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Abstract
Concurrent programming is one of the most important techniques
to use single or multi core CPUs efficiently. SRFI-18 defines prim-
itive APIs for multithreading programming. However, using raw
thread, mutex, or condition variables often causes unexpected be-
haviours. It is beneficial to construct an abstract layer on top of the
SRFI to write more robust program. This paper describes a concur-
rency library built upon the multithreading SRFI and shows what
would be the benefit to use it.
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1. Introduction
The Scheme standards do not have neither multithreading nor
concurrent functionality even the current latest standard, R7RS-
small[1]. The only capability of writing such a program portably
is using SRFI-18[2]. The SRFI defines APIs and types for multi-
threading primitives; thread, mutex, and condition variables. The
following code is an example of using some of the APIs defined in
the SRFI:

Listing 1: Example of SRFI-18

(import (rnrs) (srfi :18))

(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

(define (async-fib n)
(thread-start!

(make-thread (lambda () (fib n)))))

(map thread-join!
(list (async-fib 25)

(async-fib 20)))
;; -> (75025 6765)

[Copyright notice will appear here once ’preprint’ option is removed.]

The example computes 2 Fibonacci numbers of 25 and 20 asyn-
chronously by using 2 threads and retrieves the results by using
thread-join! procedure.

Even in this small example, there are 2 possible problems. One
is the sequential retrieval of the results of the thread executions. If
the first thread has a heavier process than the other threads, then the
retrieval would block the rest of process. In the example, the first
async-fib procedure would take more time than the second one.
The other problem is the possibility of thread count explosion. The
async-fib procedure creates a thread when it is called. Thus,
if it is called a large number of times, then the same number of
threads are created. This contains 2 issues. The number of threads
may reach the limit, and creation cost of thread may be expensive.

The first problem can be resolved by queue like inter-thread
communications. If results of thread executions are pushed into a
queue, then retrievers can take the results if it is already pushed or
wait until one of the threads pushes its result into the queue. In this
manner, blocking time would be less than retrieving all results at
the same time.

The second problem is related to resource management. Each
operating system has own limit of number of maximum threads,
which might be per process or per operating system. For example,
the maximum number of threads on Windows may depend on
process’ stack size. It would be around 2000 with combination of
default stack size and thread creation option1). If users can reuse
created threads, then number of threads and its creation cost can be
reduced.

To prevent Scheme users having these problems, we have cre-
ated a library called (util concurrent)2) which is built on
top of SRFI-18. It provides abstraction layers of concurrent pro-
gramming such as shared queue, thread pool, and future and execu-
tor. The following sections describe how we implemented the li-
brary, then compares performance between using bare threads and
our models.

2. Shared queue
There are variety of definition for shared queue3). Here, shared
queue is a queue like data structure whose enqueue and dequeue op-
erations are done atomically. In our library, shared queue is a record
which has usual queue structure fields4) and fields for synchronisa-
tion; mutex and condition variable. The make-shared-queue

1)https://blogs.msdn.microsoft.com/oldnewthing/20050729-14/?p=
34773/

2)It can work on both R6RS and R7RS implementations, if they support
SRFI-18 and some others.
Repository: https://github.com/ktakashi/scheme-concurrent

3)For example, IBM MQ has shared queue but not used for its local
queue.
https://www.ibm.com/support/knowledgecenter/SSFKSJ\ 9.0.0/com.ibm.
mq.pro.doc/q003640\ .htm

4)c.f. head, tail and size
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procedure creates a shared queue, and the shared-queue-put!
and shared-queue-get! procedures are the enqueue and de-
queue operations of shared queue. The following example shows
how it works:

Listing 2: Shared queue

(import (rnrs) (util concurrent) (srfi :18))

(define shared-queue (make-shared-queue))

(define thread1
(make-thread

(lambda ()
(list

(shared-queue-get! shared-queue)
(shared-queue-get! shared-queue)))))

(thread-start! thread1)

(define (push)
(shared-queue-put! shared-queue ’wakeup!))

(for-each thread-start!
(list (make-thread push)

(make-thread push)))

(thread-join! thread1)
;; -> (wakeup! wakeup!)

