.7.3 Features 93
10.7.4 SPNP File — sun.c 93
10.8 Channel recovery scheme in a cellular network 95
10.8.1 Source oL 95
10.8.2 Description e e 95
10.8.3 Features 95
10.8.4 SPNP File — icupc98.c 95
10.9 Accurate Model for the BUS in ATM LAN emulation 98
10.9.1 Sourceo 98
10.9.2 Description oL e e 98
10.9.3 Features oL 98
10.9.4 SPNP File — LAN.c o o e 99
10.10Birth-death Model for the BUS in ATM LAN emulation 104
10.10.1S0urce 104
10.10.2 Descriptiono 104
10.10.3Features 104
10.104SPNP File — LA.c. e 105
10.11MMPP Model for the BUS in ATM LAN emulation 110
10.11.1S0urce o o e 110

vii

10.11.2 Description oL e 110

10.11.3Features o o L L e e e 110
10.11.4SPNP File — LANE.c« 0 it s e e e 110
10.12Performance anlysis of Multi-Protocol Label Switching Network 115
10.12.1S0urce oL e e 115
10.12.2 Description oL o 115
10.12.3Features o oL e e e 116
10.12.4SPN model for LSN oo 116
10.125Files list o L oL 116
10.13Simulation example: reader and writer sharing buffer 128
10.13.1S0urce oL e 128
10.13.2Description L e e e e 128
10.13.3Features oL e 128
10.13.4SPNP File — readwrite.c« 128
10.14Hybrid System: reactor temperature control system 129
10.14.1S0uUrce oL e 129
10.14.2 Descriptiono L e 130
10.14.3Features o oL e e 130
10.14.4SPNP File — reactor.c. e 130
10.15Dual tank example L e e 131
10.15.1S0uUrce oL e 131
10.15.2Descriptiono o 131
10.15.3Features oL e e 132
10.15.4SPNP File — splitting.c 132
10.16 Equivalent failure rate and repair rate computation in hierarchical model 134
10.16.1S0uUrce o L 134

viii

10.16.2 Descriptiono L 134

10.16.3Featureso 134

10.16.4 SPNP Files for Module level Markov chain model 136

10.16.5 SPNP File for System level SPN model — gsb.c. 143
10.17Analysis of Phased-Mission Systems (PMS) with DSPN 150
10.17.150UrCe . . o v v v i e e e e 150
10.17.2Description oo e e 150
10.17.3SPNP File — pms.c o e 152

10.17.4 Configuration File — pms.cfg o oo 157
10.17.5Shell File — t.esh o o o e 158
10.18Extensions to SPNP o 159
10.18.1 Fixed point iteration Lo 159
10.18.2Initial probability reload oo 159

A Differences Between last versions of SPNP 165
A.1 Command Differences Between SPNP Version 4 and Version 5. 165
A.2 Command Differences Between SPNP Version 5 and Version 6. 165

B SPNP Applications 166

ix

Chapter 1

Introduction

The Stochastic Petri Net Package (SPNP) is a versatile modeling tool for solution of Stochastic
Petri Net (SPN) models. The SPN models are described in the input language for SPNP called
CSPL (C-based SPN Language). The CSPL is an extension of the C programming language [13]
with additional constructs which facilitate easy description of SPN models. The full power and
generality of C is available, but a working knowledge of C is sufficient to use SPNP effectively.

The SPN models specified to SPNP are actually “SPN Reward Models” or Stochastic Reward
Nets (SRNs) [6, 7] which are based on the “Markov Reward Models” (MRM) paradigm [15, 27].
Fig. 1.1 shows the taxonomy of SRN models and the solution method implemented in SPNP. Markov
Reward Model provides a powerful modeling environment for:

e Dependability (Reliability, Availability, Safety) analysis.
e Performance analysis.

e Performability modeling.

[Stochastic Reward Net (SRN) Models J

|

@ [Non—Markovian Nets] FSPNs

Generate all Markings
(tangible + vanishing Generate Reward .
rates for tangible Markings

Extended Reachability [Discrete Event Simulation (DES) J
Graph (ERG)

Eliminate vanishing / \
Markings

Steady-state

[Markov Reward Model (MRM} x l

Batch Regenerative Independent
- - means simulation replications
(analytic-numeric methods | \
[Steady-state] [transient] egu'ar importance) (Restart Spllttlng
\ / \ DES sampling [J L—J
Gauss- |(Power |(Std unifor-1(Fox and Glynn|(Stiff
Seidel |method||Mization |uniformization || yniformization

Figure 1.1: Taxonomy of SRN models and analysis methods

\

A number of important Petri net constructs such as marking dependency, variable cardinality
arc and enabling functions (or guards) [6] facilitate the construction of models for complex systems.
The package also allows logical analysis on the Petri net whereby any general assertions defined on

1

the Petri net are checked for each marking of the net. The SRN may be solved to obtain either
steady-state metrics or transient metrics. The package allows the specification of custom measures
although a standard set of measures are available. The measures are defined in terms of reward
rates associated with the markings of the SRN. Parametric sensitivity analysis allows the user to
evaluate the effect of changes in an input parameter on the output measures. This is useful in
system optimization and bottleneck analysis. The discrete-event simulation facility may be used to
solve large Markovian SPNs and non-Markovian SPNs. Basic Fluid Stochastic Petri Nets (FSPNs)
[8, 14, 31], whose analytic-numerical solution is not supported in the current version, can also be
simulated, and results are reported in a way similar to those for the numerical solution. Note that
if the SPN is solved using simulation, the reachability graph will not be generated.

This manual describes SPNP Version 6.01, running under the UNIX system on a variety of
platforms (VAX, Sun 4, 5 and Ultra, Convex, Gould, NeXT, CRAY), AIX system (RS/6000),
Linux, VMS system (VAX). The description will apply mainly to UNIX-based systems.

A basic knowledge of the stochastic Petri net (SPN) formalism and Markov chains is assumed.
The reader should consult [23, 24] if unfamiliar with some Petri net (PN) concepts. The Markovian
SPN model we adopt is best described in [5, 6, 7], but it may be useful to consult [1]. FSPN model
we assume is best described in [8] while the non-Markovian SPN model is best described in [11],
but enhanced with the list of distributions of this manual. For a reference on the C language, see
[13]. For further information on Markov chains, performance modeling, and reliability modeling
see [3, 30] while for performability modeling see [26, 27, 32]. Markov and Markov reward model
solution techniques are surveyed in [25]. Sensitivity analysis of Markov and Markov reward models
is discussed in [2] and the sensitivity analysis of SRN models is discussed in [20]. Several papers
have appeared in the literature where SPNP was used, some of these papers are listed in Appendix
B. A 6-hour long VHS tape for a course on “Putting Stochastic Petri Nets to Work,” by K. S.
Trivedi and G. Ciardo can be ordered from USC-ITV by calling +1-213-740-0119.

Although model hierarchies are not built into SPNP, hierarchical SRN models can be exercised
using a UNIX shell file and submodels can communicate information via files that can be declared
and opened inside individual SPNP submodel input files. Examples of papers using model hierarchies
and fixed-point iteration include [4, 10, 16, 18, 19, 21, 29, 17, 22].

Chapter 2

Notation and Terminology

We write predefined CSPL types, constants, and functions in boldface, while we use italic for user-
defined quantities. In the examples, however, we simply use a fixed-pitch font to show actual
CSPL code. For readability, a place p_1 or a parameter alpha in a CSPL fragment are written as
p1 and « in the textual discussion.

2.1 Petri net and stochastic Petri net

2.1.1 Bag

The concept of bag will be used in the following, so we describe it here. For a complete definition
and examples see [24]. The concept of bag extends the one of set. If = is an element of the set S,
then SU{x} = S, but there are cases where it is important to count the occurrences of z in S. A bag
represents this by allowing repeated occurrences of the same element, or, in other words, by attaching
a positive integer count to each element of a set. So, for example, {z,z,y, 2z} — {z,y} = {z, z}.

2.1.2 Petri net

A Petri net is a directed graph whose nodes are partitioned into two sets, places and transitions.
Arces can only connect a place to a transition (input arcs), or a transition to a place (output arcs
). A multiplicity (positive integer) may be attached to each arc, which is then called a multiple arc.
Intuitively, a multiple arc with multiplicity k& can be thought of as k£ arcs having the same source
and destination.

The input (output) bag for a transition is the bag constituted by the input (output) arcs,
considered with their multiplicity. Each place may contain any number of tokens. All the tokens
are indistinguishable. A marking is a bag representing the configuration of tokens in the places of
the Petri net. It is also called the state of the Petri net.

Regarding the evolution of the Petri net, the following terms are fundamental. A transition is
enabled if its input bag is a subbag of the (current) marking. When a transition is enabled, it can
fire, leading the Petri net into a possibly different marking, obtained by subtracting its input bag
from and adding its output bag to the current marking. A firing sequence is a sequence of transition
firings. A marking is reachable if it is obtained by a firing sequence starting in the initial marking.
The reachability set (graph) is the set (graph) of all the reachable markings (connected by arcs
labeled with the transition firings). A set S of transitions enabled in a marking m is a conflicting
transition set if the contemporary firing of all the transitions of .S is impossible in m, or, in other
words, if the sum of the input bags of the transitions in S is not a subbag of m.

2.1.3 Stochastic Petri net

The stochastic Petri net model is obtained from the Petri net model by associating a probability
distribution function to the firing time of each transition. Additional constructs are often present
as well. In the Generalized Stochastic Petri net model [1], only two distribution types are allowed:
exponential and deterministic with value 0. Transitions with an associated exponential distribu-
tion are said to be timed; transitions with zero time distribution are said to be immediate. In the
Extended Stochastic Petri net model [12], the transitions are classified in a similar way, but an arbi-
trary distribution can be associated to each timed transition. If two or more conflicting transitions
should fire at the same moment (this event has a 0 probability if the distribution is continuous), a
probability mass function must specify the probability that a subset of transitions will actually fire.
The version of SPN that we deal with is known as the stochastic reward net (SRN).

The parameters of an exponential or general distribution are said to be marking dependent if
they can be different in each marking. This is allowed by our definition; we will show how to describe
this marking dependency.

Additional constructs are used to selectively disable a transition in a marking which would
otherwise enable it. A priority is associated with each transition. If S is the set of transitions
enabled in a marking and if the transition with the highest priority among them is k, then any
transition in S with priority lower than that of transition k& will be disabled. To avoid theoretical
difficulties, timed and immediate transitions cannot have the same priority. Another way to disable
a transition is the inhibitor arc. An inhibitor arc from place p to transition ¢ with multiplicity m
will disable ¢ in any marking where p contains at least m tokens. If these two constructs are not
sufficient to describe a particular mechanism, the marking dependent enabling function (also called
a guard) with each transition can be used: if this function evaluates to 0 in a marking, then the
transition is disabled. If we ignore timing, we can imagine an ordinary Petri net as a Stochastic
Petri net where all transitions have the same priority, where no inhibitor arcs are present, and where
the enabling functions are identically equal to 1.

A marking is tangible if it enables no immediate transition; it is called a wvanishing marking
otherwise. A marking which does not enable any transition is absorbing, hence it is tangible by
definition. A (maximal) set of vanishing markings that are mutually reachable by immediate tran-
sition firings is called a loop (of vanishing markings). A loop is said to be absorbing if no marking
in it reaches a marking outside the loop; otherwise the loop is transient. An absorbing loop is
considered an error. Transient loops are not a problem, their interpretation is clear, and they are
easily and correctly managed by the package, but, if you know that your SRN should not contain a
transient loop, you should look for them, since they could be the manifestation of a modeling error.
The reachability graph contains an arc for each different transition enabled in each marking: in
particular, self transitions (with equal input bags and output bags) are allowed by the definition of
the model, so arcs with coinciding source and destination may be present in the reachability graph.
These arcs are ignored during the solution steps.

2.1.4 Important feature for SPNP: marking dependence

An important feature of the SRN model is the marking dependent arc multiplicities, enabling func-
tions firing probabilities and firing rates. SPNP is the software package that supports the specifica-
tion and the solving of the SRN models.

Arcs can have a multiplicity which is not constant, but rather it is a function of the marking.

This possibility was defined because it may allow substantial reductions in the size of the reachability
graph; it also may allow to model, in a compact way, behaviors that would otherwise require complex
subnets. A typical example is the case where all the tokens from place p must be moved to place ¢
when transition ¢ fires. An input arc from p to ¢ and an output arc from ¢ to ¢, both with marking
dependent multiplicity equal to the number of tokens in place p are enough to model this behavior.
Without this construct, the reachability graph would contain all the intermediate arcs and markings
corresponding to the movement of tokens, one by one. Perhaps even more importantly, if ¢ is timed,
the stochastic behavior will not be the same, unless the SRN explicitly models this “flushing” of
tokens with an additional immediate transition and possibly some control places. Some words of
caution must be said on this construct. First, it should be used only when really needed, because it
may make the SRN harder to understand and it requires slightly more computation than a standard
or multiple arc. This is because the input and output bags for a transition in a marking are computed
by evaluating the marking dependent functions for the arc multiplicities, if any, before firing the
transition (this is why the output arc from ¢ to ¢ will put the correct amount of tokens in ¢). This
might give rise to unintuitive or unforeseen behaviors; for example, in the flushing of tokens just
described, transition ¢ is enabled in any marking, even when place p is empty, unless (1) other input
arcs are defined for ¢, (2) an enabling function is used to explicitly disable ¢ when p is empty and
possibly in other cases as well, or (3) the marking dependent arc multiplicity function for the arc
from p to t returns a positive value when p is empty (this is the most efficient solution if the goal is
to enable ¢ only when there are one or more tokens to be flushed in p).

At times, inhibitor arcs or transition priorities can specify a given behavior only through awkward
subsets that only obfuscate the actual logic of model. In these cases, the definition of a marking-
dependent enabling function (or a guard) is probably a better choice.

Marking-dependent functions can be used to specify the firing rate of a timed transition or the
firing probability of an immediate transition.

2.2 Non-Markovian SPN

A major restriction to the SRN model described previously is that the transitions are either im-
mediate or exponentially distributed. Therefore some other distributions have been introduced in
SPNP in the last a few years. When a transition has a general distribution of firing time, the SPN
is called a Non-Markovian SPN. This complicates the numeric-analytic or simulative method used
to solve the model. At the present time, the transitions can have constant, uniform, geometric,
Weibull, normal, lognormal, Erlang, even the hyperexponential distributions. The complete list
of distributions implemented and being implemented in SPNP can be found at the beginning of
Chapter 6. Here again, the distribution parameters can be marking dependent.

2.3 Fluid Stochastic Petri net

SPNP also can simulate and solve FSPNs. FSPN is an fluid extension to SRN, parrallel to the
fluid queueing network extension to ordinary queueing network. The main difference between SRNs
and FSPNs is that, in addition to ordinary (discrete) places, a FSPN can also have fluid places
containing a (real) fluid level between zero and an upper bound, possibly infinity. An input or
output arc connected to a fluid place removes or adds fluid continuously while the transitions is
enabled, as long as the level remains between zero and the upper bound.

FSPNs have the potential to facilitate the computation of two kinds of important problems: One
is the ordinary SPN with a huge amount of tokens in some places, which can now be approximated
by fluid places; the other is for analysing hybrid systems with a continuous deterministic part and a
discrete stochastic part, which is hard to deal with by other hybrid system analyzation tools. FSPN
can be solved either with numeric- analytic method or with simulative method. At the present
time, only the simulative method is implemented in SPNP. For further information on FSPNs, see
[8, 14, 31].

Chapter 3

Getting Started With SPNP

3.1 Installation and run

The package is composed of several C files. The SRN to be studied must be described in a CSPL
(C-based Stochastic Petri Net Language) file, which is a C file specifying the structure of the SRN
and the desired outputs, by means of predefined functions. The CSPL file is compiled, linked to the
other files constituting the package (usually kept compiled), and run, by typing

make -f /PATH_TO_SPNP/spnp/obj/Makerun SRN=filename

where filename is your CSPL file, without the C extension, and PATH_TO_SPNP represents the
UNIX path to the package on your installation.

It is possible to check the CSPL file for certain errors, by typing

make -f /PATH_TO_SPNP/spnp/obj/Makerun lint SPN=filename

If inconsistencies exist between the definition of the predefined functions and their usage, they
will be discovered.

Note: To save typing, you can define the aliases

alias spnp "make -f /PATH_TO_SPNP/spnp/obj/Makerun SPN=\!""
alias spnpcheck "make -f /PATH_TO_SPNP/spnp/obj/Makerun lint SPN=\!""

“'77

(assuming that is your history character) and type, regardless of your current directory,

spnp filename
spnpcheck filename

3.2 Output files

The intermediate files generated by the package and the final results will be in the same directory as
where filename.c is (and where you issued the command). Files have different extensions, according
to the kind of information they carry. If your CSPL file is named test.c, then the following files
will be generated:

e test.o: obtained when compiling test.c.

e test.spn: executable file obtained by linking the package object files together with test.o.

7

test.rg: containing the reachability graph information: composition of each marking, descrip-
tion of the transition firings between them, etc.

test.mc: containing the (numerical) CTMC/DTMC corresponding to the SRN

test-parmname.mc: containing the (numerical) derivative of CTMC with respect to param-
eter parmname (one file is generated for each parameter defined in test.c.

test.prb: containing the (numerical) results of the analysis of the underlying CTMC: the
transient or steady-state probabilities for each tangible marking, the cumulative sojourn times
in transient states up to the solution time, and the derivatives (with respect to defined pa-
rameters) of the aforementioned measures.

test.prbdtme: containing the (numerical) results of the embedded DTMC.

test.out: containing the requested output (according to what is specified in test.c using the
provided functions).

test.log: contains all the output messages produced by the package during model solution.

test.dot: contains a description of the Petri net in the dot graph language.

Chapter 4

The CSPL Language

The CSPL languange can be defined as a system for describing, handling and solving Stochastic
Reward Nets (SRNs). The syntax and the semantics of CSPL are based on the ANSI C language.
Moreover, a correct CSPL file is a correct ANSI C file too. What distinguishes CSPL from ANSI C
is a set of predefined functions for the specification and solving of SRNs. Familiarity with ANSI C
languange will be a great advantage for a user to exploit most of the features of the CSPL language.
However, it should be without difficulty for a user to be able to define and solve his/her SRNs under
study with the help of this manual, especially the examples provided within it.

Any legal ANSI C construct is allowed in the CSPL language, as needed. User-defined variables
and functions can be used in a CSPL file. In particular, all the standard C library functions, such
as fprintf(), fscanf(), log(), exp(), etc., can be called in CSPL, if necessary.

A CSPL file must contain the following five basic functions:

e options(),

e net(),

e assert(),

e ac_init(),

e ac_reach(),

e ac_final().

Each function listed is designed to carry out one (or several) certain task(s) by calling some
relevant subroutines (functions). These tasks are related to the definition and solving processes of

stochastic reward nets. In the following sections we will discuss the function above and the other
related subroutines in detail. Simple examples will be given to illustrate their usage.

4.1 Function: options()
void options(void);

A valid CSPL file must contain the options() function. Function options() calls the following
subroutins:

e iopt() ,
e fopt() ,

e input() , and
« finput()

to set options which will affect the way of describing and solving SRN. A detailed list of these
options can be found in Chapter 7, Availabe Options.

4.1.1 Functions to set option values

void iopt(IOP_TYPE option, int val);
void fopt(FOP_TYPE option, double val);

Functions iopt() and fopt() set option indexed as option with value v. There are two kinds
of options, integer options and float options (more precisely, options with double precision floating
point values). A user is advised to be aware of the difference and use the correct type while setting
options.

Example:

void options() {

The above code causes the markings to be printed in lexical order instead of the default canonical
order and the precision for a numerical solution is set to le — 8.

4.1.2 Functions to accept runtime inputs

int input(char *msg);

double finput(char *msg);

Functions input() and finput() accept input from standard input during run time while function
option() is called. Function input() accepts an integer value while function finput() accepts a
floating point value.

Example:

int num_customers;
options() {

num_customers = input ("Number of customers");

10

The above CSPL code causes the following message specified by the string parameter msg,

INPUT "Number of customers" (int) >

to be displayed on the screen (more precisely, on the stderr stream), then SPNP waits for the user
to type a value. The input value is accepted by SPNP and is printed in the “.out” file, together
with the string msg. This is useful to recall the set of values input to a particular CSPL file to
generate the current output. The returned input value can be assigned to any variable declared by
the user and can be used in the rest of the CSPL file. (Note: be sure to use the variable after the
desired value is assigned.)

4.2 Function: net()

void net(void);

A valid CSPL file must contain function net(). Function net() calls a set of functions to define
an SRN. The following description starts with a small set of functions to define a simple SRN
followed by an example to construct a relatively complex SRN.

4.2.1 Functions to define a simple SRN

The following funcitons are sufficient to define a simple SRN without extended features of marking-
dependent enabling, rates/weights and cardinalities, etc:

e place() and init()

The function
void place(char *p);

defines a place with name p. A name is legal if: (1) its length is between 1 and MAX_NAME_LENGTH,
as defined in the file const.h ! (typically 20); (2) it is composed of the characters {0..9, a..z,

A..Z, _} only; (3) the first character is in {a..z,A..Z}. All names must be distinct, that is,

it is an error to have two places, two transitions, or a place and a transition having the same

name.

The function

void init(char *p, int n);

IThe definitions in the files const.h and type.h are always provided with the distribution of the package. Users
are not encouraged to change them especially when the complete souce files are not available. Changes in these
files may incur inconsistency and may cause compiling failure.

11

defines the initial number of tokens in Place p to be n. By default, places are otherwise initially
empty.

e imm()
The timed transitions are automatically defined when their rates (or distributions) are defined
(see the following). However, immediate transitions must be defined by

void imm(char *t);

e rateval() and probval()

The functions

void rateval(char *t, double val);

void probval(char *t, double val);

define the firing rate of timed transition ¢ and the firing weight (unnormalized probability)
of immediate transition ¢, as a constant value val. Function rateval (or its more general
versions illustrated in the following sections) implicitly defines the timed transition must and
be defined for each transition. Function probval (or its more general versions illustrated in
the following sections) needs to be called only if the firing weight is different with the default
value 1.0 coming with the definition of the immediate transition by imm.

e priority()
The function
void priority(char *t, int prio);
defines the priority for Transition ¢ to be prio. By default transitions have the lowest priority
(0).
e policy()
The function
void policy(char *¢, int pol);

defines the resampling policy for transition ¢ to be pol when the (enabled) transition is disabled
by the firing of a competitive transition and later becomes enabled again.? Three different
policies are implemented:

— PRI(Preemptive Repeat Identical): the interrusted job is repeated with an identical
firing time.

— PRD(Preemptive Repeat Different): the interrupted job is repeated with a resampled
random time.

— PRR(PReemptive Resume): an interrupted job continues with the old remaining firing
time.

By default transitions have policy PRD.
e affected()

The function

2This function is used mainly in simulation. Please refer to the example of reader and writer sharing buffer in Sec.
10.13.

12

void affected(char *s, char *t, int pol)

defines the effect on the firing time of transition s, if it remains enabled after some other
transition ¢ fires. pol should be PRI, PRS or PRD. The default is set to be PRS for
non-memoryless distribution of s with PRD for exponential distribution.

e iarc(), oarc(), harc(), miarc(), moarc(), and mharc()
The functions
void iarc(char *t, char *p);
void oarc(char *¢, char *p);
void harc(char *¢, char *p);
void miarc(char *¢, char *p, int mult);
void moarc(char *t, char *p, int mult);
void mharc(char *¢, char *p, int mult);
define, respectively, an input arc from Place p to Transition ¢, an output arc from Transition
t to Place p, or an inhibitor arc from Place p to Transition ¢ with multiplicity one or mult (a
positive int).
e halting_condition()

The function
void halting_condition(int (*gfunc)())

defines the halting condition gfunc for the SPN. When this function evaluates to zero, the
marking is considered absorbing.

4.2.2 An example: using the power of ANSI C

So far, we have introduced convenient functions to get runtime input and basic functions to define
an SRN. The purpose of this section is to illustrate how to take advantage of the flexibility of ANSI
C to facilitate the definition of a complex system with those simple CSPL functions we have so far
introduced. We show an example (Figure 4.1) which defines a subnet of Erlang distribution.

The portion of CSPL file in Figure 4.1 allows the run-time definition of the number of stages in
a subnet corresponding to an Erlang distribution. The size of the arrays of “ph” Places and “th”
transitions, is determined respectively as max + 1 and max at run-time using the predefined input
function.

You will see a message on the terminal

Please type "number of phases" (int) >

and the variable max will be set to the number you type, say 6. Then seven places with names phg,

.., phg will be defined, with no tokens in them initially. Six transitions will be defined, with names
thy, ..., the. Finally, a sequence of both input and output arcs (pho,th1), (th1,ph1), ..., (the,phe)
will be defined as well.

13

int max;
void options() {

max = input("number of phases");

}
void net() {
int i;

char auxplace[20],auxtrans[20];

sprintf (auxplace,"ph_0");
place(auxplace) ;

for (i = 1; i <= max; i++) {
sprintf (auxtrans,"th_%d",i);
sprintf (auxplace, "ph_%d",i);

place(auxplace) ;
trans (auxtrans) ;

rateval (auxtrans, 2.0);

iarc(auxtrans, auxplace);
oarc (auxtrans,auxplace) ;

}

Figure 4.1: An Erlang subnet

14

4.2.3 Rate-dependent function

A rate-dependent function is a C function which makes call(s) to functions referring to SRN en-
tity(entities) and returns either an integer value or a double value. Rate-dependent functions are
used to specify for instance output measures which will be described in the following sections.

The following function, defined only for exponential distributions, can be used in marking-
dependent functions:

double rate(char *ir)

which returns the rate of transition ¢r in the current marking if it is enabled in the current marking
and 0 otherwise.”

4.2.4 Marking-dependent function

A marking-dependent function is a C function which makes call(s) to functions referring to SRN
entity (entities) and returns either an integer value or a double value. Marking-dependent functions
are used to specify marking-dependent firing rates, firing weight, arc cardinalities, and output
measures, which will be described in the following sections.

The following two functions can be used in marking-dependent functions:

e mark()
The function
int mark(char *p);
returns the number of tokens in Place p.
e enabled()
The function

int enabled(char *t);
returns 1 if Transition ¢ is enabled in the current marking; 0, otherwise. *

The following code defines a marking-dependent function f().

double £O A{
return(mark("p_1") * mark("p_2") * 7.3);
}

This function f() returns a value of 7.3 times the product of the number of tokens in Places p; and
p2.

3Refer to Examples 10.1, 10.3, 10.4 and 10.8.

4Refer to Examples 10.3 and 10.11.

15

4.2.5 Specify marking-dependent enabling functions

At times, inhibitor arcs or transition priorities can specify a given behavior only through awkward
subnets that only obfuscate the actual logic of the model. In these cases, the definition of a marking-
dependent enabling function (or guard) is probably a better choice.

The function
void guard(char *¢, int * func());

defines the enabling function of Transition ¢ to be the marking-dependent function func, instead of
the default, the constant function returning 1 in all markings.

For example, if we defined a function,

int gt {
return(mark("p_1") > 2 x mark("p_2"));
}

we can then use it in

guard("t_1",gt);

to guarantee that ¢; is disabled when p; does not contain more than twice as many tokens as po
does.

4.2.6 Specify marking-dependent firing rates or firing weights

Occasionally it is useful to define the firing rate or firing weight of a transition as a marking-
dependent quantity. The simplest way is to define it as a quantity proportional to the number of
tokens in a place.”

The functions

void ratedep(char *t, double val, char *p);
void probdep(char *t, double wval, char *p);

define the firing rate or firing weight of Transition ¢ to be val times the number of tokens in Place
p. (Note: it is an error for a firing rate or firing weight to be evaluated to zero in a marking where
the transition is enabled. Hence this method can not be used when Place p is not an input place
for ¢ and can become empty.)

In many other cases, though, a more general type of marking dependency is required. This is
achieved by defining a marking-dependent function of type double. The functions

5These functions are used extensively in Example 10.10 and 10.16.

16

void ratefun(char *t, double (* func());

void probfun(char *t, double (* func());

define the firing rate or firing weight of Transition ¢ to be the value of marking-dependent function
func, evaluated in the current marking.

4.2.7 Specify marking-dependent arc cardinalities
The functions

void viarc(char *t, char *p, int * func());
void voarc(char *t, char *p, int * func());

void vharc(char *t, char *p, int * func());

define, respectively, an input arc from Place p to Transition ¢, an output arc from Transition ¢ to
Place p, or an inhibitor arc from Place p to Transition ¢ with multiplicity given by the marking-
dependent function func. ©

We choose to define vharc for completeness, but it is usually more efficient to use an guard
function instead.

4.2.8 Define and use parameters

To perform sensitivity analysis, the rate and weights of one or more transitions must be defined
as a function of a double parameter.” SPNP will then be able to compute the derivatives of the
requested output measures with respect to this parameter. This requires to define parameters, and
to connect them to the rate or weights of transitions.

The function
void parm(char *z);

defines the existence of a parameter x. The usual naming conventions for places and transitions apply
to parameters as well. For implementation reasons, the allowable number of defined parameters is
limited to MAX_PARMS, defined in const.h.

The function
void bind(char *z, double val);

sets the value of parameter x to val, until the next call. This function can also be called, multiple
times, in function ac_final, to bind x to different values, and compute the corresponding measures.

SRefer to Examples 10.4, 10.6, 10.12, 10.13, and 10.15 for their usage.

"Refer to sensi.c in the example CSPL files.

17

The function
void useparm(char *¢, char *z);

associates the rate or weight of Transition ¢ to the parameter z. This function can be called multiple
times for a single transition, which can then have, in full generality, a rate of the form

where A\(m) is the value of a marking-dependent function \ evaluated in marking m, n is the number
of different parameters associated to ¢, and k; is the number of times the i-th parameter, x;, has
been associated with ¢.

A parameter may provide itself a value for the rate or weight of a transition. To do so, we begin
by defining its rate or weight to be one (it was what procedures ratenoval and probnoval did in
SPNP 5.0; they have been removed as they are equivalent to defining the rate or probability to be
one).

For example,

parm("alpha");
parm("beta");
parm("gamma") ;

rateval("t_1",1.0);
useparm("t_1", "alpha");

ratedep("t_2", 10.0, "p");
useparm("t_2", "beta");
useparm("t_2", "beta");
useparm("t_2", "beta");
probval("t_3",1.0);
useparm("t_3", "gamma");

defines three parameters, «, 3, and -, and timed transition ¢; with rate «, timed transition ¢ with
a marking-dependent rate 10.0 - mark(p) - 4%, and immediate transition t3 with weight . Before
solving the model, the parameters are assigned with numeric values by calling the bind function,
where the name of the parameter and its value are given.

For example, in

bind("alpha",1.0/N);
bind("beta",2);
bind ("gamma",0.75);

a, 3 and v are assigned a values N~! (where N may be set by user input), 2.0, and 0.75, respectively.

18

4.2.9 Functions to define an FSPN

e fplace()

The function
void fplace(char *n);

defines a a fluid place, or a transition) with name n. The same restrictions as for place and
transition names apply.

e fbound() The function
void fbound(char *p, double b);

defines the upper bound on the fluid level of fluid place p to be b. The lower bound is always
0.

° ﬁnit()
The function

void finit(char *p, double 1);

defines the initial fluid level in fluid place p to be [, instead of the default 0.
e fbreak()
The function

void fbreak(char *p, double [);

defines a threshold in fluid place p to be [. Several threshold may be defined in the same place
by calling fbreak() for multiple times. This function allows to change parameters after level
[is reached at place p.

e inf()
The function
void inf(char *t);
declares a transition defined only by fluid flow (when enabled).
e The functions
void fiarc(char *¢, char *p);
void foarc(char *t, char *p);
void fmiarc(char *¢, char *p, double mult);
void fmoarc(char *t, char *p, double mult);
void fviarc(char *t, char *p, double (* func)());

void fvoarc(char *t, char *p, double (* func)());

8Refer to Sec. 10.14 and Sec. 10.15 for examples.

19

define an input arc from fluid place p to transition ¢ or a fluid output arc from transition ¢
to fluid place p, with fluid flow rate given by 1, the constant mult or the marking-dependent
function func, respectively.

The functions

void fliarc(char *t, char *p, double (*f)(), double (*g)());
void floarc(char *t, char *p, double (*f)(), double (*¢)());

define an input arc from fluid place p to transition ¢ or a fluid output arc from transition ¢ to
fluid place p, with linear fluid flow given by the marking-dependent functions f and g, i.e., in
place p the differential equation when discrete marking is m is, with respect to time 7,

dzp (7)
dr

= f(m)ay(7) + g(m).

In the same way, the functions

void diarc(char *¢, char *p);

void doarc(char *t, char *p);

void dharc(char *¢, char *p);

void dmiarc(char *¢, char *p, double mult);
void dmoarc(char *t, char *p, double mult);
void dmharc(char *¢, char *p, double mult);
void dviarc(char *t, char *p, double (* func)());
void dvoarc(char *t, char *p, double (* func)());
void dvharc(char *t, char *p, double (* func)());

define an input arc from fluid place p to transition ¢ or a fluid output arc from transition ¢
to fluid place p, or an inhibitor arc from place p to transtion ¢ with fluid impulse (or level in
the inhibitor case) given by 1, the constant mult or the marking-dependent function func,
respectively.

An additional marking-dependent function is available to inquire about the state of a fluid
place:

double fmark(char *p);
returns the fluid level in fluid place p.
Finally, the function
int fcondition(char * fpl, char *rel, double val)

return TRUE if fmark(fpl) satisfies the relation with val, FALSE otherwise. Here, rel
must be one of F_EQ (equals), F_NQ (non-equals), F_GT (greater than), F_LT (less than),
F_GE (greater or equal), F_LQ (less or equal), a relational operator. This may be useful for
user-defined function and guards.

20

4.2.10 Functions for non-Markovian SPNs

As an alternative to the functions used to define a timed or immediate transition, the following
functions can be used to define timed transitions with non-exponential distribution of the firing
time. These can appear only in models solved by discrete-event simulation.

e Functions

void detval(char *t, double val);
void detdep(char *t, double val, char *p);
void detfun(char *¢, double (*fun)());

define a transition ¢ with constant firing time given respectively by val, the constant val times
the number of tokens in place p, and the marking-dependent function fun.

e Functions

void unifval(char *t, double lower, double upper);
void unifdep(char *t, double lower, double upper, char *p);

void uniffun(char *t, double (*f)(), double (*¢)());
define a transition ¢ with firing time uniformly distributed in the interval with lower and upper

bounds given respectively by lower and upper, lower times the number of tokens in place p
and upper times the number of tokens in place p, or the marking-dependent function f and g.

e Functions

void geomval(char *t, double vall, double val2);
void geomdep(char *t, double vall, double val2, char *p);
void geomfun(char *¢, double (*f)(), double (*¢)());

define a transition ¢ with geometrically distributed firing time with respective parameter vall,
vall times the number of tokens in p and marking-dependent function f, and with respective
time step given by val2, val2 times the number of tokens in place p, or the marking-dependent
function g. The probability to have value n x val2, foralln > 1, is then vall(1 — vall)"~*.

e Functions

void weibval(char *¢, double vall, double val2);
void weibdep(char *t, double vall, double val2, char *p);
void weibfun(char *t, double (*f)(), double (*g)());

define a transition ¢t with Weibull distributed firing time with respective parameters vall and
val2, vall times the number of tokens in place p and wval2 times the number of tokens in
place p, or the marking-dependent function f and g. The density is then is then Vax > 0,

val2
vall x val2zv®l2—1e—vallxz™ =

9See Sec. 10.13 for example.

