Prospects for $$ {B}_c^{+} $$→ τ +ντ at FCC-ee
Abstract This paper presents the prospects for a precise measurement of the branching fraction of the leptonic $$ {B}_c^{+} $$ B c + → τ+ντ decay at the Future Circular Collider (FCC-ee) running at the Z -pole. A detailed description of the simulation and analysis framework is provided. To select signal candidates, two Boosted Decision Tree algorithms are employed and optimised. The first stage suppresses inclusive $$ b\overline{b} $$ b b ¯ , $$ c\overline{c} $$ c c ¯ , and $$ q\overline{q} $$ q q ¯ backgrounds using event-based topological information. A second stage utilises the properties of the hadronic τ+→ π+π+π−$$ \overline{\nu} $$ ν ¯ τ decay to further suppress these backgrounds, and is also found to achieve high rejection for the B+→ τ+ντ background. The number of $$ {B}_c^{+} $$ B c + → τ+ντ candidates is estimated for various Tera-Z scenarios, and the potential precision of signal yield and branching fraction measurements evaluated. The phenomenological impact of such measurements on various New Physics scenarios is also explored.