Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Compressed Natural Gas Utilization in Dual-Fuel Internal Combustion Engines

Author(s):  
Sulav Kafle ◽  
Ankur Kalwar ◽  
Hardikk Valera ◽  
Avinash Kumar Agarwal
2017 ◽  
Vol 80 ◽  
pp. 1458-1498 ◽  
Author(s):  
Roopesh Kumar Mehra ◽  
Hao Duan ◽  
Romualdas Juknelevičius ◽  
Fanhua Ma ◽  
Junyin Li

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3734
Author(s):  
Javier Monsalve-Serrano ◽  
Giacomo Belgiorno ◽  
Gabriele Di Blasio ◽  
María Guzmán-Mendoza

Notwithstanding the policies that move towards electrified powertrains, the transportation sector mainly employs internal combustion engines as the primary propulsion system. In this regard, for medium- to heavy-duty applications, as well as for on- and off-road applications, diesel engines are preferred because of the better efficiency, lower CO2, and greater robustness compared to spark-ignition engines. Due to its use at a large scale, the internal combustion engines as a source of energy depletion and pollutant emissions must further improved. In this sense, the adoption of alternative combustion concepts using cleaner fuels than diesel (e.g., natural gas, ethanol and methanol) presents a viable solution for improving the efficiency and emissions of the future powertrains. Particularly, the methane–diesel dual-fuel concept represents a possible solution for compression ignition engines because the use of the low-carbon methane fuel, a main constituent of natural gas, as primary fuel significantly reduces the CO2 emissions compared to conventional liquid fuels. Nonetheless, other issues concerning higher total hydrocarbon (THC) and CO emissions, mainly at low load conditions, are found. To minimize this issue, this research paper evaluates, through a new and alternative approach, the effects of different engine control parameters, such as rail pressure, pilot quantity, start of injection and premixed ratio in terms of efficiency and emissions, and compared to the conventional diesel combustion mode. Indeed, for a deeper understanding of the results, a 1-Dimensional spray model is used to model the air-fuel mixing phenomenon in response to the variations of the calibration parameters that condition the subsequent dual-fuel combustion evolution. Specific variation settings, in terms of premixed ratio, injection pressure, pilot quantity and combustion phasing are proposed for further efficiency improvements.


2011 ◽  
Vol 15 (4) ◽  
pp. 1145-1154 ◽  
Author(s):  
Kasianantham Nanthagopal ◽  
Rayapati Subbarao ◽  
Thangavelu Elango ◽  
Ponnusamy Baskar ◽  
Kandasamy Annamalai

Author(s):  
Miroslav P. Petrov ◽  
Thomas Stenhede ◽  
Andrew R. Martin ◽  
Laszlo Hunyadi

Hybrid dual-fuel combined cycle power plants employ two or more different fuels (one of which is typically a solid fuel), utilized by two or more different prime movers with a thermal coupling in between. Major thermodynamic and economic advantages of hybrid combined cycle configurations have been pointed out by various authors in previous studies. The present investigation considers the performance of natural gas and biomass hybrid combined cycles in small scale, with an internal combustion engine as topping cycle and a steam boiler/turbine as bottoming cycle. A parametric analysis evaluates the impact of natural gas to biomass fuel energy ratio on the electrical efficiency of various hybrid configurations. Results show that significant performance improvements with standard technology can be achieved by these hybrid configurations when compared to the reference (two independent, single-fuel power plants at the relevant scales). Electrical efficiency of natural gas energy conversion can reach up to 57–58% LHV, while the efficiency attributed to the bottoming fuel rises with up to 4 percentage points. In contrast to hybrid cycles with gas turbines as topping cycle, hybrid configurations with internal combustion engines show remarkably similar performance independent of type of configuration, at low shares of natural gas fuel input.


2013 ◽  
Vol 50 (6) ◽  
pp. 26-35
Author(s):  
Y. Gelfgat ◽  
R. Smigins

Abstract Popularity of methane-containing gaseous fuels has slowly been growing since their appearance, especially in the last decades. Occasional non-availability of liquid fossil fuels, the necessity to reduce the transportation costs and to improve the air quality are the basic factors which stimulated development of gas utilization technologies - from accumulation, compression and deflation of gas to its usage in internal combustion engines. Since then different solutions have been offered, and the authors are reviewing them - from the first use of natural gas to nowadays.


2019 ◽  
Vol 21 (8) ◽  
pp. 1493-1519
Author(s):  
Abhishek Y Deshmukh ◽  
Carsten Giefer ◽  
Dominik Goeb ◽  
Maziar Khosravi ◽  
David van Bebber ◽  
...  

Direct injection of compressed natural gas in internal combustion engines is a promising technology to achieve high indicated thermal efficiency and, at the same time, reduce harmful exhaust gas emissions using relatively low-cost fuel. However, the design and analysis of direct injection–compressed natural gas systems are challenging due to small injector geometries and high-speed gas flows including shocks and discontinuities. The injector design typically involves either a multi-hole configuration with inwardly opening needle or an outwardly opening poppet-type valve with small geometries, which make accessing the near-nozzle-flow field difficult in experiments. Therefore, predictive simulations can be helpful in the design and development processes. Simulations of the gas injection process are, however, computationally very expensive, as gas passages of the order of micrometers combined with a high Mach number compressible gas flow result in very small simulation time steps of the order of nanoseconds, increasing the overall computational wall time. With substantial differences between in-nozzle and in-cylinder length and velocity scales, simultaneous simulation of both regions becomes computationally expensive. Therefore, in this work, a quasi-one-dimensional nozzle-flow model for an outwardly opening poppet-type injector is developed. The model is validated by comparison with high-fidelity large-eddy simulation results for different nozzle pressure ratios. The quasi-one-dimensional nozzle-flow model is dynamically coupled to a three-dimensional flow solver through source terms in the governing equations, named as dynamically coupled source model. The dynamically coupled source model is then applied to a temporal gas jet evolution case and a cold flow engine case. The results show that the dynamically coupled source model can reasonably predict the gas jet behavior in both cases. All simulations using the new model led to reductions of computational wall time by a factor of 5 or higher.


Export Citation Format

Share Document