Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals The significance of neural inter-frequency power correlations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oscar W. Savolainen

AbstractIt is of great interest in neuroscience to determine what frequency bands in the brain have covarying power. This would help us robustly identify the frequency signatures of neural processes. However to date, to the best of the author’s knowledge, a comprehensive statistical approach to this question that accounts for intra-frequency autocorrelation, frequency-domain oversampling, and multiple testing under dependency has not been undertaken. As such, this work presents a novel statistical significance test for correlated power across frequency bands for a broad class of non-stationary time series. It is validated on synthetic data. It is then used to test all of the inter-frequency power correlations between 0.2 and 8500 Hz in continuous intracortical extracellular neural recordings in Macaque M1, using a very large, publicly available dataset. The recordings were Current Source Density referenced and were recorded with a Utah array. The results support previous results in the literature that show that neural processes in M1 have power signatures across a very broad range of frequency bands. In particular, the power in LFP frequency bands as low as 20 Hz was found to almost always be statistically significantly correlated to the power in kHz frequency ranges. It is proposed that this test can also be used to discover the superimposed frequency domain signatures of all the neural processes in a neural signal, allowing us to identify every interesting neural frequency band.

2021 ◽  
Author(s):  
Oscar Wiljam Savolainen

Abstract It is of great interest in neuroscience to determine what frequency bands in the brain contain common information. However, to date, a comprehensive statistical approach to this question has been lacking. As such, this work presents a novel statistical significance test for correlated power across frequency bands in non-stationary time series. The test accounts for biases that often go untreated in time-frequency analysis, i.e. intra-frequency autocorrelation, inter-frequency non-dyadicity, and multiple testing under dependency. It is used to test all of the inter-frequency correlations between 0.2 and 8500 Hz in continuous intracortical extracellular neural recordings, using a very large, publicly available dataset. The results show that neural processes have signatures across a very broad range of frequency bands. In particular, LFP frequency bands as low as 20 Hz were found to almost always be significantly correlated to kHz frequency ranges. This test also has applications in a broad range of fields, e.g. biological signal processing, economics, finance, climatology, etc. It is useful whenever one wants to robustly determine whether short-term components in a signal are robustly related to long-term trends, or what frequencies contain common information.


JAMIA Open ◽  
2020 ◽  
Author(s):  
Michal Ozery-Flato ◽  
Yaara Goldschmidt ◽  
Oded Shaham ◽  
Sivan Ravid ◽  
Chen Yanover

Abstract Objective Observational medical databases, such as electronic health records and insurance claims, track the healthcare trajectory of millions of individuals. These databases provide real-world longitudinal information on large cohorts of patients and their medication prescription history. We present an easy-to-customize framework that systematically analyzes such databases to identify new indications for on-market prescription drugs. Materials and Methods Our framework provides an interface for defining study design parameters and extracting patient cohorts, disease-related outcomes, and potential confounders in observational databases. It then applies causal inference methodology to emulate hundreds of randomized controlled trials (RCTs) for prescribed drugs, while adjusting for confounding and selection biases. After correcting for multiple testing, it outputs the estimated effects and their statistical significance in each database. Results We demonstrate the utility of the framework in a case study of Parkinson’s disease (PD) and evaluate the effect of 259 drugs on various PD progression measures in two observational medical databases, covering more than 150 million patients. The results of these emulated trials reveal remarkable agreement between the two databases for the most promising candidates. Discussion Estimating drug effects from observational data is challenging due to data biases and noise. To tackle this challenge, we integrate causal inference methodology with domain knowledge and compare the estimated effects in two separate databases. Conclusion Our framework enables systematic search for drug repurposing candidates by emulating RCTs using observational data. The high level of agreement between separate databases strongly supports the identified effects.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Sarah E Wetzel-Strong ◽  
Shantel M Weinsheimer ◽  
Jeffrey Nelson ◽  
Ludmila Pawlikowska ◽  
Dewi Clark ◽  
...  

