Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Classification of rat mammary carcinoma with large scale in vivo microwave measurements

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Emre Onemli ◽  
Sulayman Joof ◽  
Cemanur Aydinalp ◽  
Nural Pastacı Özsobacı ◽  
Fatma Ateş Alkan ◽  
...  

AbstractMammary carcinoma, breast cancer, is the most commonly diagnosed cancer type among women. Therefore, potential new technologies for the diagnosis and treatment of the disease are being investigated. One promising technique is microwave applications designed to exploit the inherent dielectric property discrepancy between the malignant and normal tissues. In theory, the anomalies can be characterized by simply measuring the dielectric properties. However, the current measurement technique is error-prone and a single measurement is not accurate enough to detect anomalies with high confidence. This work proposes to classify the rat mammary carcinoma, based on collected large-scale in vivo S$$_{11}$$ 11 measurements and corresponding tissue dielectric properties with a circular diffraction antenna. The tissues were classified with high accuracy in a reproducible way by leveraging a learning-based linear classifier. Moreover, the most discriminative S$$_{11}$$ 11 measurement was identified, and to our surprise, using the discriminative measurement along with a linear classifier an 86.92% accuracy was achieved. These findings suggest that a narrow band microwave circuitry can support the antenna enabling a low-cost automated microwave diagnostic system.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Shashank Chetty ◽  
S. Praneetha ◽  
Sandeep Basu ◽  
Chetana Sachidanandan ◽  
A. Vadivel Murugan

Abstract Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 72
Author(s):  
Leonardo Carvalho ◽  
Guilherme Lucas ◽  
Marco Rocha ◽  
Claudio Fraga ◽  
Andre Andreoli

Three-phase induction motors (IMs) are electrical machines used on a large scale in industrial applications because they are versatile, robust and low maintenance devices. However, IMs are significantly affected when fed by unbalanced voltages. Prolonged operation under voltage unbalance (VU) conditions degrades performance and shortens machine life by producing imbalances in stator currents that abnormally raise winding temperature. With the development of new technologies and research on non-destructive techniques (NDT) for fault diagnoses in IMs, it is relevant to obtain economically accessible, efficient and reliable sensors capable of acquiring signals that allow the identification of this type of failure. The objective of this study is to evaluate the application of low-cost piezoelectric sensors in the acquisition of acoustic emission (AE) signals and the identification of VU through the analysis of short-term Fourier transform (STFT) spectrograms. The piezoelectric sensor makes NDT feasible, as it is an affordable and inexpensive component. In addition, STFT allows time-frequency analyses of acoustic emission signals. In this NDT, two sensors were coupled on both sides of an induction motor frame. The AE signals obtained during the IM operation were processed and the resulting spectrograms were analyzed to identify the different VU levels. After comparing the AE signals for faulty conditions with the signals for the IM operating at balanced voltages, it was possible to obtain a desired identification that confirmed the successful application of low-cost piezoelectric sensors for VU condition detection in three-phase induction machines.


2019 ◽  
Vol 25 (13) ◽  
pp. 1443-1454 ◽  
Author(s):  
Maria L. Guevara ◽  
Stefano Persano ◽  
Francesca Persano

Cancer vaccines have been widely explored as a key tool for effective cancer immunotherapy. Despite a convincing rationale behind cancer vaccines, extensive past efforts were unsuccessful in mediating significantly relevant anti-tumor activity in clinical studies. One of the major reasons for such poor outcome, among others, is the low immunogenicity of more traditional vaccines, such as peptide-, protein- and DNA- based vaccines. Recently, mRNA emerged as a promising alternative to traditional vaccine strategies due to its high immunogenicity, suitability for large-scale and low-cost production, and superior safety profile. However, the clinical application of mRNA-based anti-cancer vaccines has been limited by their instability and inefficient in vivo delivery. Recent technological advances have now largely overcome these issues and lipid-based vectors have demonstrated encouraging results as mRNA vaccine platforms against several types of cancers. This review intends to provide a detailed overview of lipid-based vectors for the development of therapeutic mRNA-based anti-tumor vaccines.


2014 ◽  
Vol 20 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Eric Chatelain

American trypanosomiasis, or Chagas disease, is the result of infection by the Trypanosoma cruzi parasite. Endemic in Latin America where it is the major cause of death from cardiomyopathy, the impact of the disease is reaching global proportions through migrating populations. New drugs that are safe, efficacious, low cost, and adapted to the field are critically needed. Over the past five years, there has been increased interest in the disease and a surge in activities within various organizations. However, recent clinical trials with azoles, specifically posaconazole and the ravuconazole prodrug E1224, were disappointing, with treatment failure in Chagas patients reaching 70% to 90%, as opposed to 6% to 30% failure for benznidazole-treated patients. The lack of translation from in vitro and in vivo models to the clinic observed for the azoles raises several questions. There is a scientific requirement to review and challenge whether we are indeed using the right tools and decision-making processes to progress compounds forward for the treatment of this disease. New developments in the Chagas field, including new technologies and tools now available, will be discussed, and a redesign of the current screening strategy during the discovery process is proposed.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Finola E. Moore ◽  
David M. Langenau

Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processesin vivoincluding tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy.