21

e Functions

void normval(char *t, double vall, double val2);
void normdep(char *¢, double vall, double val2, char *p);

void normfun(char *¢, double (*f)(), double (*¢)());

define a transition ¢ with a normally distributed firing time with respective parameters vall
and val2, vall times the number of tokens in place p and val2 times the number of tokens in
place p, or the marking-dependent function f and g. This normal distribution is truncated
by considering only non-negative values. Parameters vall and val2 are the expectation and
variance of the non-truncated distribution.

e Functions
void lognval(char *t, double vall, double val2);
void logndep(char *¢, double vall, double val2, char *p);
void lognfun(char *t, double (*f)(), double (*¢)());

define a transition ¢ with lognormally distributed firing time with respective parameters vall
and val2, vall times the number of tokens in place p and val2 times the number of tokens in
place p, or the marking-dependent function f and g. The density is then, Vax > 0,

1 e—(ln z—vall)?/2val2
V2mval2x

e Functions

void gamval(char *¢, double vall, double val2);
void gamdep(char *¢, double vall, double val2, char *p);
void gamfun(char *t, double (*f)(), double (*g)());

define a transition ¢ with gamma distribution with respective parameters vall and val2, vall
times the number of tokens in place p and val2 times the number of tokens in place p, or the
marking-dependent function f and g. The density is then, Va > 0,

UalZvallxvall—le—vath

T'(vall)

e Functions

void betval(char *¢, double vall, double val2);
void betdep(char *t, double vall, double val2, char *p);
void betfun(char *¢, double (*f)(), double (*¢)());

define a transition ¢ with beta distribution with respective parameters vall and val2, vall
times the number of tokens in place p and val2 times the number of tokens in place p, or the
marking-dependent function f and g. The density is then, V0 < x < 1,

1

vall—1 val2—1
—_— 1-— .
B(vall,val2) (1-=2)

e Functions

22

void poisval(char *t, double vall, double val2);
void poisdep(char *¢, double vall, double val2, char *p);
void poisfun(char *¢, double (*f)(), double (*¢)());

define a transition ¢ with Poisson distribution with respective parameters vall and val2, vall
times the number of tokens in place p and val2 times the number of tokens in place p, or the
marking-dependent function f and g. The probability to have value k x val2, VO < k, is then
given by (vall)¥/kle=vallxk,

Functions

void binoval(char *¢, double vall, double val2,double val3);
void binodep(char *t, double vall, double val2, double val3, char *p);
void binofun(char *¢, double (*f)(), double (*¢)(), double (*h)());

define a transition ¢ with binomial distributionwith respective parameters vall, val2 and val3,
vall times the number of tokens in place p, val2 times the number of tokens in place p and
val3 times the number of tokens in place p, or the marking-dependent function f, g and h.
The probability to have value k x val3, VO < k < wall, is then given by

(vall, k)(1 — val2)"**~*yal2®.

Functions

void negbval(char *¢, double vall, double val2, double val3);
void negbdep(char *t, double vall, double val2, double val3, char *p);
void negbfun(char *t, double (*f)(), double (*g)(), double (*h)());

define a transition ¢ with negative binomial distribution with respective parameters vall, val2
and val3, vall times the number of tokens in place p, val2 times the number of tokens in place
p and val3 times the number of tokens in place p, or the marking-dependent function f, g and
h. The probability to have value k x val3, Vk > 0, is then given by

I'(vall + k)

Y (1 —wal2)" M val2k.
Tloal (k£ 1) L~ val2)™ e

Functions

void hyperval(char *¢, double vall, double val2, double val3);
void hyperdep(char *¢, double vall, double val2, double val3, char *p);
void hyperfun(char *t, double (*f)(), double (*g)(), double (*h)());

define a transition ¢ with 2-stage hyperexponential distribution with respective rates vall,
val2 and probability val3 to choose stage 1, vall times the number of tokens in place p, val2
times the number of tokens in place p and val3 (as the probability to choose stage 1), or the
marking-dependent function f, g and h.

Functions

23

void hypoval(char *t, double vall, double val2, double val3, double vald);

void hypodep(char *t, double vall, double val2, double val3, double val4d,
char *p);

void hypofun(char *t, double (*f)(), double (*g)(), double (*1)(), double
(*10);

define a transition ¢ with 2 or 3-stages hypo-exponential distribution with number of stages
vall (2 or 3), and rates val2, val3 and val4, number of stages vall, and rates val2, val3 and
val4 times the number of tokens in place p, or the marking-dependent functions f, g, h and 1.

Functions

void erlval(char *¢, double vall, double val2);
void erldep(char *t, double vall, double val2, char *p);
void erlfun(char *¢, double (*f)(), double (*¢)());

define a transition ¢ with a firing time following an Erlang distribution with respective param-
eters vall and val2, vall times the number of tokens in place p and val2 times the number of
tokens in place p, and the marking-dependent function f and g. The first parameter denotes
here the rate of the underlying exponential distribution and the second parameter the number
of phases. Even if this last parameter is actually an integer, it must be given as a double.

Functions

void parval(char *¢, double k, double alpha);
void pardep(char *¢, double k, double alpha, char *p);
void parfun(char *¢, double (*f)(), double (*g)());

define a transition ¢ with a firing time following a Pareto distribution with respective param-
eters k and alpha, k times the number of tokens in place p and alpha times the number of
tokens in place p, and the marking-dependent function f and g. Recall that the Pareto density
fPar is given by

fPar(x) = ak®/(z + k)**!

for z > 0 and a, k > 0.
Functions
void cauval(char *¢, double alpha, double beta);
void caudep(char *t, double alpha, double beta, char *p);

void caufun(char *t, double (*f)(), double (*g)());

define a transition ¢ with a firing time following a Cauchy distribution with respective param-
eters alpha and beta, alpha times the number of tokens in place p and betaa times the number
of tokens in place p, and the marking-dependent function f and g. Recall that the Caucy
density feqy, 18 given by 5

T 7Bt (x—a)?)

fCau(-r)

forx >0, >0and —oo < a < 0.

24

4.3 Function: assert()

int assert(void);

A valid CSPL should contain function assert(). Function assert is a boolean marking-dependent
function called by SPNP during the reachability graph construction to check the validity of each
newly found marking. It returns either RES_ERROR if the marking is illegal or RES_NOERR
if the marking is (thought to be) legal.

The check on the legality of a marking is performed using the same functions used to achieve
marking dependency, namely mark and enabled. The check is by its own nature incomplete, since
it is not usually feasible to specify all the conditions that must hold (or not hold) in a marking, but
the more accurate the set of conditions is, the more confidence you have on the correspondence of
the reachability graph with the real system.

For example, the following function assert()

assert() {
if (mark("p_1") + mark("p_2") !'= N)
return(RES_ERROR) ;
return (RES_NOERR) ;

will stop the execution in a marking where the sum of the number of tokens in Places p; and ps is
not . If the execution is stopped, the program outputs information before exiting, which is useful
in debugging the CSPL file. If the illegal marking is caused by an unforeseen sequence of transition
firings, finding that sequence using the output information is usually a fast process even in large
reachability graphs (of tens of thousands of markings).

However, this type of check is limited. It helps to detect the presence of illegal markings, or illegal
firing sequences, but it can not detect the absence of legal markings, or legal firing sequences (which
relates to the reachability set, or graph, as a whole, and cannot be checked while the reachability
graph is being built). Practically, it is important to be able to perform checks of illegality as soon
as possible, typically to debug a net which is supposed to be bounded, but it turns out to be not.
The examination of the whole (infinite) reachability graph is out of the question since the program
will terminate printing a message for insufficient memory.

4.4 Functions: ac_init() and ac_reach()

void ac_init(void);
void ac_reach(void);

A CSPL file must contain functions ac_init() and ac_reach().

SPNP calls ac_init() before starting the reachability graph construction. The function

void pr_net_info(void);

25

is always called in function ac_init() to output information about the model under study to the
“.out” file. This is especially useful when the number of places or transitions is defined at runtime.
Calls to bind can also be used here to assign numeric values to parameters, as previously discussed
in section, “Define and use parameters”.

The function ac_reach() is instead called after the reachability graph construction has com-
pleted. The function

void pr_rg_info(void);

can be used in function ac_reach() to output information about the reachability graph to the
“.out” file (Note: this does not affect the generation of the “.rg” file). Calls to bind can also be
used here to assign numeric values to parameters as previously discussed. In addition, the function

void pr_parms(void);

can be called here to print the names of parameterized transitions along with the parameter names
and current values to the “.out” file.

4.5 Function: ac_final()

void ac_final(void);

A CSPL file must contain function ac_final(). Function ac_final() is designed for a user to
flexibly define outputs. CSPL provides a set of functions for this purpose (the simulation case will
be treated separately in Chapter 6):

e solve(),

e sens(),

e expected(),

e set_prob_init(),

e pr_mc_info(),

e pr_std_average(),

e pr_std_cum_average(),

e pr_expected(),

e pr_cum_expected(),

e pr_time_avg_expected(),
e pr_mtta() and pr_newmtta(),

e pr_mtta_fun(),

26

e pr_cum_abs(),
e pr_value(),

e pr_message().
Descriptions of these function are given below:

e solve()
void solve(double t);

Funciton solve() must be used at least once before any other function called to solve the
Markov chain (numerically) at time ¢. The value given to ¢ can be a positive real number
for transient analysis or the value INFINITY for steady state analysis. Calls to solve() can
be invoked repeatedly for different solution times and can be interleaved with user-requested
output. Calls to bind() can also be used here to (re)assign numeric values to parameters, as
previously discussed; solve() must be called again to re-solve the new model'’. Note that the
user cannot change the model parameter simply with the change of global variable. A way
to circumvent this is using the variable in function type definition (xxxfun()) and then call
function Rebuild() to reconstruct the reachability graph. This is useful to iterative methods
such as fixed point iteration.

e void pr_mc_info()
void pr_mc_info(void);

Function void pr_mc_info() can be called in ac_final() to output data about the Markov
chain and its solution.

e pr_std_average()
void pr_std_average (void);

Function pr_std_average computes, for each place, the probability that it is not empty and
its average number of tokens; for each timed transition, the probability that it is enabled and
its average throughput. The average throughput E[T,] for Transition a is defined as

E[T) = Y p(i)*pla,i),

i€R(a)

where R(a) is the subset of reachable markings that enable Transition a, p(4) is the probability
of marking 4, and p(a,?) is the rate of Transition a in marking i.

e pr_expected()

void pr_expected(char *string, double (* func)());

4

Function pr_expected() requires the specification of a string (which is written to the “.out”
file) and of a marking-dependent reward function func returning a double-precision floating
point number.

For example, the following function ac_final()

10 Whenever solve is called after a previous call to bind, the reachability graph and Markov chain will be recon-
structed followed by another call to ac_reach.

27

void ac_final() {

pr_expected("utilization", util);

will print

EXPECTED: utilization = 3.2

to the “.out” file if the expected value of the reward function util() is 3.2.

The reward function util() returning a double (double-precision floating point number),
must have been defined prior to its usage in pr_expected, using the functions mark() and
enabled() to express marking dependency. In addition to the functions mark() and en-
abled(), the function

double rate(char *t);

(as defined previously) can also be used to refer to the marking dependent rate of Transition
t.

We provide an example to illustrate how to write a marking dependent reward functon. The
following function util()

double util() {
return(mark("p_1") * mark("p_7") + mark("p_3") * 1.2);
}

would define the utilization as the weighted (by the probability of each marking) average of
the product of the number of tokens in Place p; and p; plus the number of tokens in Place p3
times 1.2.

expected()
double expected(double (* func)());

Function expected can be called in function ac_final(). The return value can be used in more
complex expression (using pr_expected would print the value, but the value itself would not
be made available and then be used in the function ac_final).

Note: Apparently similar operations have different stochastic interpretations, hence different

results, if performed at the event or at the expected value level. Continuing the previous
example in function pr_expected(),

double ep_10) {
return(mark("p_1"));

}

double ep_30) {
return(mark("p_3"));

}

double ep_7() {

28

return(mark("p_7"));

void ac_final() {
x = expected(ep_1) * expected(ep_7)
+ expected(ep_3) * 1.2;
printf ("%f",x);
}

will produce a different result from the one computed using util() because of the dependence
existing (in general) between the number of tokens in p; and ps.

e pr_std_cum_average(), pr_cum_expected() and pr_time_avg_expected

Besides the expected values of the functions defined earlier, transient analysis also allows the
computation of the expected accumulated values over the interval [0,t) where ¢ is the time
point of interest. The corresponding functions are pr_std_cum_average() for computing the
expected accumulated values and pr_cum_expected() for computing the expected accumu-
lated value for user-defined functions. We can also compute the time-averaged expected values
of functions using pr_time_avg_expected as:

void pr_time_avg_expected (char *string, double (* func)());

As an example, consider the following;:

double avail() {
¥
void ac_final() {
double time_point;
solve(15.05);
pr_expected("Inst. Availability",avail);
pr_cum_expected("Total jobs lost",jobslost);
for (time_point = 10.0;time_point <= 100.0;
time_point += 10.0) {
solve(time_point);
pr_time_avg_expected("Interval Availability",avail);

}

pr_mtta("Mean time to failure");

Here, the instantaneous availability and total jobs lost are computed at time point ¢ = 15.05.
The for loop computes the instantaneous availability in the interval [0,t), with ¢ varying from
10 to 100 with an increment of 10.

e pr_mtta() and pr_newmtta()

void pr_mtta(char *string); void pr_mtta(char *string);

29

The function pr_mtta and pr_newmtta() computes the mean time to absorption for the
SRN. The functions should be used only when the underlying CTMC has absorbing states.
pr_-newmtta() gives the same result but runs much faster.

e pr_mtta_fun()
void pr_mtta_fun(char *string, double (* func)())

computes the accumulated reward up to absorption using function func to define which states
are absorbing (func = 0) and the rewards of other states (func! = 0).

e pr_cum_abs()
void pr_cum_abs(char *string, double (* func)());

Function pr_cum_abs(), which is similar to pr_mtta, allows the user to compute the expected
accumulated reward until absorption for a CTMC with absorbing states. To use this function,
the corresponding reward rate should be specified.

e set_prob_init()
void set_prob_init (double (* func)());

Transient analysis of the underlying CTMC depends on the initial state probability vector.
When the initial marking is tangible, the state corresponding to this marking has the initial
probability of 1 and all the other states have an initial probability of 0. If the initial marking is
vanishing, the initial probability vector over the states of the CTMC is automatically computed
by the program. The user is also allowed to define the initial probability vector over the
markings of the SRN using this function. At present, user-defined initial probability vector is
allowed only over the set of tangible markings.

e pr_value()
void pr_value(char *string, double expr);

Sometimes the user may desire to print values of functions that cannot be expressed as a
simple reward definition, but as a function of the expected values of several reward functions.
To facilitate this, SPNP provides a special function called pr_value(func).

Here, expr could be any expression which evaluates to a floating point number. For example, if
we wish to compute the ratio of two expected values expected(qlength) and expected (tput)
and print the result in the output file, we can specify the following:

pr_value("Expected Response Time",
expected(qlength) /expected(tput));

This would print the following in the output file:

VALUE: Expected Response Time = 15.7

e pr_message()
void pr_message(char *string);
Function pr_message allows the user to print an arbitrary message in the .out file.

e sens()!!

11See example CSPL file sensi.c.

30

void sens(char *parameter, ... (char *)0);

If IOP_SENSITIVITY has the value VAL_YES, the sensitivities (derivatives) with respect
to the model parameters will be provided for the measurements given by

— pr_std_average(),

— pr_std_cum_average(),

— pr_expected(),

— expected(),

— pr_time_avg_expected(),

— pr_mtta(),

— pr_cum_abs().
Currently, the reward functions can not be specified in terms of the defined parameters.
Therefore, when computing the derivative of any measurement that requires a reward function,

the reward accumulated in any state is assumed constant with respect to the parameters. By
default, the sensitivities with respect to all defined parameters will be computed.

By making a call to sens() with a list of parameter names terminated with 0, one can define
a set of enabled parameters that is a subset of all defined parameters. For example,

sens("alpha","beta","gamma",0) ;

will enable sensitivity analysis for only the parameters «, 3, and ~y, while

sens(0) ;

will produce an empty set of parameters thereby disabling sensitivity analysis, and

sens (ALL,0);

will enable sensitivity analysis for all defined parameters once again.

4.6 A complete example

As an example, consider an SRN (as shown in Figure 4.2) with two places, p; and ps, and two
transitions with exponentially distributed firing times, ¢15 and t21. The rate of the first transition is
determined by the function myval to be 7.3 times the number of tokens in Place p; while the rate
of the second transition is the constant 1.0. The SPNP input file is shown as following:

include "user.h"

/* Global variables */

void options() {

31

}

#nte

by

Figure 4.2: The SRN model

iopt (IOP_SSMETHOD,VAL_SSSOR) ;

iopt (IOP_PR_FULL_MARK,VAL_YES) ;

iopt (IOP_PR_MARK_ORDER,VAL_CANONIC) ;
iopt (IOP_PR_MC_ORDER,VAL_TOFROM) ;
iopt (IOP_PR_MC,VAL_YES) ;

iopt (IOP_MC,VAL_CTMC) ;

iopt (IOP_PR_PROB,VAL_YES);

iopt (IOP_PR_RSET,VAL_YES) ;

iopt (I0P_PR_RGRAPH,VAL_YES);

iopt (IOP_ITERATIONS,2000) ;

iopt (IOP_CUMULATIVE,VAL_NO) ;

fopt (FOP_ABS_RET_M0,0.0) ;

fopt (FOP_PRECISION,0.00000001) ;

N = input("Please enter the token number N:");

void net() {

}

place("p_1");
)

1
place("p_2"

3

trans("t_12");
trans("t_21");

init("p_1",N);

/* timed transition */
ratedep("t_12",7.3, "p_1");
rateval("t_21",1.0);

iarc("t_12","p_1
iarc("t_21","p_2
oarc("t_12","p_2

p_1

oarc("t_21","

int assert() {

}

return RES_NOERR;

void ac_init() {

}

void ac_reach() {

32

}

/*reward rate */
double tokenNo() {

return(mark("p_1"));
}

double rd() {

return ((mark("p_2")==0) 7 1:0);
}

void ac_final() {

solve (INFINITY);
pr_expected("Average Token Number in place p_1:", tokenNo);
pr_expected("steady state prob. that place p_2 is empty: ", rd);

33

Chapter 5

Specialized Output Functions

A state of a Markov chain is called transient if, during an infinitely long observation time period,
the system visits this state only finitely often. In other words, there is a nonzero probability that
the system will never return to this state. A state is defined as recurrent if the system visits this
state infinitely often during an infinitely long observation period. A recurrent state is called positive
recurrent or non-null recurrent if its average recurrence time is finite. Otherwise, it is defined as a
null recurrent state.

A Markov chain is irreducible if every state can be reached by every other state. A CTMC is
ergodic if it is irreducible and positive recurrent.

SPNP was initially aimed at the steady-state solution of SRNs whose underlying CTMC is
ergodic. There are a number of measures which could be considered unusual, but closely related
to steady-state. In particular, they do not require the implementation of a new solver; they can
be computed either from the steady-state probabilities, or by solving a slightly different (non-
homogeneous) linear system.

These measures were defined and implemented to perform decomposition-iteration techniques
allowing the approximate solution of SRNs whose state-space is too large to be studied directly
[9, 10]. They are accumulated, pr_accumulated, hold_cond, pr_hold_cond, and set_prob0.

double accumulated (m function, function)
double (*mfunction)();
double (* function)();

void pr_accumulated(string, function)
char *string;
double (* function)();

respectively return and print the expected value of the “accumulated reward up to absorption”, ac-
cording to some initial state probability distribution, reward rate assignment, and absorbing marking
definition. In the accumulated function, the reward rate assignment is specified by function and
the absorbing markings are defined by m function; if m function evaluates to 0.0 then the marking
is considered absorbing. In the pr_accumulated function, function specifies both the reward and
the absorbing marking; if function evaluates to 0.0 then the marking is considered absorbing. The
specification of the absorbing markings requires some attention. Since the SRNs normally managed
by the package are ergodic, no absorbing markings may be present. The underlying stochastic pro-
cess is then modified (for the computation of this measure only) so that markings whose reward
is null are assumed absorbing (their outgoing arcs in the Markov chain are ignored). If absorbing
markings do indeed exist in the original SRN, function (as well as m function) must evaluate to
zero in them (otherwise the accumulated reward would be infinite). Each call to accumulated
(or pr_accumulated) requires the solution of a non-homogeneous linear system having as many
variables as the non-zero-reward markings, so it can be expensive.

The results obtained from calls to accumulated or pr_accumulated is dependent on the

34

initial state probability vector. When the initial marking is tangible, the state corresponding to
this marking has the initial probability of 1 and all the other states have an initial probability of
0. If the initial marking is vanishing, the initial probability vector over the states of the CTMC
is automatically computed by the program. Alternatively, the user is allowed to define the initial
probability vector over the markings of the SRN using the function

void set_probO0(scale, function)
int scale;
double (* function)();

where scale is either VAL_YES or VAL_NO and the reward rate assignment is given by function.
At present, user-defined initial probability vector is allowed only over the set of tangible markings.
Unless the default value for the initial probability is desired, set_prob0 must be called before each
call to accumulated or pr_accumulated. Let’s define p; as the value returned by function on
marking i and 7; as the steady-state probability for marking ¢ (m; = 0 if marking ¢ is vanishing). A
call to set_prob0 with scale equal to VAL_INO defines the initial state probability for state i to

be proportional to p;:
Pi

Ej 7
A call to set_prob0 with scale equal to VAL_YES defines the initial state probability for state ¢
to be proportional to p;m;:

g
7(0); = <L

z:jpjﬂj
The definition of this second function may at first seem arbitrary; it is instead both useful and
intuitive. Assume that, given an ergodic SRN in steady-state, we want to know how long we need
to wait before a token arrives in Place p. The following portion of CSPL accomplishes this:

double one() { return(1.0); %}
double empty() { return(mark("p") > 0
double full() { return(mark("p") > O

)

0.0 : 1.0); }
1.0 : 0.0); }

?
7
void ac_final() {
set_probO(VAL_YES, empty) ;
pr_accumulated("Wait time",full);
set_probO(VAL_YES,one) ;
pr_accumulated("Wait time",full);

The first output gives the waiting time given that no token is in p, while the second output gives the
unconditional waiting time (that is, including the possibility that a zero waiting time is required,
when a token is already in p).

If IOP_SENSITIVITY has the value VAL_YES, the sensitivities (derivatives) with respect to
the model parameters will be provided for the measurements given by accumulated and pr_accumulated.
See the previous section for the definitions of parm, useparm, and bind, which are required for
sensitivity analysis.

Functions hold_cond and pr_hold_cond respectively compute and print the expected time a
condition holds true or false in steady-state:

35

void hold_cond(cond,times)
int (*cond)();
double times[2]

void pr_hold_cond(string,cond)
char *string;
int (*cond)();

cond must be a marking-dependent function returning VAL_YES if the condition holds in the
marking, VAL_NO otherwise. On return, times[VAL_YES] and times[VAL_NO] respectively
contain the expected length of time the condition holds or does not hold in steady-state. The
idea behind this measure is to be able to condense a large Markov chain into a two-state process.
Normally the process is not a Markov chain, but the two-state Markov chain whose transition
rates are 1/times[VAL_YES| and 1/times[VAL_NOJ can at least be considered an approximate
representation of it. The description of how this measure is computed gives additional insight. Define
Sy and S, to be the sets of markings where the condition is true and false respectively and define
T to be the set of tangible markings. If IOP_MC has value VAL_CTMC, times[VAL_YES] and
times[VAL_NOJ are computed respectively as

ZW’C Zﬂ'k

keS,NT keS,NT
and
> TiAi > TiAi
i€S,NT,j€S,NT i€S,NT,j€S,NT

where)\; ; is the transition rate from marking i to marking j. If IOP_MC has value VAL_DTMC,
times[VAL_YES] and times[VAL_NOJ are computed respectively as

=) (2)E)

keS,NT keT and keS,NT keT
E Dity; 4 Z DiC; 4
i€8y,j€Sn 1€Sn,JESy

where «; ; is the transition probability from marking i to marking j, p; is the steady-state probability
of marking j for the DTMC, and hj is the holding time in state k for the CTMC.

It is interesting to notice that DTMC and CTMC solution may give different results for this
measure. The reason is not due to an error nor to numerical roundoff or truncation. Rather, it is
intrinsic to the different approaches. If the condition holds in tangible markings m; and mg and
it does not hold in vanishing marking ms, a path (mq,ms, m3) in the reachability graph is treated
differently by the two approaches. The DTMC solution considers the holding time as terminated
and restarted every time the path is traversed, while the CTMC solution does not know that the
condition stops holding, even if for a null amount of time, when a transition from m; to mg occurs
(this information is discarded together with ms when eliminating the vanishing markings). The
holding time computed by the DTMC solution can be shorter than the one computed by the CTMC
solution. In practically all interesting applications, the condition holds or does not hold for a positive
amount of time with probability one, so no inconsistencies can arise.

36

Chapter 6

Discrete-Event Simulation

In addition to a numeric-analytic solution, SPNP allows to use discrete-event simulation to study
the behavior of a system at or up to a point of time. The specification of the SPN model is done
in CSPL. For simulation, however, the firing time distributions can be different from exponential
distribution. Generally, three functions are available to define one distribution with different kinds
of parametrizations: constant (with xxxval()), marking dependent (with xxxdep()), and function
dependent (with xxxfun()). The list of distributions and their definition functions are provided
below (For more details, see Section 9):

e Exponential: rateval(), ratedep(), ratefun().

e Constant (Or deterministic, including zero, that is, immediate transitions):
detval(), detdep(), detfun().

e Uniform: unifval(), unifdep(), uniffun().

e Geometric: geomval(), geomdep(), geomfun().

o Weibull: weibval(), weibdep(), weibfun().

e (truncated) Normal: normval(), normdep(), normfun().
e Lognormal: lognval(), logndep(), lognfun().

e Erlang: erlval(), erldep(), erlfun().

e Gamma: gamval(), gamdep(), gamfun().

e Beta: betval(), betdep(), betfun().

e (truncated) Cauchy: cauval(), caudep(), caufun().

e Binomial: binoval(), binodep(), binofun().

e Poisson: poisval(), poisdep(), poisfun().

e Pareto: parval(), pardep(), parfun().

e Hyperexponential (2-stage): hyperval(), hyperdep(), hyperfun().

e Hypoexponential (2 or 3-stage): hypoval(), hypodep(), hypofun().
The following types will be added to the package later:

e Negative Binominal: negbval(), negbdep(), negbfun().
o Cox2

e Loglogistic

37

e Defective exponential

e Triangular

When using simulation, the reachability graph is not generated, but the assert specification can
still be given: it is checked in each marking encountered during the simulation.

The output of SPN in this case is analogous to the one obtained from an analytic-numerical
solution, but with confidence intervals instead of point values. For FSPNs, simulation is the only
solution method implemented in SPNP.

6.1 Standard discrete event simulation

The following information is specified in the CSPL file, normally using calls to iopt() or fopt():

e Simulation specification
IOP_SIMULATION specifies if the simulation procedure will be used. Default value is
VAL_NO.

e Discrete event simulation method
IOP_SIM_RUNMETHOD specifies the simulation method. Value
VAL_REPL is specified if independent replications are used and value VAL_BATCH) if it
is batches [30]. Other values, for other simulation methods, are possible and will be explained
in next sections.

e Simulation length
FOP_SIM_LENGTH is the length of each simulation run, in simulated time, to be specified
with a call to fopt() (in the case where batches are used, it represents the length of each
batch). If no value is specified, it is possible to use calls to at_time or cum_time in function
ac_final instead.

e Mode of data collection
IOP_SIM_STD_REPORT specifies that the results will be displayed in the .out file and
the call of pr_message(char *msg) in ac_final() allows to print a message in the .out file.
. IOP_SIM_CUMULATIVE allows the data to be collected cumulatively (from zero to
FOP_SIM_LENGTH). The simulator collects four standard measures:

— Probability that a place is not empty.
— Average number of tokens in a place.

— Probability that a transition is enabled.

Throughput of a transition.

The default value of IOP_SIM_CUMULATIVE is VAL_YES.
Another way to collect statistics is by calling in ac_final() functions
— pr_expected(char *msg, double (*f)()), which computes the average instantanenous

value at time IOP_SIM_LENGTH for the user defined function f;

— pr_cum_expected(char *msg, double (*f)()) which computes the average cumula-

tive value for the user defined function f from time 0 to time given by IOP_SIM_LENGTH.

38

Thus option IOP_SIM_CUMULATIVE saves the call of a lot of functions pr_cum_
expected() but does not prevent the user from computing instantaneous measures (function
ac_final() can be empty if the values the user is looking for are an output of IOP_SIM_CUMULATIVE).

e Data confidence interval
FOP_SIM_CONFIDENCE specifies the confidence to be used when computing the confi-
dence intervals. Possible values are 90%, 95%, 99%, and the default value is 95%.

e Number of iterations

IOP_SIM_RUNS specifies the maximum number of simulation runs to be performed, to
obtain meaningful statistics. FOP_SIM_ERROR specifies the target half-width of the con-
fidence interval, relative to the point estimate. You can provide the exact number of runs (or
batches). The default value is 0. If you wish to let SPNP perform as many runs as needed
to achieve the specified relative error (which should then be strictly between zero and one),
you should assign IOP_SIM_RUNS to 0 (or not assign anything to it) and then specify
FOP_SIM_ERROR. If neither is defined, the default is then to run until a 10% relative
error is reached (at least five runs are always performed in this case).

¢ Random generator
IOP_SIM_SEED allows to change the seed of the random generator.

6.1.1 Current limitations of the simulator
The current limitations of the simulator are the following:

e The FSPNs iplemented are linear FSPNS, which means that the rates of the flows from or in
fluid places are linear between two firing of transitions or until a bound has been hit in a fluid
place.

e The guards, the flows can depend only on the discrete marking, the bounds of fluid places and
thresholds in fluid places (and not on the whole state space) and function fbreak() doesn’t
allow yet to take into account the increasing or decreasing property of the fluid level to modify
consequently the rates or guards.

e The cumulative measures to be computed can not involve a fluid place as they are computed
by the sum of the measure in the current state multiplied by the time to the next event (a
firing of a transition or a fluid event, i.e, a bound is hit in a fluid place).

6.1.2 Examples

See Section 10.13 and Section 10.14.

6.2 Importance splitting for rare events

The discrete event simulation described above is a very powerful tool but is inefficient to examine rare
events. To do so, we can use importance splitting techniques [33], which means defining thresholds
and splitting the simulation path when the thresholds are hit. The aim of these methods in this
software is to compute P(#p > z in [0,T]), the probability to have more than a given amount a

39

tokens (or fluid) in a place in the time interval [0, 7], or P(7,, < min(T, 7)), the probability that
Tp.z, the first time that #p > x, is less than the simulation run 7" and less than 7y, the return time
to the initial state.

An advantage with respect to the discrete event simulation of the previous section is that here
the measures can be computed on fluid places.

The usual simulation options IOP_SIM_RUNS and FOP_SIM_LENGTH are still used by
the importance splitting estimation.

The use of importance splitting techniques is specified by the option IOP_SIM_RUNMETHOD.
Its is set to VAL_RESTART if we use RESTART, estimating then P(#p > z in [0,77]), and
to VAL_SPLIT if we use splitting, estimating then P(7p, < min(7,7y)). For each method
(RESTART or splitting), the importance splitting procedure is called in ac_final by inserting split-
ting(name_of_place p,z).

Two specific options exist, one for splitting, IOP_SPLIT_LEVEL_DOWN, which determines
the number d of levels the path is stopped if it goes d levels down, and one for RESTART,
IOP_SPLIT_RESTART_FINISH, which means that each retrial is finished at simulation time
T (see [33]).

To determine the thresholds where the path will be split, there are two possibilities:

e cither they are determined by the user, by assigning in options the option IOP_SPLIT_
PRESIM to VAL_NO, then assigning the number of thresholds to IOP_SPLIT_
NUMBER and finally setting the thresholds values in table FOP_SPLIT_THRESHOLDS.
If this table is not specified, the thresholds are chosen uniformly between the initial value in
place p and value x.

e Or he runs a presimulation (IOP_SPLIT_PRESIM=VAL_YES). We run then at each
level a standard discrete event simulation, using number of independent runs is given by

IOP_SPLIT_PRESIM_RUNS.

For further details about importance splitting and its implementation in SPNP, see [33].

6.2.1 Example

See Section 10.15.

6.3 Importance sampling

Importance sampling is a method particularly efficient to estimate rare events, though it can be used
to improve the accuracy of every simulation. The basic idea is to modify the firing time distribution
in order to reduce the variance of the measure we wish to compute. The bias induced by this change
of measure is then corrected by the introduction of a function called the likelihood ratio (tranparent
in the outputs).

Importance sampling is called by setting IOP_SIM_RUNMETHOD to VAL_IS. The net is
defined as usual with the corresponding firing distributions. In the current implementation, the only

40

distributions for which the sampling distribution can be changed (and the list of new distributions
which can be used) is the following:
e Exponential.

e Uniform.

e Weibull.

Erlang.

(truncated) Cauchy.

Pareto.
e Hyperexponential (2-stage).

Probabilities.

This is done by calling the following functions (after the transition has been defined)

void rateval_is(char *t, double val);

void ratedep_is(char *t, double val, char *p);

void ratefun_is(char *t, double (* func());

void unifval_is(char *¢, double lower, double upper);

void unifdep_is(char *t, double lower, double upper, char *p);
void uniffun_is(char *¢, double (*f)(), double (*¢)());

void weibval_is(char *¢, double vall, double val2);

void weibdep_is(char *t, double vall, double val2, char *p);
void weibfun_is(char *¢, double (*f)(), double (*g)());

void hyperval_is(char *¢, double vall, double val2, double val3);
void hyperdep_is(char *t, double vall, double val2, double val3, char *p);
void hyperfun_is(char *t, double (*f)(), double (*g)(), double (*h)());
void erlval_is(char *¢, double vall, double val2);

void erldep_is(char *t, double vall, double val2, char *p);

void erlfun_is(char *¢, double (*f)(), double (*¢)());

void parval_is(char *¢, double k, double alpha);

void pardep_is(char *¢, double k, double alpha, char *p);

void parfun_is(char *t, double (*f)(), double (*g)());

void cauval_is(char *t, double alpha, double beta);

void caudep_is(char *t, double alpha, double beta, char *p);
void caufun_is(char *t, double (*f)(), double (*g)());

void probval_is(char *t, double val);

41

void probdep_is(char *t, double wval, char *p);
void probfun_is(char *t, double (* func());

The parameters are defined in the same way than when defining the actual distributions of the
transitions.

It is sometime interesting to modify the parameters of the importance sampling distribution if
some conditions are verified (for example if a set of states is reached). Such conditions are given by
the user by calling (many times if there are many conditions) function

resampling(f).

. Then the firing times are resampled using the new paprameters. This is called dynamic importance
sampling.

6.4 Regenerative simulation

Regenerative simulation is used to estimate steady-state measures. It is called by setting IOP_SIM_RUNMETHOL
to VAL_REG. In the current implementation, the user must specify the regenerative state as

the initial state and be sure that this state is regenerative. The number of used regenerative

cycles may be specified by IOP_SIM_RUNS or the desired precision by FOP_SIM_ERROR.
FOP_SIM_LENGTH is not used for this type of simulation.

6.5 Regenerative simulation with importance sampling

Regenerative simulation with importance sampling is also used to estimate steady-state measures.
It is called by setting IOP_SIM_RUNMETHOD to VAL_ISREG. It combines regenerative
simulation with importance sampling to speed up the simulation.

42

Chapter 7

Available Options

Tables 7.1, 7.2, 7.3 and 7.4 lists all options and their legal and default values in CSPL. Their usage
will be given in the following sections.

