
Function compose, Type cut, And the Algebra of logic

XIE Yuheng
SZDIY community
xyheme@gmail.com

Abstract
In this paper, I demonstrate the Curry-Howard correspondence of
Gentzen’s sequent calculus, and give a very rich algebraic structure
of the corresponding deduction system. I introduce then a prototype
implementation of a programming language, written in scheme,
which uses sequent calculus as its dependent type system.

Keywords language design, dependent type, deduction system,
sequent calculus, algebraic structure.

1. Introduction
1.1 Curry–Howard correspondence of sequent calculus
Some said that in the framework of Curry–Howard correspondence,
Gentzen’s sequent calculus does not correspond with a well-defined
pre-existing model of computation, as it was for Hilbert-style and
natural deduction. [7]

in this paper, I will show that we can get what sequent calculus
corresponds to, not by designing a new model of computation, but
by changing the syntax of well known model.

I will show that sequent calculus corresponds to a functional
programming language, the syntax of which is optimized for func-
tion composition instead of function application.

I will also show the trade-off of this syntax design.
(1) The syntax of type and function-body are unified.
(2) We lose the implicit syntax for currying.
(3) We gain the algebraic associative law.

1.2 The Algebra of logic
Some also said that deduction system can be viewed as alge-
braic structure, where theorems are the elements (like elements
of group), where deductive rules are the operations (like multipli-
cation of group). [1]

In this paper, I will show that with the associative law which we
obtained from function composition, the corresponding deduction
system of our programming language not merely “can be viewed
as” algebraic structure, but actually has a very rich algebraic struc-
ture.

1.3 Implementation
I will also introduce a prototype implementation of such a lan-
guage. I call it “sequent1”.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author(s).

Scheme and Functional Programming Workshop September 18th, 2016, Nara, Japan
Copyright c© 2016 by XIE Yuheng
Author’s homepage at: xieyuheng.github.io

2. Background
2.1 How the idea was conceived
Two years ago, for some reason, I learned the design of the stack-
based language – forth. I began to write my own forth-like lan-
guage, and tried to add various features to it. Soon I found another
forth-like language – joy. From joy I learned the composition v.s.
application trade-off in syntax.

I added more and more features to my forth-like language.
Things went well, until I tried to add a type system to the it. I
found that to design a good type system, a designer has to know
Curry–Howard correspondence well.

Then I figured that the composition v.s. application trade-off in
syntax, corresponds to the sequent-calculus v.s. natural-deduction
in proof theory.

Finally I decided to write a prototype language in scheme, only
to demonstrate the idea of “sequent-calculus as type system”,
thus I wrote “sequent1”.

2.2 Related works
There are many other works that assign computational models to
sequent-calculus-like logics. For example, Frank Pfenning assigned
concurrent programming to linear logic. [2]

Maybe one logic system can correspond to multiple compu-
tational models. Maybe more terminologys should be carefully
coined, and new framework and theory should be wisely designed,
under which the correspondences between deduction systems and
computational models could be elegantly described.

3. The change of syntax
I will introduce my syntax by comparing it with the syntax of an
imaginary agda-like (or idris-like) language. [5] [6]
I will mark its syntax by << application-language >>,
and I will mark my new syntax by << composition-language >>.

3.1 Natural number
;; << application-language >>

data natural : type where
zero : natural
succ : natural -> natural

add : natural -> natural -> natural
add zero n = n
add (succ m) n = succ (add m n)

mul : natural -> natural -> natural
mul zero n = zero
mul (succ m) n = add n (mul m n)

;; << composition-language >>

;; In the following examples
;; ‘‘~’’ can be readed as ‘‘define-function’’,
;; ‘‘+’’ can be readed as ‘‘define-type’’.

;; The syntax of type and function-body are unified, where
;; a type is an arrow, and a function-body is a list of arrows.

