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Memoization

I Remember (i.e. “make a memo of”) previous results

I Classic example: fibonacci

fib(0) = 1; fib(1) = 1; fib(n) = fib(n − 1) + fib(n − 2)

I Naively-implemented fibonacci is exponential

I Using only memoization, fibonacci can be made linear

I Memoization can yield algorithmic speedups

I Memoization forbids mutation



A Memoized Function

(define-memo (max-tree t)

(cond

((pair? t)

(max (max-tree (car t))

(max-tree (cdr t))))

(else t)))



A Memoized Function

>(max 1 2 3 4)

4

>(max-tree ’((1 . 2) . (3 . 4))

4

1 2 3 4



User Session with Memoization

> (define some-tree ’((1 . 2) . (3 . 4)))

> (max 1 2 3 4)

4

> (max-tree some-tree)

4

> (set-cdr! some-tree 5)

> some-tree

((1 . 2) . 5)

> (max 1 2 5)

5

> (max-tree some-tree)

4



What is incremental computation?

I Reuse previous results/computations (like memoization)

I ... specifically for changing inputs



What is Adapton?

I a general, language-based approach to incremental
computation

I “memoization supporting mutation”

I How: remember not just the result of a computation, but also
keep track of dependencies between computations

I Specifically, Adapton creates a dependency graph called the
DCG (or demanded computation graph).



What is Adapton?

By analogy to thunks (zero-argument procedures) and promises
(memoized thunks)

Feature Thunk Promise Adapton “Promise”

Stored closure + result + dependencies

Avoids Recomputation no yes when correct

Supports Mutation yes no yes



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters
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I a minimal version of Adapton

I try to be readable

I try to be portable

I try to be small

I try to be used

I try to be abused
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Visualization of max-tree in Adapton
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What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))
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Nodes
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miniAdapton Interfaces

I Adapton thunks (“athunks”) and Adapton references
(“arefs”)

I adapton-ref
I adapton-ref-set!
I adapt
I adapton-force

I Adapton memoization (“amemo”)
I adapton-memoize, adapton-memoize-l
I define-amemo, define-amemo-l

I Adapton variables (“avar”)
I define-avar
I avar-get
I avar-set!
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microAdapton: the core of miniAdapton

I inspired by microKanren for implementing miniKanren

I implements core operations for miniAdapton

I avoids implicit DCG construction

I miniAdapton builds implicit DCG construction on top of
microAdapton



Implementation - microAdapton
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Conclusion

I Adapton implemented in a more minimal form

I A minimal implementation encourages hackability



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper
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Challenges

Modifying miniAdapton:

I Avoid recomputation when answers to subcomputations don’t
change (full Adapton)

I Add debugging information and/or visualization

I miniAdapton in other languages

Using miniAdapton:

I Adapton data structures

I Adapton for interactive applications
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