‘ Name | Values ‘ Default |
IOP_PR_RSET VAL_YES, VAL_NO, VAL_TAN VAL_NO
I0P_PR_RGRAPH VAL_YES, VAL_NO VAL_NO
IOP_PR_MARK_ORDER | VAL_CANONIC VAL_LEXICAL VAL _MATRIX | VAL_CANONIC
I0P_PR_MERG_MARK VAL_YES, VAL_NO VAL_YES
I0P_PR_FULL_MARK VAL_YES, VAL_NO VAL_NO
I0P_USENAME VAL_YES, VAL_NO VAL_NO
I0OP_PR_MC VAL_YES, VAL_NO VAL_NO
I0P_PR_DERMC VAL_YES, VAL_NO VAL_NO
I0P_PR_MC_ORDER VAL_FROMTO, VAL_TOFROM VAL_FROMTO
I0P_PR_PROB VAL_YES, VAL_NO VAL_NO
I0P_PR_PROBDTMC VAL_YES, VAL_NO VAL_NO
I0P_PR_DOT VAL_YES, VAL_NO VAL_NO

Table 7.1: Available options for intermediate files

| Name Values | Default
I0P_MC VAL_CTMC, VAL_DTMC VAL_CTMC
IOP_SSMETHOD VAL_SSSOR, VAL_GASEI, VAL_POWER | VAL_SSSOR
IOP_SSDETECT VAL_YES, VAL_NO VAL_YES
FOP_SSPRES non-negative double 0.25
IOP_TSMETHOD VAL_TSUNIF, VAL_FOXUNIF VAL_FOXUNIF
IOP_CUMULATIVE VAL_YES, VAL_NO VAL_YES
IOP_SENSITIVITY | VAL_YES, VAL_NO VAL_NO
IOP_ITERATIONS non-negative int 2000
FOP_PRECISION non-negative double 0.000001

Table 7.2: Available analytic-numeric solution options

7.1 Options for intermediate files

IOP_PR_RSET and IOP_PR_RGRAPH

These options specify whether the reachability set and graph should be printed. In addition to
VAL_YES and VAL_NO, VAL_TAN can be used for IOP_PR_RSET, which indicates that
only the tangible markings should be printed.

43

Name

‘ Values

IOP_SIMULATION
IOP_SIM_RUNS
IOP_SIM_RUNMETHOD
IOP_SIM_SEED
IOP_SIM_CUMULATIVE
IOP_SIM_STD_REPORT
IOP_SPLIT_LEVEL_DOWN

VAL_YES, VAL_NO
non-negative int

non-negative int
VAL_YES, VAL_NO
VAL_YES, VAL_NO
non-negative double

VAL_REPL, VAL_BATCH, VAL_RESTART VAL_SPLIT, VAL_IS, VAL_THIN, VAL_ISTHIN, VAL_REG,

IOP_SPLIT_PRESIM VAL_YES, VAL_NO

IOP_SPLIT_NUMBER non-negative double
IOP_SPLIT_RESTART_FINISH | VAL_YES, VAL_NO

IOP_SPLIT_PRESIM _RUNS non-negative double
FOP_SIM_LENGTH non-negative double
FOP_SIM_CONFIDENCE non-negative double
FOP_SIM_ERROR non-negative double

Table 7.3: Available simulative options

‘ Name | Values | Default
IOP_ELIMINATION VAL_REDONTHEFLY, VAL_REDAFTERRG,
VAL_REDNEVER VAL_REDONTHEFLY
I0P_OK_ABSMARK VAL_YES, VAL_NO VAL_NO
I0P_OK_VANLOOP VAL_YES, VAL_NO VAL_NO

IOP_OK_TRANS_MO VAL_YES, VAL_NO VAL_YES
IOP_OK_VAN_MO VAL_YES, VAL_NO VAL_YES
FOP_ABS_RET_MO non-negative double 0.0
I0P_DEBUG VAL_YES, VAL_NO VAL_NO
FOP_FLUID_EPSILON | non-negative double 0.000001
FOP_TIME_EPSILON non-negative double 0.000001

Table 7.4: Miscellaneous options

IOP_PR_.MARK_ORDER

This option specifies the order in which the markings are printed.

e With VAL_CANONIC order, markings are printed in the order they are found, in a breadth-
first search starting from the initial marking, and in increasing order of enabled transitions
indices. It is the most natural order and it is particularly helpful when debugging the SRN.

e With VAL_LEXICAL order, markings are printed in increasing order, where markings are
compared as words in a dictionary, for example (2_T 3:2 4:1 5:1) comes before (3_A 3:2 4:3
6:1). This order may be useful when searching for a particular marking in a large “.rg” file.
With the VAL_CANONIC order, an editor with search capabilities is usually adequate for
this purpose.

e With VAL_MATRIX order, markings are printed in the same order as the states of the two
internal Markov chains: the DTMC corresponds to the vanishing markings, and the CTMC
corresponds to the tangible markings. This corresponds to the following ordering: vanishing,
tangible non-absorbing, and tangible absorbing, each of these groups ordered in canonical
order.

44

IOP_PR_MERG_MARK

This option specifies whether the tangible and vanishing markings should be printed out in one
merging list or two separate lists.

IOP_PR_FULL_MARK

This option specifies whether the markings are printed in long format, where some of the markings
have zero number of tokens in all the places; or short format, where for each printed out marking,
there is at least one place which has non-zero tokens.

IOP_USENAME

This option specifies whether the names should be used to indicate the places and transitions
involved when printing the reachability set and graph, instead of the index (a small integer starting
at 0). Using names generates a large “.rg” file but it is useful when debugging a SRN.

IOP_PR_MC

¢

This option specifies whether the “.mc” file should be generated or not.

IOP_PR_DERMC

This option specifies whether the derivative with respect to each defined parmname files should be
generated or not in the file “.mc”

IOP_PR_MC_ORDER

This option specifies whether the transition matrix (if VAL_FROMTO) or its transpose (if VAL_TOFROM)
should be printed in the “.mc” file.

IOP_PR_PROB

¢

This option specifies whether the “.prb” file is generated or not.

IOP_PR_PROBDTMC

This option specifies whether the “.prbdtmc” file is generated or not.

45

IOP_PR_DOT

This option specifies whether the “.dot” file is generated or not.

7.2 Options for analytic-numeric solution

I0P_MC
This option specifies the solution approach.

e Using VAL_CTMC will transform the SRN into a CTMC.

e Using VAL _DTMC will use an alternative solution approach, where the vanishing marking
are not eliminated and an embedded DTMC is solved instead. In this case, the first index in
the “.mc” file is —n, if there are n vanishing markings, not 0.

SPNP can perform transient and sensitivity analysis only by reducing the SRN to a CTMC. Hence
this option should be set to VAL_CTMC when these types of analysis are needed.

IOP_SSMETHOD
This option specifies the (numerical) steady-state solution method for the process:

e VAL_SSSOR for Steady-State SOR (Successive Overrelaxation)[28].
e VAL_GASEI for Steady-State Gauss-Seidel[28].
e VAL _POWER for Steady-State Power-Series Algorithm [34]

SOR is usually the fastest method, but there are cases where SOR does not converge, while Gauss-
Seidel converges, and vice versa. The Power-Series Algorithm has a better convergence performance
than the other two, but the the rate is much slower.

IOP_SSDETECT

This option specifies if we use steady-state detection in transient analysis.

FOP_SSPRES

This option specifies the required precision for the steady state detection.

46

IOP_TSMETHOD
This option specifies the (numerical) transient-state solution method for the CTMC:

e VAL_TSUNIF for Transient Solution using Standard Uniformization

e VAL _FOXUNIF for Uniformization using the Fox and Glynn method for computing the
Poisson probabilities.

IOP_CUMULATIVE

This option specifies whether cumulative probabilities should be computed.

IOP_SENSITIVITY
This option specifies whether sensitivity analysis should be performed.

e If VAL_YES is specified, IOP_MC must have value VAL_CTMC and
IOP_ELIMINATION must have value VAL_ REDONTHEFLY.

IOP_ITERATIONS

This option specifies the maximum number of iterations allowed for the numerical solution. Any
nonnegative integer can be specified.

FOP_PRECISION

This option specifies the minimum precision required from the numerical solution. The numerical
solution will stop either if the precision is reached, or if the maximum number of iteration is reached.
Both the reached precision and the actual number of iterations are always output in the “.prb” file,
so you can (and should) check how well the numerical algorithm performed.

7.3 Options for simulative solution

IOP_SIMULATION

This option indicates whether the system is solved numerically or simulated.

IOP_SIM_RUNS

This option specifies the number of simulator runs (or batches). It can either be a positive integer
or zero. In the latter case, SPNP runs until FOP_SIM_ERROR is reached.

47

IOP_SIM_RUNMETHOD
This option specifies the simulation method which will be used:
e VAL _REPL if we are using the standard discrete vent simulation with independent replica-

tions

e VAL BATCH if we are using the standard discrete vent simulation with batches (and then
a single run).

e VAL _RESTART if we are using Restart.

e VAL _SPLIT if we are using splitting.

e VAL_IS if we are using importance sampling. (In implementation).

e VAL _REG if we are using regenerative simulation. (In implementation).

e VAL _ISREG if we are using regenerative simulation with importance sampling. (In imple-
mentation).

e VAL _THIN if we are using thinning with independent replications. (In implementation).

e VAL _BATHIN if we are using thinning with batches (and then a single run). (In implemen-
tation).

e VAL_ISTHIN if we are using thinning with importance sampling. (In implementation).

The length of the replications or of the batches is given by FOP_SIM_LENGTH (for the regen-
erative simulation, FOP_SIM_LENGTH is not used) .

his option specifies, when IOP_SIM_SPLIT=VAL_YES, if we are using the RESTART method
or the splitting one (which don’t estimate the same thing).

IOP_SIM_SEED

This option specifies the value of the seed of the random generator. Default value is 52836.

IOP_SIM_CUMULATIVE

This option specifies whether to collect data as time averages or point-of-time estimates.

IOP_SIM_STD_REPORT

This option specifies whether the standard report is printed to the .out file in simulation.

48

IOP_SPLIT_ LEVEL_ DOWN

This option is specific to the splitting method (IOP_SIM_SPLIT_RESTART=VAL_NO). It
specifies the number d of levels the simulation must cross down to stop the simulation path (to
reduce the computational time).

IOP_SPLIT _RESTART_FINISH

This option is specific to the RESTART method (i.e., IOP_SIM_SPLIT_RESTART =VAL_NO).
It specifies that every path will continue up to the simulation time given by FOP_SIM_LENGTH
or up to reaching an upper thershold (not only the last one as in the usual RESTART method).

IOP_SPLIT _PRESIM

This option specifies, when we are using importance splitting techniques, if we determine the thresh-
olds by running a presimulation.

IOP_SPLIT_PRESIM_RUNS

The option specifies the number of independent paths to use to estimate each threshold, when the
presimulation is required for importance splitting methods.

IOP_SPLIT NUMBER

This option specifies, if [OP_SPLIT_PRESIM=VAL_NO, the number of thresholds must be used to
apply importance splitting methods. These thresholds must be specified in table FOP_SPLIT_THRESHOLDS|1...
in function setup().

FOP_SIM_LENGTH

This option specifies the time to run for each simulation iteration. No default is assumed, so the
user has to specify a value for it whenever IOP_SIMULATION is VAL_YES.

FOP_SIM_CONFIDENCE

This option specifies the required confidence for the simulation, a number between zero and one.
Currently, only 90%, 95%, or 99% can be specified.

FOP_SIM_ERROR

If IOP_SIM_RUNS is 0 or left unspecified, the simulator takes this error as the stopping criterion,
it will run until the error precision is reached. It must be a value between 0.0 and 1.0.

49

7.4 Miscellaneous options

IOP_ELIMINATION
This option specifies the method by how vanishing markings are managed and eventually eliminated.

e Specifying VAL_REDNEVER means that the stochastic process being considered explicitly
regards the vanishing markings as ordinary states. With this option, only a steady-state
solution is possible. Using an embedded DTMC, measures related to immediate transitions
are computed, and vanishing (non-absorbing) loops present no problems.

e Specifying VAL_ REDAFTERRG means that the reachability graph constructed includes
explicitly the vanishing markings, but these are then eliminated numerically before generating
the underlying CTMC. With this option, any type of solution is possible, and vanishing (non-
absorbing) loops present no problems, but measures related to immediate transitions are not
computed.

e Finally, specifying VAL_ REDONTHEFLY means that vanishing markings are eliminated
during the reachability graph construction. With this option, any type of solution is possible,
but vanishing (non-absorbing) loops are considered an error and measures related to immediate
transitions are not computed.

Users are strongly encouraged to use VAL_REDONTHEFLY, as this usually results in the fastest
solution and the lowest memory requirements. However, there are rare pathological cases where this
option will actually results in larger memory requirements than VAL_REDNEVER [7].

IOP_OK_ABSMARK, IOP_OK_VANLOOP, IOP_OK_TRANS_MO,
and IOP_OK_VAN_MO

These options specify respectively whether absorbing markings, transient vanishing loops, a transient
initial marking, and a vanishing initial marking are acceptable or not.
e If VAL_NO is specified, the program will stop if the condition is encountered.

e If VAL_YES is specified, the program will signal such occurrences, but it will continue the
execution, if it is possible.

FOP_ABS_RET_MO

This option specifies the value of the rate from each absorbing marking back to the initial marking.
If this rate is positive, these markings will not correspond to absorbing states in the CTMC. This
is useful to model a situation that would otherwise require a large number of transitions to model
this “restart”. Of course, the numerical results will depend on the value specified for this option.

50

IOP_DEBUG

Setting this option to VAL_YES causes SPNP to output (on the “stderr” stream) the markings
as they are generated, and the transitions that enabled them. This feature is extremely useful when
debugging an SRN.

FOP_FLUID_EPSILON

This option specifies the e for which to values (concerning the level in a fluid place) are considered
identical if they difference is smaller than . This value is introduced to prevent numerical round-off
mistakes.

FOP_TIME_EPSILON

This option specifies the € for which to values of time are considered identical if they difference
is smaller than . This value is introduced to prevent numerical round-off mistakes and is needed
when using importance splitting simulation methods.

51

Chapter 8

Format of the Intermediate Files

This section explains how to interpret the data in the intermediate files generated during the analysis
of an SRN.

8.1 The “.rg” file

This file describes the reachability graph corresponding to the SRN. It can be generated if the options
IOP_PR_RSET and IOP_PR_RGRAPH are set to VAL_YES. The format of the information
is as the following:

_nplace = <number of places>;
_ntrans = <number of transitions>;

_places =
<pl>: <place name>;
<pl>: <place name>;
_transitions =

<tr>: <transition name>;

<tr>: <transition name>;
_ntanmark = <number of tangible non-absorbing markings>;
_nabsmark = <number of (tangible) absorbing markings>;
_nvanmark = <number of vanishing markings>;
_nvanloop = <number of transient loops>;
_nentries = <number of arcs in the reachability graph>;

_reachset =
<mk><1bl> <pl>:<tk> ... <pl>:<tk>;
<mk><1bl> <pl>:<tk> ... <pl>:<tk>;
_reachgraph =
<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;
<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;

where <mk> is the integer index of a marking (non-negative for tangible markings, negative for
vanishing markings) and <1b1> is a code (_T for tangible, non-absorbing; _A for tangible, absorbing;
_V for vanishing marking not in a loop; _L for vanishing marking in a transient loop); <pl> is the
non-negative integer internally assigned to each place (in the same order of definition in the CSPL
file); <tr> is the non-negative integer internally assigned to each transition (in the same order of
definition in the CSPL file); <tk> is the (positive) number of tokens in a place; and <val> is the
transition rate or probability in the marking. So, for example, this row in the reachability set
specification

52

3_A 0:1 6:5;

means that marking 3, an absorbing tangible marking, has one token in place 0 and five tokens in
place 6, while this row in the reachability graph specification

-4 4:2:0.7 -6:5:0.3;

means that marking -4, a vanishing marking, goes to marking 4 by firing transition 2 with probability
0.7, and to marking -6 by firing transition 5 with probability 0.3 (of course both transition are
immediate). If the option IOP_PR_FULL_MARK is turned on, the format for the description of
the reachability set is instead

_reachset =

<placel> <place2> ... <placelN>
<mk><1bl> <tk> <tk > ... <tk>
<mk><1bl> <tk> <tk > ... <tk>

8.2 The “.mc” file

This file can be generated if the option IOP_PR_MC is set to VAL_YES. If IOP_MC has value
VAL_CTMGC, this file describes the CTMC derived from your SRN; the vanishing markings are
absent and only numerical rates appear. The format is:

_firstindex = O;

_nstates = <number of states>;

_nentries = <number of arcs in the CTMC>
_order = <_FROMTO or _TOFROM>;

_matrix =
<state> <state>:<rate> ... <state>:<rate>;
<state> <state>:<rate> ... <state>:<rate>;
[_initstate =
<state>:<prob> ... <state>:<prob>
<state>:<prob> ... <state>:<prob>;]

_iterations = <maximum number of iterations>;
_precision = <requested precision>;

_method = <requested solution method>;

_time = <_INFINITY>|<time_point>;

All entries enclosed in square brackets (]...]) are optional. Any of the statements shown after the
_matrix description can repeat. The transition rate matrix is described by rows. If ' FROMTO is

in effect,

7 5:0.4 8:1.2 12:100;

53

means that the transition rate from state 7 to state 5 is 0.4, to state 8 is 1.2, to state 12 is 100.0.
The first index is 0, so if the number of states is 15, they will be identified as 0,1,2,...,14. If the
order is "TOFROM, the transpose of the transition rate matrix will be printed. In our example,
there will be rows

5 7:0.4 ;
8 7:1.2 ;
12 7:100 ;

If IOP_MC has value VAL_DTMC, this file describes the DTMC derived from your SRN,
the vanishing markings are still present and probabilities are given instead of rates (the matrix is
stochastic).

8.3 The “.prb” file

This file describes the transient and steady-state probability for each tangible marking; it corre-
sponds to the result of the CTMC solution (even when the actual solution used a DTMC). It can
be generated if the option IOP_PR_PROB is set to VAL_YES. The format is as following:

_firstindex = O;

_nstates = <same value as in input>;

_method = <method actually used>;

_precision = <the reached precision>;
_iterations = <the actual number of iterations>;
_time = <_INFINITY>|<time_point>;

_probabilities =
<state>:<prob> ... <state>:<prob>
<state>:<prob> ... <state>:<prob>;
[_derprobabilities =
<state>:<prob> ... <state>:<prob>
<state>:<prob> ... <state>:<prob>;]
[_cumprobabilities =
<state>:<prob> ... <state>:<prob>
<state>:<prob> ... <state>:<prob>;]
[_dercumprobabilities =
<state>:<prob> ... <state>:<prob>
<state>:<prob> ... <state>:<prob>;]

54

Chapter 9

User guide for iSPN

9.1 Introduction

9.1.1 Organization of this guide

The guide assumes the user already has some experience with SPNP. It is intended for first time
users of the integrated Stochastic Petri Net Package (iISPN).

9.1.2 Conventions used in this chapter

The following conventions are followed in the manual

1. All buttons are displayed in boldface.
2. A click is always left mouse button unless explicitly mentioned otherwise.

3. LMB: left mouse button; MMB: middle mouse button; RMB: right mouse button.

9.2 iSPN

9.2.1 Why iSPN?

Interaction with computers has come a long way since the arcaic textual interfaces. There is now
substantial literature on human-computer interaction (HCI), a research subject widely recog-
nized as a vital component of successful computer applications . But, when we evaluate HCIs
currently available on analytical modeling packages, we see the enormous gap between their in-
terfaces and modern HCI trends. The developers of analytic modeling packages need to deliver
beneficial services to the user, and del iver them in a usable way. This paper suggests an approach
of delivering this next generation of modeling tools with improved HCI. The approach is followed
in the development of an integrated environment for modeling using Stochastic Petri Nets, named
iSPN. Careful consideration was given to the design and implementation of iSPN to facilitate the
creation of SPN models. iSPN increases the power of SPNP (the Stochastic Petri Net Package) by
providing a means of rapidly developing stochastic reward nets (SRNs); the model type used for
input. Input to SPNP is specified using CSPL (C based SPN Language), but iSPN removes this
burden from the user by providing an interface for graphical representation of the model.

The development uses the scripting language Tcl (Tool Command Language), developed by Prof.
John Ousterhout of U.C. Berkeley, and extension Tk, a toolkit for X windows. The selection of the
script-based approach is due to three of its main benefits:

55

e Tcl/Tk provides a higher-level interface to X than most standard C library toolkits.

e The user interface is clearly isolated from the rest of the application, making the overall design
easy to maintain and expand.

e The use of Tcl/Tk makes this application portable to all platforms.

9.3 1iSPN interface

iSPN mimics the look and feel of real file cabinet drawers by using windows with title tabs to ease
the sorting of overlapping windows. The design model of iSPN is : (i) user-centered and involve
users as much as possible so that they can influence it; (ii) integrates knowledge and expertise from
the different disciplines that contribute to HCI design; and (iii) be highly iterative so that testing
can be done to check that the design does indeed meet users’ requirement.

modeling environments

browse
examples

graphical
output

welcome
display

SPNP

credits Petri net
display editor

database
manager

nomenclature: v::
IID control DATA
=) control/data BASE

-

Figure 9.1: iSPN main software modules.

iSPN opens with the WELCOME page. The Center for Advanced Computing and
Communication (CACC) logo is displayed. See Appendix for more information on CACC.

The major components of the iSPN interface (see Figure 9.1) are a Petri net editor which allows
graphical input of the stochastic Petri nets and an extensive collection of visualization routines to
analyze output results of SPNP and aid for debugging. Each module corresponds to a page in the
software.

iSPN provides a high level input format to CSPL which provides great flexibility to users. iSPN
is capable of executing SPNP with two different file formats: (i) files created in the CSPL (C-based
Stochastic Petri net Language) ; and (ii) files created us ing iSPN’s Petri Net editor.

The Petri net editor, which is the software module of iSPN that allows users to graphically
design the input models, introduces a new way of programming SPNP: the user can draw the SRN
model and establish all the necessary additional functions (i.e., rewards rates, guard function, etc.)
through a common environment. The Petri Net editor provides several characteristics normally

56

Figure 9.2: The petri net editor.

available only in sophisticated two-dimensional graphical editors and a lot of new features designed
specifically for the SPNP environment.

iSPN also provides a textual interface, through the Run Programs page (see Figure 9.3), which
is necessary if we wish to accommodate several categories of users. The user can select his model,
edit it, and execute it, without having to switch between different appplications like a text editor and
SPNP. Beginners may feel more comfortable using the Petri Net editor whereas experienced SPNP
users may wish to input their models using CSPL directly. Even if the textual input is the option
of choice, a lot of new facilities are offered through the integrated environment. In both cases, the
“SPNP control” module provides everything a user needs to run and control the execution of SPNP
without having to switch back-and-forth among distinct environments (i.e., the UNIX command or
a text editor).

oL e ——
e
Pk —w—
= g

e ——]

gl
LR

A P i el g
frt P ey e Moy b o

-lﬂﬂ
i
i

=a - < EE
— .

Figure 9.3: The execution page.

In the Plots page, the user can view SPNP’s results in the GUI application. iSPN’s own graphing
capability allows the results of experiments to be graphically displayed in the same environment.
Different combinations of input data may be compared against each other on one plot or viewed
simultaneously. The graphical output format is created in such a way that it may be viewed by
other vizualization packages, such as gnuplot or xvgr.

57

Errr s trin St e | Bemew e i -

i i m—

Figure 9.4: The output page.

Previously, debugging was a difficult task due to the textual environment. Opening many inter-
mediate files created during the compilation of SPNP was necessary in order to know the validity
of the CSPL file. One of these intermediate files, “.rg”, is important for finding bugs in the model
description, if they exist. This file is a description of the reachibility graph and is displayed in a
tree format as a part of iSPN. The debugging feature is based on navigation of the reachability
graph result ing in an innovative function of iSPN that should provide improved efficiency in the
development of stochastic Petri net models.

iSPN also offers the user the unique ability to efficiently and selectively browse a database of
old SPNP models. This specialized browser provides an easy way of organizing SPNP programs,
which can be very beneficial, even for the more seasoned use rs.

The following sections describe how to use these capabilities of iSPN.

9.4 The Petri net editor

The Petri net editor handles the creation of the SPN. The WORK AREA, which constitutes the
major portion of the screen, is where the user designs his stochastic Petri net. Icons of the various
objects used in SPN design appear in the Objects menu (see Figure 9.5).

At all times the mouse bindings are displayed above the Objects menu. For large PNs which
extend beyond the bounds of the Work Area, the user can get a global view of the design in the
Global Design window (see Figure 9.6).

iSPN provides numerous functions to simplify design of Petri nets (see Figure 9.7).
Creation of the SRN

To create an SPN|,

1. Click on Create.

2. Select object.

58

Figure 9.6: The global view.

3. Move the cursor into the Work Area and click. The object appears in green and a table
appears next to the Work Area for the object parameters.

4. Press Return to confirm operation.

5. Repeat for each object.

SPN modification

Features for SPN modification can be broadly categorized into

1. Parameter modification

2. Physical object modification

59

~ Menu :

model

icisplay

I grid I anchor

Figure 9.7: The iSPN menu.

Parameter modification involves altering the parameters already assigned to a specific object.
To change the value of an object

1. Click Modify
2. Select the object in the Work Area.

3. Modify the attributes of the object in the table.

Physical object modification deals with changing the position and shape of the objects. iSPN
provides the following means for object modification :

Copy

1. Click on Copy
2. Select the area to be copied from the Work Area.
3. Click to acknowledge.

4. Move the cursor to a different location in the Work Area and click. The object is automatically
copied.

Move

1. Click Move
2. Use the LMB to select a single object to move or the MMB for a group of objects.

3. Move cursor to the desired position and click to place object/group.

Delete

60

1. Click Delete
2. Use the LMB to select a single object to move or the MMB for a group of objects.
3. Double LMB click to delete

Rotate : This is used to rotate the transitions for a clearer and neater model. However a rotated
transition does not change the functionality of the model in any way!!

1. Click Rotate

2. Click on the transition to rotate. Each click rotates the transition by 45 degrees in the clockwise
direction .

Arc : This function changes the shape of the arc. It comes in handy when an arc intersects
other objects. By clicking on intermediate points on the arc, it can be re-routed so that it does not
cross over objects.

To re-route the arc,

1. Click on Arc

2. Click on the arc with the MMB, and while holding the button down reposition the arc.

When the arc is repositioned, it consists of a number of line segments. This can be changed by
using the Shape function.

1. Click Shape

2. Click on the intermediate points to smoothen out the vertices.

9.4.1 File functions

All file functions, like save, open, etc, are accessed through the model button. When the model
button is clicked, the Work Area is replaced by a screen with various file options. Brief descriptions
of the file functions are given below.

1. New : Create a new worksheet.
2. Open : Open an existing worksheet.
3. Save : Save the current worksheet.

4. Save As : Save the current worksheet under a different name.

The user has the option of saving the worksheet with information such as Project Name, Version,
Reference, and Date Last Modified. There is also a Comment Area where the user can provide a
brief description of the Petri Net.

61

9.4.2 Miscellaneous functions

A number of other functions are provided for ease of design. These functions are

Zoom : Zooms in to/out of worksheet.

Map : In cases where the Petri net does not fit in the Global Work Area, the map function is
used to cut/add space to the design sheet.

To add space,

1. Click Map.
2. Doubleclick on the Work Area with the MMB.
3. Each doubleclick adds space all around the Work Area.

To delete space,

1. Click Map
2. Doubleclick on the Work Area with the LMB.

3. Each double click deletes space all around the Work Area.

Note that initial design space is the minimum available. Space cannot be deleted without first
adding space.

Refresh : Redraw worksheet

Clear : Clear worksheet

To clear worksheet,

1. Click Clear
2. Doubleclick in the Work Area with the LMB.

Note : Use this with caution!!! However, as a protection against errors, the entire worksheet can
be restored to its original condition

To restore the worksheet,

1. Click Clear
2. Doubleclick in the Work Area with MMB.

Grid : Draws a grid on the worksheet.

Anchor : snap object to the closest grid point.

62

9.4.3 Environment control functions

An interesting feature of SPNP is its flexibility of operation, allowing the user to tailor its functioning
to his/her own needs. It allows the user to change the operating environment. This is done in iISPN
by

1. Click model.

2. Click environment.

3. Select features.

9.4.4 Information functions

Information functions allow the user to obtain information about his/her design. iSPN provides a
number of ways to view information.

Identify : Display information about the object over which the mouse pointer is positioned.

Browse : Display information about all objects in a tabular form.

1. When an object is selected from the table, it is highlighted in green in the Global View.

2. After selection, when OK is clicked, the Work Area is restored with the selected object
highlighted in green.

Display : Allow user to select the information he/she wants to have displayed on the screen,
next to the objects.

9.4.5 FSPN model

In SPNP v6, a very powerful function is introduced. That is Fluid Stochastic Petri Net (FSPN).
Fluid places and arcs are introduced into ordinary SPNs to represent continuous quantities. iSPN
provides the editing environment for FSPN.

In FSPN, the fluid places are drawn as two concentrical circles and the fluid arcs are drawn as
double lined arrows, to differentiate with the single circle representation of discrete places and single
lined arrow representation of discrete arcs. In iSPN editing, for each places and arcs, there is an
attribute checkbox for fluid places and fluid arcs. Clicking on this attribute checkbox will change the
corresponding place/arc into fluid place/arc and verse vesa. iSPN will adjust the graphics output
according to these attributes. Several options have to be set for FSPN model (Refer to Section 7).
The execution of FSPN model is through simulation, i. e., IOP_SIMULATION should be set to
VAL_YES before execution. The results will be displayed in the output panel after the simulation.

63

9.5 Execution of the model

The design can be executed from two places. One is from the Petri net editor itself, and the other
is from the Run Programs page.

From the Petri Net Editor page,

1. Click Run.

The Run Programs page is pulled up, and the current model is executed.
If the model has been incorrectly specified, a list of errors is displayed.
If there are no errors, an OK message is signalled.

Click Mapping. The CSPL source code is generated and displayed.

To control the execution environment of SPNP click Environment.

Click Execute to run the model.

® N o e N

After the model is executed, the CSPL code is shown again. To view the output, switch to
the Run Programs page.

9. To view the StdErr files, pull the top edge of the message window in the Run Programs
page down.

10. Other files, like the Log and the Reachability Graph files, can be displayed by clicking the
RMB anywhere in the message window.

The Run Programs page has model selection information (path and filename of project),
a menu for file, view/edit, and execute operations, a message window for StdOut (all output
message) and a message window for StdErr (error messages) (see Figures 9.8, 9.9).

= Menu

Figure 9.8: Run Programs menu

From the Run Programs page,

1. Click Sel to select model to be run.
2. Click Run to run the model.

3. Click Edt to view/edit the CSPL file for the selected model. When Edt is clicked, the emacs
editor is invoked.

64

- Model Selection
Path: |/tmp/vishnus

File: |ispngph.c

| |
] | =

Figure 9.9: Model Selection menu

4. Click Sav to save the .C, .SPN, .log, .rg, .out files

5. Click Clr to clear all messages in StdOut.

9.6 Viewing output

Output can be observed in two ways - one is textual, as was described in the previous section, and
the other way is graphical, in the form of line graphs. Graphs are viewed in the Plots page. The
Plots page opens with a menu for the graphing functions, mouse bindings, graph definition,
and model selection areas.

- Model :

‘ Graphical Cpen m Save As Environment

Figure 9.10: Plots model selection menu

The model selection (see Figure 9.10)area handles various file functions.
Open : Open an existing .isp file for execution.

Save : Save the current .isp file or the .igp (graphical output) file.

Save As : Save the current file under a different name.

Environment : Change operating environment of SPNP.

Once a .isp file has been opened, to create a graph,

1. Click Create.
2. Assign meanings to the graphs, and the symbol which must appear on the graph.

3. Define the function, derivative function (if any), and reward rates for the graph.

65

Input the time of execution, the time interval, and the time unit.

Click OK if all is well, Cancel to cancel, and Clear to clear all fields.

When OK is clicked, Run highlights in green if all the fields have been correctly entered.
Click Run

© N o o e

If there are no syntax errors in the file, an OK message is signalled. If there are errors, a list
of errors is displayed.

9. Execution environment of SPNP can be modified through the Environment button.
10. Click Mapping. The CSPL file is displayed.
11. Click Execution. The Run Programs page is brought up, and the model executed.

12. After model execution, the graphical output is displayed.

9.6.1 Graphing functions

- kMenu :

Display

Figure 9.11: Graphing functions

Combo : Used to combine two or more graphs in the same display window. A maximum of
four graphs can be displayed at any given time in any given display window.

1. Click Combo.

2. A combine window is displayed beneath the Menu. Select the graphs to be combined and click
OK.

3. The selected graphs are displayed in the display window.

Display : controls the display window parameters. The user can control the scale, crosshairs,
legend, and the grid.

1. Click Display.

2. Select options for each display window.
3. Click OK.

Func

Print : Prints the output to printer.

66

9.6.2 Graph definition functions

Create | Modify |ldentify

Figure 9.12: The Plots menu

Modify : Used to modify the graph definitions.

1. Click Modify

2. Select the graph to be modified.

Make the changes in the Modification Area.
Click OK.

oo W

For the changes to take effect, the model must be rerun. Click Run.

Identify

This is used to identify the graphs.

67

1. Click Identify.

2. Click with the MMB on any of the display windows. The graph details are displayed below
the mouse bindings.

Note : Positioning the mouse over any point of the graph will display the value at that point.

9.7 Debugging
This page, as the name implies, is used for debugging purposes. The reachability graph plays a very
important role in debugging a model.

The general layout of the page is as follows : A major part of the window is dedicated to the
reachability graph. On the left of the reachability graph area are buttons for opening .rg files, and
displaying information about the reachability graph. There are also options for zooming in/out and
identification of repeated markings.

A brief description of the usage of the page is given below :
OPEN

The OPEN button allows the user to open .rg files. Once a .rg file has been opened, the
reachability graph is graphically displayed in the window.

INFO

The INFO button provides the user with the salient and important information about the
reachability graph.

Place and Transition Areas

These are present in order to identify the various places and transitions presented in the PN
model.

Zoom In/Out
This allows the user to zoom in or out of the reachability graph.
Identify

When Identify is on, moving the mouse pointer over a marking highlights all repetitions of the
marking.

9.7.1 Reachability graph traversal

The markings of the reachability graph are displayed in cyan, with the current marking in green.
The graph can be traversed either by using the cursor keys or the mouse. The user can also view
the changes in the PN model. This is done in the following way :

1. Click Open.

68

2. Select the .rg file.

Click OK.

Press F2 on the keyboard.

A message box appears asking whether the user wishes to open a .isp file.
Click OK.

Select the .isp file corresponding to the .rg file.

The PN model appears in the window.

© ® N s W

The user can switch between the Petri net and the reachability graph by using the F2 and
F3 keys.

9.8 Browse examples

The Browse Examples page allows the user to browse through a database of examples. All the
user needs to do is

1. Select a file from the left side of the window.
2. The CSPL code for the file is displayed.

3. Click Run to execute the model.

9.9 Help

The following are the ways in which iSPN provides on-line help for the user.

1. iSPN provides hyperlink help for its users. The sixth “page” of iSPN is the Help page, which
gives detailed information about the various functions in the pages.

2. Balloon help for all pages. If the mouse is positioned over a button for a certain amount of
time, a window pops up giving a brief description of the button.

3. F1 help. If F1 is pressed with the mouse positioned over a button, hypertext help is pulled
up for the button.

4. Mouse bindings. At all times the mouse bindings are displayed. Adjacent to the mouse buttons
are messages telling the user what function the corresponding button carries out. iSPN follows
a color convention. A blue message corresponds to a single click, a red one to a double click,
and a green one to a 'Ctrl’ click.

5. Message bar. When any operation is carried out, a message appears at the bottom of the
iSPN window informing the user of the status of the operation. Again, a color convention is
followed. Messages in green are OK messages, while those in red mean that there is an error.

69

9.10 How to install iISPN in a unix environment

A version of Tcl/Tk with their extensions is distributed with the package in the directory tcltk. If
you can’t run the application, remove the directory tcltk, then install it in the same path.

