
Ghosts in the machine

Daniel Szmulewicz

October 7, 2016

Intro

Bio

• Ex-industry programmer, now running own business.

• A SAAS product in the field of e-commerce

• Author of system, a Clojure FLOSS library

• Founder of the Clojure user group in Israel

• Background in human sciences: philosophy, journalism, fiction writing.

system

system facilitates bottom-up programming for Clojure development. It tries
to ensure that source code remains equivalent with the runtime state of
the application under development. System achieves this goal by wrapping
and leveraging three fundamental pieces: tools.namespace, Component and
Boot. Introduces no semantics of its own.

Structure of talk

Interactive systems in general, particulars of Clojure’s interactive story, live
demo, and parting thoughts.

Domain of talk

• Programming techniques.

• Human–computer interaction.

1



• Epistemology / Psychology / Logic

• History of ideas in CS / Philosophy of CS.

MIT course: The Nature of Constructionist Learning (Media Arts and Sci-
ences)

Definitions

Interactive programming

The procedure of writing parts of a program while it is already active.

Bottom up programming

Bottom-up programming is the opposite of top-down programming. It refers
to a style of programming where an application is constructed starting with
existing primitives of the programming language, gradually adding features
until all of the application has been written.

Top-down programming

It refers to a style of programming where an application is constructed start-
ing with a high-level description of what it is supposed to do, and breaking
the specification down into simpler and simpler pieces, until a level has been
reached that corresponds to the primitives of the programming language to
be used.

Live coding

Live coding is a performing arts form and a creativity technique centred
upon the writing of source code and the use of interactive programming in
an improvised way. (The one that never works in conference talks.)

Interactive systems

A spiritual father

https://media1.britannica.com/eb-media/13/19513-004-AFDA1514.jpg
Piaget (1936) was the first psychologist to make a systematic study of cogni-
tive development. His contributions include a theory of child cognitive devel-
opment, detailed observational studies of cognition in children, and a series

2

https://media1.britannica.com/eb-media/13/19513-004-AFDA1514.jpg


of simple but ingenious tests to reveal different cognitive abilities. Piaget
also had a considerable effect in the field of computer science and artificial
intelligence. Seymour Papert used Piaget’s work while developing the Logo
programming language. Alan Kay used Piaget’s theories as the basis for the
Dynabook programming system concept, which was first discussed within
the confines of the Xerox Palo Alto Research Center (Xerox PARC). These
discussions led to the development of the Alto prototype, which explored
for the first time all the elements of the graphical user interface (GUI), and
influenced the creation of user interfaces in the 1980s and beyond.

Marvin Minsky and Seymour Papert formed many of our atti-
tudes about programming and its place in our intellectual lives.
To them we owe the understanding that computation provides a
means of expression for exploring ideas that would otherwise be
too complex to deal with precisely. They emphasize that a stu-
dent’s ability to write and modify programs provides a powerful
medium in which exploring becomes a natural activity.—SICP,
Acknowledgments, Harold Abelson and Gerald Jay Sussman with
Julie Sussman

Programming languages have been created, wholly or in part, for educational
use, to support the constructionist approach to learning. Smalltalk was cre-
ated as the language to underpin the "new world" of computing exemplified
by "human–computer symbiosis." It was designed and created in part for ed-
ucational use, more so for constructionist learning, at the Learning Research
Group (LRG) of Xerox PARC by Alan Kay, Dan Ingalls, Adele Goldberg, Ted
Kaehler, Scott Wallace, and others during the 1970s. The powerful built-in
debugging and object inspection tools that came with Smalltalk environ-
ments set the standard for all the Integrated Development Environments,
starting with Lisp Machine environments, that came after.

Non file-based environments

• APL (workspaces)

• Forth (blocks)

• Smalltalk (images)

File-based environments

Most mainstream languages, including statically typed languages, come with
a REPL.