The shared-queue-put! and shared-queue-get!
ensure that queue mutations are done by atomically, thus it blocks
all other operations. On the example, 2 threads are enqueueing their
results in one shared queue. If the queue operations is not done by
atomically, then one of the results may be lost.

If shared-queue-get! is called on empty queue, then the
procedure waits until the queue gets an element. To avoid unwanted
blocking, the procedures also accept optional arguments; timeout
and timeout value. If the timeout argument is passed, then the
procedures only wait for specified period. And the timeout value
is returned, when the timeout period has passed, but the queue is
not available yet.

Both shared-queue-put! and shared-queue-get!
have similar sequence to achieve its atomicity. As a precondi-
tion, shared queue has a mutex and condition variable. When the
procedures are called, it locks the mutex of the queue then op-
erates enqueue or dequeue. After the operation is done, it calls
condition-variable-broadcast! on the condition vari-
able and releases the mutex. If the shared-queue-get! is
called for an empty queue, then the procedure waits on the condi-
tion variable either until the queue gets a new element or specified
timeout value is passed.

3. Thread pool
Thread pool is a concept which makes threads reusable. In our li-
brary, it is implemented as a container which holds specified num-
ber of threads which never stop until stop operation is explicitly
invoked. One of the benefits of reusing threads is reducing over-
head of thread creation. Depending on implementations, creating
a thread is usually not a cheap operation and may consume a lot
of resources especially when the number of threads are huge. This
section describes the design of the thread pool implemented on the
library.

A thread pool initialises the given number of threads during
creation. Each thread has a shared queue as a channel between the

pool and the thread5). The threads wait on their queue until a task,
which is a procedure with 0 argument, is enqueued. When a task is
pushed to the pool, it chooses one of the threads and enqueues the
task into the thread’s shared queue. The chosen thread dequeues
the task from its shared queue and executes it. If there are more
tasks enqueued, then the thread repeats the execution process until
the queue is empty. The following example shows creating a thread
pool which holds 10 threads:

Listing 3: Thread pool

(import (rnrs) (util concurrent))

(define thread-pool (make-thread-pool 10))

(thread-pool-push-task! thread-pool
(lambda ()

(display (fib 30)) (newline)))

(thread-pool-wait-all! thread-pool)
;; -> returns unspecified value
;; and prints 832040

Thread pool reuses created threads, so threads cannot return
values. If results of pushed tasks are required, then the task itself
needs to handle it by using, for example, shared queue.

3.1 Choosing thread
Since we decided to have shared queue as a channel per thread,
choosing a proper thread from a thread pool is important to make
the thread pool work efficiently. If a thread pool chooses the same
thread for each task, then it is the same as using a single thread. The
easiest way to distribute to tasks evenly is checking the number
of queued tasks per queue and taking the least queued thread.
This takes O

(
nO

(
m
))

where n is the number of threads and
O
(
m
)

denotes the cost of counting the length of shared queue. Our
shared queue implementation takes O

(
1
)

to return its length, so the
choosing process would take O

(
n
)
.

The checking the number of enqueued tasks though out the
threads would not take the worst case most of the time. However,
if the first n− 1 threads have heavy tasks and nth thread is always
free, then it would always take the worst case. To avoid such
situations, we added an extra shared queue, called idling queue,
to thread pool. This shared queue holds idling threads, which does
not have any task in its queue, of the thread pool, so dequeuing the
queue is sufficient if there is any thread idling. This makes the best
case complexity O

(
1
)
.

3.2 Error handling
Handling an error at thread pool level is simple. Any managed
thread should not propagate it to thread pool itself, otherwise error
signalling thread would terminate and cannot be reused. Thus,
whenever tasks signal errors, threads should catch it and discard it.
So the basic strategy of error handling is making tasks responsible
for it.

Even though it is tasks’ responsibility to handle errors, the
make-thread-pool procedure accepts optional argument error

5)The reason why we choose to let threads have own queue
is to avoid abandoned-mutex-exception. If all threads
share one queue and when one of the threads is terminated,
abandoned-mutex-exception might occur.
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handler, which should accept 1 argument, for convenience. This
error handler can be used for generic logging or diagnosis6).

