Image is a basic and fundamental data source for the digital image processing. This image data source is required to be processed into information or intelligence and further to knowledge levels where it is required to understand and migrate into knowledge economy systems. Image registration is one of such key and most important process already identified in the digital image processing domain. Image registration is a process of bringing the reference image and sensed image into a common co-ordinate system, and application of complex transformation techniques for necessary comparison of reference with sensed images obtained from different - views, times, spaces, etc., in order to extract the valuable information and intelligence embedded in them. Due to the complexity of overall image registration process, it is difficult to suggest a single transformation technique even for a specific application. In addition, it is highly impossible to suggest one single transformation technique for comparison of various sensed images with a reference image during the image registration process. This research gap calls for the development of new image registration techniques for the application of more than one transformation technique during the image registration process for the necessary comparisons with reference image & sensed images, those are obtained from the available heterogeneous sources or sensors, based on the requirement. In addition, it is a basic need to attempt for the measurement of effectiveness of the image registration process also. Therefore, a research framework is developed for image registration process and attempted for the measurement of its effectiveness also. This new research area is a novel idea, and is expected to emerge as a provision for the knowledge computations with creative thinking through the embedded intelligence extraction during the complex image registration process.