(+ natural (-> type)
zero (-> natural)
succ (natural -> natural))

(~ add (natural natural -> natural)
(:m zero -> :m)
(:m :n succ -> :m :n add succ))

(~ mul (natural natural -> natural)
(:m zero -> zero)
(:m :n succ -> :m :n mul :m add))

;; for example, take (:m :n succ -> :m :n mul :m add) of
;; the function-body of ‘‘mul’’
;;
;; it’s antecedent is (:m :n succ)
;; :m -- (-> natural)
;; :n -- (-> natural)
;; succ -- (natural -> natural)
;; compose to (-> natural natural)
;;
;; it’s succedent is (:m :n mul :m add)
;; :m -- (-> natural)
;; :n -- (-> natural)
;; mul -- (natural natural -> natural)
;; :m -- (-> natural)
;; add -- (natural natural -> natural))
;; compose to (-> natural)
;;
;; thus the type of ‘‘mul’’ is (natural natural -> natural)

3.2 Currying must be explicit
In type, input arguments and return values are made explicit.
instead of (natural -> natural -> natural),
We write (natural natural -> natural).

Thus, in function body, currying must also be explicit. We lost
the implicit syntax for currying, because currying is designed as a
convention for the syntax of function application.

3.3 Vector
;; << application-language >>

data vector : natural -> type -> type where
null : vector zero t
cons : t -> vector n t -> vector (succ n) t

append : vector m t -> vector n t -> vector (add m n) t
append null l = l
append (cons e r) l = cons e (append r l)

map : (m : a -> b) -> f a -> f b
map f null = null
map f (cons e l) = cons (f e) (map f l)

;; << composition-language >>

(+ vector (natural type -> type)
null (-> zero :t vector)
cons (:n :t vector :t -> :n succ :t vector))

(~ append (:m :t vector :n :t vector -> :m :n add :t vector)
(:l null -> :l)
(:l :r :e cons -> :l :r append :e cons))

(~ map (:n :t1 vector (:t1 -> :t2) -> :n :t2 vector)
(null :f -> null)
(:l :e cons :f -> :l :f map :e :f apply cons))

3.4 Function composition
;; << application-language >>

compose : {A B C : type} (A -> B) -> (B -> C) -> (A -> C)
compose f g = x -> (f (g x))

;; << composition-language >>

;; The syntax is optimized for function composition.
;; Function composition is expressed by term concatenation.

3.5 Function application
;; << application-language >>

;; The syntax is optimized for function application.
;; Function application is expressed by term concatenation.

;; << composition-language >>

(~ apply (:a :b ... (:a :b ... -> :c :d ...) -> :c :d ...)
(note it is implemented as a primitive-function))

3.6 Stack processing
Multiple return values are easily handled, and stack-processing
functions can be used to help to re-order return values (without
naming them) for function composition. (just like in forth & joy)

;; << composition-language >>

(~ drop (:t ->)
(:d ->))

(~ dup (:t -> :t :t)
(:d -> :d :d))

(~ over (:t1 :t2 -> :t1 :t2 :t1)
(:d1 :d2 -> :d1 :d2 :d1))

(~ tuck (:t1 :t2 -> :t2 :t1 :t2)
(:d1 :d2 -> :d2 :d1 :d2))

(~ swap (:t1 :t2 -> :t2 :t1)
(:d1 :d2 -> :d2 :d1))

4. The correspondence
To show Curry–Howard correspondence under this syntax, is to
show:
(1) How to view type as theorem?
(2) How to view function as proof?

4.1 Type as theorem
With the ability to handle multiple return values, we can express
“and” as:

(A B -> C D) -- ‘‘(A and B) implies (C and D)’’

we can express “for all” and “there exist” in an unified way:

((:x : A) -> :x P) -- ‘‘for all x belong to A, we have P(x)’’
(-> (:x : A) :x P) -- ‘‘there exist x belong to A, such that P(x)’’

I call expression of form (A B C ... -> E F G ...) sequent, but
you should note that, sequent for us, is not exactly the same as
sequent for Gentzen[3]. Gentzen views succedent as “or”, while
we view succedent as “and”:

for Gentzen -- (A B -> C D) -- ‘‘(A and B) implies (C or D)’’
for us -- (A B -> C D) -- ‘‘(A and B) implies (C and D)’’

4.2 Function as proof
“function as proof” means, the way we write function body forms a
language to record deduction. A record of many steps of deduction
is called a proof.

