Error analysis of the cutting machine step adjustable drive
Abstract The implementation precision of a number of adjustment bodies of a metal-cutting machine is also the most important indicator of its quality, a strictly standardized industry standard, technical conditions for manufacturing and acceptance. Moreover, the standard for limiting the error is set depending on the used denominator of the series. An essential feature of the precision of the series being implemented is that it is determined not by an error in parts’ manufacturing, but by the disadvantages of the used method of kinematic calculation. The established modes largely determine the efficiency of processing on metal-cutting machines. If the setting is set to an underestimated mode, then the performance is reduced accordingly. In the case of the mode overestimation, this leads to a decrease in durability and losses due to increased regrinding and tool changes. Creation of a complex of mathematical models for the design kinematic calculation of the metal-cutting machines’ main movement drive, which allows reducing the error in the implementation of a series of preferred numbers and increasing machining precision. The article provides a mathematical complex for analyzing the total error components, which allows determining and evaluating the total error of the drive of a metal-cutting machine by analyzing its constituent values with high precision: errors of a permanent part, errors of a multiplier part, rounding errors of standard numbers, errors in the electric motor and belt transmission. The presented complex helps to identify the role of the rounding error of preferred numbers in the total relative error formation and makes it possible to reduce it, which allows solving the problem of increasing the step adjustable drive precision. When using a mathematical complex, a fundamentally new opportunity for creating a scientific base appears, developing algorithms and programs for engineering calculation of tables that facilitate the selection of the numbers of teeth for multiple groups, structures and guaranteeing high precision of the implemented series.