Objective: Circulating plasma protein profiling may aid in the identification of cerebrovascular disease signatures. This study aimed to identify circulating angiogenic and inflammatory biomarkers that may serve as biomarkers to differentiate sporadic brain arteriovenous malformation (bAVM) patients from other conditions with brain AVMs, including hereditary hemorrhagic telangiectasia (HHT) patients. Methods: The Quantibody Human Angiogenesis Array 1000 (Raybiotech) is an ELISA multiplex panel that was used to assess the levels of 60 proteins related to angiogenesis and inflammation in heparin plasma samples from 13 sporadic unruptured bAVM patients (69% male, mean age 51 years) and 37 patients with HHT (40% male, mean age 47 years, n=19 (51%) with bAVM). The Quantibody Q-Analyzer tool was used to calculate biomarker concentrations based on the standard curve for each marker and log-transformed marker levels were evaluated for associations between disease states using a multivariable interval regression model adjusted for age, sex, ethnicity and collection site. Statistical significance was based on Bonferroni correction for multiple testing of 60 biomarkers (P< 8.3x10 - 4 ). Results: Circulating levels of two plasma proteins differed significantly between sporadic bAVM and HHT patients: PDGF-BB (P=2.6x10 -4 , PI= 3.37, 95% CI:1.76-6.46) and CCL5 (P=6.0x10 -6 , PI=3.50, 95% CI=2.04-6.03). When considering markers with a nominal p-value of less than 0.01, MMP1 and angiostatin levels also differed between patients with sporadic bAVM and HHT. Markers with nominal p-values less than 0.05 when comparing sporadic brain AVM and HHT patients also included angiostatin, IL2, VEGF, GRO, CXCL16, ITAC, and TGFB3. Among HHT patients, the circulating levels of UPAR and IL6 were elevated in patients with documented bAVMs when considering markers with nominal p-values less than 0.05. Conclusions: This study identified differential expression of two promising plasma biomarkers that differentiate sporadic bAVMs from patients with HHT. Furthermore, this study allowed us to evaluate markers that are associated with the presence of bAVMs in HHT patients, which may offer insight into mechanisms underlying bAVM pathophysiology.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Lijun Wu ◽  
Liwang Gao ◽  
Xiaoyuan Zhao ◽  
Meixian Zhang ◽  
Jianxin Wu ◽  
...  

Purpose. Genome-wide association studies have found two obesity-related single-nucleotide polymorphisms (SNPs), rs17782313 near the melanocortin-4 receptor (MC4R) gene and rs6265 near the brain-derived neurotrophic factor (BDNF) gene, but the associations of both SNPs with other obesity-related traits are not fully described, especially in children. The aim of the present study is to investigate the associations between the SNPs and adiponectin that has a regulatory role in glucose and lipid metabolism. Methods. We examined the associations of the SNPs with adiponectin in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study. A total of 3503 children participated in the study. Results. The SNP rs6265 was significantly associated with adiponectin under an additive model (P=0.02 and 0.024, resp.) after adjustment for age, gender, and BMI or obesity statuses. The SNP rs17782313 was significantly associated with low adiponectin under a recessive model. No statistical significance was found between the two SNPs and low adiponectin after correction for multiple testing. Conclusion. We demonstrate for the first time that the SNP rs17782313 near MC4R and the SNP rs6265 near BDNF are associated with adiponectin in Chinese children. These novel findings provide important evidence that adiponectin possibly mediates MC4R and BDNF involved in obesity.


Author(s):  
Hiroshi Toda ◽  
Zhong Zhang

We already proved the existence of an orthonormal basis of wavelets having an irrational dilation factor with an infinite number of wavelet shapes, and based on its theory, we proposed an orthonormal basis of wavelets with an arbitrary real dilation factor. In this paper, with the development of these fundamentals, we propose a new type of orthonormal basis of wavelets with customizable frequency bands. Its frequency bands can be freely designed with arbitrary bounds in the frequency domain. For example, we show two types of orthonormal bases of wavelets. One of them has an irrational dilation factor, and the other is designed based on the major scale in just intonation.


2013 ◽  
Vol 8 (1) ◽  
pp. 32-43
Author(s):  
Vladimir Arbuzov ◽  
Eduard Gorniker ◽  
Evgeny Kozyrev ◽  
Alexey Kondakov ◽  
Viktor Petrov ◽  
...  