You need to install in the order if you have any problems:

1. Tcl
Home page : http://www.sco.com/Technology/tcl/Tcl.html
Download the code : http://sunscript.sun.com/TclTkCore/index.html

2. Tk
Home page : http://www.sco.com/Technology/tcl/Tcl.html
Download the code : http://sunscript.sun.com/TclTkCore/index.html

3. Tix
Home page : http://www.xpi.com/tix/
Download the code : http://www.xpi.com/download/binaries.html

4. Blt
Download the code : http://www.sco.com/Technology/tcl/Tcl.html
ftp://ftp.neosoft.com/pub/tcl/alcatel /extensions/

5. Expect
Home page : http://expect.nist.gov/
Download the code : http://expect.nist.gov/

6. Tcl-my-fancy
Comprehensive interpreter for tcl/tk/tix/blt/expect commands
Download the code : http://www.nsrc.nus.sg/STAFF /rthien/d_bugger /mps.cap

Type in your shell the script file “script” after you have modified it to correspond with the
directory where you have installed the packages iSPN and SPNP.

1. setenv TIX_LIBRARY dir0
dir0 : directory contained the library files for tix examples: /opt/tcltk/lib/tix

2. setenv ISPN2_DIRECTORY dirl
dirl : directory contained the ispn code.

3. setenv SPNP_DIRECTORY dir2
dir2 : directory contained the SPNP executable.

Operation in “ispn” file : Change the first line and write the correct path of the global interpreter.

9.11 Programming resources

The selection of the script-based approach is due to three of its main benefits: Tcl/Tk provides
a higher-level interface to X than most standard C library toolkits. Development of the IDEAS

70

environment will be fast because of fast turnaround, aiding the debbuging process and refinement
of the interface. The user interface is clearly isolated from the rest of the application, making the
overall design easy to maintain and expand.

9.11.1 Tcl (version tcl7.4)

Tecl stands for ”Tool Command Language”. Tcl is really two things: a scripting language, and
an interpreter for that language. Tcl was designed and crafted by Prof. John Ousterhout of U.C
Berkeley. Tcl can be used in commercial applications for free. The interpreter has been ported
from UNIX to DOS and Macintosh environments. As a scripting language, Tcl is similar to other
UNIX shell languages which let you execute other programs. Tcl provides enough programmability
(variables, control flow, procedures) that we can build up complex scripts that assemble existing
programs into a new tool tailored to our needs.

9.11.2 Tk (version tk4.0)

Tk is a toolkit for window programming. It was designed for the X window system. Tk shares
many concepts with other windowing toolkits. Tk provides a set of Tcl commands that create
and manipulate widgets. A widget is a window in a graphical user interface that has a particular
appearance and behavior. Widget types include buttons, scrollbars, menus, and text windows. Tk
also has a general purpose drawing widget called a canvas that lets you create lighter-weight items
such as lines, boxes and bitmaps. The X window system supports a hierarchy of windows, and this
is reflected by the Tk commands, too. To an application, the window hierarchy means that there
is a primary window, and then inside that window there can be a number of children windows.
The children windows can contain more windows, and so on. Just as a hierarchical file system has
directories that are containers for files and directories, a hierarchical window system uses windows
as containers for other windows. The hierarchical affects the naming scheme used for Tk widgets
as described below, and it is used to help arrange widgets on the screen. Widgets are under the
control of a geometry manager that controls their size and location on the screen. Until a geometry
manager learns about a widget, it will not be mapped onto the screen and you will not see it. The
main trick with any geometry manager is that you use frame widgets as containers for other widgets.
One or more widgets are created and then arranged in a frame by a geometry manager. A Tk-based
application has an event driven control flow, just as with most window system toolkits. An event is
handled by associating a Tcl command to that event using the bind command. There are a large
number of different events defined by the X protocol, including mouse and keyboard events. Tk
widgets have default bindings so you do not have to program in detail by yourself. You can also
arrange for events to occur after a specified period of time with the “after” command. Event bindings
are structured into a simple hierarchy of global bindings, class bindings, and instance bindings. An
example of a class is Button, which is all the button widgets. The Tk toolkit provides the default
behavior for buttons as bindings on the button class. You can supplement these bindings for an
individual button, or define global bindings that apply to all bindings. You can even introduce
new binding classes in order to group sets of bindings together. The binding hierarchy is controlled
with the bindtags command. The basic structure of a Tk script begins by creating widgets and
arranging them with a geometry manager, and then binding actions to the widgets. After the
interpreter processes the commands that initialize the user interface, the event loop is entered and
the application begins running.

71

9.11.3 Tix (version Tix4.0.4)

Tix, the Tk Interface Extension, is an extensive set of over 40 mega-widgets including: ComboBox,
Motif style FileSelectBox, MS Windows style FileSelect Box, PanedWindow, NoteBook, Hierarchical
List, Directory Tree, File Manager and many more. Tk only provides a set of primitive widgets that
may be tedious to work with. In constrast, Tix delivers powerful higher-level widgets that fit the
needs of your application. With Tix, you can forget about the frivolous details of the Tk widgets
and concentrate on solving your problems at hand.

Professional Look-and-feel

Tix defines configurations options that are very close to the standard Motif look-and-feel. If you
like the ease of programming with Tcl/Tk but want your program to have an industrial standard
look-and-feel, Tix is the answer.

Rapid Prototyping New Widgets

The Tix Intrinsics API makes it possible to write new custom designed widgets using Tcl exclu-
sively. It typically reduces the efforts of developing a new widget by a factor of ten or more.

72

Chapter 10

Examples

10.1 Molloy’s example

10.1.1 Source

M. K. Molloy, Performance Analysis Using Stochastic Petri Nets, IEEE Trans. Comput., C-31 (9),
Sept. 1982, 913-917.

10.1.2 Description

The net is shown in Figure 10.1

t0
pl p2
t3
t1 t2
p3 pd
t4

Figure 10.1: SPN for Example 10.1

10.1.3 Features

e Assertion on place p3.
e Reward based functions to compute expected values.

e Default measures

73

e Steady-state analysis

10.1.4 SPNP File — examplel.c

/x This example adapted from M.K. Molloy’s IEEE TC paper */
include "user.h"

void options() {

iopt(IOP_SSMETHOD, VAL_GASEI);
iopt(IOP_PR_FULL_MARK,VAL_YES);
iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC);
iopt(IOP_PR_.MC_ORDER,VAL_TOFROM);
iopt(IOP_PR_MC,VAL_YES);
iopt(IOP_PR_PROB,VAL_YES);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_PR_RSET,VAL_YES);
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_ITERATIONS,20000);
fopt(FOP_ABS_RET_MO0,0.0);
fopt(FOP_PRECISION,0.00000001);

}
void net() {

place("p0");
init("p0",1);
place("p1");
place("p2");
place("p3");
place("p4");

rateval("t0",1.0);
rateval("t1",3.0);
rateval("t2",7.0);
rateval("t3",9.0);
rateval("t4",5.0);

iarc "tO","pO" . oarc utou7nP1n
iarc "tl","pl" oarc "tl","pB"
iarc "t2","p2" oarc "t2","p4"
iarc "t3"7"p3" oarc "t3","p1"
iarc "t4"7"p3" iarc("t4","p4"); 0arc("t4","p0");

oarc("tO" ,"P2");

}

int assert() {
if (mark("p3") > 5)
return(RES_.ERROR);
else
return(RES_.NOERR);

void ac_init() {
fprintf(stderr,"\nExample from Molloy's Thesis\n\n");
pr-net_info(); /¢ information on the net structure %/

void ac_reach() {
fprintf(stderr,"\nThe reachability graph has been generated\n\n");
prrg-info(); /* information on the reachability graph */

/% general marking dependent reward functions /
double ef0 return gdoublegmarkg“pO"gg; 1

double efl return((double)mark("p1"));
double ef2 return(rate("t2"));
double ef3 return(rate("t3"));

double eff() { return(rate("t1") * 1.8 4+ (double)mark("p3") * 0.7); }
void ac_final() {
solve(INFINITY);

74

pr-mc_info(); / information about the Markov chain x/
pr_expectedg"mark(po) " ef0);
pr_expected("mark(p1)",efl);

pr-expected("rate (t2)",ef2);
pr-expected("rate(t3)",ef3);

pr-expected("rate(t1) * 1.8 + mark(p3) * 0.7" eff);
pr_std_average(); / default measures */

10.2 Software Performance Analysis

10.2.1 Description

This example models the following piece of software:

A: Statements;
PARBEGIN
Bl: statements;
B2: IF (condl) THEN
C: statements;
ELSE
DO
D: statements;
WHILE (cond2);
END IF
PAREND

The corresponding SPN model is shown in Figure 10.2.

10.2.2 Features

e Probability and rate functions.
e Priorities for immediate transitions.
e Reward functions.

e Transient analysis with multiple time points.

10.2.3 SPNP File — example2.c

include "user.h"

'k
This example corresponds to the following piece of software:

A: statements;
PARBEGIN
B1: statements; B2: IF cond THEN
C: statements;
ELSE
DO

0]

Figure 10.2: SPN for Example 10.2

D: statements
WHILE cond;
IFEND
PAREND

*/

options() {
/x Transient analysis /
iopt(IOP_TSMETHOD, VAL_TSUNIF);

/% rates and probabilities are defined as functions %/

double rate08 returngl.Og;
double ratel return(0.3);
double prob2 return(0.4);
double prob3 return(0.6);
double rated return(0.2);
double rateb return(7.0);
double prob6 return(0.05);
double prob7 return(0.95);
double prob8 return(1.0);}
net() {

place("p0");

init("p0",1);

place("p1");

place("p2");

place("p3");

place("p4");

place("p5");

place("p6");

place("p7");

place("p8");

/* priorities associated with transitions %/

imm("t2"); priority("t2",1);

imm("t3"); priority("t3",1);

imm("t6"); priority("t6",1);

imm("t7"); priority("t7",1);

imm("t8"); priority("t8",1);

76

/* rate and probability functions %/
ratefunE"A"7 rate0);

ratefun("B1", ratel);

probfun("t2",prob2);

probfun("t3",prob3);

ratefun("C", rated);

ratefun("D", rateb);

probfun("t6",prob6);

probfun("t7",prob7);

probfun("t8",prob8);

iarc "A","pO"); oarc("A","pl"); oarc("A","pS");
iarc("B1","p1"); oarc("B1","p2");

@arc "2 "p3h): oarc("t2","pa");

iarc("t3","p3"); oarc("t3","p5");

iarc "Cr, " pat); oarc("C","p6");

iarc("D","p5"); oarc("D","p7");

iarc 6" Mp7"); oarc("t6","p6");

@arc AN YADR qarc "7 "p5");

iarc "t8"7"p2" ; 1arc(“t8","p6"); 0arc("t8","p8");

}

assert() { return(RES_.NOERR); }

ac_init() { fprintf(stderr,"\nSoftware modeling example\n\n"); }
ac_reach() { }

double rfunc() { return(mark("p8")); }

ac_final() {
int i;

/% Transient analysis with multiple time points %/
/* reward function %/
for (i=1;1< 105 i++)

solve((double) i);

pr-expected("probability of completion", rfunc);
for (i=10;1<20;i4=2)

solve((double) i);

pr-expected("probability of completion", rfunc);
for (1=20;1i<50;i4+=5)

solve((double) i);
pr-expected("probability of completion", rfunc);

10.3 M/M/m/b queue

10.3.1 Description

This example models a finite-buffer M /M /m/b queue shown in Figure 10.3. The corresponding
SPN is shown in Figure 10.4.

10.3.2 Features

e Both steady-state and transient analysis.

7

Figure 10.3: The M/M/m/b Queue.

A buf L
trin trserv Transition | Rate Function

trserv #uf)p if (#uf) < m)

mu otherwise

Figure 10.4: SPN for Example 10.3

e Marking dependent firing rates.
e Assertions.

e General reward specification.

10.3.3 SPNP File — example3.c

/% This example models a Multi-server FCFS queue with finite buffer %/
/x An M/M/m/b queue x/

include "user.h"

/* Global variables /
double lambda;
double mu;

int b;

int m;

int method;

void options() {

method = input("Input 0/1 for Steady-state/Transient analysis");
if (method == 0
iopt(IOP_SSMETHOD,VAL_SSSOR);
else if (method ==1)
iopt(IOP_.TSMETHOD,VAL_TSUNIF);
else

fprintf(stderr,"ERROR: Illegal method specification");
exit(1);

iopt(IOP_PR_.FULL_.MARK,VAL_YES);
iopt(IOP_.PR_.MARK_ORDER,VAL_CANONIC);
iopt(IOP_PR_MC_ORDER,VAL_TOFROM);
iopt (IOP_PR_MC,VAL_YES);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_PR_PROB,VAL_YES);
iopt(IOP_PR_RSET,VAL_YES);

iopt (IOP_PR_RGRAPH,VAL_YES);

78

iopt(IOP_ITERATIONS, 20000);
iopt(IOP_CUMULATIVE, VAL_NO);
fopt(FOP_ABS_RET_MO0,0.0);
fopt(FOP_PRECISION,0.00000001);
lambda = finput("Enter lambda");

mu = finput("Enter mu");

b = input("Enter the number of buffers");
m = input("Enter the number of servers");
}

/x Marking dependent firing rate */
double rate_serv() { if (mark("buf") < m) return(mark("buf")*mu);
else return(m*mu); }

void net() {

place("buf");

rateval("trin",Jambda);
ratefun("trserv" rate_serv);

oarc("trin","buf"); mharc("trin","buf",b);
iarc("trserv","buf");

}

int assert() {
[* Make sure that the number of tokens in buf does not exceed the
buffer size %/
if (mark("buf") > b))
return(RES_ERROR);
else
return(RES_.NOERR);

void ac_init() {
fprintf(stderr,"A model of the M/M/m/b Queue");
pr-net_info();

void ac_reach() {
pr-rg-info();

double glength() { return(mark("buf"));

double util() { return(enabled("trserv")); }

double tput() { return(rate("trserv")); }

double probrej() { if (mark("buf") == b) return(1.0);
else return(0.0); }

double probempty() { if (mark("buf") == 0) return(1.0);
else return(0.0);

double probhalffull() { if (mark("buf") == b/2) return(1.0);
else return(0.0);

void ac_final() {

double time_pt;

/x measures related to the queue x/
if (method ==0)

solve(INFINITY);

pr-expected("Average Queue Length", glength);
pr-expected("Average Throughput", tput);
pr-expected("Utilization", util);

/* this case corresponds to buf having b tokens %/
pr-expected("Probability of rejection",probrej);

/% this case corresponds to buf having zero tokens %/
pr-expected("Probability that queue is empty",probempty);

/% this case corresponds to buf having b/2 tokens %/
pr-expected("Probability that queue is half full",probhalffull);

else

79

for (time_pt = 0.1; time_pt < 1.0; time_pt += 0.1)
solve(time_pt);
pr-expected("Average Queue Length", glength);

pr-expected("Average Throughput", tput);
pr-expected("Utilization", util);

/* this case corresponds to buf having b tokens %/
pr-expected("Probability of rejection",probrej);

/% this case corresponds to buf having zero tokens */
pr_expected("Probability that queue is empty",probempty);

/* this case corresponds to buf having b/2 tokens %/
pr-expected("Probability that queue is half full" probhalffull);

}
for (time_pt = 1.0; time_pt < 10.0; time_pt += 1.0)
{

solve(time_pt);

pr-expected("Average Queue Length", glength);
pr-expected("Average Throughput", tput);
pr_expected("Utilization", util);

/% this case corresponds to buf having b tokens x/
pr-expected("Probability of rejection",probrej);

/* this case corresponds to buf having zero tokens %/
pr-expected("Probability that queue is empty",probempty);

/* this case corresponds to buf having b/2 tokens x/
pr-expected("Probability that queue is half full" probhalffull);

10.4 C.mmp system performability analysis

10.4.1 Source

J. T. Blake, A. L. Reibman and K. S. Trivedi, Sensitivity Analysis of Reliability and Performability
Measures for Multiprocessor Systems, Proc. 1988 ACM SIGMETRICS, Santa Fe, NM, 1988.

10.4.2 Description

This example models the C.mmp system designed at CMU. The architecture of the system is shown
in Figure 10.5. The corresponding SPN model is shown in Figure 10.6.

10.4.3 Features
e Enabling functions.
e Variable multiplicity arcs.
e Reward based measures.

e Transient analysis.

80

processors

memories
i
INTER
k CONNECTIQN |12
NETWORK

Figure 10.5: The C.mmp Architecture.

10.4.4 SPNP File — examplej.c

#include "user.h"
#include <math.h>

e
This is a model of the C.MMP multiprocessor system adopted from Blake,
Reibman and Trivedi ”Sensitivity Analysis of Reliability and
Performability Measures for Multiprocessor Systems”, ACM SIGMETRICS
1988.

*/
int k;

extern int abs();
extern double pow();

void options()

iopt(IOP_SSMETHOD, VAL_SSSOR);
iopt(IOP_TSMETHOD,VAL_TSUNIF);
iopt(IOP_OK_TRANS_M0, VAL_YES);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_ITERATIONS,20000);
fopt(FOP_ABS_RET_MO0,0.0);
fopt(FOP_PRECISION,0.00000001);

k = input("Input minimum number of proc/mem needed (1<=k<=16)");
if(k<1)

fprintf(stderr,"ERROR: atleast one processor is needed (k >= 1)");
exit(1);

if}(k> 16)

fprintf(stderr,"ERROR: only 16 processors are available (k<=16)");
exit(1);

}
int entrflr()

if (mark("procup") == 0 && mark("memup") == 0 && mark("swup") == 0)
return(0);

if (mark("procup") < k || mark("memup") < k || mark("swup") == 0)
return(1

else

(

3

)
return(0);

int apfl()

return(mark("procup"));

81

-

P>

paC R RN

procup memup swup

trilr i #

—/ ——
trpr trmm trsw

procdn Qmemdn swdn

Wl

Al

M
U

-

P>

Transition | Enabling Function
trilr ((#(procup) < k) V (#(memup) < k) V (#(swup) = 0))
A((#(procup) > 0) V (#(memup) > 0) V (#(swup) > 0))
Arcs Multiplicity Function

procup — trflr & | #(procup)
trflr — procdn
memup — trflr & | #(memup)
trflr — memdn
swup — trflr & #(swup)
trflr — swdn

Figure 10.6: SPN for Example 10.4.

int amfl()

return(mark("memup"));

int asfl()

return(mark("swup"));

void net() {
place("procup");
init("procup", 16);
place("procdn");
place("memup");
init("memup", 16);
place("memdn");
place("swup");
init("swup",1);
place("swdn");

/* timed transition */

ratedepg"trpr", 0.0000689, "procup");
ratedep("trmm", 0.000224, "memup");
rateval("trsw", 0.0002202);

/x immediate transition %/
imm("trflr"); priority("trflr", 100); guard("trflr", entrflr);
probval("trflr", 1.0);

iarc("trpr", "procup"); oarc("trpr", "procdn");
iarc("trmm", "memup"); oarc("trmm", "memdn");

iarc("trsw", "swup"); oarc("trsw", "swdn");

viarc("trflr", "procup", apfl); voarc("trflr", "procdn", apfl);
viarc("trflr", "memup", amfl); voarc("trflr", "memdn", amfl);
viarc("trflr", "swup", asfl); voarc("trflr", "swdn", asfl);

82

}

int assert()

return(RES_.NOERR);

void ac_init()
¥
void ac_reach()

pr-rg-info();

double reliab()
if (mark("procup") > k && mark("memup") > k && mark("swup") == 1)
return(1.0);
else
return(0.0);
double reward_rate()
double m, 1, temp;
if (mark("procup") > k && mark("memup") > k && mark("swup") == 1)
1 = min((double)mark("procup"), (double)mark("memup"));
m = max((double)mark("procup"), (double)mark("memup"));
temp = pow((1.0 — (1.0 / m)) , 1);
return(m * (1.0 — temp));
else
return(0);
void ac_final()
double time_pt;
for (time_pt = 500.0; time_pt < 5000.0; time_pt += 500.0)
solve(time_pt);
pr-expected("Reliability", reliab);

pr-expected("Expected Reward", reward_rate);
pr-cum_expected("Expected Accumulated Reward", reward_rate);

10.5 Database system availability analysis

10.5.1 Source

P. Hiedelberger and A. Goyal, Sensitivity Analysis of Continuous Time Markov chains using Uni-
formization, Computer Performance and Reliability, G. lazeolla, P. J. Courtois and O. J. Boxma
(Eds.), Elsevier Science Publishers, B.V. (North-Holland), Amsterdam, 1988.

10.5.2 Description

This example is a model of a database system shown in Figure 10.7.

83

Figure 10.7: The Database System Architecture.

The system consists of a front end (FE), a database (DB) and two processing sub-systems. Each
processing sub-system consists of two processors (P), a memory (M) and a switch (S). For the
system to be functional, we need at least one of the processing sub-systems to be operational. The
database and the front-end should also be operational. The processing sub-system is functional as
long as the memory, the switch and at least one of the processors is functional. When a processor
fails, with probability ¢ it fails without disturbing the system. However, with probability 1 — ¢
the failing processor corrupts the database causing it to fail and consequently rendering the system
unoperational. The processors, memories and switches can be repaired while the system is up. The
memories and switches receive priority over the processors for repair. The corresponding SRN model
is shown in Figure 10.8.

10.5.3 Features

e Global variables.
e Enabling function.
e Reward based functions.

e Transient analysis.

10.5.4 SPNP File — examples.c

/* This is a petri-net model of the database system example from
the paper on sensitivity by Hiedelberger and Goyal %/

include "user.h"

double coverage = 0.99;
int count = 0;

void options() {
iopt(IOP_SSMETHOD, VAL_SSSOR);

84

prlup
< :> mmlup swlup dbup
fmmly tswlr
tmmifl tswl tdbfl
mmldn swldn dbdn
prldnl prldn2
mm2up sw2up feup
% pr2up
tmm?2r tsw2r
. pr2tmp
tpr2r tmm tsw tfefl
¢ tpr2f2
@ mm?2dn sw2dn fedn
pr2dnl pr2dn2
Transition | Enabling Function

all

(#(dbup) = 1) A (##(feup) = 1)

V(#(pr2up) > 0) A (#

A((#(prlup) > 0) A (#(mmlup) > 0) A
(mm2up) > 0) A

(#(swlup) > 0)
(#(sw2up) > 0))

Figure 10.8: SPN for Example 10.5.

iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC);
iopt(IOP_PR_MC_ORDER,VAL_TOFROM);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_PR_RSET,VAL_YES);
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_CUMULATIVE,VAL_NO};
fopt(FOP_PRECISION,0.00000001);

}

int enall() {

/x if the database is failed %/
if (mark("dbup") ==0)
return(0);

/* if the front end is failed %/
if (mark("feup") ==0)
return(0);

/x if both the processmg sub-systems are failed */
if ((mark("mmiup") == 0 || mark("swlup") ==0||
mark("prlup") ==
(mark("meup") ==0 || mark("sw2up") ==0||
mark("pr2up") == 0))
return(0);

85

return(1);

void net() {

/x first processing subsystem x/
place("mmiup"
init("mmiup",1);
place("swiup");
init("swiup",1);
place("priup");
init("priup",2);
place("mmidn");
place("swidn");
place("pritmp");
place("pridni");
place("pridn2");

/* second processing subsystem x/
place("mm2up");
init("mm2up", 1)
place(“sw2up)
init(" sw2up"

place("pr2up"
init("pr2up",2);
place("mm2dn");
place("sw2dn"
place "pr2tmp“§;

)
)
3
3

place("pr2dni");
place("pr2dn2");

/x database */
place("dbup");
init("dbup",1);
place("dbdn");

/* frontend x/
place("feup");
init("feup",1);
place("fedn");

guard
guard
guard

"tswlfl" enall);
"tpri1fl" enall);

"tmm1f1l" ,enallg;

guard
guard
guard

"tswir",enall);
"tprir" enall);

"tmmir" ,enall§ ;

guard
guard
guard

"tsw2fl" enall);
"tpr2fl" enall);

"tmm2f1" ,enallg;

guard
guard
guard

"tsw2r",enall);
"tpr2r" enall);

"tmm2r" ,enall§ ;

guard("tdbfl" enall);
guard("tfefl" enall);

/* immediate transitions %/
imm("tprifi");
priority("tpri£1",100);
imm("tprif2");
priority("tprif2",100);

imm("tpr2£1");
prlorlty("tperl" 100);
imm("tpr2£2");
priority("tpr2f2",100);

/x parameters for the transitions %/
rateval("tmm1£1",1000./2400.);
rateval("tsw1£1",1000./2400.);
ratedep("tpr1£1",1000./2400.,"priup");

86

rateval("tswir",1000.
rateval("tprir",1000.

)

ratevalg" tmmir" ,1000%;

rateval("tmm2£1",1000./2400.);
rateval("tsw2£1",1000./2400.);
ratedep("tpr2£1",1000./2400.,"pr2up");

rateval
rateval
rateval

"tsw2r",1000.
"tpr2r",1000.

)

"tmm2r" ,1000.;;

rateval("tdb£1",1000./2400.);
rateval("tfef1",1000./2400.);
probval("tprif1" coverage);

probval("tprif2",1.0 — coverage);

probval("tpr2f1" coverage);
probval("tpr2£2",1.0 — coverage);

/x input and output arcs x/
iarc("tmm1fl","mmiup"); oarc("tmmifl" "mmidn");
iarc("tswifl" "swiup"); oarc("tswlfl" "swldn");
iarc("tprifl","priup"); oarc("tprifl","pritmp");
iarc("tpri1f1","pritmp"); oarc("tprifl","pridnl");
iarc("tprif2","pritmp"); oarc("tprif2","pridn2");
iarc("tprif2","dbup"); oarc("tprif2","dbdn");

iarc("tswir","swldn"); oarc("tswlr" "swiup");
iarc("tprir","pridnl"); oarc("tprir","priup");
harc("tprir","mmidn");
harc("tprir" "mm2dn");
harc("tprir" "swidn");

harc("tprir","sw2dn");

iarcg"tmmlr","mmldn";; oarcg"tmmlr","mmlup"g;

iarc("tsw2fl","sw2up"); oarc("tsw2fl" "sw2dn");
iarc("tpr2f1","pr2up"); oarc("tpr2fl","pr2tmp");

iarc("tmm2f1","mm2up"); oarc "tnun2fl","nun2dn“;;
’
iarc “tpr2f1","pr2tmp";; oarCE"tpr2f1","pr2dn1"§'

iarc("tpr2f2","pr2tmp"); oarc("tpr2f2","pr2dn2");
iarc("tpr2f2","dbup"); oarc("tpr2£2","dbdn");
iarc("tmm2r","mm2dn"); oarc("tmm2r", "mm2up");
iarc("tsw2r","sw2dn"); oarc("tsw2r","sw2up");
iarc("tpr2r","pr2dnl"); oarc("tpr2r","pr2up");

harc("tpr2r","mmidn");
harc("tpr2r","mm2dn");
harc("tpr2r","swidn");
harc("tpr2r","sw2dn");

iarc("tdbfl" ,"dbup"); oarc("tdbfl","dbdn");
iarc("tfefl","feup"); oarc("tfefl","fedn");

int assert() {

/% count the number of states in which the failure of the database
by itself has caused system failure. This excludes the states
in which the database has been corrupted by a failing processor

#/

if (mark("dbdn") == 1 &&
mark("pridn2") == 0 &&
mark("pr2dn2") == 0)
count++;
return(RES_.NOERR);

}

void ac_init() {
fprintf(stderr,"\nExample from Heidelberger & Goyal\n\n");

void ac_reach() {

87

}

double reliab() {
[+ if the database is failed %/
if (mark("dbup") ==0)
return(0.0);
/x if the front end is failed %/
if (mark("feup") == 0)
return(0.0);
/x if both the processing sub-systems are failed /
if ((mark("mmiup") == 0 || mark("swiup") == 0 ||
mark("priup") == 0) &&
(mark("mm2up") == 0 || mark("sw2up") == 0 ||
mark("pr2up") == 0))
return(0.0);

return(1.0);

void ac_final() {
double time_pt;
solve(INFINITY);

for (time_pt = 0.1; time_pt < 1.0; time_pt+= 0.1) {
solve(time_pt);
pr-expected("Reliability:", reliab);

pr-value("No. of States in which DB caused failure", (double)count);

10.6 ATM network under overload

10.6.1 Source

Chang-Yu Wang, D. Logothetis, K.S. Trivedi and 1. Viniotis, Transient Behavior of ATM Networks
under Overloads, Proceedings of the IEEE INFOCOM 96, San Francisco, CA, pp. 978-985, March
1996.

10.6.2 Description

This example models ATM networks under overloads. The SPN is shown in Figure 10.9.

10.6.3 Features
e Transient analysis.
e Marking dependent firing rates.
e Guard function.

e General reward specification.

88

rerouting time

21 T |
tal bufl | m 3
mmpp_L —O—1—0O—1—0O—F
11
22 B
mmpe-2 O Dm |
tar2 buf2 o CTTTTTTTTTTTTTTTTo
{12 servicetime
Transition | Rate Function Guard Function
tary if (#mmppl) A% else A% (#bufl + Zz #Preroute[i]) < Ki
tars if (#mmpp2))\% else)\g (#bufo + >, #Pserv[i]) < K2

Figure 10.9: SPN for Example 10.6

10.6.4 SPNP File — atm.c

#include <stdio.h>
#include "user.h"

/* global variables */

double a1=0.0269163;

double a2=0.0269163;

double b1=0.00672908;
double b2=0.00672908;
double lambdall=1.5058;
double lambda21=1.5058;
double lambdal2=0.00301161;
double lambda22=0.00301161;
int r1=>5;

int r2=>5;

double mul=2.73;

double mu2=2.73;

int K1=16;

int K2=16;

double e=0.0001;

/% prototype reward functions %/
double Qlenl () ;

double Earrival () ;

double Qlen2 () ;

double ELR () ;

double PFull () ;

/% prototype guard functions %/
int gar2 () ;
int garl () ;

/% prototype rate functions %/
double REr1 () ;
double Rarl () ;
double REr2 () ;

89

double Rar2 () ;

/% prototype cardinality functions %/
int R2 () ;

int dep12 () ;

int R1 () ;

void options() {
iopt(IOP_PR_-RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_.PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR_MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;
/* NUMERICAL SOLUTION chosen */
1opt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_SSSOR)) ;
iopt(IOP_.TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,2000) ;
fopt(FOP_PRECISION,0.000001) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_YES) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

/* REWARD Functions %/
double Qlenl ()

return((double)mark("buf1") + ((double)mark("Er_tokenl")
+ (double)mark("Er_stagel1"))/rl);

}
double Earrival ()

double ret_val;

ret_val= (mark("mmpp_2")) ? lambda21:lambda22;

if (mark("Er_token1")==1) {

ret_val += rl/mul;

return(ret_val);

double Qlen2 ()
return((double)mark("buf2") + ((double)mark("Er_token2")
) + (double)mark("Er_stage2"))/rl);
double ELR ()
double ret_val;
if (Qlen2()+e > K2) {
ret_val= (mark("mmpp_2")) ? lambda21:lambda22;
if (mark("Er_token1")==1) {
ret_val += rl/mul;

return(ret_val);

else {
return(0);

90

}
double PFull ()

if (Qlen2()+e>K2) {
return(1.0);

else {
return(0);

/* GUARD Functions %/
int gar2 ()

) return(Qlen2()+e<K2);

int garl ()
return(Qlenl()+e<K1);

/x RATE Functions %/
double REr1 ()

return(rl/mul);

double Rarl ()

{
if (mark("mmpp_1")) {
return(lambdall);

else {
return(lambdal2);

}
}
double REr2 ()

return(r2/mu2);

double Rar2 ()

{
if (mark("mmpp_2")) {
return(lambda21);

else {
return(lambda22);

/x CARDINALITY Functions */

int R2 ()

return(r2);

int dep12 ()

if (K2—Qlen2()+e<1) {
return(0);

else {
return(1);

}
}
int R1 ()

return(rl);

91

void net() {
/< PLACE %/
place("mmpp_1") ;
init("mmpp_1",1) ;
place("mmpp_2") ;
init("mmpp_2",1) ;
place("bufi") ;
place("Er_tokenl") ;
place("Er_stagel") ;
place("buf2") ;
place("Er_token2") ;
place("Er_stage2") ;
/* TRANSITION x/
rateval("t2_1",b1) ;
rateval("t2_2",b2) ;
rateval("t1_1",al) ;
rateval("t1_2",a2
ratefun("tar1",Rarl) ;
guard("tarl",garl) ;
imm("Er_in1") ;
priority("Er_in1",20) ;
probval("Er_in1"1.) ;
ratefun("Er_trans1" ,RErl) ;
imm("Er_outl") ;
priority("Er_out1",20) ;
probval("Er_out1",1.) ;
ratefun("tar2",Rar2) ;
guard("tar2",gar2) ;
imm("Er_in2") ;
priority("Er_in2",20) ;
probval("Er_in2"1.) ;
ratefgln("Er_trajnsT',REr2) ;
imm("Er_out2") ;
priority("Er_out2",20) ;
1/)robva1("E7_out2",1.) ;
« ARC
oarc("t2_1","mmpp_1") ;
iarc("t1_1","mmpp_1") ;
oarc(("t2_2","mmpp_2")) ;
iarc("t1_2","mmpp_2") ;
harc("t2_1","mmpp_1") ;
harc("t2_2","mmpp_2") ;
oarc("tarl","bufi") ;
iarc("Er_in1","bufl") ;
voarc("Er_in1","Er_tokenl1",R1) ;
iarc(("Er_tra.nsi","Er_tokenl")) ;
oarc("Er_transl1","Er_stagel") ;
viarc("Er_out1","Er_stage1",R1) ;
voarz:S:Eréﬁufbl"f,;l'?1)1f2",dep12) ;
oarc("tar u ;
iarc("Er_iné","buf2"’) ;
voarc("Er_in2","Er_token2",R2) ;
iarc("Er_trans2","Er_token2") ;
oarc("Er_trans2","Er_stage2") ;
viarc("Er_out2","Er_stage2",R2) ;
}ﬁarc "Er_inl","Er_tokenl") ;
arc("Er_inl1","Er_stagel") ;
harc("Er_in2","Er_token2") ;
harc("Er_in2" ,"Er_stage2") ;

int assert()

return(RES_.NOERR);
}

void ac_init()

}

void ac_reach() {

}
void ac_final() {

float ispn_count=0.0, intvl = 10.0;

while(ispn_count < 200.0) {
solve(ispn_count);

pr_expectedg"ﬂueue Len1", Qlenl);
pr-expected("Queue Len2", Qlen2);

pr-expected("ELR", ELR);
pr-expected("PFull", PFull);
pr-expected("Earrival", Earrival);

ispn_count = ispn_count + intvl;

10.7 Criticality Importance and Birnbaum Importance

10.7.1 Source

R. M. Fricks and K. S. Trivedi, On Computing Importance Measures Using Reward Models, VII
Simposio de Computadores Tolerantes a Falhas (VII SCTF), pp. 169 — 183, Campina Grande,
Brazil, Jul. 1997.

10.7.2 Description

A novel technique for computing importance measures in state space dependability models is intro-
duced here. Specifically, reward functions in a Markov reward model are utilized for this purpose, in
contrast to the common method of computing importance measures through combinatorial models
and structure functions. The following simple example is used to show how to calculate Criticality
Importance and Birnbaum Importance.

10.7.3 Features

e Define function with a Stochastic Petri net

e Reward based measures.

