Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

scholarly journals Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

2015 ◽  
Vol 112 (19) ◽  
pp. 5938-5943 ◽  
Author(s):  
Victor Vilarrasa ◽  
Jesus Carrera

Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change.

2019 ◽  
Author(s):  
Víctor Vilarrasa ◽  
Jesus Carrera ◽  
Sebastià Olivella ◽  
Jonny Rutqvist ◽  
Lyesse Laloui

Abstract. Geologic carbon storage, as well as other geo-energy applications, such as geothermal energy, seasonal natural gas storage and subsurface energy storage, imply fluid injection/extraction that causes changes in the effective stress field and induces (micro)seismicity. If felt, seismicity has a negative effect on public perception and may jeopardize wellbore stability and damage infrastructure. Thus, induced earthquakes should be minimized to successfully deploy geo-energies. However, the processes that trigger induced seismicity are not fully understood, which translates into a limited forecast ability of current predictive models. We aim at understanding the triggering mechanisms of induced seismicity and to develop methodologies to minimize its occurrence through dimensional and numerical analysis. We find that the properties of the injected fluid, e.g., water or CO2, have a significant effect on pressure buildup evolution and thus, on fracture/fault stability. In addition to pressure changes, the injected fluid usually reaches the injection formation at a lower temperature than that of the rock, inducing rock contraction, thermal stress reduction and stress redistribution around the cooled region. If low-permeable faults cross the injection formation, local stress changes are induced around them which may reduce their stability and eventually cause fault reactivation. To minimize the risk of inducing felt seismicity, we have developed characterization techniques to reduce the uncertainty on rock properties and subsurface heterogeneity both for the screening of injection sites and for the operation of projects. Overall, we contend that felt induced seismicity can be minimized provided that a proper site characterization, monitoring and pressure management are performed.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 871-892 ◽  
Author(s):  
Víctor Vilarrasa ◽  
Jesus Carrera ◽  
Sebastià Olivella ◽  
Jonny Rutqvist ◽  
Lyesse Laloui

Abstract. Geologic carbon storage, as well as other geo-energy applications, such as geothermal energy, seasonal natural gas storage and subsurface energy storage imply fluid injection and/or extraction that causes changes in rock stress field and may induce (micro)seismicity. If felt, seismicity has a negative effect on public perception and may jeopardize wellbore stability and damage infrastructure. Thus, induced earthquakes should be minimized to successfully deploy geo-energies. However, numerous processes may trigger induced seismicity, which contribute to making it complex and translates into a limited forecast ability of current predictive models. We review the triggering mechanisms of induced seismicity. Specifically, we analyze (1) the impact of pore pressure evolution and the effect that properties of the injected fluid have on fracture and/or fault stability; (2) non-isothermal effects caused by the fact that the injected fluid usually reaches the injection formation at a lower temperature than that of the rock, inducing rock contraction, thermal stress reduction and stress redistribution around the cooled region; (3) local stress changes induced when low-permeability faults cross the injection formation, which may reduce their stability and eventually cause fault reactivation; (4) stress transfer caused by seismic or aseismic slip; and (5) geochemical effects, which may be especially relevant in carbonate-containing formations. We also review characterization techniques developed by the authors to reduce the uncertainty in rock properties and subsurface heterogeneity both for the screening of injection sites and for the operation of projects. Based on the review, we propose a methodology based on proper site characterization, monitoring and pressure management to minimize induced seismicity.


2021 ◽  
Author(s):  
Dennise Templeton ◽  
Martin Schoenball ◽  
Corinne Layland-Bachmann ◽  
William Foxall ◽  
Yves Guglielmi ◽  
...  

Author(s):  
Serge A. Shapiro ◽  
Carsten Dinske

AbstractSometimes, a rather high stress drop characterizes earthquakes induced by underground fluid injections or productions. In addition, long-term fluid operations in the underground can influence a seismogenic reaction of the rock per unit volume of the fluid involved. The seismogenic index is a quantitative characteristic of such a reaction. We derive a relationship between the seismogenic index and stress drop. This relationship shows that the seismogenic index increases with the average stress drop of induced seismicity. Further, we formulate a simple and rather general phenomenological model of stress drop of induced earthquakes. This model shows that both a decrease of fault cohesion during the earthquake rupture process and an enhanced level of effective stresses could lead to high stress drop. Using these two formulations, we propose the following mechanism of increasing induced seismicity rates observed, e.g., by long-term gas production at Groningen. Pore pressure depletion can lead to a systematic increase of the average stress drop (and thus, of magnitudes) due to gradually destabilizing cohesive faults and due to a general increase of effective stresses. Consequently, elevated average stress drop increases seismogenic index. This can lead to seismic risk increasing with the operation time of an underground reservoir.


Author(s):  
Molly Luginbuhl ◽  
John B. Rundle ◽  
Donald L. Turcotte

A standard approach to quantifying the seismic hazard is the relative intensity (RI) method. It is assumed that the rate of seismicity is constant in time and the rate of occurrence of small earthquakes is extrapolated to large earthquakes using Gutenberg–Richter scaling. We introduce nowcasting to extend RI forecasting to time-dependent seismicity, for example, during an aftershock sequence. Nowcasting uses ‘natural time’; in seismicity natural time is the event count of small earthquakes. The event count for small earthquakes is extrapolated to larger earthquakes using Gutenberg–Richter scaling. We first review the concepts of natural time and nowcasting and then illustrate seismic nowcasting with three examples. We first consider the aftershock sequence of the 2004 Parkfield earthquake on the San Andreas fault in California. Some earthquakes have higher rates of aftershock activity than other earthquakes of the same magnitude. Our approach allows the determination of the rate in real time during the aftershock sequence. We also consider two examples of induced earthquakes. Large injections of waste water from petroleum extraction have generated high rates of induced seismicity in Oklahoma. The extraction of natural gas from the Groningen gas field in The Netherlands has also generated very damaging earthquakes. In order to reduce the seismic activity, rates of injection and withdrawal have been reduced in these two cases. We show how nowcasting can be used to assess the success of these efforts. This article is part of the theme issue ‘Statistical physics of fracture and earthquakes’.


Export Citation Format

Share Document