The article is devoted to the system of the Radio Frequency power transfer and distribution between accelerating cavities of the ERL for FEL of the Siberian center of SR and THz Radiation, SB RAS, Novosibirsk. The system of dividing is built on the basis of a rectangular waveguide, associated with each cavity of a coaxial line by the coaxial-to-waveguide adapter (CWA). It is shown that under a certain choice of waveguide sizes and CWA, the equivalent circuit of the CWA can be represented by a current source. The analysis of the properties of such a system has been carried out and shown its advantages. Also it is discussed the experimental results and the experience of the operation of the device. The article presents the basic design parameters of a waveguide divider 600 kW of continuous power, running at a frequency of 180.4 MHz


2020 ◽  
Vol 13 (5) ◽  
pp. 531-540
Author(s):  
John N. Brewin ◽  
Alexander E. Smith ◽  
Riley Cook ◽  
Sanjay Tewari ◽  
Julie Brent ◽  
...  

Background: Ischemic stroke is a devastating complication affecting children with sickle cell anemia. Genetic factors are likely to be important in determining the risk of stroke but are poorly defined. Methods: We have studied a cohort of 19 children who had an overt ischemic stroke before 4 years of age. We predicted genetic determinants of stroke would be more prominent in this group. We performed whole exome sequencing on this cohort and applied 2 hypotheses to our variant filtering. First, we looked for strong, potentially mono- or oligogenic variants for ischemic stroke, and second, we considered that more common polygenic variants will be enriched in our cohort. Candidate variants emerging from both strategies were validated in a cohort of 283 patients with sickle cell anemia and known pediatric cerebrovascular outcomes. We used principal component analysis in this cohort to control for relatedness and population substructure. Results: Our primary finding was that the Apoliprotein E genotypes ε2/ε4 and ε4/ ε4, defined by the interplay of rs7412 and rs429358 , were associated with increased stroke risk, with an odds ratio of 4.35 ([95% CI, 1.85–10.0] P =0.0011) for ischemic stroke in the validation cohort. We also found that rs2297518 in NOS (NO synthase) 2 (odds ratio, 2.25 [95% CI, 1.21–4.19]; P =0.014) and rs2230123 in signal transducer and activator of transcription (odds ratio, 2.60 [95% CI, 1.30–5.20]; P =0.009) both had increased odds ratios for ischemic stroke, although these two variants were below the threshold for statistical significance after correction for multiple testing. Conclusions: These data identify new loci for future functional investigations into cerebrovascular disease in sickle cell anemia. Based on African population reference allele frequencies, the Apoliprotein E genotypes would be present in about 10% of children with sickle cell anemia and represent a genetic risk factor that is potentially modifiable by both dietary and pharmaceutical manipulation of its dyslipidemic effects.


2001 ◽  
Vol 38 (A) ◽  
pp. 274-288 ◽  
Author(s):  
Xiaogu Zheng ◽  
James Renwick

The advantages and limitations of frequency domain and time domain methods for estimating the interannual variability arising from day-to-day weather events are summarized. A modification of the time domain method is developed and its application in examining a precondition for the frequency domain method is demonstrated. A combined estimation procedure is proposed: it takes advantage of the strengths of both methods. The estimation procedures are tested with sets of synthetic data and are applied to long time series of three meteorological parameters. The impacts of the different methods on tests of potential long-range predictability for seasonal means are also discussed.


2019 ◽  
Vol 30 (3) ◽  
pp. 627-648 ◽  
Author(s):  
Evelyn Buckwar ◽  
Massimiliano Tamborrino ◽  
Irene Tubikanec

Abstract Approximate Bayesian computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time-dependent, real-world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise: First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g. the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography data. The derived summaries are particularly robust to the model simulation, and this fact, combined with the proposed reliable numerical scheme, yields accurate ABC inference. In contrast, the inference returned using standard numerical methods (Euler–Maruyama discretisation) fails. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterised by an invariant distribution and for which a measure-preserving numerical method can be derived.


Export Citation Format

Share Document