Let us summarize deductive rules in sequent calculus in our lan-
guage. I will omit some explicit contexts variables in the deductive
rules, because in our language contexts can be implicit.

f : (A -> B)
g : (B -> C)
-------------- cut
f g : (A -> C)

f : (A -> C)
------------------- left-weakening
drop f : (A B -> C)

f : (A A -> B)
---------------- left-contraction
dup f : (A -> B)

f : (A -> B B)
----------------- right-contraction
f drop : (A -> B)

f : (A B -> C)
------------------- left-permutation
swap f : (B A -> C)

f : (A -> B C)
------------------- right-permutation
f swap : (A -> C B)

f : (A -> C)
------------------- left-and-1
drop f : (A B -> C)

f : (B -> C)
------------------------ left-and-2
swap drop f : (A B -> C)

f : (A -> B)
g : (C -> D)
---------------------------- right-and
g swap f swap : (A C -> B D)

f : (A -> B)
------------------- right-or-1
f : (A -> (B or C))

f : (A -> C)
------------------- right-or-2
f : (A -> (B or C))

f : (A -> B)
g : (C -> D)
----------------------------- left-or
(case (:x {:x : A} -> :x f)
(:y {:y : C} -> :y g))
: ((A or C) -> (B or D))

f : (A -> B)
g : (C -> D)
-------------------------- left-implies
(:a :h -> :a f :h apply g)
: (A (B -> C) -> D)

f : (A B -> C)
----------------------- right-implies
(:x -> (:y -> :x :y f))
: (A -> (B -> C))

4.3 Example proofs
;; have-equal-human-rights

;; in the following example,
;; ‘‘*’’ can be readed as ‘‘define-hypothesis’’

(* rich-human (:x is-rich -> :x is-human))
(* poor-human (:x is-poor -> :x is-human))
(* human-have-equal-human-rights

(:x is-human :y is-human -> :x :y have-equal-human-rights))

(~ rich-and-poor-have-equal-human-rights
(:x is-rich :y is-poor -> :x :y have-equal-human-rights)
(:ri :po -> :ri rich-human

:po poor-human
human-have-equal-human-rights))

;; map/has-length

(+ list (type -> type)
null (-> :t list)
cons (:t list :t -> :t list))

(~ map (:t1 list (:t1 -> :t2) -> :t2 list)
(null :f -> null)
(:l :e cons :f -> :l :f map :e :f apply cons))

(+ has-length (:t list natural -> type)
null/has-length (-> null zero has-length)
cons/has-length (:l :n has-length ->

:l :a cons :n succ has-length))

(~ map/has-length (:l :n has-length -> :l :f map :n has-length)
(null/has-length -> null/has-length)
(:h cons/has-length -> :h map/has-length cons/has-length))

;; natural-induction

(+ natural (-> type)
zero (-> natural)
succ (natural -> natural))

(~ natural-induction
((:p : (natural -> type))
zero :p apply
((:k : natural) :k :p apply -> :k succ :p apply)
(:x : natural) -> :x :p apply)

(:q :q/z :q/s zero -> :q/z)
(:q :q/z :q/s :n succ ->

:n
:q :q/z :q/s :n natural-induction
:q/s apply))

5. The Algebra of logic
A concrete (not abstract) algebraic structure is rich when:
(1) its elements have practical meaning.
(2) it is equipped with many algebraic laws, which you can use to
transform equations.

A good example of such rich concrete algebraic structure is the
field of multivariate rational function (i.e. quotient (or fraction) of
multivariate polynomials), which is studied in algebraic geometry.

Since function composition already satisfies associative law, we
have the opportunity to demonstrate an rich algebraic structure, the
elements of which are formal theorems.

We will try to define those algebraic operations that are closed in
the set of derivable theorems. Hopefully we will be able to capture
all deductions by algebraic operations.