10.7.4 SPNP File — sun.c

#include <stdio.h>
#include "user.h"

e
x* REWARD RATE FUNCTIONS x*

*)

/* Criticality =/

double Q1 return mark("p1") ==171.:0;
double Q2 return mark("p2") ==171.:0;
double Q3 return mark("p3") == 17 1.:0;
double Q() { return Q1()+Q2()+Q3() > 2.7 1.:0; }

93

/% Birnbaum x/

double gl1 return 1.+Q28+Q3 >2.71.
double gl10 return 0.+Q2()+Q3() > 2. 7 1.
double g21 return Q1()+1.4+Q3() > 2. 7 1.
double g20 return Q1()+0.4+Q3() > 2. 7 1.
double g31 return Q1()+Q2()+1. > 2. 7 1.
double g30 return Q1()+Q2()+0. > 2. 7 1.

void node(failure,down,lambda)
float lambda;
char xfailure,*down;

rateval(failure,lambda);
place(down);

oarc(failure,down);
harc(failure,down);

}*—-*
* SPNP FUNCTIONS

o/

void options() {
iopt (IOP.PR_.RGRAPH,VAL_NO);
iopt(IOP_PR_MC,VAL_NO);
iopt(IOP_ITERATIONS,10000);
fopt(FOP_PRECISION,0.000000000001);

void net() {

node("t1","p1",0.001);
node("t2","p2",0.002);
node("t3","p3",0.003);

int assert() {

return(RES_-NOERR);
}
void ac_init() {
void ac_reach() {

void ac_final() {
double bl,b2,b3,q;

solve(20.);

bl = expected(gll)—expected(gl0);
b2 = expected(g21)—expected(g20);
b3 = expected(g31)—expected(g30);

printf("Birnbaum:\n");
printf("c1: %f\n",bl

printf("c2: %f\n",b2
printf("c3: %f\n",b3

i

)

)

q = expected(Q);
printf("Criticality:\n");
printf("c1 %f\n",blxexpected(Q1
| %
Q3

/d
Ja

printf("c2 %f\n",b2xexpected :
printf("c3 %f\n",b3xexpected

)

3

S

94

10.8 Channel recovery scheme in a cellular network

10.8.1 Source

Y. Ma, C. W. Ro and K. S. Trivedi, Performability Analysis of Channel Allocation with Channel
Recovery Strategy in Cellular Network, Proceedings of IEEE 1998 International Conference on
Universal Personal Communications (ICUPC’98), Florence, Italy, 5-9 October, 1998.

10.8.2 Description

The net is shown in Figure 10.10

cp+1

Figure 10.10: SPN for a channel recovery scheme in a cellular network.

10.8.3 Features

e Fixed point iteration. The handoff arrival rate (\}) of transition ¢} equals to the throughput
of transition ¢, which is used to represent the departure of handoff calls.

Reward based functions to compute expected values.

e Default measures

Steady-state analysis

Use of parameters and late binding (By parm(), useparm(), and bind()) to reuse the SPN
model.

10.8.4 SPNP File — icupc98.c

/% This is the SPNP source code for the first recovery scheme adopted from
Ma, Ro and Trivedi ” Performability Analysis of Channel Allocation with
Channel Recovery Strategy in Cellular Networks”, In Proceedings
of IEEE 1998 International Conference on Universal Personal

95

Communications (ICUPC’98), Florence, Italy, 5-9 October, 1998.
%/

#include "user.h"
#include <math.h>

#define MAX_ITERATIONS 6
#define MAX_ERROR 1le—7

/% Global variables %/

double lam_n, lam_h_o, lam_d, lam_f, h_b, mu_r, lam_h_i, tmp;
int t_channel, g_c, sym;

FILE *sl_in, *xs1_diff;

void options() {
iopt(IOP_SSMETHOD, VAL_SSSORY);
iopt(IOP_TSMETHOD,VAL_TSUNTF);
iopt(IOP_OK_TRANS_MO, VAL_YES);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_ITERATIONS,20000);
fopt(FOP_ABS_RET_MO0,0.0);
fopt(FOP_PRECISION,MAX_ERRORx*1le—3);

t_channel=28;

gc=1;
lam-n = 10; /« New call arrival rate %/

lam_h_o = 0.33; /* handoff every 5 minutes %/
lam_h_i = 0.2; /« Handoff_in rate %/
lam_d=0.5; /* call duration: 120 seconds */

lam _f=0.000016677;
mu.r = 0.0167;

void net() {

/* parameters %/
parm("lam_h_i");
parm("lam_n");

place("T"); place("B"); place("R");
place("CP"); init("CP",t_channel) ;

/* timed trans /
rateval("t_n", 1.0);
useparm("t_n", "lam_n");
rateval("t_h_i", 1.0);
useparm("t_h_i","lam_h_i");
ratedep("t_d", lam_d, "T");
ratedep("t_f", lam_f, "T");
ratedep("t_h_o", lam_h_o,"T");
rateval("t_r", mu.r);

/* immed trans */
imm("t_1") ; priority("t_1", 100) ;
probval("t_1",1.0);

/% ARC form timed transx/

miarc("t_n","CP", g_c+1); oarc("t_n","T"); moarc("t_n","CP",g_c);
iarc "t_h_i","CP"); oarc "t_h_i“,"T" 5

iarc("t_h_o","T"); oarc("t_h_o","CP");

iarc("t_d","T"); oarc "t_d","CP");

iarc "t_f","T" ; oarc "t_f","B"); oarc("t_f","R");
iarc("t_r","R" ; oarc “t_r","CP");

/% ARC for immediate trans %/
iarc(llt_ln’llBll); iarc("t_i", "CP"); O&I‘C("t_i", "T");

/% assign parameters x/

bind("lam_h_i", lam_h_i);
bind("lam_n", lam_n);

}

96

int assert() {
return(RES_-NOERR);

void ac_init() {
}
void ac_reach() {

double BH()

if (mark("CP")==0)
return (1.0);

else
return (0.0);

double BN()

if (mark("cp")<g_-c)
return (1.0);

else
return (0.0);

double ACh()

return(mark("CP"));

double hotput()

return(rate("t_h_o"));

/* average failure arrival rate %/
double ftput()

return(rate("t_£f"));

double fnum()

return(mark("B"));

void ac_final() {
int i;
double tp,err;

for (i=1; i<MAX_ITERATIONS; i++) {
pr-value("lam_h_i", lam_h_i);
bind("lam_h_i", lam_h_i);
solve(INFINITY);
tp = expected(hotput);
pr_value("Throughput of t_h_o", tp);
err = fabs((lam_h_i—tp)/tp);
pr-value("Error", err);
if(err < MAX_ERROR) break;
lam_h_i = tp;

}

pr-expected("block handoff:", BH);

pr-expected("block new:", BN);

pr-expected("available channel: ", ACh);

pr-value("avg. waiting time:", expected(fnum)/expected(ftput));

97

10.9 Accurate Model for the BUS in ATM LAN emulation

10.9.1 Source

H. Sun, X. Zang. and K.S. Trivedi. “Performance of Broadcast and Unknown Server (BUS) in
ATM LAN Emulation”, Technical Report. Center for Advanced Computing and Communication,
Duke University, 1999.

10.9.2 Description

The net shown in Figure 10.11 represents a performance model of the Broadcast and Unknown
Server (BUS) in the ATM LAN emulator.

T(L)o1

oo1

TARV(L)
Punicast(
a0 or:al

T101 b01
TARV1
Punicast(
tSTI PST tBST
a0 or:al
T110 bio tLS
tL™M

T(L)10 b1o

(L=2~4)
Yon do1 NNl B i
I TARV PAR TAR PCS tOUT POUT Tcs
| 3
TARVO |
Pbroad |
LA n B
g0 orgl e
Yoff d1o N =#PAR + # PCS + sign (#POUT)

N is the number of active unicast flows and determines the number of
components in the dotted rectangle at the left side of the figure.

Figure 10.11: Accurate SRN Model for the BUS

10.9.3 Features

e Markovian model
e Dependent-marking rates

e Priorities

98

10.9.4 SPNP File — LAN.c

#include <stdio.h>
#include "user.h"

/i corresponds to ACCURATE model in the papers/

#define PLST 2 /x Short Packet Size %/
#define PLMD 4 /« Medium Packet Size */
#define PLLG 32 /« Long Packet Size %/

#define c1 0.342
#define c2 0.093
#define ¢3 0.565

#define rateOUT 5000

int K=2;
double lambda=0.9, mu=1, beta=1.1;

int BN=40; /+ Buffer Size %/
int QLEN;

double g0=0.01, g1=0.05, d01=0.5, d10=0.5;
double a0=0.01, a1=0.05, b01=0.5, b10=0.5;

/% prototype guard functions */
int guardARV ();

int guardARV1 () ;
int guardARV2 () ;
int guardARV3 () ;
int guardARVA4 () ;

int guardBST () ;
int guardBMD () ;
int guardBLG () ;

/% prototype rate functions %/
double rateARVO () ;
double rateARV1 () ;
double rateARV2 () ;
double rateARV3 () ;
double rateARV4 () ;

void options() {

iopt(IOP_PR_RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;

iopt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD, VAL SSSOR) ;
iopt(IOP_TSMETHOD,VAL_FOXUNTIF) ;
iopt(IOP_ITERATIONS,20000) ;
fopt(FOP_PRECISION, le—13) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_YES) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

99

/* REWARD Functions %/
double QL () {
if (mark("PBUF") > QLEN)
return(1.0);
else
return(0);

double MLP () {

if (mark("PBUF") > BN — PLMD)

return(1.0);
else
return(0);

}
double SLP () {
if (mark("PBUF") > BN — PLST)
return(1.0);
else
return(0);

double LLP () {

if (mark("PBUF") > BN — PLLG)

return(1.0);
else
return(0);

/« GUARD Functions %/
int guardARV ()
{

int n = 0;
if (mark("POUT")>0)
n=1;

if (marl;("PAR") + mark("PCS") + n < K)

return(1);
else
return(0);

int guardARV1 () {
int n = 0;
if (mark("POUT")>0) n = 1;
n+=mark("PAR") + mark("PCS");
if (n>0)
return(1);
else
return(0);

int guardARV2 () {
int n = 0;
if (mark("POUT")>0) n = 1;
n+=mark("PAR") + mark("PCS");
if (n>1)
return(1);
else
return(0);

int guardARV3 () {
int n = 0;
if (mark("POUT")>0) n = 1;
n+=mark("PAR") + mark("PCS");
if (n>2)
return(1);
else
return(0);

int guardARV4 () {
int n = 0;
if (mark("POUT")>0) n = 1;
n+=mark("PAR") + mark("PCS");
if (n>3)
return(1);
else

100

return(0);

int guardBST () {

if (mark("PBUF") < BN — PLST)

return(1);
else
return(0);

int guardBMD () {

if (mark("PBUF") < BN — PLMD)

return(1);
else
return(0);

int guardBLG () {

if (mark("PBUF") < BN — PLLG)

return(1);
else
return(0);

/* RATE Functions */

double rateARVO () {

if (mark("PONO"))
return(gl);
else
return(g0);

}
double rateARV1 () {

if (mark("PON1"))
return(al);
else
return(a0);

}
double rateARV2 () {

if (mark("PON2"))
return(al);
else
return(a0);

}
double rateARV3 () {

if (mark("PON3"))
return(al);
else
return(a0);

}
double rateARV4 () {

if (mark("PON4"))
return(al);
else
return(a0);

}
void net() {

[PLACE %/
place("PAR") ;
place("PCS") ;
place("POUT") ;

place("PARV") ;

101

place("PST"
place("PMD"
place("PLG") ;
place("PBUF") ;
place("PEOUT") ;

place("PONO"
place("PON1"
place("PON2"
place("PON3"
place("PON4"

/* TRANSITION x/
rateval("TARV" lambda) ;
guard("TARV", guard ARV);
rateval("TAR",mu) ;
rateval("TCS",beta) ;
imm("t0UT") ;
priority("t0UT",20) ;
probval("t0UT",1.) ;

ratefun("TARVO",rateARVO) ;

ratefun("TARV1" rateARV1) ;
guard("TARV1",guard ARV1) ;

ratefun("TARV2" rateARV2) ;
guard("TARV2" ,guard ARV?2) ;

ratefun("TARV3" rateARV3) ;
guard("TARV3" ,guard ARV3) ;

ratefun("TARV4" rate ARV4) ;
guard("TARV4" ,guard ARV4) ;

rateval("T001",d01) ;
rateval("T010",d10

rateval("T101",b01
rateval("T110" blO

rateval("T210",b10

rateval("T301",b01
rateval("T310" blO

rateval("T401",b01

rateval("T201", bOl;
rateval("T410" blOg

imm("tST") ;
priority("tST",20) ;
probval("tST",c1) ;
imm("tMD") ;
prlorlty("tMD" 20) ;
probval("tMD",c2) ;
imm("tLG") ;
priority("tLG",20) ;
probval("tLG",c3) ;
imm("tBST") ;
prlorlty("tBST" 40) ;
probval("tBST",1.) ;
guard("tBST" ,guardBST) ;
imm("tBMD") ;
priority("tBMD",40) ;
probval("tBMD",1.) ;

guard("tBMD",guardBMD) ;

imm("tBLG") ;
prlorlty("tBLG" 40) ;
probval("tBLG",1.) ;
guard("tBLG" guardBLG) ;
imm("tLST") ;
prlorlty("tLST" 20) ;
probval("tLST",1.) ;
imm("tLMD") ;
prlorlty("tLMD" 20) ;

102

probval("tLMD",1.) ;
imm("tLLG") ;
priority("tLLG",20) ;
probval("tLLG",1.) ;
imm("tEQUT") ;
priority("tEOUT",20) ;
probval("tEQUT",1.) ;
rateval("TOUT",rateOUT) ;

/x ARC +/

oarc("TARV","PAR") ;
iarc("TAR","PAR")
oarc("TAR","PCS") ;
iarc("tOUT","PCS") ;
moarc("t0UT","POUT", 3) ;
jarc("TCS","POUT") ;
harc("tDUT" "POUT") ;

oarc("T001","PONO") ;
iarc("T010","PONO") ;
harc("T001","PONO"

)

iarc("T110","PON1") ;
harc("T101","PON1"

)

)i

) ;

) ;
oarc("T101","PON1") ;

) ;

) ;

) ;

oarc("T201","PON2") ;
1arc("T210" "PUN2")
harc("T201","PON2"
oarc

o(
¢("T301","PON3") ;
1arc('T310",“P0N3") ;

harc("T301","PON3") ;
oarc("T401","PON4") ;
iarc("T410","PON4") ;
harc("T401","PON4") ;

oarc("TARV1" ,"PARV"
oarc("TARV2" "PARV"
oarc("TARV3","PARV"
oarc("TARV4" "PARV"

("
oarcé"TARVO" "PARV"

iarc("tST","PARV"
iarc("tMD","PARV"
iarc("tLG","PARV"
oarc "tST","PST"% ;

oarc("tMD","PMD"
oarc("tLG","PLG"
iarc("tBST","PST") ;
iarc("tLST","PST") ;
iarc("tBMD","PMD") ;

b

b

iarc("tLMD","PMD"
iarc("tBLG","PLG"
iarc("tLLG","PLG"
moarc "tBST" "PBUF" PLST)
moarc("tBLG","PBUF",PLLG) ;
moarc

iarc("tEQUT","PBUF") ;
moarc("tEQUT","PEOUT" 3) ;
iarc("TOUT","PEQUT") ;
harc("tEQUT","PEQUT") ;

}

int assert() {
return(RES_.NOERR);

void ac_init() {

}

void ac_reach() {

"tBMD","PBUF",PLMD) ;

103

}

void ac_final() {
double llp, mlp, slp, pql;
int dBN = BN/20;
if (dBN<1) dBN=1;
solve(INFINITY);
llp = expected(LLP);
mlp = expected(MLP);
slp = expected(SLP);
pr-value("Loss Prob. of Short Packets (S)", slp);
pr-value("Loss Prob. of Medium Packets (M)", mlp);
pr-value("Loss Prob. of Long Packets (L)", llp);
pr-value("Loss Prob. of total Packets (T)", cl x slp 4+ ¢2 * mlp + ¢3 * llp);
for (QLEN = 0; QLEN < BN; QLEN += dBN)
{
pql = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (> %d) = %.12g\n", QLEN, pql);

QLEN = BN — 1;
pal = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (= %d) = %.12g\n", BN, pql);

pr-std_average();

10.10 Birth-death Model for the BUS in ATM LAN emula-
tion

10.10.1 Source

H. Sun, X. Zang. and K.S. Trivedi. “Performance of Broadcast and Unknown Server (BUS) in
ATM LAN Emulation”, Technical Report. Center for Advanced Computing and Communication,
Duke University, 1999.

10.10.2 Description

The net shown in Figure 10.12 represents a performance model of the Broadcast and Unknown Server
(BUS) in the ATM LAN emulator. It is an simplification of Example 10.9 where the aggregation of
the flows of the unicast traffic is approximated by a birth and death process.

10.10.3 Features

e Markovian model
e Dependent-marking rates

e Priorities

104

Yon '301

rates and guards for the transitions within dashed frame

transition rate
Tunicast #Puon al+ #Puoff a0
Tuon #Puoftr 01
Tuoff #Puora 10
trangition guard

t (#Puon)>0

2 (#Puon==0)

Figure 10.12: Birth-death Model for the BUS in ATM LAN emulation

10.10.4 SPNP File — LA.c

#include <stdio.h>
#include "user.h"

/x corresponds to birth-death model in the paperx/

#define PLST 2 /« Short Packet Size %/
#define PLMD 4 / Medium Packet Size %/
#define PLLG 32 /«x Long Packet Size */

#define c1 0.342
#define ¢2 0.093
#define ¢3 0.565

#define rateOUT 5000

int K=3;
double lambda=0.9, mu=1, beta=1.1;

int BN=40; / Buffer Size %/
int QLEN;

double g0=0.01, g1=0.05, beta_01=0.5, beta_10=0.5;
double a0=0.01, al=0.05, alpha_01=0.5, alpha_10=0.5;

/% prototype guard functions #/
int guardARV ();

int guardtl() ;

int guardt2 () ;

int guardTunicast () ;
int guardBST () ;

int guardBMD () ;

int guardBLG () ;

/% prototype rate functions %/
double rateARVO () ;
double rateTunicast () ;

void options() {

105

iopt(TOP_PR_RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_PROBDTMC,VAL_NO) ;
iopt(TOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_.MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR_MARK_ORDER, VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;

iopt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_SSSOR)) ;
iopt(IOP_.TSMETHOD,VAL_FOXUNIF) ;
iopt (IOP_ITERATIONS,20000) ;
fopt(FOP_PRECISION,1le—13) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_YES) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO0,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

/* REWARD Functions %/
double QL ()
if (mark("PBUF") > QLEN)
return(1.0);
else
return(0);

double MLP () {
if (mark("PBUF") > BN — PLMD)
return(1.0);
else
return(0);

double SLP () {
if (mark("PBUF") > BN — PLST)
return(1.0);
else
return(0);

double LLP () {
if (mark("PBUF") > BN — PLLG)
return(1.0);
else
return(0);

/f« GUARD Functions %/
int guardARV ()
{

int n = 0;

if (mark("PCS2")>0)
n=1;

if (mark("PAR") + mark("PCS1") 4+ n < K)
return(1);

else
return(0);

int guardt2 () {
if (mark("Puon")==0)
return(1);
else

106

return(0);

int guardTunicast () {
if (mark("Puon")>0)
return(1);
else
return(0);

int guardSTO () {
if (mark("PBUF") < BN — PLST)
return(1);
else
return(0);

int guardMDO ()
if (mark("PBUF") < BN — PLMD)
return(1);
else
return(0);

int guardLGO () {
if (mark("PBUF") < BN — PLLG)
return(1);
else
return(0);

/% RATE Functions %/

double rateTbroad () {

if (mark("Pbroad"))
return(gl);

else
return(g0);

}

double rateTunicast ()

double x= mark(" Puon"{) *al+mark("Puoff")*a0;

return (x);

void net() {

/x PLACE x/
place("PAR") ;
place("PCS1") ;
place("PCS2"

)

place("PARV") ;
place("PST") ;
place("PMD") ;
place("PLG") ;
place("PBUF") ;
place("POUT") ;

place("Pbroad");

place
place
place

/« TRANSITION +/
rateval("TARV1" lambda);
guard("TARV1", guardARV);
rateval("TAR",mu) ;
rateval("TCS" ,beta);
imm("tCS");
priority("tCsS",20) ;
probval("tCs",1.) ;

"Puon");
"Puoff");
"Pdepart");

ratefun("Tbroad" rateTbroad) ;

107

rateval("Yon" beta_01) ;
rateval("Yoff" beta_10) ;

ratedep("Tuon",alpha_01,"Puoff");
ratedep("Tuoff",alpha_10,"Puon");

ratefun("Tunicast" rateTunicast);
guard("Tunicast",guardTunicast);

imm("t1");
probval("t1",1.);
priority("t1",20);

imm("t2");
probval("t2",1.);
priority("t2",20);
guard("t2",guardt2);

imm("tSTI") ;
priority("tSTI",20) ;
probval("tSTI",cl) ;
imm("tMDI") ;
priority("tMDI",20) ;
probval("tMDI",c2) ;
imm("tLGI") ;
priority("tLGI",20) ;
probval("tLGI",c3) ;
imm("tSTO") ;
priority("tST0",40) ;
probval("tSTO",1.) ;
guard("tST0",guardSTO) ;
imm("tMDO") ;
priority("tMD0O",40) ;
probval("tMDO",1.) ;
guard("tMD0",guardMDO) ;
imm("tLGO") ;
priority("tLG0",40) ;
probval("tLG0",1.) ;
guard("tLG0",guardLGO) ;
imm("tSTL") ;
priority("tSTL",20) ;
probval("tSTL",1.) ;
imm("tMDL") ;
priority("tMDL",20) ;
probval("tMDL",1.) ;
imm("tLGL") ;
priority("tLGL",20) ;
probval("tLGL",1.) ;
imm("t0UT") ;
priority("t0UT",20) ;
probval("t0UT",1.) ;
rateval("TOUT",rateOUT) ;

/< ARC %/

oarc("TARVL" "PAR") ;
iarc("TAR","PAR") ;
oarc("TAR","PCS1") ;
iarC("tCS","PCSl") ;
moarc("tCS","PCS2", 3) ;
iarC("TCS","PCSZ") ;
harc("tCS","PCS2") ;

oarc("Yon","Pbroad") ;
iarc("Yoff","Pbroad") ;
harc("Yon","Pbroad") ;

oarc("Tbroad","PARV") ;
oarc("TARV1" "Puon") ;

oarc("TCS","Pdepart") ;
oarc("Tuon","Puon") ;

108

iarc("Tuoff","Puon") ;
iarc("t1","Puon") ;
miarc("t1","Pdepart",3) ;
iarc("t2","Puof£f") ;
miarc("t2","Pdepart",3) ;
oarc("Tuoff","Puoff") ;
iarc("Tuon","Puoff") ;

oarc("Tunicast","PARV") ;

iarc
iarc
iarc
oarc

IltSTI n s n PARV"
IltMDI n s n pARV"
IltLGI n s n PARV"
lltSTIll7llPSTll ;
oarc("tMDI","PMD") ;
oarc("tLGI","PLG") ;
iarc("tSTO","PST") ;
iarc("tSTL","PST") ;
iarc("tMDO","PMD") ;

5

b

)

)

)

iarc("tMDL","PMD"
iarc("tLGO","PLG"
iarc("tLGL","PLG") ;
moarc("tST0","PBUF",PLST) ;
moarc("tLG0","PBUF",PLLG) ;
moarc("tMD0","PBUF",PLMD) ;
iarc("tOUT","PBUF") ;
moarc("t0OUT","POUT",3) ;
iarc("TOUT","POUT") ;
harc("t0UT","POUT") ;

}

int assert() {
return(RES_-NOERR);

void ac_init() {

}

void ac_reach() {

}

void ac_final() {
double llp, mlp, slp, pql;

solve(INFINITY);

llp = expected(LLP);
mlp = expected(MLP);
slp = expected(SLP);

pr-value("Loss Prob. of Short Packets (S)", slp);
pr-value("Loss Prob. of Medium Packets (M)", mlp);
pr-value("Loss Prob. of Long Packets (L)", llp);
pr-value("Loss Prob. of total Packets (T)", cl * slp + ¢2 % mlp + ¢3 * llp);
for (QLEN = 0; QLEN < BN; QLEN += 5)
pal = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (> %d) = %.12g\n", QLEN, pql);

QLEN = BN — 1;
pal = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (= %d) = %.12g\n", BN, pql);

pr_std_average();

109

10.11 MMPP Model for the BUS in ATM LAN emulation

10.11.1 Source

H. Sun, X. Zang. and K.S. Trivedi. “Performance of Broadcast and Unknown Server (BUS) in
ATM LAN Emulation”, Technical Report. Center for Advanced Computing and Communication,
Duke University, 1999.

10.11.2 Description

The net shown in Figure 10.13 represents a performance model of the Broadcast and Unknown Server
(BUS) in the ATM LAN emulator. It is an simplification of Example 10.9 where the superpositiom
of multiple MMPPs is approximated by a two-state MMPP.

Ton 801
TARV2 TOUT
Pon D D
AOor 3t
Al
Toff 010

TARV1 PAR TAR PCS1 tCS PCS2 TCS
3 ;)
A N 3w

N =#PAR + #PCS1 + sign (#PCS2) isthe number of active unicast flows

N determines the parameters of the subnet inthe dotted rectangle

Figure 10.13: MMPP Model for the BUS in ATM LAN emulation

10.11.3 Features

e Markovian model
e Dependent-marking rates

e Priorities

10.11.4 SPNP File — LANE.c

#include <stdio.h>

110

#include "user.h"
/x corresponds to MMPP model in paperx/

#define PLST 2 /«x Short Packet Size /
#define PLMD 4 /« Medium Packet Size %/
#define PLLG 32 /« Long Packet Size %/

#define c1 0.342
#define c2 0.093
#define ¢3 0.565

#define rateOUT 5000

int K=3;
double lambda=0.9, mu=1, beta=1.1;

int BN=100; /* Buffer Size %/
int QLEN;

double g0=0.01, g1=0.05, d01=0.5, d10=0.5;
double a0=0.01, a1=0.05, b01=0.5, b10=0.5;
double m2, v2, u2, t2;

double m1, v1, ul, t1;

double rateAH, rateAL,theta0,thetal;

/* prototype guard functions x/
int guardARV ();

int guardARV2 () ;

int guardBST () ;

int guardBMD () ;

int guardBLG () ;

/% prototype rate functions %/
double rateARV2 () ;

double t01 ();

double t10

)

void options() {

iopt(IOP_PR_RGRAPH,VAL_NO) ;
iopt(TOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;

iopt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_SSSOR)) ;
iopt(IOP_.TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,20000) ;
fopt(FOP_PRECISION,1e—13) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_YES) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

ml = (b0l % al + b10 * a0) / (b01 + b10);

vl = (al — a0) * (al — a0) * b0l * b10 / ((b01 + b10) * (b0l + b10));
ul = (al % al * al * b0l + a0 * a0 * a0 * b10) / (b0l + b10);

ul = ul — 3 *ml * vl — ml * ml * ml;

111

t1 =1/ (b0l + b10);

m2 = (d01 % gl + d10 * g0) / (d01 + d10);

v2 = (gl — g0) = (g1 — g0) * dO1 = d10 / ((d01 + d10) = (d01 + d10));
u2 = (gl * gl * gl = dO1 + g0 * g0 * g0 * d10) / (d01 + d10);

u2 = u2 — 3 *x m2 * v2 — m2 x m2 xm2;

£2 =1/ (d01 + d10);

/* REWARD Functions %/
double QL () {
if (mark("PBUF") > QLEN)
return(1.0);
else
return(0);
double MLP () {
if ((mark("PBUF") > BN — PLMD) && enabled("TARV2"))
return(1.0);
else
return(0);

}
double SLP () {
if ((mark("PBUF") > BN — PLST) && enabled("TARV2"))
return(1.0);
else
return(0);

}
double LLP () {
if ((mark("PBUF") > BN — PLLG) && enabled("TARV2"))
return(1.0);
else
return(0);

/% GUARD Functions %/
int guardARV ()
{

int n = 0;

if (mark("POUT")>O)
n =

if (mark("PAR") + mark("PCS") + n < K)
return(1);

else
return(0);

int guardARV2 () {
if ((rateAL # 0.0) || mark("PAON"))
return(1);
else
return(0);

int guardBST () {
if (mark("PBUF") < BN — PLST)
return(1);
else
return(0);

int guardBMD () {
if (mark("PBUF") < BN — PLMD)
return(1);
else
return(0);

int guardBLG () {
if (mark("PBUF") < BN — PLLG)
return(1);
else
return(0);
/x RATE Functions %/

double rateARV2 () {

112

double m,v,u,t,x,e;
int S = 0;

if (mark("POUT"))
S=1;

S= S + mark("PAR") + mark("PCS");
=S x ml + m2;
v =29 % vl4+v2;
u=-Sx*ul + u2;
t= (S = v1stl4v2 *t2) /v;
x = u/sqrt(v x v % v);
e=(xxx+2—xx*sqrt(4d + x * x)) / 2;
rateAH = m + sqrt(v / e);
rateAL = m — sqrt(v * e);
if (mark("PAON"))
return(rateAH);
else
return(rateAL);

}

double t01 () {
double m,v,u,t,x,e;
int S = 0;

if (mark('"POUT"))

S S + mark("PAR") 4+ mark("PCS");

S * ml 4+ m2;

S * v1+v2;
S * ul + u2;
(S * vl * t14v2 *t2) /v;

u / sqrt(v * v x v);
(X*X+27X*sqrt(4+x*x))/2;
theta() =1/@=*(1+e));
return(theta0);

}
double t10() {

D K te <
(Nl u I ”

double m,v,u,t,x,e;
int S = 0;

if (mark("POUT"))
S=1;

S: S + mark("PAR") + mark("PCS");
=S % ml + m2;

S * vi4v2;

S« ul + u2;

(S * vIst14v2 *t2) /v;

u / sqri(v * v % v);
e=(xx*x+2—xx*sqrt(4d + x *x)) / 2;
thetal =e / (t * (1 + €));
return(thetal);

Wt e <

void net() {

/x PLACE x/
place("PAR") ;
place("PCS"

place("POUT") ;

place("PARV")
place("PST"
place("PMD"
place("PLG") ;
place("PBUF") ;

113

place("PEOUT") ;
place("PAON") ;

/* TRANSITION x/
rateval("TARV" lambda) ;
guard("TARV", guard ARV);
rateval("TAR",mu) ;
rateval("TCS",beta) ;
imm("t0UT") ;
priority("t0UT",20) ;
probval("t0UT",1.) ;

ratefun("TARV2" rateARV2) ;
guard("TARV2" ,guard ARV?2) ;
imm("tST") ;
priority("tST",20) ;
probval("tST" cl) ;
imm("tMD") ;
prlorlty(”tMD" 20) ;
probval("tMD" c2)
imm("tLG") ;
priority("tLG",20) ;
probval("tLG",c3) ;
imm("tBST") ;
priority("tBST",40) ;
probval("tBST",1.) ;
guard("tBST",guardBST) ;
imm("tBMD") ;
prlorlty("tBMD" 40) ;
probval("tBMD",1.) ;
guard("tBMD" guardBMD)
imm("tBLG") ;
prlorlty("tBLG" 40) ;
probval("tBLG",1.) ;
guard("tBLG" ,guardBLG) ;
imm("tLST") ;
priority("tLST",20) ;
probval("tLST",1.) ;
imm("tLMD") ;
prlorlty("tLMD" 20) ;
probval("tLMD",1.) ;
imm("tLLG") ;
prlorlty("tLLG" 20) ;
probval("tLLG",1.) ;

imm ("tEQUT") ;
priority("tEOUT",20) ;
probval ("tEOUT"1.) ;
rateval("TOUT",rateOUT) ;
ratefun("TTO1",t01) ;
ratefun("TT10",t10

/x ARC %/
oarc("TARV","PAR") ;
iarc("TAR","PAR") ;
oarc("TAR","PCS") ;
iarc("t0UT","PCS") ;
moarc("tOUT","POUT", 3) ;
iarc("TCS","POUT") ;
harc("t0UT","POUT") ;

oarc("TARV2","PARV") ;
iarc("tST","PARV"
iarc("tMD","PARV"
iarc "tLG","PARV"
oarc "tST","PST'g ;

oarc("tMD","PMD"
oarc("tLG","PLG"
iarc("tBST","PST") ;
iarc("tLST","PST") ;
iarc("tBMD","PMD") ;

b

iarc("tLMD","PMD"
iarc("tBLG","PLG"
iarc("tLLG","PLG"
moarc("tBST" "PBUF" PLST)
moarc("tBLG","PBUF",PLLG) ;
moarc "tBMD","PBUF",PLMD) ;
iarc("tEQUT","PBUF") ;

114

moarc("tEQUT","PEOUT",3) ;
iarc("TOUT","PEOUT") ;
harc("tEQUT","PEOUT") ;
oarc("TTO1" "PAON") ;
iarc("TT10","PAON") ;
harc("TTO1","PAON") ;

int assert() {
return(RES_-NOERR);

void ac_init() {

}

void ac_reach() {

}

void ac_final() {
double llp, mlp, slp, pql;

solve(INFINITY);

llp = expected(LLP);
mlp = expected(MLP);
slp = expected(SLP);

pr-value("Loss Prob. of Short Packets (S)", slp);
pr-value("Loss Prob. of Medium Packets (M)", mlp);
pr-value("Loss Prob. of Long Packets (L)", llp);
pr-value("Loss Prob. of total Packets (T)", cl x slp 4+ ¢2 * mlp + ¢3 * llp);
for (QLEN = 0; QLEN < BN; QLEN += BN / 20)
{
pql = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (> %d) = %.12g\n", QLEN, pql);

QLEN = BN — 1;
pal = expected(QL);
fprintf(Outfile,"\nProb. for Queue Len (= %d) = %.12g\n", BN, pql);

pr_std_average();

10.12 Performance anlysis of Multi-Protocol Label Switch-
ing Network

10.12.1 Source

X. Zang and K. S. Trivedi, The Label Allocation, Table Recovery and Differentiated Service in
Multi- Protocol Label Switching Network, Internal technical report, Duke University.

10.12.2 Description

In this example system, n input links and one output link are considered (see Fig. 10.14). The traffic
on each input link is bursty. There are two types of traffic on each input link, i.e., higher-priority
VPN traffic and lower-priority best-effort traffic. All these incoming traffics will be switched to one
output link. There are n + 1 queues at the output link, i.e., n for the higher-priority VPN traffic
flows and 1 shared by the lower-priority best-effort traffic flows. Each input link uses a leaky bucket

115

to regulate the higher-priority VPN traffic. The excess VPN traffic can be merged into the shared
best-effort queue. On the other hand, the excess capacity of VPN can also be used by best-effort
traffic on the same input link. Round-robin (or weighted round-robin (WRR)) policy is used to
serve the higher-priority VPN traffic.

VPN a ——— VPN LSP'straffic

Input Link 1 I best-effort traffic
Label Switch Router
)

Output Link

VPN & / Link 3

Figure 10.14: Example system

10.12.3 Features

e Utilizing model decomposition.
e Fixed point iteration.

e Script file for execution.

10.12.4 SPN model for LSN

A model directly modeling LSN will be too large to be solved. To simplify the analysis, we assume
that the percentage of the higher-priority traffic is identical for all input links and the packet size
distribution is equal for the traffic on all links. Then the model can be decomposed into three parts:
tagged link, aggregated link and best-effort queue.

Table 10.1 gives the guards for transitions in the SPN models in Fig. 10.15, Fig. 10.16 and Fig.
10.17.

