
miniAdapton
A Minimal Implementation of Incremental Computation in

Scheme

Dakota Fisher, Matthew Hammer, William E. Byrd, Matthew
Might

September 17, 2016

This material is partially based on research sponsored by DARPA under agreement
number AFRL FA8750-15-2-0092 and by NSF under CAREER grant 1350344. The
views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.



Memoization

I Remember (i.e. “make a memo of”) previous results

I Classic example: fibonacci

fib(0) = 1; fib(1) = 1; fib(n) = fib(n − 1) + fib(n − 2)

I Naively-implemented fibonacci is exponential

I Using only memoization, fibonacci can be made linear

I Memoization can yield algorithmic speedups

I Memoization forbids mutation



A Memoized Function

(define-memo (max-tree t)

(cond

((pair? t)

(max (max-tree (car t))

(max-tree (cdr t))))

(else t)))



A Memoized Function

>(max 1 2 3 4)

4

>(max-tree ’((1 . 2) . (3 . 4))

4

1 2 3 4



User Session with Memoization

> (define some-tree ’((1 . 2) . (3 . 4)))

> (max 1 2 3 4)

4

> (max-tree some-tree)

4

> (set-cdr! some-tree 5)

> some-tree

((1 . 2) . 5)

> (max 1 2 5)

5

> (max-tree some-tree)

4



What is incremental computation?

I Reuse previous results/computations (like memoization)

I ... specifically for changing inputs



What is Adapton?

I a general, language-based approach to incremental
computation

I “memoization supporting mutation”

I How: remember not just the result of a computation, but also
keep track of dependencies between computations

I Specifically, Adapton creates a dependency graph called the
DCG (or demanded computation graph).



What is Adapton?

By analogy to thunks (zero-argument procedures) and promises
(memoized thunks)

Feature Thunk Promise Adapton “Promise”

Stored closure + result + dependencies

Avoids Recomputation no yes when correct

Supports Mutation yes no yes



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters



Aside: Why Mutation?

We live in a temporal world full of mutation, some programs
dealing with mutation:

I Make

I Spreadsheets

I Databases

I Interpreters



What is miniAdapton?

I a minimal version of Adapton

I try to be readable

I try to be portable

I try to be small

I try to be used

I try to be abused



What is miniAdapton?

I a minimal version of Adapton

I try to be readable

I try to be portable

I try to be small

I try to be used

I try to be abused



What is miniAdapton?

I a minimal version of Adapton

I try to be readable

I try to be portable

I try to be small

I try to be used

I try to be abused



Visualization of max-tree in Adapton



Visualization of max-tree in Adapton

(max-tree some-tree)



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1)



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2)



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))

(max-tree '((1 . 2) . 5))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))

(max-tree '((1 . 2) . 5))



Visualization of max-tree in Adapton

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))

(max-tree '((1 . 2) . 5))

(max-tree 5)



What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))



What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))



What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))



What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))



What’s in a node?

(define-record-type

(adapton adapton-cons adapton?)

(fields

thunk

(mutable result)

(mutable sub)

(mutable super)

(mutable clean?)))



Nodes

(max-tree some-tree)

some-tree (max-tree '((1 . 2) . (3 . 4)))

(max-tree '(1 . 2))

(max-tree 1) (max-tree 2) (max-tree 4)(max-tree 3)

(max-tree '(3 . 4))



miniAdapton Interfaces

I Adapton thunks (“athunks”) and Adapton references
(“arefs”)

I adapton-ref
I adapton-ref-set!
I adapt
I adapton-force

I Adapton memoization (“amemo”)
I adapton-memoize, adapton-memoize-l
I define-amemo, define-amemo-l

I Adapton variables (“avar”)
I define-avar
I avar-get
I avar-set!



miniAdapton Interfaces

I Adapton thunks (“athunks”) and Adapton references
(“arefs”)

I adapton-ref
I adapton-ref-set!
I adapt
I adapton-force

I Adapton memoization (“amemo”)
I adapton-memoize, adapton-memoize-l
I define-amemo, define-amemo-l

I Adapton variables (“avar”)
I define-avar
I avar-get
I avar-set!



miniAdapton Interfaces

I Adapton thunks (“athunks”) and Adapton references
(“arefs”)

I adapton-ref
I adapton-ref-set!
I adapt
I adapton-force

I Adapton memoization (“amemo”)
I adapton-memoize, adapton-memoize-l
I define-amemo, define-amemo-l

I Adapton variables (“avar”)
I define-avar
I avar-get
I avar-set!



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



Interface Demo



microAdapton: the core of miniAdapton

I inspired by microKanren for implementing miniKanren

I implements core operations for miniAdapton

I avoids implicit DCG construction

I miniAdapton builds implicit DCG construction on top of
microAdapton



Implementation - microAdapton



Implementation - microAdapton



Implementation - miniAdapton



Implementation - miniAdapton



Conclusion

I Adapton implemented in a more minimal form

I A minimal implementation encourages hackability



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Conclusion - Play with it

I Incremental computation that you can play with RIGHT NOW

I We want you to use this as soon as possible

I Play with this

I This toy we made is neat and everyone should play with it:

I git clone

’https://github.com/fisherdj/miniAdapton’

I ...

I git clone

’https://github.com/fisherdj/miniAdapton’

I More details about the code are in the paper



Challenges

Modifying miniAdapton:

I Avoid recomputation when answers to subcomputations don’t
change (full Adapton)

I Add debugging information and/or visualization

I miniAdapton in other languages

Using miniAdapton:

I Adapton data structures

I Adapton for interactive applications



Acknowledgements and Related Work

I Thanks to Jason Hemann and Dan Friedman for microKanren,
a huge inspiration and motivation for miniAdapton

I Incremental Computing via Function Caching, Pugh and
Teitelbaum POPL 1986 (still a good inspiration for data
structures using Adapton)

I The Adapton Project, Hammer et al OOPSLA 2015 and PLDI
2014 (http://adapton.org)

I Self-Adjusting Computation, Acar et al;
(http://www.umut-acar.org/self-adjusting-computation)