5.1 To mimic fraction of natural number
Let us view theorem (A -> B) as fraction, A as denominator, B as
numerator. – Just like (A \ B). (note that, we are using reverse-slash
instead of slash, to maintain the order of A B in (A -> B))

5.2 Multiplication
To multiply two theorems (A -> B) and (C -> D), we get (A C -> B D).
– Just like (A \ B) (C \ D) = (A C \ B D).

(* r (A -> B))
(* s (C -> D))

(~ r/s/mul (A C -> B D)
(:x :y -> :x r :y s))

;; abstract it to a combinator
(~ general/mul

((:a -> :b) (:c -> :d) -> (:a :c -> :b :d))
(:r :s -> (lambda (:a :c -> :b :d)

(:x :y -> :x :r apply :y :s apply))))

Theorems under multiplication is an Abelian group. Identity
element is (->). Inverse of (A -> B) is (B -> A).

5.3 First definition of addition
This definition recalls the fraction of natural number.
To add two theorems (A -> B) and (C -> D),
we get (A B -> (B C or A D)).
– Just like (A \ B) + (C \ D) = (A C \ (B C + A D)).

(* r (A -> B))
(* s (C -> D))

(~ r/s/fraction-add (A C -> (B C or A D))
(:x :y -> :x r :y)
(:x :y -> :x :y s))

;; abstract it to a combinator
(~ general/fraction-add

((:a -> :b) (:c -> :d) -> (:a :c -> (:b :c or :a :d)))
(:r :s -> (lambda (:a :c -> (:b :c or :a :d))

(:x :y -> :x :r apply :y)
(:x :y -> :x :y :s apply))))

Distributive is just like fraction of natural number, because the
way we define addition is just like the addition of fraction of natural
number.

Theorems under addition is an Abelian semigroup. We do not
have identity element, and we do not have inverse. (to make our
algebraic structure more like fraction of natural number, we could
introduce a “zero-theorem” (a theorem that we can never prove) as
the identity element of addition)

Under this definition of addition, one may call the algebraic
structure “natural field”, to recall its similarites between the frac-
tion of natural number. (note that, term like “semi-field” is ambigu-
ous, because it does not inform us whether we mean addition is
semi or multiplication is semi)

5.4 Second definition of addition
To add two theorems (A -> B) and (C -> D),
we get ((A or B) -> (C or D)).

(* r (A -> B))
(* s (C -> D))

(~ r/s/mul-like-add ((A or C) -> (B or D))
(:x {:x : A} -> :x r)
(:y {:y : C} -> :y s))

;; abstract it to a combinator
(~ general/mul-like-add

((:a -> :b) (:c -> :d) -> ((:a or :c) -> (:b or :d)))
(:r :s -> (lambda ((:a or :c) -> (:b or :d))

(:x {:x : :a} -> :x :r apply)
(:y {:y : :c} -> :y :s apply))))

Distributive also hold under this definition of addition,
because (-> A (B or C)) is the same as (-> (A B or A C)).

Theorems under addition is an Abelian semigroup. Identity ele-
ment is (->), but we do not have inverse.

5.5 Term-lattice, and cut as weaken
This is where we must take term-lattice into account.

| term | lattice |
|------------------------+------------------|
unification (uni)	meet
anti-unification (ani)	join
cover (or match)	greater-or-equal

(note that, “equal” can be defined by “greater-or-equal”)
term-lattice is also called “subsumption lattice” by other au-

thors. I call it “term-lattice”, because I want to make explicit its re-
lation with term-rewriting-system (I will address the detail of term-
lattice in another paper).

If we have (A -> B) and (C -> D),
we can cut them only when (C cover B).
for example, when:

(1) C = B
(2) C = (B or E)
(3) C = :x :y P

B = :x :x P

cut can be viewed as an important way to weaken a theorem.
We can first multiply (A -> B) and (C -> D) to (A C -> B D), then
weaken it to (A -> D), provided that (C cover B).

We can also extend the lattice operations to cedent (antecedent
and succedent), because cedent is Cartesian product of term.