10.12.5 Files list

1. Perl script file for fixed point iteration.
#!/bin/env perl
$NIT = 200;
$ModelName = "smod3t";
$SPN = $ModelName . ".spn";
$Tagged = $ModelName . "t";
$Aggregated = $ModelName . "a";

for (8i = 0; $i < $NIT; $i++)

print "Fix Point Iteration: $i for Tagged Links.\n";
system("$SPN $Tagged") == 0

116

Figure 10.16: Decomposed SPN model for the aggregated links

Transition | Guard(Policy I) Guard (Policy IT) Guard (Policy III)
tthp 1 #Pt}Lq < Bthq #Pthq < Bthq
Leip 1 1 #Pihg > #Pitk
tewt #Putz =0 as Policy I as Policy I

tihdis #Pihg > Bing 0 0

tivp #Ping =0o0r #Py, =0 as Policy I as Policy I

tanp 1 #Paong < Bang #Paong < Bang
talp 1 1 #Pahq > # Ptk
tawt #Piio =0 as Policy I as Policy I
tahdis #Pang > Bang 0 0

tabp #Pang =0 0r #Pay =0 as Policy I as Policy I
tLpi23 0 1 1

tLpl3 0 0 1

tLidis #PrLiq > Brig as Policy I as Policy I

Table 10.1: Guards of transitions for the SPN in Fig. 10.15,

117

Fig. 10.16 and Fig. 10.17

n
tLIp tLIq T
tLpi3 tLidis

Figure 10.17: Decomposed SPN model for the best-effort queue

or die "finish/error exec $Tagged: $7";

print "Fix Point Iteration: $i for Aggregated Links.\n";
system("$SPN $Aggregated") == 0
or die "error exec $Aggregated: $7";

. SPNP file smod3t.c
#include <stdio.h>

#include <string.h>
#include <math.h>
#include "user.h"
#include "misc.h"
/x global variables %/
int NBUF = 32;

int NTK = §;

int NRR = 1;

int NMRR = 2;

int NER = 3;

double larvrate = 3;
double harvrate = 6;

double rateTMMPPO01 = 0.01;
double rateTMMPP10 = 0.02;

double rateTTK = 5;

double rateTTX = 18;
double rateTMTX = 18;

double prbt VPN = 0.8;
double prbtBE = 0.2;

double prbtRT[128];
double my_prbtRT[128];

char nameFP[128];
double FPprecision = 0.000001;

118

int TIpolicy = 1;
int TIp3_th = 1;

char linktype[128];
int ntoken = 0;

/% prototype guard functions /
int guard tRT () ;

int guard _tBP () ;

int guard tMBP () ;

int guard_tBE () ;

int guard_tVPN () ;

int guard tMWT () ;

/% prototype rate functions %/
double rate_TARV () ;

/* prototype cardinality functions %/
int cardinality MWT () ;

void LoadConfig()
{
FILE fp;
char sstr[100], *ptr;

int i, nodata = 0;

sprintf(sstr, "%s.cfg", modelname);
if ((fp = fopen(sstr, "r")) == NULL)

perror("Can not Open the Config File");
exit(1);

while (fgets(sstr, 100, fp)) {
if (ksstr == '#' || *sstr == '\n"')
continue;
if (Istrncmp(sstr, "Size of Buffer:", 15))
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%d", &NBUF);
continue;
if (Istrncmp(sstr, "Size of Leaky-Bucket Token Pool:", 32))
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "“/d" &NTK);
continue;
if (!strncmp(sstr, "Round Robin Weight:", 18))
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%d", &NRR);
continue;
if (!strncmp(sstr, "Maximum Waiting Time:", 21))
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%d", &NMRR);
continue;
if (Istrncmp(sstr, "Rate of MMPP 0 to 1:", 20))
ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%1f", &rateTMMPPO1);
continue;

if (Istrncmp(sstr, "Rate of MMPP 1 to 0:", 20))

ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%1£", &rateTMMPP10);

119

continue;

if (Istrncmp(sstr, "Leaky-Bucket Token Rate:", 24))

ptr = strchr(sstr, ':');
sscanf(ptr 4+ 1, "%1f", &rateTTK);
continue;

if (Istrncmp(sstr, "High Packet Arrival Rate:", 24))

ptr = strchr(sstr, ':');
sscanf(ptr 4+ 1, "%1f", &harvrate);
continue;

if (!strncmp(sstr, "Low Packet Arrival Rate:", 23))

ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%1f", &larvrate);
continue;

if (Istrncmp(sstr, "Packet Leaving Rate:", 20))

ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%1f", &rateTTX);
rateTMTX = rateTTX;

continue;

if (Istrncmp(sstr, "Percent of High Priority Packet:", 32))
ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%1£", &prbtVPN);

prbtVPN / 100;

continue;

if (Istrncmp(sstr, "Percent of Low Priority Packet:", 31))
ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%1f", &prbtBE);

prbtBE / 100;

continue;

if (Istrncmp(sstr, "Erlang Stage:", 13))

ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%d", &NER);

continue;

if (Istrncmp(sstr, "Traffic Interaction Policy:", 27))
ptr = strchr(sstr, ':');

sscanf(ptr 4+ 1, "%d", &TIpolicy);

continue;

if (!strncmp(sstr, "Policy III Threshold:", 20))

ptr = strchr(sstr, ':');

sscanf(ptr 4+ 1, "%d", &TIp3_th);

continue;

if (!strncmp(sstr, "Fix Point Iteration File:", 25))
ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%s", nameFP);
continue;

if (Istrncmp(sstr, "Fix Point Precision:", 20))

120

ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%1f", &FPprecision);
continue;

if (Istrncmp(sstr, "Link Type:", 10))
ptr = strchr(sstr, ':');

sscanf(ptr + 1, "%s", linktype);
continue;

}

fclose(fp);
rateTTK x= NER;

nodata = 0;
sprintf(sstr, "%s.itp", modelname);
if ((fp = fopen(sstr, "r")) # NULL)
for (i = 0; i < NRR; i++)
if (/fgets(sstr, 100, fp))

nodata = 1;
break;

¥
if (ksstr == '#' || xsstr == '\n')

printf("Error in Iteration Date\n");
exit(1);

sscanf(sstr, "%1£", my_prbtRT + i);
fclose(fp);
else
nodata = 1;

if (nodata)
for (1=0;1i < NRR; i

++)
my_prbtRT[i] = 1 / ((double)NRR + 1.0);

nodata = 0;
if ((fp = fopen(nameFP, "r")) # NULL)

for (i = 0; i < NMRR; i++)
if (/fgets(sstr, 100, fp))

nodata = 1;
break;

}
if (xsstr == '#' || #sstr == '\n')

printf("Error in Iteration Date\n");
exit(1);

sscanf(sstr, "%1£", prbtRT + i);
fclose(fp);

else
nodata = 1;
if (nodata)
for (i = 0; i < NMRR; i++)
prbtRT[i] =1 / ((double)NMRR + 1.0);

}

void options() {
iopt(IOP_PR_-RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_.DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_.PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL._ NO)
iopt(IOP_PR._ MERG_MARK VAL _YES) ;

121

iopt(IOP_PR_FULL_.MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_YES) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR-MC_ORDER,VAL_FROMTO) ;
/* NUMERICAL SOLUTION chosen */
1opt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_GASEI) ;
iopt(IOP_-TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,20000) ;
fopt(FOP_PRECISION,0.000001) ;
fopt(FOP_ABS_RET_M0,0.000000) ;
iopt(IOP_.CUMULATIVE,VAL_YES) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_.OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_.OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_M0,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

LoadConfig();

}

/« GUARD Functions %/
int guard_tRT ()

if (mark("pHQ") && mark("pTK"))
return(1);

else
return(0);

int guard_tBP ()

if (mark("pHQ") && mark("pTK"))
return(0);

else
return(1);

int guard_tMBP ()

if (mark("pHQ") && mark("pTK"))
return(1);

else
return(0);

int guard_tBE_p12 ()
return(1);
int guard_tBE_p3 ()

if (mark("pTK") — mark("pHQ") > TIp3_th)
return(0);

else
return(1);

int guard_tVPN ()
if (mark("pHQ") < NBUF)

return(1);
else
return(0);

int guard tMWT ()
if (‘mark("pMTX") && mark("pMWT"))
return(1);

else
return(0);

/* RATE Functions %/
double rate_TARV ()
{

122

if (mark("pMMPP" %)
return(harvrate

else
return(larvrate);

)

/« CARDINALITY Functions x/
int cardinality MWT ()

return(mark("pMWwT"));
void net() {

int i;

char rt[128];

/% MMPP s/
place("pMMPP") ;

rateval("TMMPP10" ,rate TMMPP10) ;
"TMMPPO1" rate TMMPPO1) ;

rateval

iarc("TMMPP10","pMMPP") ;
oarc("TMMPPO1","pMMPP") ;
harc("TMMPPO1","pMMPP") ;

/* Tagged / Aggregated link %/
place("pARV") ;

place("pHQ"
place("pTK"
place("pER"

)
3

3

ratefun("TARV" rate_TARV) ;
rateval("TTK",rateTTK) ;
rateval("TTX" rate TTX
imm("tVPN") ;
guard("tVPN",guard_tVPN) ;
priority("tVPN",20) ;
probval("tVPN",prbt VPN) ;
imm("tBE") ;
if (TIpolicy < 3)

guard("tBE",guard_tBE_p12) ;
else

guard("tBE",guard _tBE_p3) ;
priority("tBE",20) ;
probval("tBE",prbtBE) ;
imm("tER") ;
priority("tER",20) ;
probval("tER",1.) ;

)

oarc("TARV","pARV") ;
iarcg"tBE","pARV") ;

iarc("tVPN","pARV") ;
oarc("tVPN","pHQ") ;
oarc("TTK","pER") ;

miarc("tER","pER",NER) ;
oarc("tER","pTK") ;
mharc("TTK","pTK" ,NTK) ;
iarc "TTXII,IIPHQ" ;
iarc("TTX","pTK") ;
/% Round Robin s/
placeg"pRR"g ;
place("pRC") ;
init("pRC",NRR) ;
place("pMTX") ;
place("pMWT") ;

rateval("TMTX" rate TMTX) ;

imm("tBP") ;
guard("tBP",guard_tBP) ;
priority("tBP",20) ;
probval("tBP",1.) ;
imm("tMWT") ;

guard ("tMWT" ,guard tMWT) ;
priority ("tMWT",20) ;

123

probval("tMWT",1.) ;
imm("tMBP" ;
guard("tMBP",guard_tMBP) ;
priority("tMBP",20) ;
probval("tMBP",prbtRT[0]) ;

oarc("TTX","pRC") ;
iarc("TTX","pRR") ;
iarc("tBP","pRR") :

oarc("tBP","pRC") ;
miarc("tMBP","pRC",NRR) ;
moarc("tMBP","pRR",NRR) ;
iarc("TMTX","pMTX") ;
oarc("TMTX","pMWT") ;
viarc("tMWT","pMWT" ,cardinality MWT) ;
moarc("tMWT","pRR",NRR) ;

for (i =1; i < NMRR; i++)
sprintf(rt, "tRT_%d", i);
imm(rt) ;
guard(rt,guard_tRT) ;
priority(rt,20) ;
probval(rt,prbtRT[i]) ;
miarc(rt,"pRC",NRR) ;
moarc(rt,"pMTX",i) ;

}

int assert()

return RES_NOERR;

void ac_init()

}

void ac_reach()

}
double get_prbtRT()

if (((mark("pTK") == ntoken) && (mark("pHQ") > ntoken))
|| ((mark("pTK") > ntoken) && (mark("pHQ") == ntoken)))
return(1.0);
else
return(0.0);

double get_though()
{
if (mark("pHQ") < NBUF)

if (mark("pMMPP"))
return(prbt VPN x harvrate);
else
ieturn(prtiPN x larvrate);

else
return(0.0);

double get_arrival()

if (mark("pMMPP"))
return(harvrate

else
return(larvrate);

)

double get_util()

if (mark("pTK") < NTK)
return(1.0);

else
return(0.0);

124

}
double get_VPN2BE()

if (mark("pHQ") == NBUF)

if (mark("pMMPP"))
return(prbt VPN x harvrate);
else
ieturn(prtiPN * larvrate);

else
return(0.0);

double get_prbVPN2BE()

if (mark("pHQ") == NBUF)
return(1.0);

else
return(0.0);

double get_prbBVPN2BE()

if ((mark("pHQ") == NBUF) && mark("pMMPP"))
return(1.0);

else
return(0.0);

double get_prbNBVPN2BE()

if ((mark("pHQ") == NBUF) && !mark("pMMPP"))
return(1.0);

else
return(0.0);

double get_ BE2VPN()
if (mark("pTK") — mark("pHQ") > TIp3_th)

if (mark("pMMPP"))
return(prbtBE * harvrate);
else
return(prbtBE x larvrate);

else
return(0.0);

double get_prbBE2VPN()

if (mark("pTK") — mark("pHQ") > TIp3_th)
return(1.0);

else
return(0.0);

double get_prbBBE2VPN()
if ((mark("pTK") — mark("pHQ") > TIp3_th) && mark("pMMPP"))
return(1.0);
else
return(0.0);
double get_prbNBBE2VPN()
if ((mark("pTK") — mark("pHQ") > TIp3_th) && !mark("pMMPP"))
return(1.0);

else
return(0.0);

double get_prbBEMPTY ()

125

{if (("mark("pTK") || 'mark("pHQ") || 'mark("pRR")) && mark("pMMPP"))
return(1.0);
else
return(0.0);

double get_prbNBEMPTY ()

if (("mark("pTK") || !mark("pHQ") || 'mark("pRR")) && !mark("pMMPP"))
return(1.0);

else
return(0.0);

double get_prbBust()

if (mark("pMMPP"))
return(1.0);

else
return(0.0);

void ac_final()

double delta = 0.0, tmp_prbtRT, maxvalue, total_prbtRT = 0.0;

double prbVPN2BE_h, prbVPN2BE_l, prbBE2VPN_h = 0, prbBE2VPN_] = 0;
double prbBust;

FILE «fp;

char sstr[100];

int i;

solve(INFINITY);

sprintf(sstr, "%s.itp", modelname);
if ((fp = fopen(sstr, "w")) == NULL)

perror("Can not Open the Fix Point Data File");
exit(1);

for (ntoken = 0; ntoken < NRR; ntoken++)

tmp_prbtRT = expected(get_prbtRT);
maxvalue = max(fabs(my_prbtRT[ntoken]), fabs(tmp_prbtRT));
my_prbtRT [ntoken] —= tmp_prbtRT;
maxvalue = fabs(my_prbtRT[ntoken]) / maxvalue;
if (maxvalue > delta)
delta = maxvalue;
total_prbtRT += tmp_prbtRT;
fprintf(fp, "%.12e\n", tmp_prbtRT);

my_prbtRT[NRR] —= 1.0 — total_prbtRT;
fprintf(fp, "%.12e\n", 1.0 — total_prbtRT);

fclose(fp);
pr-std_average();
if (delta < FPprecision)

printf("Fix Point Precision Satisfied\n");
if (!strncmp(linktype, "Tagged", 6))

prbBust = expected(get_prbBust);

fprintf(Outfile,"\nProb. of VPN getting through = %.12e\n",
expected(get_though)/ (prbt VPN = expected(get_arrival)));

fprintf(Outfile,"\nUltilization of VPN = %.12e\n", expected(get_util));

prbVPN2BE_h = expected(get_-prbBVPN2BE) / prbBust;

prbVPN2BE_l = expected(get_.prbNBVPN2BE) / (1 — prbBust);

fprintf(Outfile,"\nTraffic from VPN to Best-Effort = %.12e\n",
expected(get_-VPN2BE));

fprintf(Outfile,"\nProb. of Traffic from VPN to Best-Effort = %.12e\n",
expected(get_prbVPN2BE));

fprintf(Outfile,"\nProb. of Traffic from VPN to Best-Effort at Busty = %.12e\n",
prbVPN2BE_h);

fprintf(Outfile,"\nProb. of Traffic from VPN to Best-Effort at Non-Busty = %.12e\n"
, prbVPN2BE_l);

if (TIpolicy == 3)

126

fprintf(Outfile,"\nTraffic from Best-Effort to VPN = %.12e\n",
expected(get_-BE2VPN));

prbBE2VPN_h = expected(get_.prbBBE2VPN) / prbBust;

prbBE2VPN_] = expected(get_.prbNBBE2VPN) /)(1 — prbBust);

fprintf(Outfile,"\nProb. of Traffic from Best-Effort to VPN = J.12e\n",
expected(get_prbBE2VPN));

fprintf(Outfile,"\nProb. of Traffic from Best-Effort to VPN at Busty = %.12e\n"
, prbBE2VPN_h);

fprintf(Outfile,"\nProb. of Traffic from Best-Effort to VPN at Non-Busty = %.12e\n",
prbBE2VPN_]);

sprintf(sstr, "%s.pda", modelname);
if ((fp = fopen(sstr, "w")) == NULL)

perror("Can not Open Data File");
fclose(Outfile);
exit(1);

for (i=1;i < 3; i++)
switch(i)

case 1:
fprintf(fp, "%.12e\t%.12e\n", expected(get_prbNBEMPTY) /
(1 — prbBust), expected(get_prbBEMPTY) / prbBust);
break;

case 2:
fprintf(fp, "%.12e\t%.12e\n", prbVPN2BE_l, prbVPN2BE_h);
break;

case 3:
fprintf(fp, "%.12e\t%.12e\n", prbBE2VPN_l, prbBE2VPN_h);

break;

fclose(Outfile);

fclose(fp);
exit(2

3

3. Config file smod3ta.cfg

link type
Link Type: Aggregated

MMPP
Rate of MMPP 0 to 1: 1
Rate of MMPP 1 to 0: 1

tagged / aggregated links

Size of Buffer: 224

Size of Leaky—Bucket Token Pool: 112
Erlang Stage: 1

Leaky—Bucket Token Rate: 63

High Packet Arrival Rate: 107.3431
Low Packet Arrival Rate: 67.6569
Percent of High Priority Packet: 90
Percent of Low Priority Packet: 10
Packet Leaving Rate: 100

round robin
Round Robin Weight: 7
Maximum Waiting Time: 1

traffic interation policy
Traffic Interaction Policy: 3
Policy IIT Threshold: 1

fix point iteration

Fix Point Iteration File: smod3ta.itp
Fix Point Precision: 0.0001

127

10.13 Simulation example: reader and writer sharing buffer

10.13.1 Source

Computer Science Department. College of Willian and Mary. On the Simulation of Stochastic Petri
Nets.

The parameters have been changed to have rare events.

10.13.2 Description

The net shown in Figure 10.18 represents a set of N operating processes in an operating system
sharing a buffer in sharing or writing mode. Up to K < N processes are allowed to read the buffer.
Once a process is in the ready-to-write state, the operating system informs the other processes that
are ready to read that they should wait because the buffer will be modified. In the same way, all
the processes that already are in the reading state should exit at once because the data is out of
date.

Figure 10.18: Reader and Writer sharing buffer

10.13.3 Features

e Involves non-exponential distributions.
e Use of discrete-event simulation.

e Use of resampling policies.

10.13.4 SPNP File — readwrite.c

sk sk stk skt ok ks sk st ok ks sk stk sk sk stk ks skt o sk skt ok sk sk stk sk ok o

128

/xTitle: A example of reader and writer sharing buffer x/

/xFile : readerwriterbuffer.c */

/fxTime : Jul-04-97 */

[tk otk sk ok kskk ok skskok ot kR ot sksk kR skskk ot s skok ok ok /
#include "user.h"

int nk;

void options() {
iopt(IOP_SIMULATION,VAL_YES);
iopt(IOP_SIM_CUMULATIVE,VAL_YES);
iopt(IOP_SIM_STD_REPORT, VAL_YES);
//iopt(IOP_SIM_SEED, 345983453);
iopt(IOP_SIM_RUNS, 100000);
fopt(FOP_SIM_LENGTH,20.);
fopt(FOP_SIM_CONFIDENCE,.95);

n=input("Total Processes");
k=input("Max Reading Processes");

}

int fun return (mark("p2"));
it gun) [reburn (mark(7p8")20 & mark("p27)>0) ? 1:0))

void net(){
place("p0"); place("p1"); place("p2"); place("p3"); place("p4"); place("p5");
init("p0",n); init("p5",k);

rateval("t0",4.0); unifval("t1",1.0,2.
rateval("t3",1.0); unifval("t4",1.0,2.
imm("t6"); guard("t6",gun);

(=X=]

; normval("t2",2.0,0.5);
; normval("t5",3.0,1.0);

policy("t1",PRS);policy("t2",PRD);

iarc(lltoll’llpoll . OarC("tO","pl");

iarc Iltlll7ll 1" iarc("tl","pS"); oarc("tl"7"p2"); harc("tl","p3");
iarc("t2","p2" oarc "t2","p0" ; 0&1‘C("t2","P5");

@arc "3 "pO" oa'rc "t3","p3" ;

iarc "t4","p3" mlarc("t4","p5",k); 0&1‘0("1’:4","p4");
iarc(lltsll7llp4ll OarC("tS","pO"); InoaI‘C("t5","p5",k);
viarc("t6","p2",fun); voarc("t6","p5",fun); voarc("t6","p0" fun);

void ac_init() { pr-net_info();}

int assert() { return (1); }

void ac_reach() {}

double eff() { return((mark("p2")>6)71:0); }

void ac_final() {
pr_cum_expected("More than in p2."eff);

10.14 Hybrid System: reactor temperature control system

10.14.1 Source

B. Tuffin, D.S. Chen and K.S. Trivedi. “Comparison of Hybrid Systems and Fluid Stochastic Petri
Nets”, Technical Report. Center for Advanced Computing and Communication, Duke University,
1999.

129

10.14.2 Description

The net is shown in Figure 10.19. It represents a reactor temperature control system. The reactor
core temperature rises at a linear rate. To control the temperature, a rod, chosen randomly between
two, is put into the reactor core when the temperature reaches 550 degrees. The rod is then removed
when the temperature falls back to 510 degrees

60-x/10
Temperature

Figure 10.19: FSPN model of reactor temperature control example

10.14.3 Features

e This is an FSPN.

e The flows are marking dependent and linear.

10.14.4 SPNP File — reactor.c

/% This example is from ”Comparison of FSPNs and HS */

/x —by Bruno Tuffin el. */

[tk otk ssksk ook kskok ok skskok ot kR otk sk ok sk skok ot sk ot sksk skt Rk sk sk otk ot kR ok ok
#include "user.h"

int c3,c4;

void options() {

iopt(IOP_SIMULATION,VAL_YES);

iopt(IOP_SIM_CUMULATIVE,VAL_YES);

iopt(IOP_SIM_STD_REPORT,VAL_YES);
iopt(IOP_SIM_SEED,345983453);
iopt(IOP_SIM_RUNS, 10000);
fopt(FOP_SIM_LENGTH,1000.);
fopt(FOP_SIM_CONFIDENCE,.95);
fopt(FOP_FLUID_EPSILON,0.00000001);

}

double f() {return(0.1);

}
double fp() {return(—0.1);
0

double g1() {return(—5 0 i
double g2() {return(56.0);
double g3() {return(60.0);

130

int g_decrease() {c3=fcondition("Temperature",F_GE,550.0); return(c3);}
int g_increase() {c4=fcondition("Temperature",F_LQ,510.0); return(c4);}

void net() {
place("No_rod"); place("Rod_1"); place("Rod_2");init("No_rod",1);
fplace("Temperature"); finit("Temperature",512.0);
fbound("Temperature",550.0);
fbreak("Temperature",510.0);

inf("T2"); iarc("T2","No_rod"); oarc("T2","No_rod"); floarc("T2","Temperature" f,gl);
inf("T1"); iarc("T1","Rod_1"); oarc("T1","Rod_1"); fliarc("T1","Temperature",fp,g2);
inf("T3"); iarc("T3","Rod_2"); oarc("T3","Rod_2"); fliarc("T3","Temperature",fp,g3);
imm("t1"); probval("t1",1.0); guard("t1",g_decrease);

imm("t2"); probval("t2",1.0); guard("t2",g_increase);

imm("t4"); probval("t4",1.0); guard("t4",g-decrease);

imm("t3"); probval("t3",1.0); guard("t3",g_increase);

iarc("t1","No_rod");oarc("t1","Rod_1");
iarc "t2","Rod_1"§;oarc "£2" "No_rod");
iarc("t3","Rod_2");oarc("t3","No_rod");
iarc("t4","No_rod");oarc("t4","Rod_2");

}

void ac-init() { pr-net_info(); }
int assert() { return (1); }
void ac_reach() {}

void ac_final() {

}

10.15 Dual tank example

10.15.1 Source

G. Ciardo, D.M. Nicol, and K.S. Trivedi. Discrete-Event Simulation of Fluid Stochastic Petri-Nets.
IEEE Transactions on Software Engineering, 25(2):207-217, 1999.

The parameters have been changed to have rare events.

10.15.2 Description

The system described in Figure 10.20 contains two tanks “One” and “Two” (of respective maximal
capacity by and by). A fluid flows with rate r;, from an external source into tank “One”, which
sends the liquid to a processing station with rate r,,+ > 7, The processing station is subject to
breakdowns and repairs (exponentially distributed with respective rates A and p). During a break-
down, the station is not fuelled and the liquid from the external source is immediatley redirected to
the additional tank “Two”. The external source is shut down only when tank “Two” is full. When
the processing station is repaired, the external flow is immediately switched to tank “One” which

131

resume his work. In addition, the liquid in tank “Two” is pumped into tank “One” with rate ro;.
If tank One is full, the flow from tank “two” to tank “One” is slowed.

On ﬂ Fill . mOne _ Use
. ()
O -/

rop if & < by

Tout = Tin if #= by

(< by) Up
Start Stop =02 and —— Xfer
—— and
(myp, =1) Mpoun = 1)
) Fai epair

rop if & < by

Fout = Tin 1f £ = by A M

mDown*r_in @rwo
Ofo Q Down

Figure 10.20: FSPN model of a dual tank

10.15.3 Features

e This is an FSPN.
e The flows are marking dependent.

e Computation of the probability to have a full tank “T'wo”.

10.15.4 SPNP File — splitting.c

/% This example is adapted from ”Discrete-event simulation of fluid stochastic %/
/xPetre nets” —by Gianfranco Ciardo el. */
[tttk ook sk ok sk ok sk ot skk koo sk ok sskok ot s sskok ot R sk sk ok sk ot sk ot kok ok ok o/

#include "user.h"

#define bound1 1.0
#define bound2 2.0
#define rin 0.08

#define r21 0.97
#define rout 1

int cl,c2,c3,c4;

void options() {

iopt(IOP_SIMULATION, VAL_YES);
iopt(IOP_SIM_RUNMETHOD,VAL_RESTART);
iopt(IOP_SPLIT_PRESIM,VAL_YES);
iopt(IOP_SPLIT_PRESIM_RUNS, 1000);
iopt(IOP_SPLIT_RESTART_FINISH,VAL_NO);

iopt(IOP_SIM_CUMULATIVE,VAL_NO);

iopt(IOP_SIM_STD_REPORT,VAL_YES);
iopt(IOP_SIM_SEED,345983453);
iopt(IOP_SIM_RUNS,0);
fopt(FOP_SIM_ERROR.0.1);
fopt(FOP_SIM_LENGTH,100.);
fopt(FOP_SIM_CONFIDENCE,.95);
fopt(FOP_FLUID_EPSILON,0.00000001);
fopt(FOP_TIME_EPSILON,0.00000001);

132

/* the following option stands if iopt(IOP_SIM_SPLIT_RESTART,VAL_YES);*/
1opt(IOP_SPLIT_LEVEL_DOWN 4);

/x the following options stand if iopt(IOP_SPLIT_-PRESIM,VAL_NO); «/
iopt(IOP_SPLIT_NUMBER,6);
FOP_SPLIT_THRESHOLDS[1]=0.429032;
FOP_SPLIT_-THRESHOLDS|2]=0.666285;
FOP_SPLIT_THRESHOLDS|3|=0.095069;
FOP_SPLIT_THRESHOLDS|[4]=1.161825;
FOP_SPLIT_THRESHOLDS|5|=1.376134;
FOP_SPLIT_THRESHOLDS|[6]=1.595820;

}

double fuprin() {return(rin*mark("Up"));}
double fdnrin() {return(rin¥mark("Down"));}
double 21()
{ double val;
c4=fcondition("Two",F_GT,0);
cl=fcondition("One",F_LT,boundl);
val=c4 7 (c1 ? r21 :(rout—rin)) : 0;
return (val);

¥

double fout()

{ c4=fcondition("Two" ,F_GT,0);
c2=fcondition("0One",F_GT,0);
return (c4 ? rout: (¢27? rout: rin));

int gstop() {c3=fcondition("Two",F_EQ,bound2); return(c3s«mark("Down"));}
int gstart(){return(mark("Up"));}

void net() {
place("0n"); place("0ff"); place("Up"); place("Down");init("0n",1); init("Up",1);
fplace("One"); finit("0One",0.0); fbound("One",boundl);
fplace("Two"); fbound("Two",bound2);
inf("Fill");
inf("Use");
inf("Xfer");
imm("Stop"); probval("Stop",1.0); guard("Stop",gstop);
imm("Start"); probval("Start",1.0); guard("Start",gstart);
rateval%"Fail",O.l);
rateval("Repair",1);

iarc("Fill","On");0arc("Fill","0On");
fvoarc("Fill","One" fuprin); fvoarc("Fill","Two",fdnrin);

iarc("Stop","0On");
oarc("Stop","0ff");

iarc("Start","0ff"); oarc("Start","0On");

iarc("Xfer","Up"); oarc("Xfer","Up");
fviarc("Xfer","Two" f21);fvoarc("Xfer","One",{21);

iarc("Use","Up"); oarc("Use","Up"); fviarc("Use","One" fout);

iarc("Fail","Up");oarc("Fail","Down");iarc("Repair","Down");oarc("Repair","Up");

void ac_init() { pr_net_info(); }

int assert() { return (1); }

void ac_reach() {}

double eff() { return((fmark("Two")>2.0) ? 1:0); }

void ac_final() {
splitting("Two", 2.0);

133

10.16 Equivalent failure rate and repair rate computation in
hierarchical model

10.16.1 Source

M. Lanus, L. Yin, ”Bedrock Availability Analysis”, In Proc. Motorola SES99, Software Engineering
Symposium, June 1999. (This source might not be available to outside Motorola. The system
configuration, data and code shown in the example have been modified due to confidential reason.)

M. Lanus, L. Yin, K. S. Trivedi, ”Hierarchical Decomposition and Aggregation of State-based
Availability and Performability Models for Telecommunications Systems”, submitted to IEEE Trans-
actions on Reliability.

10.16.2 Description

The Markov chain shown in Figure 10.21 models a sub-system module which has 141 hot standby
redundancy. It models the details of hardware/software failure of active/standby component, switch
over, coverage, reboot, and repair. Due to the complexity, it is easier to use Markov chain rather
than SPN. However, any Markov chain can be implemented in SPN by simply converting states into
places, transitions into SPN transitions and arcs.

The system level SPN model in Figure 10.22 has a 2-state Markov chain (2-place 2-transition
SPN) for each sub-system module. The equivalent failure rate and repair rate (MTTF and MTTR)
are computed at lower level model and fed into the system level model. Compared to the brutal force
approach, this hierarchical approach largely reduces the number of states at the system level. This
approach is an exact technique (not an approximation) for steady state measurement like Downtime
Performance Measurement (DPM) as defined in Bellcore RQSM.

The interaction of system level model and lower level model is done by system calls and parsing
the output file of lower level model. The computation of equivalent rates is done by partitioning
the states into Up states and Down states. The key functions are hold_cond () and pr_value().