3.3 Thread termination
Terminating a thread is not an ideal operation in any situation.
However, if managed threads got into dead lock, then the only
possibility to recover from the situation without stopping the whole
process is terminating the locked threads. The following example
shows how to do it:

Listing 4: Terminating thread

(import (rnrs) (util concurrent))

(define thread-pool (make-thread-pool 10))

(define id
(thread-pool-push-task! thread-pool

(lambda ()
(shared-queue-get!

(make-shared-queue)))))

;; Terminate it!
(thread-pool-thread-terminate!

thread-pool id)

Each thread gets its own id which is an exact non-negative
integer7). The thread-pool-push-task! procedure returns
the id of the thread that the task is pushed. Using the returned
id and the thread-pool-terminate-thread! procedure
makes thread termination of managed thread possible.

When thread termination is occurred on a thread pool, the thread
pool first locks idling and channel queue and cleans up the channel
queue to avoid abandoned mutex exception. Then, it creates a new
thread and puts the thread into its pool with the same condition as
terminated thread except the tasks. This avoids creating an empty
thread pool and makes it possible to continue working.

4. Future and executor
Future and executor are higher level concepts inspired by JSR166[5].
A future is an object, returned by an executor8), which contains
a task and a channel. Its task is executed on the executor asyn-
chronously and the result value is stored into its channel. An ex-
ecutor is a concurrent resource manager. The library provides 2
types of executors, <thread-pool-executor> and
<fork-join-executor>. The <thread-pool-executor>
uses thread pool as underlying resource management. The
<fork-join-executor> simply creates a thread per task.
When a task is submitted to an executor by executor-submit!,
then a future, which is executed on the executor, is returned. When
the future-get procedure is called with the future, then it waits
until the task is finished and returns the result of the task, or it
returns the result immediately if the task is already finished.

6)Of course, this can also be used more specific error handling such
as releasing resource. For such cases, it’s better to use condition system
defined in R6RS[3] or SRFI-35[4]

7)So that users can terminate a thread from other thread, process, or
using remote REPL.

8)It can also be created calling its constructors, but basic usage would
be combination of executor.

Listing 5: Executor

(import (rnrs) (util concurrent))

(define thread-pool-executor
(make-thread-pool-executor 10))

(define future
(executor-submit! thread-pool-executor

(lambda () ’executed)))

(future-get future) ;; -> executed

The <thread-pool-executor> is implemented on top
of the thread pool described previous section. Using the executor
makes retrieving results of tasks easier and gives users more flexi-
ble resource management. The make-thread-pool-executor
accepts optional argument reject-handler which controls re-
jection strategy. Rejection strategies are control the behaviour of
executors when tasks are submitted, and there is no thread avail-
able9) at the moment.

The library provides the following 4 predefined reject handlers;
abort-rejected-handler, terminate-oldest-handler,
wait-finishing-handler, and push-future-handler.
The abort-rejected-handler signals an error if there is no
thread available. If reject-handler is not specified, then this
handler is used as the default value. The terminate-oldest-handler
terminates the thread, which is executing the oldest task, us-
ing the thread-pool-thread-terminate! procedure. The
wait-finishing-handler waits until one of the threads
is available or raises an error when specified retry count is ex-
ceeded10). The push-future-handler pushes given task to
underlying thread pool by using thread-pool-push-task!
procedure which chooses the least engaged thread.

The executor-available? procedure can be used to
check executors’ availability. Using this procedure gives users ca-
pability of writing scripts: It submits tasks while an executor is
available, then retrieves the results of the tasks and processes the
results. After it finishes the process of the result values, then it
starts submitting tasks again until it submits all the tasks.

5. Benchmarks
This section shows one of the benefits of using this concurrent li-
brary. We benchmarked 4 concurrency models; no management,
manual thread management, using thread pool, and future and ex-
ecutor. Each script calculates Fibonacci numbers of in between 20
and 25, and all scripts are executed 3 times with different numbers
of invocation of Fibonacci number calculation. The numbers of in-
vocation are 100, 1000, and 10000.