5.6 Equality of theorem
We can define A == B, as (A -> B) and (B -> A).

5.7 Constructiveness
In our language, we have the following keywords that make defini-
tions:

| keyword | read as | function-body |
|---------+-----------------------------------+---------------|
+	define-type an data	trivial
~	proof, define-function or theorem	non-trivial
*	assume, define-hypothesis	non

Whenever we have function-body, be it trivial or non-trivial, we
can use it to rewrite data.

For example, the function-body of succ is trivial, it rewrites
zero to zero succ (i.e. merely add a symbol to the data), while the
function-body of add is non-trivial, it rewrites zero succ zero succ

to zero succ succ.
Whenever we use “*” to introduce a hypothesis, the construc-

tiveness of function is lost, because there is no function-body. Al-
though we still can use it to define functions and type check the
definitions, we can not use it to rewrite data. (but abstractiveness is
gained, I will address the detail of the balance between construc-
tiveness and abstractiveness in another paper)

5.8 Algebraic extension
When defining a new types by “+”, we provide a type-constructor,
and a list of data-constructors.

By introducing such constructors, we will extend our algebraic
structure. (just like extending a field by the roots of equations)

6. Implementation
I made an attempt to implement a prototype of the language, project
page at http://xieyuheng.github.io/sequent1. The implementation
is a interpreter written in scheme.

6.1 Implementation-tech
During writing the prototype language, I noticed the language is
not necessarily stack-based, and we have the following relations:

| implementation-tech | evaluation strategy |
|-------------------------+---------------------|
stack-based computation	call-by-value
term-rewriting-system	call-by-name
graph-rewriting-system	call-by-need

First few versions of sequent1 is implemented as a stack-based
language, only later, changed to term-rewriting-system, because we
have to handle lazy-trunk in the language, and in a term-rewriting-
system, I can handle lazy-trunk in an unified implicit way.

6.2 Mistakes in my implementation
This prototype has the following mistakes to be fixed in the next
versions of the prototype.

(1) I fail to far see that the structure of reports, which returned by
various checkers, must be highly structured data instead of string,
thus I fail to print useful reports when checkers find mistakes in
code.

(2) I know graph-rewriting-system is needed, but I did not
implement the language by it, because I want to keep the prototype
simple.

(3) The prototype can not handle mutual recursive function.
(4) The prototype can not handle un-named “or”.
(5) The meaning of equality is not fully understood.
(6) I have not yet designed a satisfactory mechanism to handle

abstractiveness.

7. Further work
I plan to:

(1) develop further the algebra of logic.
(2) handle “equality” carefully, and use the language as a con-

crete tool to investigate algebraic topology.

Acknowledgments
I would like to thank my friend Jason Hemann, for his very valuable
advice about this paper. I also would like to thank SZDIY commu-
nity, for it provided me a place to work and live last year.

References
[1] The Univalent Foundations Program (2013), Homotopy Type Theory –

Univalent Foundations of Mathematics.
[2] Frank Pfenning, Joint work with Lus Caires, Bernardo Toninho, and

Dennis Griffith.
From Linear Logic to Session-Typed Concurrent Programming,
Tutorial at POPL 2015, Mumbai, India, January 2015

[3] Gentzen Gerhard (1969), M. E., Szabo, ed.,
Collected Papers of Gerhard Gentzen,
Paper #3: INVESTIGATIONS INTO LOGICAL DEDUCTION (1935).
– In this paper the deduction rules of sequent calculus are formed.

[4] Paul Hertz (1922), On Axiomatic Systems for Arbitrary Systems of
Sentences, Part I, Sentences of the First Degree (On Axiomatic Systems
of the Smallest Number of Sentences and the Concept of the Ideal
Element).
– This paper inspired Gentzen to design his sequent calculus.

[5] Ulf Norell (2007), Towards a practical programming language based
on dependent type theory.
– This paper describe the design of agda.

[6] Edwin Brady (2013), Idris, a General Purpose Dependently Typed
Programming Language: Design and Implementation,
Journal of Functional Programming, August 2013.

[7] The wikipedia page of “Curry–Howard correspondence”,
at the time when this paper is written.