10.16.3 Features

e Computation of equivalent failure rate and repair rate
e Hierarchical Model
e Markov chain modeling details of 1+1 (hot standby) redundancy

e Availability measurement — Downtime Performance Measurement (DPM)

134

Figure 10.21: Markov Chain model for 1+1 (hot standby) redundancy modules

Total Total
DPM OFM

Pantial Partial
DPM OFM

System:

Figure 10.22: SPNP model for the system

HSP BPL WM PGF 5Bt BUS
System
Level
Total Total Total
MTTReq MTTReq MTTReq
Total Total Total
MTTFeq MTTFeq MTTFeq
HEP: VMI: SBI:
1+1 MRM 1+0 MRM 140 MRM Module
Level

10.16.4 SPNP Files for Module level Markov chain model

HSP module — gsbhsp.c

#include <stdio.h>
#include "user.h"

/x global variables %/
/x all the rates are in the format 1.0/MTTF or 1.0/MTTR (unit: 1/Hour) */

double lambdaP=1.0/180000.0; /* (hardware) failure rate for HSP %/
double lambdaT=1.0/4000.0; /« transient (/sw) failure rate for HSP %/
double muCr=1.0/4.0; /* repair rate for Critical HSP fault /
double muNc=1.0/12.0; [+ repair rate for Non-Critical HSP fault s/

/% repair rate for non-critical HSP fault (after having repaired critical %/
[HSP fault. */
double muNcS=1.0;

/* reboot time for HSP fault (active HSP failed, unsuccessful detection, %/
[standby HSP working), 1 min %/
double betal=1.0/(1.0/60.0);

/* reboot time for HSP fault (777) «/
double beta=1.0/(1.0/60.0);

/x Active HSP fault detection/switching to standby HSP delay time, 5 sec #/
double delta=1.0/(4.0/3600.0);

/* coverage for the above detection/switching #/
double ¢=0.98;

/* coverage for reboot (betal) s/
double q=0.80;

/% coverage for reboot (beta) */
double r;

/* Fraction of transient/sw faults that are manifest in Standby HSP x/
double alpha=0.2;

/x threshold for counting the unavailability of the HSPs x*/
double tR=10.0/3600.0;

/% prototype reward functions %/
double dtime();

double dtimeFC();

double dtimeF();

/% prototype guard functions %/

/* prototype rate functions */
double rHsp2_D();

double rHsp2_hsp1();

double rD_hsp1();
double rD_Ds();
double rDs_hsp2();
double rDs_FC();
double rHspl_hspls();
double rHspl_hSp28
)
S
S

)
)

b

/* values for global variables %/

double rHsp1_hsp0
double rHsp0_F();

double rHsp0_hsp1(
double rHspls_hspO:
double rHspOs_hspl
double rHsp0s_F();

/% prototype cardinality functions %/

136

void options() {
iopt(IOP_PR_-RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_.DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_.MERG_-MARK,VAL_YES) ;
iopt(IOP_PR_.FULL_MARK,VAL_NO) ;
iopt(IOP_USENAME, VAL _NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_.PR_.MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR-MC_ORDER,VAL_FROMTO) ;
/« NUMERICAL SOLUTION chosen %/
iopt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_SSSOR) ;
iopt(IOP_.TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,2000) ;
fopt(FOP_PRECISION,0.000001) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_NO) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO0,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

/% some computation */
r = lambdaT/(lambdaP+lambdaT);

/x REWARD Functions %/
double dtime() {
double dtime;
dtime = ((double)mark("Ds")*exp(—betal+tR)
+ (double)mark("D")*exp(—deltaxtR)
+ (double)mark("hsp0s")*exp(—betaxtR)
+ (double)mark("hsp0")xexp(—betaxtR)
+ (double)mark("FC")*1.0
+ (double)mark("F")x1.0);
dtime = 8766x%60;
return dtime;

double dtime60vs10() {

double dtime;

dtime = ((double)mark("Ds")
double)mark("D")xexp(—deltaxtR)
double)mark("hsp0Os")
double)mark("hsp0")
double)mark("FC")+1.0
double)mark("F")x1.0);
dtime x= 8766x%60;
return dtime;

+++++

double dtime5vs10() {

double dtime;

dtime = ((double)mark("Ds")
+ (double)mark("hsp0Os")
+ (double)mark("hsp0o")
+ (double)mark("FC")*1.0
+ (double)mark("F")*1.0);

dtime = 8766x%60;

return dtime;

int cond() {
if (mark("hsp2")==0 && mark("hsp1")==0 && mark("hspls")==0
&& mark("hspiss")==0) { return 1; }
else { return 0; }

137

double times[2];

int condFC() {
if (mark("FC")==1) { return 1; }
else { return 0; }

double timesFC[2];

i o

=1) { return 1;}
else { return 0; }

double timesF[2];

int cond5vs10()
if (mark("hsp2")==0 && mark("hsp1")==0 && mark("hspls")==0
&& mark("hsplss")==0 && mark("D")==0) { return 1; }
else { return 0; }

double times5vs10[2];

double tsodpm() {

double dtime;

dtime = ((double)mark("Ds")
+ (double)mark("D")
+ (double)mark("hsp0Os")
+ (double)mark("hsp0")
+ (double)mark("FC")
+ (double)mark("F"));

dtime = 8766x%60;

return dtime;

double dtimeFC() {
double dtimeFC;
dtimeFC = (double)mark("FC")*1.0;
dtimeFC *= 8766x60;
return dtimeFC;

double dtimeF() {
double dtimeF;
dtimeF = (double)mark("F")*1.0;
dtimeF x= 8766%60;
return dtimekF;

/« GUARD Functions %/

/* RATE Functions %/
double rHsp2_D() {
return(lambdaP+lambdaT);

}
double rHsp2_hspl() {
return(lambdaP-+alphaxlambdaT);

}
double rD_hsp1() {
return(deltaxc);

double rD_Ds() {
return(deltax(1—c));

double rDs_hsp2() {
return(betalxq);

double rDs_FC () {
return(betalx(1—q));

double rHspl_hspls() {

return(betax(1—r));

}
double rHspl_hsp2() {

138

return(betasr);

double rHsp1_hsp0() {
return(lambdaP+lambdaT);

}
double rHsp0_F()
return(beta*(l);

double rHsp0_hsp1() {
return(betasr);

double rHspls_hspOs() {
return(lambdaP-+lambdaT);

double rHspOs_hsp1s() {
return (betasxr);

double rHsp0s_F() {

return (betax(1—r));
/x CARDINALITY Functions */
void net() {

/% PLACE %/ /x Active HSP Standby HSP =/
place("hsp2"); /i« no fault no fault «/
init("hsp2",1);
place("D"); /* fault, try to detect no faul #/
place("Ds"); /x fault not covered, reboot no fault x/
place("FC"); % reboot failed, repair no faul %/
place "hspi") * no fault reboot #/
place("hspis") /* no fault repair */
place "hsplss") /% no faul repair/reboot %/
place("hspO"); /* reboot waiting for reboot %/
place("hspOs"); /A reboot waiting for repair */
place("F"); /% repair waiting for repair /

/* TRANSITION s/
ratefun("hsp2_D",rHsp2_D);
ratefun "hsp2_hsp1",rHspZ_hspl);
ratefun("D_hsp1",rD_hspl);
ratefun("D_Ds",rD_Ds);
ratefun("Ds_hsp2",rDs_hsp2);
ratefun("Ds_FC" rDs_FC);
rateval("FC_hsp2",muCr);
ratefun("hspl_hspis",rHspl_hspls);
ratefun("hspi_hsp2",rHspl_hsp2);
ratefun("hspi_hsp0",rHspl_hsp0);
ratefun("hspO_F",rHspO_F);
ratefun("hspO_hsp1",rHsp0_hspl);
ratefun("hspls_hspOs",rHspls_hsp0s);
rateval("hspls_hsp2",muNc);
ratefun("hspOs_hsp1s",rHspOs_hspls);
ratefun("hspOs_F" ,rHspOs_F);
rateval("F_hspilss",muCr);
rateval("hsplss_hsp2",muNcS);
/< ARC %/
iarc("hsp2_D","hsp2");
oarc("hsp2_D","D");
iarc("hsp2_hsp1l", "hsp2")
oarc("hsp2_hspl", "hspl")
iarc("D_hsp1","D");
oarc("D_hspl","hspl");
iarc("D_Ds","D");

oarc('D Ds","Ds");
iarc("Ds_hsp2","Ds");
oarc("Ds_hsp2","hsp2");

iarc(" Ds_FC","Ds");
oarc("Ds_FC","FC");
iarc("FC_hsp2","FC");
oarc("FC_hsp2","hsp2");
iarc("hspl_hspls","hspl");
oarc("hspl_hspls","hspls");
iarc("hspl_hsp2","hspl");
oarc("hspl_hsp2" “hsp2")
iarc("hspl_ hspO" "hspl")
oarc("hspl_hspO",“hspO");

139

iarc("hspO_F","hsp0");
oarc("hspO_F","F");
iarc("hspO_hsp1","hsp0");
oarc("hspO_hspl","hspl");
iarc("hspls_hspOs","hspis");
oarc("hspls_hspOs","hspOs");
iarc("hspls_hsp2","hspis");
oarc("hspls_hsp2","hsp2");
iarc("hspOs_hspls","hspOs");
oarc("hspOs_hspls","hspls");
iarc("hspOs_F","hspOs");
oarc("hspOs_F","F");
iarc("F_hsplss","F");
oarc("F_hsplss","hsplss");
iarc("hsplss_hsp2","hsplss");
oarc("hsplss_hsp2","hsp2");

void assert() {

}

void ac_init() {

}

void ac_reach() {

}
void ac_final() {

[
double t;
for (t=0: t<50000; t+=30000) {
solve(t);
pr-expected(”dtime” dtime);
pr_expected(”dtimeFC” dtimeFC);
pr-expected(”dtimeF”,dtimeF);

solve(INFINITY);
pr-expected("dtime",dtime);
pr-expected("dtimeFC",dtimeFC);
pr-expected("dtimeF" dtimeF);
pr-expected("tsodpm",tsodpm);
pr-hold_cond("test",cond);
hold_cond(cond,times);

0));

1 ;;

pr-value("times0" times
"tsodpm computed from times", times[1]/(times[1]+times[0])*8766%60);

pr_value("times1" times
pr_value

pr-message("\nlook at state FC\n");
hold-cond(condFC,timesFC);

0 ;;
1);

pr_value("timesFC0" timesFC
pr-value("timesFC1" timesFC

"dtimeFC computed from timesFC", timesFC[1]/(timesFC[1]4timesFC|0])
*8766x60);

pr-value

pr-message("\nlook at state F\n");
hold_cond(condF timesF);

0 %;
1));

pr-value("timesFO0" timesF
pr-value("timesF1" timesF

"dtimeF computed from timesF", timesF[1]/(timesF[1]4+timesF[0])
*8766%60);

pr_value

pr-message("\nput Ds,0,0s into down state\n");
pr-expected("dtime60vs10",dtime60vs10);

pr_message("\n \n");

pr-message("\n(This is what actually used ");

pr_message("and fed into upper level.)\n");

pr_message("\nPut D into up state, Ds,0,0s into down state.\n");
pr-expected("dtime5vs10",dtime5vs10);

hold_cond(cond5vs10,times5vs10);

pr_value("MTTFeq",times5vs10[0]);

pr-value("MTTReq" times5vs10|[1]);

pr-value("ofm: ", (1—expected(dtime5vs10)/(8766x60)) / times5vs10[0] x8766);

140

pr-mc_info();
pr-std_average();

VMI and SBI module — gsbvscl.c

#include <stdio.h>
#include "user.h"

/x global variables %/
/% all the rates are in the format 1.0/MTTF or 1.0/MTTR (unit: 1/Hour) %/

double lambdaP=1.0/120000.0; /* (hardware) failure rate for HSP x/
double lambdaT=1.0/4000.0; /x transient (/sw) failure rate for HSP %/

/% reboot time for HSP fault (active HSP failed, unsuccessful detection, %/
Jx standby HSP working), 1 min %/
double betal=1.0/(1.0/60.0);

/* coverage for reboot (betal) x/
Jdouble q=0.80;%/
double q;

/% coverage for reboot (beta) */
double r;

/x repair rate of Ps+Fn, Bus, NSP, DSP «/

/% in lost redudency/partial outage/total outage */
double rrLr=1.0/24.0;

double rrPo=1.0/8.0;

double rrTo=1.0/4.0;

/% prototype reward functions */
double dtime();
int cond();

/% prototype guard functions */

/% prototype rate functions %/
double rHsp2_Ds();

double rDs_hsp2();

double rDs_FC();

/x values for global variables x/

/% prototype cardinality functions */

void options() {
iopt(IOP_PR_RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR_PROBDTMC,VAL_NO) ;
iopt(IOP_PR_DOT,VAL_NO) ;
iopt(IOP_PR_.MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_MARK,VAL_NO) ;
iopt(IOP_USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_.PR_-MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;
/« NUMERICAL SOLUTION chosen %/
1opt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD, VAL SSSOR) ;
iopt(IOP_TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,2000) ;

141

fopt(FOP_PRECISION,0.000001) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_NO) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO,VAL_YES) ;
iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

/% some computation %/
r = lambdaT/(lambdaP+lambdaT);

q=Tr;

/x REWARD Functions %/

double dtime() {
double dtime;
dtime = ((double)mark("Ds")
+ (double)mark("FC"));
dtime x= 8766x60;
return dtime;

int cond() {
if (mark("hsp2")==0) { return 1; }
else { return 0; }

double times[2];
/* GUARD Functions %/

/« RATE Functions %/
double rHsp2_Ds() {
return(lambdaP-+lambdaT);

double rDs_hsp2() {
return(betalx*q);

double rDs_FC () {
return(betalx(1—q));

/* CARDINALITY Functions %/

void net() {

/< PLACE %/ /x Active HSP Standby HSP «/
place("hsp2"); /i« no fault no fault «/
init("hsp2",1);

place("Ds"); /% fault not covered, reboot no fault x/
place("FC"); /% reboot failed, repair no faul %/

J/x TRANSITION +/
ratefun("hsp2_Ds",rHsp2_Ds);
ratefun("Ds_hsp2",rDs_hsp2);
ratefun("Ds_FC",rDs_FC);
rateval("FC_hsp2",rrPo);

/< ARC «/
iarc("hsp2_Ds","hsp2");
oarc("hsp2_Ds","Ds");
iarc("Ds_hsp2","Ds");
oarc("Ds_hsp2","hsp2");
iarc("Ds_FC","Ds");
oarc("Ds_FC","FC");
iarc("FC_hsp2","FC");
oarc("FC_hsp2","hsp2");

}

void assert() {

}

142

void ac_init() {

}

void ac_reach() {

}

void ac_final() {
solve(INFINITY);
pr-expected("dtime",dtime);

pr-message("\n \n");
pr-message("\n(This is what actually used ");
pr-message("and fed into upper level.)\n");
pr-message("\nequivalents for the subsystem:\n");
hold_cond(cond,times);

pr-value("MTTFeq" times[0]);
pr-value("MTTReq",times|1]);
prvalue("ofm: ", (1—expected(dtime)/(8766x60)) / times[0] *8766);

pr-message("\nequivalent DPM computed from MTTFeq and MTTReq:\n");
pr_value("DPMeq", times[1]/(times[1|+times[0])*8766+60);

pr-mc_info();
pr_std_average();

10.16.5 SPNP File for System level SPN model — gsb.c

#include <stdio.h>
#include "user.h"

/x global variables %/
/* all the rates are in the format 1.0/MTTF or 1.0/MTTR (unit: 1/Hour) %/
/% global variables for other parts of the system */

/* number of power supply+fan modules */
int numPsf=3;
int numPsfUpMin=2; /« minimum number to make system up */

/x number of NSPs on bus A and B #/

int numNspA=4;

int numNspB=4;

int numNsp=8;

int numNspFcMin=4; /x+ minimum number to make system full capacity */
int numNspUpMin=1;

/* number of DSPs on bus A and B %/

int numDspA=2;

int numDspB=2;

int numDsp=4;

int numDspFcMin=2; /4 minimum number to make system full capacity %/
int numDspUpMin=1;

/* failure rate of HSP %/
double frHsp;

/x failure rate of backplane %/
double frBp=1.0/6000000.0;

/Jx failure rate of power supply+fan %/
double frPsf=1.0/80000.0;

/x failure rate of bus */
double frBus=1.0/300000.0;

/* failure rate of NSP %/
double frNsp=1.0/100000.0; /* change later %/

143

/Jx failure rate of DSP %/
double frDsp=1.0/100000.0; /« change later */

/x repair rate of backplane */
double rrBp=1.0/6.0;

/x repair rate of Ps+Fn, Bus, NSP, DSP «/

/% in lost redudency/partial outage/total outage */

double rrLr=1.0/12.0;
double rrPo=1.0/8.0;
double rrTo=1.0/4.0;

double rrHsp,rrNsp,rrDsp;
/x global variables for computing capacity %/

double dnNsp, dnDsp, upNsp, upDsp;
double capHsp, capBp, capPsf, capBus;
double capNsp, capDsp, cap; /* capacity */

/% prototype reward functions */
double uodpm();

double tpodpm();

double ofm();

double tsodpm();

double tsodpmHsp();

double tsodpmBp();

double tsodpmPsf();

double tsodpmBus();

double tsodpmNsp();

double tsodpmDsp();

void calCap(); /* calculate capacity %/
void calVar();

int condTo();

int condTso();

/% prototype guard functions %/

/% prototype rate functions */
double rrfPsf();
double rrfBus();

/% prototype cardinality functions %/

void options() {
iopt(IOP_PR_.RGRAPH,VAL_NO) ;
iopt(IOP_PR_MC,VAL_NO) ;
iopt(IOP_PR_DERMC,VAL_NO) ;
iopt(IOP_PR_PROB,VAL_NO) ;
iopt(IOP_PR.PROBDTMC,VAL_NO) ;
iopt(IOP_PR_.DOT,VAL_NO) ;
iopt(IOP_PR_.MERG_MARK,VAL_YES) ;
iopt(IOP_PR_FULL_.MARK,VAL_NO) ;
iopt(IOP_.USENAME,VAL_NO) ;
iopt(IOP_DEBUG,VAL_NO) ;
iopt(IOP_PR-MARK_ORDER,VAL_CANONIC) ;
iopt(IOP_PR_RSET,VAL_NO) ;
iopt(IOP_PR_MC_ORDER,VAL_FROMTO) ;
/* NUMERICAL SOLUTION chosen %/
1opt(IOP_SENSITIVITY,VAL_NO) ;
iopt(IOP_-MC,VAL_CTMC) ;
iopt(IOP_SSMETHOD,VAL_SSSOR) ;
iopt(IOP_.TSMETHOD,VAL_FOXUNIF) ;
iopt(IOP_ITERATIONS,2000) ;
fopt(FOP_PRECISION,0.000001) ;
fopt(FOP_ABS_RET_MO0,0.0) ;
iopt(IOP_CUMULATIVE,VAL_NO) ;
iopt(IOP_SSDETECT,VAL_YES) ;
iopt(IOP_OK_ABSMARK,VAL_NO) ;
iopt(IOP_.OK_VANLOOP,VAL_NO) ;
iopt(IOP_OK_TRANS_MO,VAL_YES) ;
iopt(IOP_OK_VAN_MO,VAL_YES) ;

144

iopt(IOP_ELIMINATION,VAL_REDONTHEFLY) ;

/% some computation */
calVar();

}

void calVar() {

double eq;

FILE xpp;

char command[120]="run gsbhsp";

char cmdvsc[120];

system(command);

if ((pp=popen("grep MTTFeq gsbhsp.out | awk '{print $4}'","r"))==NULL) {
perror("popen");

exit(1);
fscanf(pp,"%141f",&eq);
printf("%.12f\n" eq);
fclose(pp);

frHsp = 1/eq;

if ((pp=popen("grep MTTReq gsbhsp.out | awk '{print $4}'","r"))==NULL) {
perror("popen"%;
exit(1);

fscanf(pp,"%141£" ,&eq);
printf("%.12f\n" eq);
fclose(pp);

rrHsp = 1/eq;

strepy (cmdvsce,"run gsbvscl");

system(cmdvsc);

if ((pp=popen("grep MTTFeq gsbvscl.out | awk '{print $4}'","r"))==NULL) {
perror("popen");
exit(1);

fscanf(pp,"%141£",&eq);

printf("%.12f\n" eq);

fclose(pp);

frNsp = 1/eq;

frDsp = 1/eq;

if ((pp=popen("grep MTTReq gsbvscl.out | awk '{print $4}'","r"))==NULL) {
perror("popen");
exit(1);

fscanf(pp,"%141£",&eq);
printf("%.12f\n" eq);

fclose(pp);
rrNsp = 1/eq;
rrDsp = 1/eq;

/« REWARD Functions */

/% Unweighted Outage Downtime Performance Measurement %/

double uodpm() {
double dt;
calCap();
if (cap<0.99999) { dt=1; }
else { dt=0; }
dt *= 8766%60;
return dt;

}

int condUo() {
calCap();
if (cap<0.99999) { return 1; }
else { return 0; }

double timesUo[2];

/x Partial Outage Downtime Performance Measurement %/

145

double tpodpm() {
double dt;
calCap();
dt = 1—cap;
dt x= 8766%60;
return dt;

double tpodpmNsp() {
double dt;
calCap();
dt = 1—capNsp;
dt = 8766%60;
return dt;

double tpodpmDsp() {
double dt;
calCap();
dt = 1—capDsp;
dt *= 8766%60;
return dt;

double tpodpmBus() {
double dt;
calCap();
dt = 1—capBus;
dt x= 8766%60;
return dt;

/* Outage Frequency Measurement */
double ofm() {}
/x Total System Outage DPM =/

double tsodpm() {
double dt;
calCap();
if (cap<0.00001) { dt=1; }
else { dt=0; }
dt *= 8766%60;
return dt;

}

int condTso() {
calCap();
if (cap<0.00001) { return 1; }
else { return 0; }

double timesTso[2];
/x total system outage caused by HSP x/

double tsodpmHsp() {
double dt;
calCap();
if (capHsp<0.00001) { dt=1; }
else { dt=0; }
dt «= 8766%60;
return dt;

}

double tsodpmBp() {
double dt;
calCap();
if (capBp<0.00001) { dt=1; }
else { dt=0;
dt x= 8766x60;
return dt;

double tsodpmPsf() {
double dt;

146

calCap();

if (capPsf<0.00001) { dt=1; }
else { dt=0; }

dt x= 8766%60;

return dt;

double tsodpmBus() {
double dt;
calCap();
if (capBus<0.00001) { dt=1; }
else { dt=0; }
dt = 8766%60;
return dt;

double tsodpmNsp() {
double dt;
calCap();
if (capNsp<0.00001) { dt=1; }
else { dt=0; }
dt *= 8766%60;
return dt;

double tsodpmDsp() {
double dt;
calCap();
if (capDsp<0.00001) { dt=1; }
else { dt=0; }
dt x= 8766x60;
return dt;

void calCap() {
cap=1;
if (mark("hspUp")==0) { capHsp=0; cap=0; }
else { capHsp=1;
if (mark("bpUp")==0) { capBp=0; cap=0; }
else { capBp=1; }
if (mark("psfUp")<numPsfUpMin) { capPsf=0; cap=0; }
else { capPsf=1; }
//if (mark(”busAUp”)==0 && mark(”busBUp”)==0) { capBus=0; cap=0; }
//else { capBus=1; }
capBus = (mark("busAUp") + mark("busBUp"))/2.0;
if (capBus < 0.00001) cap=0;

upNsp = mark("nspAUp")*mark("busAUp") 4+ mark("nspBUp")smark("busBUp");
upDsp = mark("dspAUp")s«mark("busAUp") + mark("dspBUp")*mark("busBUp");

if (upNsp<numNspFcMin—0.00001) { capNsp = (double)upNsp/numNspFcMin; }
else { capNsp=1; }

if (upDsp<numDspFcMin—0.00001) { capDsp = (double)upDsp/numDspFcMin; }
else { capDsp=1; }

if (cap>0.99999) { cap = (capNsp < capDsp) ? capNsp : capDsp; }

/* GUARD Functions %/
/% RATE Functions %/

double rrfPsf() {
calCap();
if (cap<0.00001) { return rrTo; }
else { return rrLr; }

double rrfBus() {
calCap();
if (cap<0.00001) { return rrTo; }
else { return rrPo; }

/« CARDINALITY Functions */

147

void net() {
/< PLACE «x/

place("hspUp");
init("hspUp",1);
place("hspDn");
place("bpUp");
init("bpUp",1);
place("bpDn");
place("psfUp");
init("psfUp",numPsf);
place("ps£fDn");
place("busAUp");
init("busAUp",1);
place("busADn");
place("busBUp");
init("busBUp",1);
place("busBDn");
place("nspAUp");
init("nspAUp",numNspA);
place("nspADn");
place("nspBUp");
init("nspBUp",numNspB);
placoE"nspBDn" ;
place("dspAUp");
init("dspAUp" ,numDspA);
place("dspADn");
place("dspBUp");
init("dspBUp",numDspB);
place("dspBDn");

/« TRANSITION /

ra:egep "Espgail"7 fr%sp, "Illlspgp"));
ateden(" " o .
I{atedeg "b}saga?{'l:, frr]gp,b I')'7prIS>¥')),n 7
ratedep("bpRepr", rrBp, "bpDn");
ratedep("psfFail", frPsf, "psfUp");
ratefun("psfRepr", rrfPsf);
ratedep("busAFail", frBus, "busAUp")
ratefun("busARepr", rrfBus);
ratedep("busBFail", frBus, "busBUp")
ratefun("busBRepr", rrfBus);
ratedep("nspAFail", frNsp, "nspAUp");
t d n AR n N n AD n
R e o e
ratedep("nspBRepr", rrN "nspBDn");
pBRepr", rrNsp, "nspBDn");
)
)
)
)

ra:egep "gspﬁgail", frDDsp, "isp.lzgp"
atedep (" " iy "
iatedeg "dngFzﬁ"Z EDQE,’ "d:;)BU;"
ratedep("dspBRepr", rrDsp, "dspBDn"

/* ARC %/

)

iarc("hspFail", "hspUp");
oarc("hspFail", "hspDn");
iarc("hspRepr", "hspDn");
oarc(("hspRepr", "hSPLSP");
iarc("bpFail", "bpUp");
oarc("prail", nprn");
iarc("bpRepr", "bpDn");
parc("bpRepr", "bpUp");
iarc("psfFail", "psfUp");
oarc("psfFail", "psfDn");
iarc("psfRepr", "psfDn");
oarc("psfRepr", "psfUp");
iarc("busAFail", "busAUp");
oarc("busAFail", "busADn");
iarc("busARepr", "busADn");
oarc("busARepr", "busAUp");
iarc("busBFail", "busBUp");
parc(' ':;)us]f;'ail" , "";msBB];Jnl"));
iarc("busBRepr", "busBDn");
oarc("busBRepr‘:, "busBUp"j;

148

iarc("nspAFail", "nspAUp");
oarc("nspAFail", "nspADn");
iarc("nspARepr", "nspADn");
oarc " AR "non AU " ;
iarc(("r?ss}?BF:ff" ,’ "I?SSI?BUI?"))7
oarc("nspBFail", "nspBDn");
iarc("nspBRepr", "nspBDn");
gt sy)
iarc("dspAFail", "dspAUp");
oarc("dspAFail", "dspADn")7;
iarc("dspARepr", "dspADn");
oarc("dspARepr", "dspAUp");
iarc((n(:ispBBl;ai]i" 7’ ..(;SPBB?DP“))77
oarc("dspBFail", "dspBDn");
iarc("dspBRepr",7 "dspBDn");
oarc("dspBRepr", "dspBUp");

}

void assert() {

}

void ac_init() {

}

void ac_reach() {

}
void ac_final() {

Jx

double t;

for (t=0; t<50000; t+=30000) {
solve(t);
pr_expected(”dtime” dtime);
pr-expected(”dtimeFC”,dtimeFC);
pr-expected(”dtimeF” dtimeF);
pr-expected(”tdpm”, tdpm);

solve(INFINITY);
pr-expected("uodpm", uodpm);

pr-message("\n \n");
pr-expected("tpodpm", tpodpm);
pr-expected("tpodpmNsp", tpodpmNsp);
pr-expected("tpodpmDsp", tpodpmDsp);
pr-expected("tpodpmBus", tpodpmBus);
pr-value("podpm", expected(tpodpm)—expected(tsodpm));

pr_value("podpmNsp", expected(tpodpmNsp)—expected(tsodpmNsp));
pr-value("podpmDsp", expected(tpodpmDsp)—expected(tsodpmDsp));
pr-value("podpmBus", expected(tpodpmBus)—expected(tsodpmBus));

pr-message("\n \n");
pr-expected("tsodpm", tsodpm);
pr_expected("tsodpmHsp", tsodpmHsp);
pr-expected("tsodpmBp", tsodpmBp);
pr-expected("tsodpmPst", tsodpmPsf);
pr-expected("tsodpmBus", tsodpmBus);
pr-expected("tsodpmNsp", tsodpmNsp);
pr-expected("tsodpmDsp", tsodpmDsp);

pr_message("\n \n");
pr_message("\nequivalents for the UO (unweighted) of the system:\n");
hold_cond(condUo,timesUo);

O .

1)

pr-value("U0-MTTFeq",timesUo

pr-value("UO-MTTReq",,timesUo

pr-value("U0-0FM: ", (1—expected(uodpm)/(8766%60)) / timesUo[0] *8766);
pr-message("\nequivalent DPM computed from MTTFeq and MTTReq:\n");
pr-value("UODPMeq", timesUo[1]/(timesUo[1]+timesUo[0])*8766x«60);

pr_message("\n \n");
pr-message("\nequivalents for the TS0 of the system:\n");
hold_cond(condTso,timesTso);
pr-value("TS0-MTTFeq",timesTso[0]);

149

pr-value("TS0-MTTReq",timesTso[1]);
pr-value("TSOFM: ", (1—expected(tsodpm)/(8766x60)) / timesTso[0] *8766);
pr-message("\nequivalent DPM computed from MTTFeq and MTTReq:\n");
pr-value("TSODPMeq", timesTso[1]/(timesTso[1]+timesTso[0])*8766+60);

pr-mc_info();
pr_std_average();

10.17 Analysis of Phased-Mission Systems (PMS) with DSPN

10.17.1 Source

I. Mura, A. Bondavalli, X. Zang, and K.S. Trivedi. ”Dependability modeling and evaluation of
phased mission systems: a DSPN approach”. In Proc. IFIP International Conference on Dependable
Computing for Critical Applications (DCCA-7), pages 299-318, San Jose, California, January 1999.

10.17.2 Description

Many systems used in the control and management of critical activities perform a series of tasks
that are accomplished in sequence. The operational life of these systems consists of consecutive,
non-overlapping time periods, called phases, during which the system configuration, success criteria,
and component behavior may vary from phase to phase. These variations may be due to different
tasks in each phase, or different conditions of the environment, as well as different dependability
requirements and failure scenarios. In order to accomplish their missions, systems need to change
their configuration over time to adopt suitable one in accordance with the performance and depend-
ability requirements of current phase. Many practical systems are actually phased mission systems,
e.g., the voyage of an aircraft can be divided into several phases, such as take-off, cruise and landing,
each with completely different reliability requirements and behaviors.

Compared with single-phased systems, the reliability analysis of PMS is much more complex
because of the dependence across phases. The dynamic structure and configuration of the PMS
usually requires a distinct model for each phase, which also increases the complexity of modeling
and analysis. Here, SPNP is used to analyze the PMS.

Fig. 10.23 shows a general model scheme of a PMS. Here we assume that the only deterministic
activities in PMS are the phase changes. At a high abstraction level, the model of a PMS is composed
of two logically separate subnets:

e system subnet:
This subnet, called system net (SN), represents components in the system and their interac-
tions, which evolve according to the events that modify system states. As seen in the Figure
10.23, this subnet is a pure SRN that contains only exponentially distributed and immediate
transitions.

e phase subnet:
This subnet describes the phase changes. It is represented by a DSPN, and is called the phase
net (PhN). The PhN contains all the deterministic transitions of the overall DSPN model and
may contain immediate transitions as well.

150

Figure 10.23: DSPN model of a PMS

151

10.17.3 SPNP File — pms.c

#include "user.h"
#include <string.h>

#define MAXPHASE 30

static struct initpv {
double prob;
int nToken[5];

} initPV[10];

static double pTime[MAXPHASE], failratel MAXPHASE];
static double reprate] MAXPHASE], coverage[MAXPHASE];

static int upreqMAXPHASE], downreq[MAXPHASE], numvp[MAXPHASE];
static int TNUM = 4, nPlace = 5, nState = 0, nPhase = 0, ntPhase = 1;
static char sPlace[5][10] = {"P_LPH", "P_UP", "P_DOWN", "P_SPARE", "P_FAIL"};
static int UPREQ, DOWNREQ);

static double phaseTime, NUMVP, FAILRATE, REPRATE, C;

void LoadP(FILE *fp, void *data, int type)

int *iData, idData, i;
double xfData, fdData;
char sstr[100], *ptr;

if (type)

fData = (double x)data;
else

iData = (int x)data;

while(fgets(sstr, 100, fp)) {

if (Istrnemp(sstr, "default:", 8)) {
ptr = strchr(sstr, ':');
if (type)

sscanf(ptr + 1, "%1f", &fdData);
else

sscanf(ptr + 1, "%d", &idData);
for (i = 0; i < ntPhase; i ++)

if (type
fDatali] = fdData;

else
iDatali] = idData;

) continue;

if (Istrnemp(sstr, "end", 3))
break;

sscanf(sstr, "%d", &i);

if ((i > 0) && (i < ntPhase)) {
ptr = strchr(sstr, ':');

if (type)
sscanf(ptr + 1, "%1£", &fDatali]);
else
sscanf(ptr 4+ 1, "%d", &iDatali]);
}
}
}

void LoadConfig(char *sModelName)

{
FILE xfp;
char sstr[100], *ptr;

sprintf(sstr, "%s.cfg", sModelName);

if ((fp = fopen(sstr, "r")) == NULL) {
perror("Can not Open the Config File");
exit(1);

while (fgets(sstr, 100, fp)) {
if (xsstr == '#' || xsstr == '\n')
continue;

152

if (!strncmp(sstr, "Number of Phase:", 16)) {
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%d", &ntPhase);
continue;

if (!strncmp(sstr, "Number of CPU:", 14)) {
ptr = strchr(sstr, ':');
sscanf(ptr + 1, "%d", &TNUM);
continue;

if (Istrncmp(sstr, "Failure Rate:", 13)) {
LoadP(fp, (void x)failrate, 1);
continue;

if(Istrncmp(sstr, "Repair Rate:", 12)) {
LoadP(fp, (void *)reprate, 1);
continue;

if(Istrncmp(sstr, "Number of Step:", 15)) {
LoadP(fp, (void *)numvp, 0);
continue;

if(Istrncmp(sstr, "Coverage:", 9)) {
LoadP(fp, (void *)coverage, 1);
continue;

if(Istrncmp(sstr, "Phase Time:", 11)) {
LoadP(fp, (void *)pTime, 1);
continue;

if(Istrncmp(sstr, "CPU Requirement: ", 15)) {
LoadP(fp, (void *)upreq, 0);
continue;

if(Istrncmp(sstr, "CPU Down Cause Fail:", 20)) {
LoadP(fp, (void *)downreq, 0);
continue;

fclose(fp);

void LoadState(char xsModelName)

FILE xfp;
char sstr[100], *ptr, nstr[10];
int i, j, num, np;

sprintf(sstr, "%s.rg", sModelName);

if ((fp = fopen(sstr, "r")) == NULL) {
perror("Can not Open the Output File of Last Phase");
exit(1);

while (fgets(sstr, 100, fp)) {
if (Istrncmp(sstr, "_ntanmark", 8)) {
sscanf(sstr + 11, "%d", &num);
nState += num;
continue;

if (Istrncmp(sstr, "_nabsmark", 8)) {
sscanf(sstr + 11, "%d", &num);
nState += num;
continue;

if (!strncmp(sstr, "_nvanmark", 8)) {

153

sscanf(sstr + 11, "%d", &num);
nState += num;
continue;

if (!strncmp(sstr, "_reachset", 8)) {
num = nState + 1;
for (i=0;i < num;i++) {
fgets(sstr, 100, fp);
if (xsstr == '#')
continue;
sscanf(sstr, "%d", &np);
ptr = strchr(sstr, '_');
if (x(++ptr) == 'v') {
nState ——;
continue;

ptr ++;
for (j = 0; j < nPlace; j ++) {
sscanf(ptr, "%s", nstr);

if (xnstr == ':")
initPV[np].nToken[j] = 0;
else

sscanf(nstr, "%d", &initPV[np].nToken[j]);
ptr = strstr(ptr, nstr);
ptr += strlen(nstr);

}
break;
fclose(fp);

void LoadProb(char xsModelName)

FILE xfp;

char sstr[100], *ptr, nstr[40], c;
int i, np;

double ttime;

sprintf(sstr, "%s.prb", sModelName);
it ((fp = fopen(sstr, "r")) == NULL) {

perror("Can not Open the Output File of Last Phase");

exit(1);

while (fgets(sstr, 100, fp)) {
if (Istrncmp(sstr, "_time", 5)) {
sscanf(sstr + 8, "%1£", &ttime);
if (ttime # pTime[nPhase — 1])
continue;
fgets(sstr, 100, fp);

np = 0;

while (fgets(sstr, 100, fp)) {
ptr = sstr;
while (1) {

sscanf(ptr, "%s", nstr);

if (!strlen(nstr))

break;
sscanf(nstr, "%d%chlE", &i, &c, &initPV[np|.prob);
np ++;
if (np > nState)

break;

ptr = strstr(ptr, nstr);

ptr += strlen(nstr);

if (ptr — sstr > strlen(sstr))
break;

else if (Istrstr(ptr, ": "))
break;

)
if (np > nState)
break;

}
break;

154

}
fclose(fp);

void LoadPhaseParameter(char xsPhase)

char xptr;
int n;

if ((ptr = strchr(modelname, '_')) == NULL) {
printf("Wrong Model Name.\n");
exit(1);

sscanf(ptr + 1, "%d", &n);

nPhase = n;

strncpy (sPhase, modelname, ptr — modelname);
*(sPhase 4+ (ptr — modelname)) = '\0"';

LoadConfig(sPhase);

phaseTime = pTime|n];
UPREQ = upreq[n];
DOWNREQ = downreq|n];
FAILRATE = failrate[n];
REPRATE = reprate[n][;

C = coverage(n];

NUMVP = (double)numvp|nl;

if (n) {
sprintf(sPhase + (ptr — modelname), "_%d", n — 1);

}

}

void options() {
char LastPhase[20];

iopt(IOP_TSMETHOD, VAL_TSUNIF);
iopt(IOP_PR_FULL_MARK,VAL_YES);

/x iopt(IOP_ELIMINATION, VAL_REDAFTERRG); %/
iopt(ITOP_OK_TRANS_MO, VAL_YES);
iopt(IOP_OK_VAN_MO, VAL_YES);
iopt(IOP_OK_VANLOOP, VAL_YES);
iopt(IOP_PR_.MARK_ORDER,VAL_CANONIC);
iopt(IOP_PR_MC_ORDER,VAL_TOFROM);
iopt(IOP_PR_MC,VAL_YES);
iopt(IOP_PR_PROB, VAL_YES);
iopt(IOP_MC,VAL_CTMC);
iopt(IOP_PR_RSET,VAL_YES);
iopt(IOP_PR_LRGRAPH,VAL_YES);
iopt(IOP_ITERATIONS,20000);
fopt(FOP_ABS_RET_MO0,0.0);
fopt(FOP_PRECISION,0.00000001);

LoadPhaseParameter(LastPhase);

if(nPhase) {
LoadState(LastPhase);
LoadProb(LastPhase);

}
int GFRec()

if (mark("P_UP") < UPREQ)
return 1;

else
return 0;

int GFShutdown()

{
if (mark("P_UP") > UPREQ)
return 1;
else
return 0O;

155

int GFSysfail()
if (mark("P_DOWN") > DOWNREQ)

return 1;
else
return 0;

int GFSysfailu()

if ((mark("P_DOWN") > DOWNREQ) && (mark("P_UP") > 0))
return 1;

else
return 0;

int VFUp()

return mark("P_UP");

i{nt VFDown()

return mark("P_DOWN");

double RFSysDown()

if (mark("P_FAIL"))
return 0.0;

else
return 1.0;

void SetInitProb(int nph)

int i, j;
char tstr[20];

if (nph) {

for (i = 0; i < nState; i ++) {
if (initPV[i].prob < 0.00000001)

continue;
sprintf(tstr, "IT_IP%d", i);
imm(tstr);
probval(tstr, initPV/[i].prob);
miarc(tstr, "P_LPH", TNUM);
for (j = 0; j < nPlace; j ++)

if (initPV[i].nTokenl[j])
moarc(tstr, sPlacelj], initPV/[i].nToken[j]);

}

} else {
imm("IT_IP");
probval("IT_IP", 1.0);
miarc("IT_IP", "P_LPH", TNUM);
moarc("IT_IP", sPlace[l], TNUM);

}
}
void net()
place("P_LPH"); init("P_LPH", TNUM);
SetInitProb(nPhase);
place("P_UP");
place("P_DOWN");
place("P_SPARE");
place("P_FAIL");
ratedep("T_FAIL", FAILRATE, "P_UP");
iarc("T_FAIL", "P_UP");
oarc("T_FAIL", "P_DOWN");

ratedep("T_REPAIR", REPRATE, "P_DOWN");
iarc("T_REPAIR", "P_DOWN");

156

oarc("T_REPAIR", "P_UP");

imm ("IT_RECS");
probval("IT_RECS", C);
guard("IT_RECS", GFRec);
priority("IT_RECS", 10);
iarc("IT_RECS", "P_SPARE");
oarc("IT_RECS", "P_UP");

imm("IT_RECF");
probval("IT_RECF", 1 — C);
guard("IT_RECF", GFReC)
priority("IT_ RECF" 10);
iarc("IT_RECF", "P_SPARE");
oarc("IT_RECF", "P_DOWN");

imm (" IT_SHUTDOWN");
probval("IT_SHUTDOWN", 1);
guard("IT_SHUTDOWN", GFShutdOWH)
priority("IT_ SHUTDDWN“ 10);
iarc("IT_SHUTDOWN", "P_UP");
oarc("IT_SHUTDOWN", "P_SPARE");

imm("IT_SYSFAILl");
probval("IT_SYSFAIL1", 1);
guard("IT_SYSFAIL1", GFSysfailu);
priority("IT_SYSFAIL1", 100);
viarc("IT_SYSFAIL1", "P_UP", VFUp);
voarc("IT_SYSFAIL1", "P_FAIL", VFUp);

imm ("IT_SYSFAIL2");
probval("IT_SYSFAIL2", 1);
guard("IT_SYSFAIL2", GFSysfail);
priority("IT_SYSFAIL2", 10);
Viarc("IT_SYSFAILQ", "P_DOWN", VFDOWH);
voarc("IT_SYSFAIL2", "P_FAIL", VFDown);

}

int assert() {
return(RES_-NOERR);

void ac_init() {
pr-net_info(); /A information on the net structure %/

void ac_reach() {
prrg-info(); /A information on the reachability graph %/

void
ac_final() {
double ttime, tstep = phaseTime / NUMVP;

for (ttime = 0; ttime < phaseTime; ttime += tstep) {
solve(ttime);
pr_expected("System Fail", RFSysDown);
solve(phaseTime);

pr-mc_info();
prstd_average(); /x default measures */

10.17.4 Configuration File — pms.cfg

set number of phase

157

Number of Phase: 7

set total number of CPU
Number of CPU: 4

set failure rate of CPU, can be set as default or specific phase
Failure Rate:

default: 0.00001

0: 0.001

2: 0.0001

4: 0.0001

end

set repair rate of CPU, can be set as default or specific phase
Repair Rate:

default: 0.001

end

set coverage for reconfiguration, can be set as default or specific phase
Coverage:

default: 0.9999

end

set number of point to obtain result in each phase
Number of Step:

default: 10

0: 8

2: 7

4: 7

end

set period of each phase
Phase Time:

default: 672

0: 48

1: 17520

3: 26280

end

set CPU requirement for system working in each phase
CPU Requirement:

default: 3

1: 2

3:2

end

7 set the number of CPU down will cause system down.
CPU Down Cause Fail:

default: 2

1: 4

3: 4

end

10.17.5 Shell File — t.csh

This shell file is used to run the example. First use SPNP package to compile the cspl file pms.c,
then run t.csh to get the result.