3



Lisp languages

Consult a paper (from 1978): Programming in an Interactive Environment:
the “Lisp” Experience by Erik Sandewall

• Bootstrapping

• Incrementality

• Procedure orientation

• Internal representation of programs

• Full checking capability

• Declaration-free kernel

• Data structures and database

• Defined I/O for data structure

• Handles and interactive control

The kernel of the programming system must contain the following pro-
grams:

• a parser

• a program-printer

• an interpreter and/or

• a compiler

(loop (print (eval (read))))

From within the environment provided by the REPL, you can
define and redefine program elements such as variables, functions,
classes, and methods; evaluate any Lisp expression; load files
containing Lisp source code or compiled code; compile whole files
or individual functions; enter the debugger; step through code;
and inspect the state of individual Lisp objects.—Peter Seibel

4

http://www.ida.liu.se/ext/caisor/archive/1978/001/caisor-1978-001.pdf
http://www.ida.liu.se/ext/caisor/archive/1978/001/caisor-1978-001.pdf


Functionality of a Lisp REPL

• History of inputs and outputs.

• Variables for last result, last error (*1, *e).

• Help and documentation for commands. (doc, source in clojure.repl
namespace)

• Variables to control the reader. (*data-readers*, *default-data-reader-fn*)

• Variables to control the printer. (*print-length*, *print-level*)

A REPL was never enough

But for the true Lisp programming experience, you need an en-
vironment, such as SLIME, that lets you interact with Lisp both
via the REPL and while editing source files. — Peter Seibel,
Practical Common Lisp

For instance, you don’t want to have to cut and paste a function
definition from a source file to the REPL or have to load a whole
file just because you changed one function; your Lisp environment
should let us evaluate or compile both individual expressions and
whole files directly from your editor. — Peter Seibel, Practical
Common Lisp

Interlisp-D was notable for the integration of interactive devel-
opment tools into the environment, such as a debugger, an au-
tomatic correction tool for simple errors (DWIM – "do what I
mean"), and analysis tools.

Lisp systems

IDE Non-IDE
Interlisp-D Common Lisp
Racket Scheme
Allegro Clojure
Lispworks Clojurescript

Special purpose environments for non-IDE Lisp systems in Emacs: Slime,
Geiser.

5



Clojure

• Typical Lisp workflow: incremental compilation until it breaks. Restart/Respawn
a process with new REPL.

• Clojure: Restarts are costly.

Clojure needs to bootstrap itself inside the JVM each and every time. Restart
the application instead. Reloading the namespaces. Cojure has built-in facil-
ities: (require ... :reload) and (require ... :reload-all) Pitfalls
ahead because many Clojure abstractions were not designed with interactive
mode in mind.

• If you modify two namespaces which depend on each other, you must
remember to reload them in the correct order to avoid compilation
errors.

• If you remove definitions from a source file and then reload it, those
definitions are still available in memory. If other code depends on those
definitions, it will continue to work but will break the next time you
restart the JVM.

• If the reloaded namespace contains defmulti, you must also reload all
of the associated defmethod expressions.

• If the reloaded namespace contains defprotocol, you must also reload
any records or types implementing that protocol and replace any ex-
isting instances of those records/types with new instances.

• If the reloaded namespace contains macros, you must also reload any
namespaces which use those macros.

• If the running program contains functions which close over values in the
reloaded namespace, those closed-over values are not updated. (This
is common in web applications which construct the "handler stack" as
a composition of functions.)

Live coding part 1: old definitions, macros, protocols.

tools.namespace

Solved by tools.namespace single API call refresh. A Clojure contrib li-
brary. The refresh function will scan all the directories on the classpath for

6



Clojure source files, read their ns declarations, build a graph of their depen-
dencies, and load them in dependency order. (You can change the directories
it scans with set-refresh-dirs.) But first, it will wipe those namespace to clear
out any old definitions. remove-ns. remove-ns doesn’t dereference objects
in memory, it just undoes the mapping between a namespace and its Vars.
remove-ns doesn’t “unload” code in any significant way.

Memory leak

A heap dump analysis of a reloaded application will reveal a memory leak
(increase in allocated space per Var) of order O(n).

Threads

If a thread references a Var that gets unmapped, that thread will never see
the Var’s new value. The promise of Vars as stable references withers away.

Live coding part 2

Ghosts in the machine

Solution

Calling remove-ns should result in a garbage collection pass.

Takeaways

• Semantics of Clojure are explained with the implicit assumption of
file-based development. Not interactively.

• Some abstractions leak in interactive mode.

• Clojure’s interactive story is left as a tooling exercise for the commu-
nity.

• Clojure the language comes with a lacking implementation for names-
pace removal, and makes no excuse for it aside from “Here be dragons”.

• A REPL alone is never enough. Lots to catch up with systems from
the sixties and seventies.

7