2021 ◽  
pp. 174425912110560
Author(s):  
Asim Shahzad ◽  
Zhaofeng Chen ◽  
Zaffar M Khan ◽  
Desire Emefa Awuye

Temperature maintenance is one of the leading factors for the large-scale energy consumption in buildings, which accounts for 33% of the total consumption. The heavy smog in China resulting from the depletion of fossil fuels necessitates the development of new technologies that can reduce the energy usage in buildings. Several techniques for building’s thermal insulation were developed among which the utilization of Vacuum Insulation Panels (VIPs) has the leading edge. For refrigeration purpose in VIPs, the glass wool is being used as a core material because of their low thermal conductivity (λ ≤ 2 mW/m·K) and low cost. However, the silica-fly ash has been preferred as a core material of VIPs for buildings because of its high compressive strength (σc > 2 MPa) and the most economical price. Moreover, the P1/2 of the glass wool VIP and silica-fly ash VIP are 10–100 and 1000 Pa, respectively. In this work, the performance of VIPs with various cores has been compared. The thermal conductivity of VIPs, along with the factors affecting thermal conductivity, such as density, thickness, internal pressure, and porous structures, have been evaluated. In addition, the effect of core materials on the cost of VIPs was also quantified. It is expected that the study will serve as a pioneering work in the foundation to development of the next-generation, low-cost VIPs used for building insulations.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1289
Author(s):  
José C. C. Santana ◽  
Poliana F. Almeida ◽  
Nykael Costa ◽  
Isabella Vasconcelos ◽  
Flavio Guerhardt ◽  
...  

With the increasing global population, it has become necessary to explore new alternative food sources to meet the increasing demand. However, these alternatives sources should not only be nutritive and suitable for large scale production at low cost, but also present good sensory characteristics. Therefore, this situation has influenced some industries to develop new food sources with competitive advantages, which require continuous innovation by generating and utilising new technologies and tools to create opportunities for new products, services, and industrial processes. Thus, this study aimed to optimise the production of gelatin-base gels from chicken feet by response surface methodology (RSM) and facilitate its sensorial classification by Kohonen’s self-organising maps (SOM). Herein, a 22 experimental design was developed by varying sugar and powdered collagen contents to obtain grape flavoured gelatin from chicken feet. The colour, flavour, aroma, and texture attributes of gelatines were evaluated by consumers according to a hedonic scale of 1–9 points. Least squares method was used to develop models relating the gelatin attributes with the sugar content and collagen mass, and their sensorial qualities were analysed and classified using the SOM algorithm. Results showed that all gelatin samples had an average above six hedonic points, implying that they had good consumer acceptance and can be marketed. Furthermore, gelatin D, with 3.65–3.80% (w/w) powdered collagen and 26.5–28.6% (w/w) sugar, was determined as the best. Thus, the SOM algorithm proved to be a useful computational tool for comparing sensory samples and identifying the best gelatin product.


2021 ◽  
Vol 28 ◽  
Author(s):  
Le Minh Tu Phan

: Carbon dots (CDs), an emerging nanoagent providing an alternative to conventional fluorescent agents, are sparking the scientist’s interest in biomedical applications owing to their unique advantages, including ease of synthesis, large scale production, low cost, prominent photoluminescence, good photostability, easy functionalization, sufficient biocompatibility, good nanocarrier, and excellent ability to generate reactive oxygen species or heat. Herein, this perspective provides a viewpoint about imaging-assisted biomedical applications using fluorescent CDs regarding in vitro and in vivo bioimaging, imaging-assisted sensing, and imaging-guided therapy. The opinions about their potential and challenges in applicable biomedical applications are discussed to develop, further ameliorated CDs for their intense exploitation in diverse imaging-assisted biomedical applications.


2020 ◽  
Vol 319 (4) ◽  
pp. L652-L660
Author(s):  
Nathanael Pruett ◽  
Anand Singh ◽  
Ahjeetha Shankar ◽  
David S. Schrump ◽  
Chuong D. Hoang

Mesothelial cells are arranged as a monolayer on covering membranes that invest surfaces of body cavities like the pleura and peritoneum. Primary human mesothelial cell (HMC) cultures are needed for studying mesothelial cell homeostasis and developing disease models, such as wound healing or cancers. Remarkably, there is a paucity of useable HMC lines that are currently available that faithfully recapitulate normal in vivo phenotypic characteristics. Here, we present a strategy to recover HMC from human pleural tissue and to immortalize them for extended in vitro culturing. Human pleural membrane was harvested by minimally invasive surgical techniques. HMC were isolated using a two-step process combining explant cellular outgrowth from biopsy tissue and flow cytometry based on cell surface expression of cadherin-1 and CD71. Cell cultures were generated after lentiviral transfection with human telomerase. The new HMC cultures retain the same phenotypic traits and physiologic features as their in vivo counterparts, yet they can be adapted for short-term or long-term culture in large-scale in vitro experimentation. In particular, we generated a new HMC line harboring a germline mutation in breast cancer type-1-associated protein-1 ( BAP1), a causal tumor suppressor gene, that could be instrumental to malignant mesothelioma research. Patient-specific, normal HMC may serve as novel discovery tools allowing more powerful research models of both normal physiology and disease processes. Our surgically driven approach leads to a limitless resource of novel mesothelial cell cultures.


2018 ◽  
Author(s):  
Siyu Lin ◽  
Jie Qiao ◽  
Lixin Ma ◽  
Yi Liu

AbstractCRISPR/Cas ribonucleoprotein (RNP) complexes have been recently used as promising biological tools with plenty of applications, however, there are by far no efficient methods to prepare them at large scale and low cost. Here, we present a simple method to directly produce and purify Cas RNP, including the widely used Cas9 and Cas12a nuclease, from E.coli in a single step using an ultra-high-affinity CL7/Im7 purification system. The prepared Cas RNP shows high stability, solid nuclease activity in vitro, and profound genome editing efficiency in vivo. Our method is convenient, cost-effective, and applicable to prepare other CRISPR associated nucleases.


Export Citation Format

Share Document