#!/bin/csh

set Model = "pms"

foreach nPhase (0 1 2 3 4)

set ModelName = "$Model""_""$nPhase"
pms.spn $ModelName
end

158

10.18 Extensions to SPNP

In the use of SPNP to solve real world problems, we often generate a system model that is too big
to be solved by SPNP. A solution, which has been used extensively in the previous examples, is
dividing the model into several SPNs and solving it by iteratively execution of these SPNs. In the
following, two techniques we have been developed for this task will be introduced.

10.18.1 Fixed point iteration

Suppose we have two submodels M; and M, which are all SPNs. Some parameters of Ms depend
on the statistical behavior of M;, and M; also has some parameters depend on Ms. To solve this
kind of interconnected models, fixed point iteration have to be used:

1. Set error bound e as a small real number.

2. Initialze the unknown parameters of My, (Pi1,Pia,...,P1,,), to some reasonable random
values (Pl(?)).

3. Execute M, compute the parameters (Pé?), PQ(g), .. 7P2(2)) required by M.

4. Set k= 1.
5. Execute M, with the parameters obtained from last step, and compute the parameters (Pl(f), P1(§), ey Pl(:;)).
6. Execute M; with the new set of parameters, and compute (PQ(f)7 P2(§), ce 2(5))

TOIEY |Pi(k) — P;k —1)] < e, then stop, else set k := k + 1 and goto step 5.

Under a very general condition, we can prove that the solution always exists, but the uniqueness
of the solution is not guaranteed (See [4]). However, the meaning of practical problems often has
uniqueness itself, so the justification is enough for the practical use of fixed point iterations.

10.18.2 Initial probability reload

The function

void loadprob(char *fname);

is usually used before a transient anaylsis to set initial probabilities to the current Petri nets from
a Petri net that shares (1) the same place names; and (2) the same state space. Input parameter
(char *fname) specifies the file name (no extension needed) of the reachbility graph file (.rg) and
the prabability file (.prb). Both files must exist in the same directory to make a successful call.
The function is suggested to be called in the cspl file before the function, solve (), which invokes a
transient analysis. The function is useful in the (transient) analysis of phase-mission systems.

(A future version will break the limitation that both Petri nets have the same state space and
place names, It is supposed to able to read user-specified rules of mapping from the state space of
input Petri net to the current Petri net.)

159

Jx

Module:
loadprob.c

Author:
Yonghuan Cao (ycao@ee.duek.edu)

Changes:
10/13/1999 (initial version)

Functions:
static (internal)
void read_rg_head(void);
void next_marking(void);
void read_prb_head(void);
double next_probability(void);
global (can be called from outside)

void loadprob(char xsfName);

%/

#include "sysinclude.h"
#include "port.h"
F#include "const.h"
#include "type.h"
#include "var.h"
#include "options.h"
#include "reach.h"
#include "cspl.h"
#include "rdc.h"
#include "utility.h"

#include <string.h>
#include <math.h>

#define MAXPLACE 64
#define MAXPLNAME 32
#define MAXLINE (MAXPLACE=*8)

static FILE *fpRG, *fpPrb;

static int nplace = 0;

static int nstates = 0;

static double time0 = 0.00;

static char splacelMAXPLACE|[MAXPLNAME];
static int idx[MAXPLACE];

static int markingi]MAXPLACE];

static char sline[MAXLINE];

void read_rg_head() {

int i;
char *p;

/* read _nplace */

while(!feof(fpRG)) {
fgets(sline, MAXLINE, fpRG);
if ((p = strstr(sline, "_nplace"))) {
) break;

}

if (feof(fpRG)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

strtok(p, "=; "); /x skip ”_nplace” %/
p = strtok((charx)NULL, "=; ");
nplace = atoi(p);

printf("nplace = %d\n", nplace);

160

/* read place names x/

while(!feof (fpRG)) {
fgets(sline, MAXLINE, fpRG);
if ((p = strstr(sline, "_places"))) {
) break;

}

if (feof(fpRG)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

for(i = 0; i < nplace; i ++) {
fgets(sline, MAXLINE, fpRG);
strtok(sline, ":; "); / skip 7i:” %
p = strtok((char *)NULL, ":; ");
if ((idx[i] = findplace(p)) == RES_ERROR) {
LogMsg(MSG_EXIT, "'load_init_prob' could not open .rg file.");

strepy (splaceli], p);
printf("%d: %s\n", i, p);

/% go to the start of markings */

p = (char *x)NULL;

while(!feof(fpRG)) {
fgets(sline, MAXLINE, fpRG);
if ((p = strstr(sline, "_reachset"))) {
) break;

}

if (feof(fpRG)) {
fclose%prG) ;
fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

/* skip the line w/ place names */
fgets(sline, MAXLINE, fpRG);

/* now we are ready to read markings %/

void next_marking() {

int i;
char xp;

/* end-of-file reached %/
if (feof(fpRG)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "next marking: reaches EOF unexpected.");

fgets(sline, MAXLINE, fpRG);
strtok(sline, " "); /x skip the 1st token ”i_t” %/
for(i = 0; i < nplace; i ++) {

p = strtok((char *)NULL, " ");

if (p[0] == ":") {
markingli] = 0;
} else {] i
marking[i] = atoi(p);
}
}

void read_prb_head() {
char xp;
/* read _nstates x/

while(!feof(fpPrb)) {
fgets(sline, MAXLINE, fpPrb);

161

if ((p = strstr(sline, "_nstates"))) {
break;

}
}

if (feof(fpPrb)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

strtok(p, "=; "); /x skip ”_nstates” %/
p = strtok((charx)NULL, "=; ");
nstates = atoi(p);

printf("nstates = %d\n", nstates);

/x read _time %/

while(!feof (fpPrb)) {
fgets(sline, MAXLINE, fpPrb);
if ((p = strstr(sline, "_time"))) {
) break;

}

if (feof(fpPrb)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

strtok(p, "=; "); /x skip ”_time” */
p = strtok((charx)NULL, "=; ");
time0 = atof(p);

printf("time0 = %f\n", time0);

/% go to the start of probs x/
while(!feof(fpPrb)) {
fgets(sline, MAXLINE, fpPrb);
if ((p = strstr(sline, "_probabilities"))) {
break;

}
}
if (feof(prrb;) {

fclosegprG ;

fclose(fpPrb);
LogMsg(MSG_EXIT, "read_prb_head reaches EOF unexpected.");

}
}
static int n, nleft = 0;
static double probs[10]; /* to store probs read in one line x/

double next_probability() {
char xp;
double r;

s
printf(”next_probability\n”);

#/
if (nleft) {
r = probs[n — nleft];
nleft ——;
return r;

fgets(sline, MAXLINE, fpPrb);
if (feof(fpPrb)) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "next_probability reaches EOF unexpected.");

n = 0;
p = strtok(sline, ": ");
do

{
if (strlen(p) > 12) { /* a prob. is longer than 12c x/
probs[n| = atof(p);

162

printf(”prob: %e\n”, probs[n]);
n +-+;

}
p = strtok((char *)NULL, ": ");
} while(p);

nleft = n;

if (nleft) {
r = probs[n — nleft];

nleft ——;
return r;
return —1.00;

void loadprob(char *sfName) {

int i, j, bFound;
char sfNameFull[32], sMsg[100];
static ME scurmark;

LogMsg(MSG_PLAIN, "loading init prob. ... ");

sprintf(sfNameFull, "%s.rg", sfName);
if ((fpRG = fopen(sfNameFull, "r")) == NULL) {
fclose(fpRG);
fclose(fpPrb);
LogMsg(MSG_EXIT, "'load_init_prob' could not open .rg file.");

sprintf(sfNameFull, "%s.prb", sfName);
if ((fpPrb = fopen(sfNameFull, "r")) == NULL) {
fclose(fpPrb);
LogMsg(MSG_EXIT, "'load_init_prob' could not open .prb file.");

/*« read headers of .rg and .prb */
read_rg_head();
read-prb_head();

for(i = 0; i < nstates; i ++) {

i printf(” before next_marking.\n”);
7 next_marking();
/j printf(”after next_marking.\n”);
%

printf("\r %d", i);

for (curmark = FirstCanonic(); curmark # NULL; curmark =
NextCanonic(curmark)) {

/* if Prob(i) > 0, then prob of i-th marking is set. %/
if (Prob_init[curmark—index] > 0)
continue;

if (curmark—index < 0) continue;

bFound = 1;
for(j = 0; j < nplace; j ++) {
if (curmark—mk[idx|[j]] # marking]j]) {
bFound = 0;
break;

}
}
if (bFound)

break;
}

/* find the same marking */

163

if (bFound) {
Prob_init[curmark—index] = next_probability();

printf(” %e\n”, Prob_init[curmark->index]);

*
} else {
sprintf(sMsg, "'load_init_prob' marking #d is not found.", i);
LogMsg(MSG_PLAIN, sMsg);
}

fclose(fpRG);
fclose(fpPrb);

LogMsg(MSG_PLAIN, "... loading finished.");

164

Appendix A

Differences Between last versions of SPNP

A.1 Command Differences Between SPNP Version 4 and

Version 5
SPNP Commands
Version 4 Version 5
parameters(){} void options(){}
iopt(IOP_-METHOD, VAL_SSSOR); | iopt(IOP_.SSMETHOD, VAL_SSSOR);
iopt(IOP_METHOD, VAL_TSUNIF); | iopt(IOP.TSMETHOD, VAL_TSUNIF);
rate_type double
net (){} void net () {}
assert (){} int assert (){}
ac_init(){} void ac_init{}
ac_reach (){} void ac_reach (){}
reward_type double
ac_final (){} void ac_final() {}
no special command solve(INFINITY)
time_value(time_pt) solve(time_point)

A.2 Command Differences Between SPNP Version 5 and
Version 6

e Functions ratenoval and probnoval have been removed. rateval(char *t, 1.0) and prob-
val(char *¢, 1.0) must be used instead.

e The FSPNs, the discrete event simulator and the importance splitting methods have been
added.

165

Appendix B

SPNP Applications

In this section, we list some papers in which SPNP was used. The list does not include all the paper
where SPNP was used.

1.

10.

11.

12.

G. Agrawal, “Availability of Coding Based Replication Schemes,” Eleventh IEEE Symposium
on Reliable Distributed Systems, Houston, 1992.

M. Balakrishnan, A. Puliafito, K. S. Trivedi and I. Viniotis, “Buffer Sizing for Available Bit
Rate (ABR) Traffic in an ATM Switch.” IEEE International Conference on Communications,
1995. Full version submitted to the J. of Telecomm. Systems, Baltzer Science Publishers,
Zurich.

M. Balakrishnan and K. S. Trivedi, “Stochastic Petri Nets for the Reliability Analysis of
Communication Network Applications with Alternate-Routing”. Reliability Engineering and
System Safety, special issue on Reliability and Safety Analysis of Dynamic Process Systems,
Vol. 52, No. 3, pp. 243-259, 1996.

I.R. Chen and R. Betapudi, “A Petri net model for the performance analysis of transaction
database systems with continuous deadlock detection.” 199/ ACM/SIGAPP Symp. on Ap-
plied Computing (SAC ’94), March, 1994.

I. R. Chen, and T. W. Tsao, “A reliability model for real-time expert systems”. IEEE Trans-
actions on Reliability, Dec. 1994.

H. Choi and K. S. Trivedi, “Approximate Performance Models of Polling Systems using
Stochastic Petri Nets.” Proceedings of the IEEE INFOCOM 92, Florence,Italy, May 4-8,1992.

G. Ciardo and K. S. Trivedi, “Solution of Large Generalized Stochastic Petri Net Models,” in:
Numerical Solution of Markov Chains, W. J. Stewart (ed.), Marcel Dekker, New York, 1991.

G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing Concurrent and Fault-Tolerant Software
using Stochastic Reward Nets.” Journal of Parallel and Distributed Computing, 15:255-269,
1992.

G. Ciardo and K. S. Trivedi, “A Decomposition Approach for Stochastic Petri Net Mod-
els,” International Conference on Petri Nets and Performance Models, Melbourne, Australia,
December 1991, also Performance Evaluation, Vol. 18, No. 1, pp. 37-59, July 1993.

G. Ciardo, L. Cherkasova, V. Kotov and T. Rokicki, “Modeling a Scalable High-Speed Inter-
connect with Stochastic Petri Nets,” Proceedings of the 6th Int. Workshop on Petri Nets and
Performance Models (PNPM’95), Durham, NC, USA, Oct. 1995.

C. Constantinescu and K. S. Trivedi, “Dependability Modeling of Real-Time Systems Using
Stochastic Reward Nets,” Microelectronics and Reliability, Vol. 35, No. 6, pp. 903-914, 1995.

R. Fricks, C. Hirel, S. Wells and K. S. Trivedi, “The Development of an Integrated Model-
ing Environment,” Proceedings of the 1st World Congress on Systems Simulation (WCSS’97,
Singapore, Sept. 1997.

166

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Greiner, A. Puliafito, G. Bolch and K. S. Trivedi, “Performance Evaluation of Dynamic
Priority Operating Systems,” Proceedings of the 6th Int. Workshop on Petri Nets and Per-
formance Models (PNPM’95), Durham, NC, USA, Oct. 1995.

C. Hirel, S. Wells, R. Fricks and K. S. Trivedi, “iSPN: an Integrated Environment for Mod-
eling Using Stochastic Petri Nets, Tools Demonstration,” Joint Conference PNPM’97 and
PERFORMANCE’97, Saint-Malo, France, June 1997.

S. Hunter, T. Phillip and K. S. Trivedi, “Combined Performance and Availability Analy-
sis of a Switched Network Application”, IEEE International Conference on Communications
(ICC"97), Montréal, Québec, Canada, 8-12 June, 1997.

O. C. Ibe and K. S. Trivedi, “Stochastic Petri Net Models of Polling Systems,” IEEE Journal
on Selected Areas in Communications, Vol. 8, No. 9, pp. 1649-1657, Dec. 1990.

O. C. Ibe, K. S. Trivedi, A. Sathaye, and R. C. Howe, “Stochastic petri net modeling of
vaxcluster system availability,” in Proceedings of the International Conference on Petri Nets
and Performance Models, (Kyoto, Japan), December 1989.

O. C. Ibe and K. S. Trivedi, “Stochastic Petri Net Analysis of Finite-Population Vacation
Queueing Systems,” Queueing Systems: Theory and Applications, Vol. 8, No. 2, pp. 111-128,
1991.

O. C. Ibe, H. Choi, and K. S. Trivedi. “Performance Evaluation of Client-Server Systems”,
IEEFE Transactions on Parallel and Distributed Systems. Vol. 4, No. 11, November 1993, pp.
1217-1229.

F. J. Jaimes-Romero, D. Muiioz-Rodriguez, C. Molina and H. Tawfik, ”Modeling Recource
Management in Cellular Systems Using Petri Nets”, IEEE Trans. Veh. Technol., Vol. 46, No.
22, pp. 298-312, May, 1997.

H. Kantz and K. S. Trivedi, “Reliability Modeling of the MARS System: A Case Study
in the Use of Different Tools and Techniques,” International Conference on Petri Nets and
Performance Models, Melbourne, Australia, December 1991.

N. Lopez-Benitez, “Dependability Analysis of Distributed Computing Systems Using Stochas-
tic Petri Nets,” FEleventh IEEE Symposium on Reliable Distributed Systems, Houston, 1992.

Y. Ma, J. J. Han and K. S. Trivedi, “* A Channel Recovery Method in TDMA Wireless
Systems”, Proc. of 50th IEEE International Vehicular Technology Conference (VTC Fall’99),
Amsterdam, The Netherlands, Sep. 1999.

Y. Ma, J. J. Han and K. S. Trivedi, “A Channel Recovery Method for RF Channel Failure in
Wireless Communications Systems”, Proc. of IEEE Wireless Communications and Networking
Conference (WCNC’99), New Orleans, LA, Sep. 1999.

Y. Ma, C. W. Ro and K. S. Trivedi. “Performability Analysis of Channel Allocation with
Channel Recovery Strategy in Cellular Networks”. To appear in Proceedings of the 7th IEEE
International Conference on Universal Personal Communications (ICUPC’98), Florence, Italy,
5-9 October, 1998.

M. Madhukar, M. Leuze, and L. Dowdy, “Petri Net Model of a Dynamically Partitioned
Multiprocessor System,” Proceedings of the 6th Int. Workshop on Petri Nets and Performance
Models (PNPM’95), Durham, NC, USA, Oct. 1995.

167

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C. Molina, N. Jain and K. Basu. “Performance Model of Cellular Data on American Systems”.
In Proceedings of 1996 IEEE 46th Vehicular Technology Conference (VTC’96). Atlanta, Geor-
gia, USA, 28 April - 1 May, 1996.

J. K. Muppala, and K. S. Trivedi. “Composite performance and availability analysis using a
hierarchy of stochastic reward nets.” In G. Balbo (Ed.), Proc. Fifth Int. Conf. on Modelling
Techniques and Tools for Computer Performance Fvaluation. Torino, Italy, 1991, 322-336.

J. K. Muppala, S. P. Woolet, and K. S. Trivedi. “ Real-time systems performance in the
presence of failures”, IEEE Computer, May 1991.

J. K. Muppala, A. Sathaye, R. Howe and K. S. Trivedi. “Dependability Modeling of a Hetero-
geneous VAXcluster System Using Stochastic Reward Nets,” in: Hardware and Software Fault
Tolerance in Parallel Computing Systems, D. Avresky (ed.), Ellis Horwood Ltd., pp.33-59,
1992.

J. K. Muppala, and K. S. Trivedi. “Numerical transient analysis of finite Markovian queueing
systems.” In Basawa and Bhat (Eds.), Queueing and Related Models, Oxford University Press,
1992, 262-284.

J. K. Muppala, S.P. Woolet, and K.S. Trivedi, “On Modeling Performance of Real-Time
Systems in the Presence of Failures,” in: Readings in Real-Time Systems, Y.-H. Lee and C.
M. Krishna (eds.), pp. 219-239, IEEE Press, 1993.

J. K. Muppala, Varsha Mainkar, Vidyadhar Kulkarni and K. S. Trivedi. Numerical com-
putation of response time distributions using stochastic reward nets. Annals of Operations
Research. Vol 48, pp. 155-184, 1994.

J. K. Muppala, G. F. Ciardo and K. S. Trivedi. “Stochastic reward nets for reliability pre-
diction.” Communications in Reliability, Maintainability and Serviceability: An International
Journal published by SAE International, Vol. 1, No. 2, pp. 9-20, July 1994.

C. W. Ro and K. S. Trivedi. “Performability Analysis of Handoff Calls in Personal Commu-
nication Networks,” Proc. Sizth International Conference on Computer Communications and
Networks (IC3N’97), Las Vegas, Nevada, Sept. 1997.

H. Sun, X. Zang and K.S. Trivedi. “A stochastic reward net model for performance analysis
of prioritized DQDB MAN”, Computer Communications, Vol.22, No. 9, pp. 858-870, June
1999.

H. Sun, X. Zang. and K.S. Trivedi. “Performance of Broadcast and Unknown Server (BUS)
in ATM LAN Emulation”, Technical Report. Center for Advanced Computing and Commu-
nication, Duke University, 1999.

H. Sun, X. Zang. and K.S. Trivedi. “A Performance Model of Partial Packet Discard and
Early Packet Discard Schemes in ATM Switches”, Technical Report. Center for Advanced
Computing and Communication, Duke University, 1999.

L. Tomek and K. S. Trivedi, “Fixed-Point Iteration in Availability Modeling,” in: Informatik-
Fachberichte, Vol. 91: Fehlertolerierende Rechensysteme, M. Dal Cin (ed.), Springer-Verlag,
Berlin, 1991.

L. Tomek, J. K. Muppala and K. S. Trivedi. “Modeling correlation in software recovery
blocks.” IEEE Transactions on Software Engineering, Special Issue on Software Reliability,
19(11), November 1993.

168

41

42.

43.

44.

45.

46.

. L. Tomek, V. Mainkar, R. Geist and K. Trivedi. “Reliability analysis of life-critical real-time
systems.” Proceedings of the IEEE, January 1994.

L. Tomek and K.S. Trivedi. “Analyses Using Stochastic Reward Nets”, in: Software Fault
Tolerance, M. Lyu (ed.), John Wiley & Sons, 1994.

K. S. Trivedi, Y. Ma and J. J. Han, “Performability analysis of fault tolerant RF link design in
wireless communications networks”, invited paper in Proc. of the 13th European Simulation
Multiconference (ESM99), Warsaw, Poland, June 1999.

K. S. Trivedi, S. Hunter, S. Garg and R. M. Fricks. “Reliability Analysis Techniques Explored
Through a Communication Network Example.” in Proceedings of the Computer-Aided Design,
Test, and Evaluation for Dependability Conference: CADTED 96, Beijing, China, July 1996,
pp. 110-120.

B. Tuffin, D.S. Chen and K.S. Trivedi. “Comparison of Hybrid Systems and Fluid Stochastic
Petri Nets”, Technical Report. Center for Advanced Computing and Communication, Duke
University, 1999.

C.-Y. Wang, D. Logothetis, I. Viniotis and K. S. Trivedi, “Transient Behavior of ATM Net-
works under Overloads,” Proceedings of the IEEE INFOCOM 96, San Francisco, CA, pp.
978-985, March 1996.

169

Bibliography

1]

[13]

[14]

[15]

M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems,
2(2):93-122, May 1984. 2,4

J. T. Blake, A. L. Reibman, and K. S. Trivedi. Sensitivity analysis of reliability and perfor-
mance measures for multiprocessor systems. In Proceedings of the 1988 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, Santa Fe, U.S.A., May, 1988.
2

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains,
Modeling and Performance Evaluation with Computer Science Application. Wiley & Sons, 1998.
2

H. Choi and K. S. Trivedi. Approximate performance models of polling systems using stochastic
Petri nets. In Proceedings of IEEE Infocom 92, 11th Annual Joint Conference of the IEEE
Computer and Communication Societies, Florence Italy, May 1992. 2, 159

G. Ciardo, A. Blakemore, Jr. P. F. Chimento, J. K. Muppala, and K. S. Trivedi. Automated
generation and analysis of Markov reward models using stochastic reward nets. In C. Meyer
and R. Plemmons, editors, Linear Algebra, Markov Chains and Queuing Models, volume 48,
pages 145-191. Springer-Verlag, 1993. 2

G. Ciardo, J. K. Muppala, and K. S. Trivedi. SPNP: Stochastic Petri Net Package. In Pro-
ceedings of 3rd International Workshop on Petri Nets and Performance Models, pages 142-150,
Kyoto, Japan, Dec. 1989. 1, 2

G. Ciardo, J. K. Muppala, and K. S. Trivedi. On the solution of GSPN reward models.
Performance Evaluation, 12(4):237-254, July, 1991. 1, 2, 50

G. Ciardo, D.M. Nicol, and K.S. Trivedi. Discrete-Event Simulation of Fluid Stochastic Petri-
Nets. IEEE Transactions on Software Engineering, 25(2):207-217, 1999. 2, 6

G. Ciardo and K. S. Trivedi. Solution of large generalized stochastic petri net models. In W. J.
Stewart, editor, Numerical Solution of Markov Chains. Marcel Dekker, 1991. 34

G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net models.
Performance Evaluation, 18(1):37-59, 1993. 2, 34

Computer Science Department. College of Willian and Mary. On the Simulation of Stochastic
Petri Nets. 2

J. B. Dugan, K. S. Trivedi, R. M. Geist, and V. F. Nicola. Extended stochastic Petri nets:
Applications and analysis. In E. Gelenbe, editor, Performance 84, pages 507-519. Elsevier
Science Publishers B. V. (North-Holland), Amsterdam, Netherlands, 1985. 4

S. P. Harbison and G. L. Steele Jr. C' — A Reference Manual. Prentice-Hall, 3 edition, 1991.
1,2

G. Horton, V. Kulkarni, D. Nicol, and K.S. Trivedi. Fluid Stochastic Petri nets: Theory,
Application and Solution. Furopean Journal of Operational Research, 105:184-201, 1998. 2, 6

R. A. Howard. Dynamic Probabilistic Systems, Volume I1: Semi-Markov and Decision Process.
John Wiley and Sons, New York, NY, USA, 1971. 1

170

[16]

[17]

[18]

[19]

H. Kantz and K. S. Trivedi. Reliability modeling of the mars system: A case study in the use
of different tools and techniques. In International Conference on Petri Nets and Performance
Models, Melbourne, Australia, Dec. 1991. 2

Y. Ma, C. W. Ro, and K. S. Trivedi. Performability analysis of channel allocation with channel
recovery strategy in cellular networks. In Proceedings of the 7th IEEE International Conference
on Universal Personal Communications (ICUPC’98), Florence, Italy, October 1998. 2

J. K. Muppala and K. S. Trivedi. Composite Performance and Availability Analysis using a
Hierarchy of Stochastic Reward Nets. In G. Balbo and G. Serazzi, editors, Computer Per-
formance Evaluation, Modelling Techniques and Tools, pages 335-350. Elsevier, Amsterdam,
1992. 2

J. K. Muppala and K. S. Trivedi. Numerical transient analysis of finite markovian queueing
systems. In U. N. Bhat and I. V. Basawa, editors, Queueing and Related Models, pages 262—284.
Oxford University Press, 1992. 2

J. K. Muppala and K. S. Trivedi. GSPN models: Sensitivity analysis and applications. In
Proceedings of the 28th ACM Southeast Region Conference, pages 24-33, Apr. 1990. 2

J. K. Muppala, S. P. Woolet, and K. S. Trivedi. Real-time performance in the presence of
failures. IEEE Computer, May 1991. 2

I. Mura, A. Bondavalli, X. Zang, and K. S. Trivedi. Dependability modelling and evaluation
of phased mission systems: a DSPN approach. In 10th International Conference on Modeling
Techniques and Tools for Computer Performance Evaluation (Performance Tools’98), Palma
de Mallorca, Spain, Sep. 1998, Submitted. 2

T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE, pages
541-580, April,1989. 2

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc., Englewood
Cliffs, 1981. 2, 3

A. L. Reibman, R. M. Smith, and K. S. Trivedi. Markov and Markov reward model transient
analysis: An overview of numerical approaches. FEuropean Journal of Operational Research,
40:257-267, 1989. 2

R. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer
Systems: An Ezample-Based Approach Using SHARPE Software Package. Kluwer Academic
Publishers, 1995. 2

R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performability analysis: measures, an algorithm,
and a case study. IEEE Trans. Comput., 37(4):406-417, Apr. 1988. 1, 2

W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, 1994. 46

L. Tomek and K. S. Trivedi. Informatik-fachberichte, vol. 91: Fehlertolerierende rechensysteme.
In M. Dal Cin, editor, Fized-Point Iteration in Availability Modeling. Springer-Verlag, Berlin,
1991. 2

K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Ap-
plications. Prentice-Hall, Inc., Englewood Cliffs, 1982. 2, 38

K. S. Trivedi and V. G. Kulkarni. FSPNs: Fluid Stochistic Petri Nets. In 1j/th International
Conference on Applacations and Theory of Petri Nets, pages 24-31, 1993. 2, 6

171

[32] K. S. Trivedi, J. K. Muppala, S. P. Woolet, and B. R. Haverkort. Composite performance and
dependability analysis. Performance FEvaluation, 14(3-4):197-215, Feb. 1992. 2

[33] B. Tuffin and K.S. Trivedi. Implementation of importance splitting techniques in stochastic
petri net package. Technical report, Duke University, Durham, NC, 1999. 39, 40

[34] W.B. van den Hout. The Power-Series Algorithm: A Numerical Approach to Markov Processes.
Tilburg University, 1996. 46

172

Index

absorbing marking, 4
ac_final, 26

ac_init, 25
ac_reach, 25
accumulated, 34
affected, 13

arc, 3

assert, 25

beta distribution, 22
betdep, 22

betfun, 22

betval, 22

bind, 17

binodep, 23

binofun, 23

binomial distribution, 23
binoval, 23

Cauchy distribution, 24
caudep, 24

caudep._is, 41

caufun, 24

caufun_is, 41

cauval, 24

cauval_is, 41

Creation of the SRN in iSPN, 58
CSPL, 1,7

detdep, 21
deterministic transtions, 21
detfun, 21
detval, 21
diarc, 20
dmbharc, 20
dmiarc, 20
dmoarc, 20
dharc, 20
doarc, 20
dvharc, 20
dviarc, 20
dvoarc, 20

enable, 3

enabled, 15

ergodic, 34

Erlang distribution, 24
erldep, 24

erldep_is, 41

erlfun, 24

173

erlfun _is, 41

erlval, 24

erlval_is, 41

Execution of a model in iSPN, 64
expected, 28

fbound, 19
fbreak, 19
fcondition, 20
fiarc, 19

File functions in iSPN, 61
finit, 19
finput, 10
texbffinput, 10
fire, 3

fliarc, 20
floarc, 20
fmark, 20
fmiarc, 19
fmoarc, 19
foarc, 19
fopt, 9
fplace, 19
fviarc, 19
fvoarc, 19

gamdep, 22

gamfun, 22

gamma distribution, 22
gamval, 22

geomdep, 21

geometric distribution, 21
geomfun, 21

geomval, 21

guard, 4

guard, 16

halting_condition, 13

harc, 13

hold_cond, 35

hyperdep, 23

hyperdep_is, 41
hyperexponential distribution, 23
hyperfun, 23

hyperfun_is, 41

hyperval, 23

hyperval s, 41
hypo-exponential distribution, 24
hypodep, 24

hypofun, 24
hypoval, 24

iarc, 13

imm, 12

immediate transition, 4, 12
importance sampling, 40
importance splitting, 39
inf, 19

inhibitor arc, 4, 13

init, 11

input, 10

texbfinput, 10

input arc, 3, 13

iopt, 9

logndep, 22

lognfun, 22

lognormal distribution, 22
lognval, 22

loop, 4

mark, 15

marking dependent, 4, 15, 16
mbharc, 13

miarc, 13

moarc, 13

Modification of the SRN in iSPN, 59
MRM, 1

multiplicity, 3, 13

negative binomial distribution, 23
negbdep, 23
negbfun, 23

negbval, 23

net, 11

non-null recurrent, 34
normal distribution, 22
normdep, 22
normfun, 22
normval, 22

null recurrent, 34

oarc, 13
options , 9
output arc, 3, 13

pardep, 24
pardep_is, 41

Pareta distribution, 24
parfun, 24
parfun_is, 41

parm, 17

174

parval, 24

parval_is, 41

Petri net, 3

place, 3, 11

place, 11

poisdep, 23

poisfun, 23

Poisson distribution, 23
poisval, 23

policy, 12

positive recurrent, 34
pr_accumulated, 34
pr_cum_abs, 30
pr_cum_expected, 29, 38
pr_expected, 27, 38
pr_hold_cond, 35
pr_mc_info, 27
pr_message, 30
pr_mtta, 30
pr_mtta_fun, 30
pr_net_info, 25
pr_parms, 26
pr_rg_info, 26
pr_std_average, 27
pr_std_cum_average, 29
pr_time_avg_expected, 29
pr_value, 30

priority, 4

priority, 12

probdep, 16
probdep_is, 42
probfun, 17
probfun_is, 42
probnoval, 18
probval, 12, 41

rate, 15

rate dependent, 15

ratedep, 16

ratedep_is, 41

ratefun, 17

ratefun_is, 41

ratenoval, 18

rateval, 12

rateval_is, 41

reachability set, 3

reachable, 3

recurrent, 34

regenerative simulation, 42

regenerative simulation with importance sam-
pling, 42

resampling, 42

RESTART, 40
reward function, 28

sensitivity analysis, 17
set_prob0, 35
set_prob_init, 30
simulation, 37

solve, 27

splitting, 40

splitting, 40

SRN;, 1

steady state analysis, 27
stochastic Petri net, 4

tangible marking, 4
timed transition, 4, 12
transient, 34

transient analysis, 27
transition, 3

unifdep, 21
unifdep_is, 41
uniffun, 21
uniffun_is, 41

uniform distribution, 21
unifval, 21

unifval_is, 41
useparm, 18

vanishing marking, 4
vharc, 17
viarc, 17
voarc, 17

weibdep, 21
weibdep_is, 41
weibfun, 21
weibfun_is, 41
Weibull distribution, 21
weibval, 21
weibval_is, 41

175