Each benchmark script has run procedure which takes an ar-
gument, n*. n* is a list whose length is the same as invocation
count, and elements are arguments to calculate Fibonacci number.
All benchmark script consumes at least O

(
n
)

memory space where
n is invocation count to emulate retrieving result values of threads.

Listing 6: No management

(define (run n*)
(for-each thread-join!
(map (lambda (n)

(thread-start!
(make-thread (heavy-task n))))

n*)))

9)This means all managed threads on the thread pool are running.
10)Each retry waits 0.5 second.
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The no management script simply creates thread for each Fi-
bonacci calculation and joins it. For this implementation, the invo-
cation number and thread count are the same.

Listing 7: Manual management

(define (run n*)
(let loop ((n* n*)

(n 0)
(t* ’())
(r ’()))

(cond ((null? n*)
(apply append
(cons (map thread-join! t*) r)))

((= n 10)
(loop (cdr n*)

0
’()
(cons (map thread-join! t*)

r)))
(else
(loop (cdr n*)

(+ n 1)
(cons (thread-start!

(make-thread
(heavy-task
(car n*))))

t*)
r)))))

The manual management script keeps executing thread count to
1011). When the created thread count reaches 10, then it retrieves
the result from the threads.

Listing 8: Thread pool

(define (run n*)
(let ((tp (make-thread-pool 10))

(sq (make-shared-queue)))
(let loop ((n* n*))

(if (null? n*)
(thread-pool-release! tp)
(let ((p (heavy-task (car n*))))

(thread-pool-push-task! tp
(lambda ()

(shared-queue-put! sq (p))))
(loop (cdr n*)))))))

The thread pool script uses a thread pool which has 1011) worker
threads. It first creates the thread pool and a shared queue which is
used to retrieve the results of calculation, then pushes tasks to the
thread pool. After all tasks are pushed, then it waits and releases
the thread pool.

11)10 is an arbitrary number, but it should be smaller than the number
of invocations. Otherwise, the thread creation would be bigger than the no
management.

Listing 9: Future and executor

(define (run n*)
(let ((e (make-thread-pool-executor 10)))

(let loop ((n* n*) (f* ’()))
(cond ((null? n*)

(for-each future-get f*)
(shutdown-executor! e))

((executor-available? e)
(let ((f (executor-submit! e

(heavy-task
(car n*)))))

(loop (cdr n*) (cons f f*))))
(else
(for-each future-get f*)
(loop n* ’()))))))

The future and executor script uses thread pool executor whose
underlying thread pool contains 1011) worker threads. The script
submits tasks while the executor is available. When executor is not
available, then it retrieves the result from the futures returned by the
executor. After the retrieval, it starts submitting until it consumes
all the arguments for the calculation.

This benchmark was executed on Ubuntu 14.04, 16GB RAM,
Intel(R) Core(TM) i5-2520M @ 2.50GHz x 4 and 32 bit Cygwin
(on Windows 7 Home Premium, 8GB RAM, Intel(R) Core(TM)
i5-3317U @ 1.70GHz 1.70GHz). Executed implementations are
Sagittarius 0.7.1, Guile 2.0.11, Gauche 0.9.4 and Chibi Scheme
0.7.3. The first 2 were run as R6RS and the other 2 were run as
R7RS.

Table 1: Sagittarius 0.7.1
Ubuntu 14.04

# of invocations 100 1000 10000
no management 0.179s 1.814s 19.771s
manual management 0.217s 2.313s 25.991s
thread pool 0.296s 1.908s 18.062s
future and executor 0.34s 2.25s 21.74s

Cygwin
# of invocations 100 1000 10000
no management 0.268s 2.739s Out of Memory
manual management 0.257s 2.734s 27.492s
thread pool 0.332s 2.310s 21.346s
future and executor 0.34s 2.53s 25.02s

Table 2: Guile 2.0.11

Ubuntu 14.04
# of invocations 100 1000 10000
no management 0.29s 3.22s 28.38s
manual management 0.27s 2.70s 24.82s
thread pool 0.24s 2.56s 21.33s
future and executor 0.26s 2.58s 26.30s

Cygwin
# of invocations 100 1000 10000
no management 0.42s Out of Memory Out of Memory
manual management 0.43s Out of Memory Out of Memory
thread pool 0.33s 3.06s 30.91s
future and executor 0.37s 3.80s Out of Memory
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Table 3: Gauche 0.9.4
Ubuntu 14.04

# of invocations 100 1000 10000
no management 0.190s 1.780s 18.129s
manual management 0.231s 2.286s 22.487s
thread pool 0.192s 1.794s 17.867s
future and executor 0.23s 2.39s 22.56s

Cygwin
# of invocations 100 1000 10000
no management 0.269s 2.735s Out of Memory
manual management 0.298s 2.665s 26.692s
thread pool 0.299s 2.116s 20.269s
future and executor 0.32s 2.47s 24.04s

Table 4: Chibi Scheme 0.7.3
Ubuntu 14.04

# of invocations 100 1000 10000
no management 0.545s 5.820s 64.945s
manual management 0.438s 4.487s 44.951s
thread pool 0.610s 5.307s 52.893s
future and executor N/A N/A N/A

Cygwin
# of invocations 100 1000 10000
no management 0.695s 7.083s 73.904s
manual management 0.618s 6.134s 61.386s
thread pool 0.658s 6.178s 60.489s
future and executor N/A N/A N/A

Except Chibi Scheme on Ubuntu, the result shows that when
number of threads is small, there are not much difference among
these benchmarks. When it gets bigger, the thread pool is the
fastest. So at some point, the overhead of thread creation got bigger
than initialising thread pool. This, of course, depends on implemen-
tation and environment but the benchmark shows the threshold is
around 1000 threads.

Using thread pool and future and executor also shows less
memory consumption. On Cygwin, 3 out of 4 implementations
signalled out of memory error on no management benchmark with
10000 threads. Guile even signalled 1000 threads benchmark of
both no management and manual management. 384 Megabyte12)

is the default amount of memory that processes can use on 32 bit
Cygwin environment. So creating 10000 threads would consume as
close as or more than the default amount of memory and cause out
of memory error.

Future and executor scored slightly worse performance than
thread pool on 3 out of 4 implementations13). This would be over-
head of future creation and explicit blocking. Future and executor
blocks main thread up to 1/10 of invocation count when the execu-
tor is not available while thread pool model blocks only once. And
it also impacted GC on Guile since it returned out of memory error
on 10000 invocations.

Considering this result, if scripts need to handle indefinite num-
ber of tasks simultaneously, then thread pool would provide better
performance and stability.

12)Cygwin User’s Guide.
Chapter 2. Setting Up Cygwin - Changing Cygwin’s Maximum Memory
URL https://www.cygwin.com/cygwin-ug-net/setup-maxmem.html

13)Chibi Scheme went either infinite waiting or segmentation fault. We
are not sure which side of issue it is.

6. Conclusion
We described the basic implementation strategies of our concur-
rency library and showed the performance impact of using it. Con-
current programming is not easy. Users often need to consider a lot
of things such as resource management and synchronisation. How-
ever, these are often not crux of what programmers want to do. We
believe using the library reduces these trivial problems and make
programmers concentrate to resolve main problems.

A. Benchmark script
The counts file defines the invocation numbers as a list. For our
benchmarks, it has (100 1000 10000)

Listing 10: Benchmark procedures

(import (rnrs)
(only (srfi :1) iota)
(except (srfi :18)

raise with-exception-handler)
(util concurrent)
(time))

(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

(define (heavy-task n) (lambda () (fib n)))

(define counts
(call-with-input-file "counts" read))

(define n**
(map (lambda (count)

(fold-left
(lambda (acc o)

(cons (+ (mod (length acc) 6) 20)
acc))

’() (iota count)))
counts))

(for-each (lambda (count n*)
(time (run count n*)))

counts n**)
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